
Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7064

ANALYSIS AND DEVELOPMENT OF MICROSERVICES
ARCHITECTURE IN LOAN APPLICATION SYSTEM OF

COOPERATIVE ENTERPRISE IN INDONESIA

REYNALDI LIE1, AHMAD NURUL FAJAR2
1, Information System Management Department,

 BINUS Graduate Program - Master of Information Systems Management,

Bina Nusantara University,

Jakarta, Indonesia 11480

E-mail: 1reynaldi004@binus.ac.id, 2afajar@binus.edu

ABSTRACT

PT XYZ is a cooperation enterprise currently using monolithic IT (Information Technology) system
architecture. Load test and stress test results of the system showed that development of capabilities of the
loan application system of the enteprise is still possible to be done. This research is purposed to analyze the
loan application system design based on microservices as possible alternative to replace the current IT
monolithic system architecture in PT XYZ by enhancing the performance of the loan application system in
scaling up business with the ability to establish low dependency among applications. The research is
exclusively aimed to solve the system architectural problem in cooperative enterprises with PT XYZ as the
example. The method used in this research is microservices-based system design with DDD (Domain
Driven Design) approach by determining bounded contexts, followed by classification of entities,
aggregates, and services that are going to be materialized in the design. Analysis results confirmed that the
services can be seen from three different contexts, namely information context, loan application context,
and loan review context according to the functionalities of each service component. The researcher
suggested software stack emphasizing on processes automation at PT XYZ to support the microservices
architecture design.

Keywords: Service Oriented Architecture, Microservices Design, Domain Driven Design, System
Architecture, Loan Application

1. INTRODUCTION

Savings and loan cooperatives are the
pillars of Indonesia’s economy and have always
been an economic agent that synergizes with other
economic agents, namely BUMN (Badan Usaha
Milik Negara), the Indonesia’s equivalent for SOEs
(State-Owned Enterprises) and BUMS (Badan
Usaha Milik Swasta), the Indonesia’s equal of
private enterprise in the joint effort of bringing
equally prospering society. To realize and develop
the democratization of economy, these economy
agents, particularly enterprises, must be built in
accordance with the Article 33 Section (1) of UUD
1945 (The 1945 Constitution of the Republic of
Indonesia). The success of the cooperatives will be
the determining factor of Indonesian economic
stability, especially in the uncertainty of Covid-19

which end has yet to be seen, where many parties
might need fundings from cooperatives.

According to the records of OJK (Otoritas
Jasa Keuangan), the Indonesian Financial Services
Authority, every year has saw the increase of credit
disbursement significantly [1]. The data retrieved
from the period of December 2018 where the credit
disbursement of creditors in Java Island reached
about 19.62 trillion rupiahs whereas outside of Java,
the disbursement reached approximately 3.05
trillion rupiahs in amount. The following year, in
December 2019 showed drastic increase in the
credit disbursement where creditors in Java Island
disbursed 69.82 trillion rupiahs and creditors
outside of Java disbursed 11.67 trillion rupiahs. The
very next year also saw increase, exactly in
December 2020, where Java Island has accumulated
disburse amount of 132.38 trillion rupiahs while
outside of Java counted as 23.52 trillion rupiahs.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7065

The accumulation of the disbursement amount were
calculated from various sources, namely from
borrowers’ accounts, including both consumer and
working capital loans. More than 140 creditors are
offering loan services across Indonesia annually.
May 2020 has the greatest number of creditors
providing loan services to customers, at 161
companies.

The rise of Covid-19 outbreak at the
beginning of 2020 has not reached its conclusion.
Indonesia’s government, like many countries
around the world, has enforced physical distancing
as a countermeasure against the viral infection,
which the Indonesian government called PSBB
(Pembatasan Sosial Berskala Besar) or literally
translated as Large-Scale Social Distancing. This
limited people’s activities greatly and ended up
reducing purchasing power immensely. This
occurrence affected Indonesia’s economy
negatively as in the same year, there was a decrease
with the percentage of 2.07% [2]. Business owners
responded to PSBB by implementing WFH (Work
from Home) and WFO (Work from Office) rules.
WFH and WFO are done alternately to maintain the
continuity of business activities without ignoring
the government’s advice to physically distancing
with each other to slowdown the spread of
Covid-19. Another challenge for the business
owners is the necessity of adapting and innovating
amongst the Covid-19 situation. With or without the
pandemic itself, continuous adaptation and
innovation are necessary to adjust with the present
conditions and challenges. People have
insurmountable number of needs, along with the
necessity of adapting and innovating, are the reason
why a modern system must be developed to answer
those needs. One of the possible ways to provide
the ability to keep doing activities while
communicating with the society among a condition
which greatly restricts face to face interaction is to
adopt a well-established information system and
hasten the development of the digitalization of a
company so that the company can move in a
dynamic way.

Besides, the globalization era gives more
opportunities for cooperative enterprises to increase
in number. The cooperatives are competing with
each other as the result [3]. This circumstance
forces every cooperative to be in constant
improvement and perfecting the business to be able
to withstand the threat of competitors and to
maintain the cooperatives overall existence for long
term. The advancement of business environment
nowadays forces business owners to use many

strategies and techniques to support the
improvement of business, cooperatives are not an
exception to this.

The strategy for improving or perfecting
cooperative business lines can be realized by
conducting digital transformation which demands
an organization to be nimble and to adopt suitable
innovation method with good acceleration to ensure
that the newly developed digital services can be
brought to customers, partners, and staffs alike. To
achieve this, many organizations took the approach
of building a seamless application based on cloud
with good flexibility, where it is easier to add and
renew digital services to suit the everchanging
business requirements and technological
capabilities [4]. Old monolithic applications may be
acceptable for daily operations, yet these
applications are not suited to construct digital
services. The traditional monolithic system
architecture and software development method will
always be hinderances in pushing forward to the
desired digital transformation within an
organization [5].

Information system is commonly built with
monolithic architecture, where each component of
the system is intended to be built as one unity. A
single monolithic architecture usually comprises of
tens or hundreds of business functions used
simultaneously in one software release.
Microservices, on the other hand, usually
summarizes a single business function so that it can
be scaled and used separately. Developing
application for a large enterprise by spreading cloud
facilities by creating and managing a number of
microservices give the possibility of another
alternative to improve monolithic architecture. The
challenges that a developer might encounter within
monolithic architecture are the questionable
adaptation capability of the system toward system
requirement changes, mainly in managing codes
complexity and its maintainability, where this will
cause bottleneck to the services distribution process
due to tightly coupling of the codes. Therefore, a
consideration of devising another architectural
alternative to create an adaptive system
management to suit requirement changes whenever
needed, is needed [6]. In an architectural design
focused on services development, every company
should at least update the system and services
weekly. PT XYZ, a cooperative enterprise in
Indonesia situated at Jakarta that the researcher
studied on, is no exception. The case study serves to
compare the updating process in monolithic

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7066

architectural design versus microservices
architectural design.

Another challenge in using monolithic
architecture is the system development dependence
on stack of the main technologies which limit the
possibility to develop new functions with newer
application framework or a different programming
language [7]. With the increasing functions amount,
monolithic architecture gets more complex and
need larger team of developers to support the
applications within [8]. Scalability in monolithic
architecture is also limited, as individual functions
cannot be run repeatedly separately after usage. The
repetition must be done to the entire application
which can be very time consuming.

Based on these explanations, if the
previous system is maintained, it is going to bring
disadvantages for the enterprises using the system,
particularly in competing with other enterprises in
fulfilling customers’ needs. The consequence of
using the traditional system is that the developers
have to face the complexity of system development
and must spare a lot of time to deal with it, which
can result in slowdown of the advancement of the
system compared to the system used by
competitors. High operating costs are inevitable in
handling complex system structure as the
management needs large team to run the process.

For instance, loan system in PT XYZ is a
system using monolithic architecture where every
components of the application inside are built,
designed, implemented, and maintained within a
single union of codes [9]. The biggest drawback of
this architecture is the developer might face
adversity in increasing capacity needed for the
system. Constant fixing and improvement of the
system is difficult as all components should be
increased in capacity, even if only one component
needs capacity increase while the rest do not need
changes in capacity. For example, the number of
SMEs (Small Medium Enterprises) in Indonesia is
at 59.2 million. This number indicates the chance
for request of application services coming from the
customers to be relatively high [10]. Monolithic
system renders the application to be slow
responding and cannot keep up with the
ever-increasing number of users.

Apache Benchmark is used as a tool for
testing the services in PT XYZ with its currently
used monolithic architecture which showed that the
capability of the system can process request of to
3 RPS (Request Per Second). A series of test is also
conducted afterwards by changing the testing

duration variable and the number of services that
the system can provide within a preset time, using
Execution Time as the parameter for measuring
duration and Concurrency as the parameter in
measuring how many services can the system
provide within given duration. This measuring
method is called load testing, which purpose is to
measure how a website can be accessed within
certain parameters like execution time and
concurrency. RPS is used to gauge the amount of
request that can be accepted by the web server
within certain duration. Based on the test results as
shown in Table 1, the RPS in monolithic system
architecture can be considered as lacking.

Table 1: Load Testing of Monolithic Architecture
Using Apache Benchmark

No Execution Time (s) Concurrency (#) Monolithic
RPS (#/s)

1 10 10 2.98
2 50 10 3.02
3 100 10 2.92
4 150 10 2.99
5 200 10 2.94
6 250 10 2.92
7 300 10 2.87

Apart from doing load testing, monolithic
architecture capabilities can also be tested with
stress testing. Stress testing is also done using
Apache Benchmark with the preset parameters
being the number of services requested and the
number of services requested at the same time.
Stress testing is used to measure how a web can be
resilient and responding requests from users even
though the number of requests are high, regardless
of the requests are made simultaneously or not. The
parameters for testing are Number of Request and
Concurrency, where Number of Request represents
the number of requests acceptable by the web server
and Concurrency represents the number of requests
acceptable by the web server at the same time. The
precise illustration for the stress testing result can
be seen in Table 2 below.

Table 2: Stress Testing of Monolithic Architecture
Using Apache Benchmark

No Number of
Requests (#) Concurrency (#) Monolithic

RPS (#/s)
1 10,000 200 10.24
2 5,000 200 9.31
3 2,000 200 8.66

Test results indicated that monolithic
architecture is capable of supporting the current
services layout, but by combining the results of

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7067

both load testing and stress testing, it is safe to
assume that the performance of the services present
at the current business type can be improved even
further.

As implied by reference [11], with a total
time required for testing of three minutes, only a
minute is necessary to discover that the average
response time of applications built on monolithic
architecture is significantly lower than the response
time needed for applications built on microservices
architecture. The accumulated usage of RAM
(Random Access Memory) by clients of
applications built as microservices are higher than
the RAM usage by clients on monolithic
applications. Although the frequency of testing
done was relatively low as most of the enterprises’
server are strong, response time should not be a
problem. Similar result is also discovered in the
usage of CPU (Central Processing Unit).

Microservices architecture originated from
Service Oriented Architecture or abbreviated
commonly as SOA, one of the possible system
architectural style to develop business and
technological solution in the form of software as
composition of split logics loosely coupled for ease
of operation and distribution into separate parts
without dependency on each other in order to shape
services. Service orientation or SO for short, is the
new paradigm to shape services with a set of design
principle like self-description, storing personal
information, autonomous, abstraction, standard
contract, division of services contents, and ease of
use in locating the services. All of these are set to
fulfill the principle of SOA. This paradigm is the
evolution from the traditionally object-oriented
business into components-based manipulation to
enforce services with great flexibility and
interoperability, without neglecting the principle of
information hiding for the sake of privacy. SO is
intended to devise software solutions as single
and/or combined services, in regard to SOA
architectural style running in distributed
computerization or can be referred to as SOC
(Service Oriented Computing).

SOA approach has several advantages as
opposed to traditional architectural approaches such
as the opportunity for repeated use, better
independency as a platform, lower maintenance and
development cost, observable with results
determined by network variable and factor, and
various services to choose from with dynamic
composition and dynamic information stream [12].

By understanding the basics of SOA, one
can recognize microservices architecture which is
an evolved form of SOA as one alternative of a
more measurable architecture with higher flexibility
than SOA. To encourage digital transformation
efficiently, many organizations are exploring
methodologies and architectural style to develop
new software. In microservices architecture,
information system is designed to be distributed
into separate parts to provide more focused and
more specific services. Large issues will be
categorized into small pieces of solutions grouped
into one service, where each service has its own
responsibility. This approach creates an information
system comprising of several services which can be
managed and distributed independently. Thus, the
system can adapt better to changing needs [6].

Another reason for the suggestion of
microservice architecture in this research is to
reduce difficulty in the process of scaling up the
current business, especially in the business segment
of loan service in PT XYZ. Business scale up is the
effort to prepare and support the growth and the
development of a business, be it from the system
aspect, resources, processes, technology, or partners
[13]. An enterprise is ready to perform business
scale up if the customer retention rate of that
company is high to the point of receiving large
quantities of demand from customers, but with
limited services capacity, facing difficulty in
fulfilling the requests. High dependency among
applications in monolithic system can be a barrier in
scaling up business of a company. PT XYZ is also
vulnerable to the threat if system architecture
replacement is not done sooner. The need of
migration from monolithic to microservices
architectural style is to give PT XYZ the capacity of
balancing the readiness of the cooperative
enterprise in scale up processes and helping in its
realization.

A data from [14] indicated that 68% of for-
profit company using IT system in running their
business had implemented microservices to
products and its development, while 26% of them
have learnt microservices but haven’t implemented
it. The remaining 6% didn’t learn and implement
microservices. This reference also pointed out from
a case study in UppLabs, a Fintech company from
United States that the company couldnot scale up
the business without replacing the monolithic
architectural style.

The final desired outcome of using
microservices architecture is lessened difficulty in
doing business by improving services dedicated to

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7068

stakeholders of enterprises, like bridging between
producers and buyers through an integrated
information system. Digitalization in a company
support guidance and accompaniment across space
and time as the processes of delivering services can
be done in real-time and online environments.

Microservices infrastructure can be
developed using the approach of DDD (Domain
Driven Design). DDD’s main area of focus is
domains, including its conception, relationship with
each other, and existing business processes. DDD
relies on bounded contexts to identify services
within the microservices architecture. Business
processes must be grouped according to the
functions. Every group will be treated as bounded
contexts of the system. These contexts will later
form microservices in the microservices
architecture [15]. However, in real life practice,
there aren’t many companies taking total advantage
of information system. Some creditor companies,
like cooperatives, are still using manual system
which slowdown the process of
decision-making regarding loan disbursement and
several other things related with credit. Slow
decision-making can hinder the process of
retrieving daily customer reports like loan applicant
report and credit disbursement report. Data also
suffer to the risk of inaccuracy. These problems can
be tackled by building a computerized system with
better integration [16]. DDD approach is expected
to be the beginning of formulating solutions to
dissolve or solve these problems. The application of
DDD approach in designing microservices
architecture can be beneficial in achieving the
maximum advantage of loose coupling with
reduced implementation complexity by separating
domains and subdomains using DDD approach.

The researcher is piqued to design
microservices architecture for PT XYZ’s loan
application system with DDD approach. The design
idea for the loan application system is carried out
by interviewing the CTO (Chief Technology
Officer) from the cooperative to learn more about
what the current monolithic system in loan
application system is capable of doing. The design
is hoped to offer an alternative of systemic solution
for PT XYZ in enhancing the performance of the
loan application system in bringing convenience in
scaling up business with low dependency among
applications. The research is exclusively aimed to
solve the system architectural problem in
cooperative enterprises, as opposed to the referred
past studies that mainly involved IT companies.
Research questions are formulated as follows:

1. How using microservices architecture to
design the loan application system for
PT XYZ can reduce the difficulty of the
system design processes?

2. How the DDD (Domain Driven Design)
approach can help in designing microservices
for the loan application system of PT XYZ
cooperative enterprise?

2. LITERATURE REVIEW

In this section, the researcher discussed
related terminologies to provide better
understanding of the theories surrounding the
research focus for the readers. The theories
consisted of definition and contribution of past
researches, mainly from journals and literatures.

2.1 General Theory
General theories defined some terms with

direct connection to the field of computer studies.
These theories were taken from journals, books, or
previously documented researches that contained
insights and suggestions to improve the area of IT
(Information Technology).
2.1.1 Service oriented architecture

SOA is an architecture solution with loose
coupling mechanism and one way to implement it
is by using web services. To answer the challenge
of competition from economic pressure, the IT
industry in general has always tried to improve
system performance and customer services with
efficient cost management. This tendency in
behavior among IT industry agents somehow led to
the changing of IT system infrastructure into SOA
for to have a nimbler system for the best interest of
business owners. This initiative, however, has
brought to light the security issues that SOA
possess [12].

By implementing SOA, enterprises will
have effective, flexible, scalable, and repeatedly
useable IT infrastructure. This concept supports
digital transformation in a company with the ability
to be adaptive in either internal business structure
or external environment [17].

SOA plays the role of illustrated
architectural paradigm that is grouped into six
separate dimensions which consists of business
value, strategic goals, intrinsic interoperability,
combined services, flexibility, and evolutionary
improvement. The ultimate purpose of this
architectural paradigm is to divide several business
procedures into smaller parts which can be
connected and reused in another business scenarios
whenever needed [18].

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7069

SOA is formed by four core components,
they are application frontend, services, services
repository, and services bus of an enterprise. In
application frontend, the users can initiate, control,
and cease the services, where functional units are
separated so they are accessible from long distance
and taken care of and updated independently.
Different user groups can access the services from
built communication networks and build
infrastructure that is divided into equal parts to
facilitate integration and collaboration, both
internally and/or externally. Services repository has
a structure to store and access services data to
enable the users to determine the services
characteristics and functions as registry or
information contained in the database, which
governs the SOA projects in access services
catalogue, all of which are improving continuously
in an interactive and controlled environment. After
a series of processes, the enterprise’s service bus
brings to conclusion by implementing
communication system across services where all of
them are connected by the already established SOA
environment.

Service consumer and service provider
communication flows on the internet in SOA
environment starts with the service provider
component publishing information about the
services in service registry. Service consumer will
find the service information and service provider
component information from the service registry.
Lastly, these two components will undergo the
process of integration where both will bind with
each other through internet connection. This
processes are illustrated in Figure 1 below.

Figure 1: SOA Main Structure [19]

SOA is very strict when it comes to
privacy protection because information flow or
program codes cannot be seen by anyone, closing
the possibility of knowing how the services will be
grouped to complete certain processes in the
architectural environment. So, to measure the
degree of potential information leak in SOA-based
web services proves to be a challenging feat.

2.1.2 Microservices architecture
Adoption of microservices architecture to

develop software is getting more and more popular
as a mean to replace traditional system architecture
since cohesive services group and loose coupling
are the benefits of adopting microservices
architecture. Microservices are built as solutions
which take form as properly defined domains and
generating many components with similar ability to
communicate and operate together. Usage of
microservices support the implementation and
maintenance process with good resilience and
scalability. However, these perks can
unintentionally create a more complex ecosystem
that requires additional effort of communication
and collaboration in tackling the problems that
might surface from the inside [20].

Microservices is reliable in building tough,
measurable, independent, and fast improving
applications. But since the services are autonomous
and are built from groups of small services, a
careful approach is needed to build the applications.
Reference [21] provided a comprehensive
explanation about microservices such as the
components, benefits, and challenges of
implementing the architectural style.

The components shaping microservices
comprises of these characteristics:
1. Microservices are small in size, moves

independently, and can be grouped flexibly.
Thus, only a small team of developers are
needed to describe and maintain the services.

2. Every service has separate code base.
3. Service can be updated separately without

having to update the entire services.
4. Each service is responsible for their respective

data.
5. Every service can communicate with each

other through API. Implementation detail of
one service is hidden from another service.

6. It is not necessary for services to share the
same technological basis, user manual, and
workflow.

Other component beside the services itself
that is also vital for the materialization of
microservices is API gateway. API stands for
Application Programming Interface and acts as an
entry point for clients. API gateway will forward
the request to suitable service in the backend part of
the system.

Converting to microservices provide
various benefits such as:

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7070

1. Nimbleness. Fixing bugs and releasing new
features in applications are made easier by
using microservices, as opposed to traditional
architecture where new features release can be
put on halt whenever bugs are being fixed.

2. Small team and better focus, making creation,
testing, and implementation of new features to
be less time consuming.

3. Small code base, making addition of new
features to be less challenging as each service
are not reliant to each other.

4. Freedom to combine many different
technologies to suit development needs.

5. Isolation of error, like circuit breaking to
prevent errors in one service to affect another
area of microservices architecture.

6. The ability to adequately allocate resources
into certain areas of needs accordingly.

7. Data isolation gives the ability to update at
will, minimizing the potential unwanted
updates to undesired parts of the services.

Microservices’ benefits also come with
new challenges that the developer team must tackle,
like:
1. Increase in complexity of the entire system

architecture.
2. Development and testing of the services can

be difficult as available tools can lack in
compatibility to gauge the dependency of a
service, especially if the services are growing
fast.

3. Lack of proper governance, since
microservices emphasized on decentralized
environment.

4. Possibility of congestion and latency in
network. API must be designed carefully to
avoid getting into this issue.

5. Data integration becomes a problem as each
service being in charge of respective data,
generating data consistency issues.

6. Logging management issues.
7. Versioning of services may lead to potential

backward or forward compatibility issues.
8. Proper expertise are absolute requirement in

handling microservices. The team of
developers that are going to be tasked with
everything related with microservices cannot
be just anyone, it must be experts or people
with experience in handling the complexity of
microservices.

2.1.3 Domain driven design
DDD (Domain Driven Design) is a

methodology based on models that is popular in use
for capturing knowledge of certain domains with
relevance to a software design. To encourage

understanding about domains and the authenticity
of generated design, DDD emphasizes on an agile
collaborative modeling from domain experts and
software engineers. Presently, microservices
architecture is developing as an architectural style
for distributed software system with high
requirements for scalability and adaptive ability.
DDD can also dissect domain and define contexts
among the domain, where each are grouped into a
coherent domain concept. These contexts are
suitable for microservices functionality in providing
different business capabilities. Putting DDD into
practice in microservices design, however, create
some challenges regarding the exclusion of some
services from domain model, infrastructure
components modeling, and domain modeling in an
autonomous group [22].

During strategic phase of DDD, business
domain are being mapped and defined as bounded
contexts for domain modeling. DDD is a tactical
approach in classifying domain models with high
precision. This tactical pattern is applied into
bounded contexts. Applying entities and aggregates
pattern in microservices will help identifying
natural boundaries for internal services. Using
common principle, microservices must be greater
than aggregates, and must be smaller than bounded
contexts. The initial step would be to supervise this
tactical pattern and apply it into the bounded
contexts. These are the summary for DDD’s tactical
pattern:
1. Entities, which can be defined as an object

with unique identity stuck and persist during
the course of time. For instance, in banking
application, customers and bank accounts can
be classified as entities. An entity can be
distinguished from another entity by looking
at GUID (Global Unique Identification
Number) or the main lock in a database.
Entities identities can include some bounded
contexts and can last longer than an
application usage period, e.g.: bank account or
customer ID issued by the bank are not tied to
application usage period. Entities attributes
can change over time, like one’s legal name
can be changed but not the main identity of
that person. An entity can be linked to other
entity.

2. Value objects. These objects do not have an
identity. The only way to distinguish one
value object from another is to examine its
attributes values. Value objects are immutable.
To renew value objects, new examples are
always required to replace the outdated value
objects. Value objects can have a method to

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7071

summarize domain logic, but it shouldn’t have
a side effect to the objects itself. The example
of value objects are color, date and time, and
currency value.

3. Aggregates, which define the consistency
boundary around an entity or more. Entities in
aggregates are called root. Searching for an
aggregate can be done by knowing the root
entity identifier. Other entities that are derived
from root can be referred to by following the
clues from the main root. Aggregates’ main
purpose is to model a transactional invariance.
In real life, the relationship network between
each aggregate is more complex. For instance,
customers make a request, the request contains
product specification that the customers
desire, products are delivered by suppliers,
and so on. If the application modifies some
related objects, it is necessary to discover the
way to guarantee its consistency, tracking the
invariance, and enforce it. Traditional
application mostly uses database transaction to
ensure consistency. However, in a distributed
application, this is almost impossible to do.
Single business transaction can only reach
some of the data storage, or taking too much
time to do, or maybe require assistance from
third-party services. In the end, it depends on
the application, not the data layers, to apply
the invariance needed in the domain. This is
how modeling using aggregates are done.

4. Domain services and applications. In DDD
terminologies, services are objects used to
implement some logics without any status.
DDD differentiates between domain services
and application services, providing technical
functionality, like user authentication or SMS
(Short Message Service). Domain services are
often used to model behavior surrounding
many entities.

5. Domain events, to communicate with other
parts of the system when something occurs.
As the name suggests, domain events area of
concern is only the occurrences in a domain.
Example of a thing unrelated with a domain is
“notes are put into the table” and the example
of a domain event is “Delivery is cancelled”.
Domain events are relevant in realization of
microservices architecture, since
microservices are distributed and not sharing
data storage. And so, domain events serve as a
way for microservices to coordinate with each
other. Some DDD patterns like factory,
repository, and module are useful in
implementation of microservices, but

irrelevant in designing boundaries between
microservices.

2.2 Specialized Theory
According to reference [23], Fintech, a

portmanteau of the word financial and technology,
is a usage of technology in delivering a new and a
better form of financial services. One of the reason
to adopt Fintech is despite the convenience of
information technology has tackled costs and
functionalities related issues, the seemingly
inevitable intermediary costs of using financial
services never change for more than a century.

Reference [24] stated that Fintech is a part
of the growth of innovation process in financial
industry that is risky theoretically but valuable. This
finding is supported by the latest proof that Fintech
gives substantial value to the investors. Reference
[25] also stated that Fintech is the point where
financial services and technology collides. This is
not a new phenomenon for banking companies and
financial services providers in the era of Fintech the
last few years. The evolution of Fintech history are
as follows:
1. Fintech 1.0 (1866 to 1967). The first Fintech

era began from the installation of the first
transatlantic undersea telecommunication
cable and the invention of ATM (Automatic
Teller Machine), where finance and
technology are combined to mark the first
period of financial globalization. A technology
like telegraph also supported the relationship
of finance across boundaries, enabling fast
transmission in financial information
exchange, transaction, and payment.

2. Fintech 2.0 (1967 to 2008). The second
evolution in Fintech history is when it
remained in exclusive sectors for decades and
was mainly dominated by conventional
financial services providers regulated by the
authorities that used the technology to provide
financial products and services. This Fintech
age is the witness of the beginning of the
introduction of electronic payment and
clearing system. Also, usage of ATM was
commercialized with many units of the
machine being produced, which is also
supported by the deployment of online
banking system worldwide. In mid ‘90s,
financial services industry became the largest
purchaser of IT assets, a record which hasn’t
been surpassed until now.

3. Fintech 3.0 (2008 to the present): Since the
global financial crisis in 2008, startup
companies with disruptive nature and

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7072

powerful technology enterprises began to send
financial products and services directly to
business or known as B2B (Business-to-
Business) and the society where newcomers
had tendency to focus at providing single
solution designed to offer better experience in
only a single product or service. The key
connection of this behavior with Fintech 3.0 is
that the competition amongst banks and other
financial services providers were no longer
from the same businesses. New competitors
have surfaced in the form of Fintech
companies, which reshaped the way financial
services are delivered by using advance
technologies. Fintech companies in this era are
capable of mirroring the disruption, as seen by
wider economic scope with the emergence of
online platforms like Amazon or Uber that
managed to overcome the already established
conventional financial system. Instead of
replacing the current system, Fintech
companies have invented an important
infrastructure instead. Fintech is also capable
of developing on its own and have been
acknowledged worldwide. McKinsey, a global
consulting firm, has calculated that more than
2,000 startup companies offered financial
services, and predicted that there might be
12,000 more that will become Fintech
companies.

Nowadays, Fintech companies have vast
improvement, so the concept of Fintech itself must
be implemented to firms or organizations that
support the improvement of economics, like
cooperatives, whose system currently are very
traditional. Cooperatives need to adopt a system
that is used by Fintech companies, or else, the
cooperatives may be less favored by costumers of
the financial industry if they view Fintech
companies as a more attractive alternative to use
financial products and services.

Cooperative is derived from the Latin word
coopere which is translated literally as cooperation
or cooperative in English. Cooperation means
striving together to achieve mutual goals. In
accordance with the 1945 Constitution of the
Republic of Indonesia Number 25 Article 1 Section
(1), cooperatives are business entities that aims to
bring prosperity to its members by cooperating with
each other through active participation in the
services provided by the cooperatives [26].

One of the most common types of
cooperatives easily found across the world, is
savings and loan cooperatives, or often called CU

(Credit Union) [27]. The purpose of CU is to
encourage its members to save their funds, allocate
the accumulated funds from the members to provide
loan for members in need according to the principle
of democracy. There are approximately 88,000 CUs
and other cooperatives around the world. In 1986,
the membership of CUs almost reached 114 million
people with total accumulated savings of 540
billion US dollars and total loan outstanding of 380
billion US dollars.

2.3 Relevant Past Researches
Research by reference [28] entitled

“Modeling Microservices with DDD” explained that
DDD can help in providing functional
comprehension on microservices architecture.
Although, the method to apply this idea is unclear
to domain practitioners in common. DDD is a
domain modeling technique developed in early
2000 while microservices are developed and
popularized years after in 2015. This past research
discussed the basic conception of DD and why and
how it can help developing microservices with
better availability, scalability, reliability, and
capability of modification. The researcher navigated
domain model built with DDD into microservices
design based on synchronous REST and
asynchronous or reactive communication protocols.
The researcher dwelled further into five scenarios
of microservices surrounding the DDD’s
aggregates, bounded contexts, domain events, and
other strategies for bounded contexts to interact
with each other.

A research by reference [29] focused on an
IT company developing e-procurement application
as the basic product system to fulfill the needs of
automation in internal procurement processes
discovered that the system was built on monolithic
architecture where the application is enveloped in a
large package and had high dependency among
modules. The modules were defined as the entire
process of integration, where if changes occurred to
certain module to adapt with business processes,
this will affect the other module functions. An
alternative for another system architecture style
should be put into consideration to have a more
adaptive e-procurement application system and to
be able to overcome issues generated from usage of
the old architectural style. This past research
suggested the design of transformational process
using microservices architecture with DDD
approach. The results indicated that microservices
architecture is capable of being more adaptive
towards change where the modules are designed to
be standalone modules.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7073

Research entitled “Implementation of
Microservices Architecture to Comrades
Application Backend” by reference [30] was
conducted with Comrades, a smart application that
acts as an information and educational medium
about HIV/AIDS disease, as the research object.
Comrades help every HIV/AIDS sufferer to
exchange information and console each other while
able to interact with general society. In its
development, this application partnered with the
community of HIV/AIDS patients within close
proximity. It was predicted that the users of the
application would increase due to the partnership.
As a preventive measure to handle the surge of
application usage, performance upgrade is
necessary for Comrades. This research sought to
improve the performance and availability of
Comrades for its users. This could be achieved by
implementing microservices architecture into the
web application that was previously built on
monolithic architecture. DDD was used as the
approach to split the services. From architectural
perspective, the physical aspect would change after
implementation of the currently advanced
technologies like Docker, Kubernetes, and API
gateway.

Reference [15] implied that Docker can
help developers to devise a system to develop,
implement, and spread services, especially to
achieve the desired level of system performance in
e-commerce web services. Docker will contain all
information center and dependence of the system
used within a single package. This can simplify the
process of implementation and distribution of the
system. In designing system using microservices
architecture, the entire system is broken down into
several smaller services. Afterwards, some factors
of service separation should be paid attention to,
such as service dependency and service
communication. Microservices should be developed
with care unless the difficulties of system
development will only increase.

Lessons learned from the conclusion of
each relevant past research suggested that the
advantages of using microservices architecture in
developing a system are flexibility and maintenance
of the system. System performance can also be
maximized with the freedom to build the system
using different programming languages and
databases. Changes and improvement in one service
won’t affect the other services in work, as long as
the service does not depend on each other. This is
very important as business processes can continue
to improve, so long as the system has good

adaptability to changes. Using the example of these
past works, the design of microservices architecture
using DDD approach for PT XYZ loan application
system is expected to yield satisfactory results.
However, these past researches have limited
amount of information about the technological
requirements needed to carry out the design
processes of microservices, such as the software
stack. This research is done by circumventing the
limitation with borrowing data from PT XYZ’s
existing system to learn more about the software
stack and which part of them can be complemented
or replaced with a better alternative to better suit the
newly designed microservices architecture.

From a critical analysis of the literatures,
research questions related with computing
contribution in the current research can be stated as
follows:

1. What software requirements are ideal to
support the design of microservices with DDD
approach?

2. How improving the IT system can contribute
to improve the competitiveness of a
cooperative enterprise toward Fintech
companies?

3. DESIGN METHODOLOGY

3.1 Reference Framework

This research is motivated by the needs of
converting PT XYZ’s system to a more advanced
system architecture using microservices from the
currently used monolithic architecture.
Microservices are chosen because it is tougher,
more measurable, can be implemented
independently, and quicker in improvement than
monolithic architecture. The steps that the research
is going to take begin with collecting data and
analyzing the existing architecture system.
Adoption of DDD approach is going to be done to
design microservices, followed by analysis of the
existing application functionalities to understand its
workflow before designing microservices.

3.2 Research Flow
The research flow to realize the design of

microservices architecture using DDD approach is
depicted in Figure 2 below.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7074

Figure 2: Research Flow

3.2.1 Data collection and observation
Data is collected by interviewing the PIC

(Person in Charge) of the system management in
PT XYZ and by observing the existing system.
These PICs are the CTO and a representative from
the backend developer team. The purpose of
interviewing the parties responsible for the system
is to get a comprehensive details about the currently
running loan application system including the
system architecture to discover which areas of the
system can be improved by migrating the entire
system into microservices architecture with every
aspects related with loan application as the top
priority of concern. From the interview, the flaws
of the current system is learnt. Another piece of
valuable information showed that the loan
application system consists of 5 different modules,
namely Customer Services, Loan Application, Loan
Calculation, Loan Information, and Register
modules.
3.2.2 Function analysis

Function analysis identifies the business
processes in PT XYZ, including documenting the
features in the existing system. Each feature has its
function and actor or user that can access certain
feature. This analysis is focused on the existing
components in the current system model, such as
user manual, user journey from the loan application
system. The function analysis results serve as the
reference and guidance to design system
specifications for the microservices architecture.
3.2.3 System design using DDD approach

DDD is intended to optimize the
microservices design for PT XYZ and is expected
to portray what the technology and system
configuration should be like for the migration to
take place. DDD processes identify and classify
domain model with these following approaches:

1. Analyzing business domains in PT XYZ to
better understand the workflow of application
functionalities. This analysis will yield
informal domain descriptions which later will
be perfected to be a pack of formal domain
model.

2. Defining bounded contexts, where the
contexts contain domain model representing
related subdomains through a larger
application.

3. Applying tactical DDD patterns to define
entities, aggregates, and bounded contexts of
domain services from the loan application
system.

4. Using the results from previous steps to begin
designing microservices for PT XYZ.

3.2.4 Microservices design
Mapping of loan application concept

needed by PT XYZ into features that will be
developed into a new loan system is executed with
designing microservices with the previously done
DDD approach. Reimagining the system design
with different architectural style, if done correctly
will reduce the difficulty of development.
Definition of bounded contexts, entities,
aggregates, and services design strategy using DDD
approach will make this effort into less laborious
for the developers. The design processes are ended
with writing conclusion of the research and giving
suggestions for improvement possibilities.
3.3 Research Object

PT XYZ, the cooperative enterprise
established since December 2019 in Indonesia is
the research object in this study. The company
offers products like savings, collateral-based loan,
and payroll loan. The current monolithic
architecture used by PT XYZ has four layers, they
are: presentation layer, logic layer, data layer, and
database as illustrated in Figure 3.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7075

Figure 3: Monolithic Architecture at PT XYZ

4. RESULTS AND DISCUSSION

4.1 Collection of Secondary Data

The main source of data for this research is
retrieved from the internal documents of PT XYZ,
such as BRD (Business Requirement Document),
FSD (Functional Specification Document), and
TSD (Technical Specification Document) for
written information and interview with the CTO
and backend developer representative to have
clearer ideas of the actual business processes of the
loan application system. Relevant literatures also
play prominent role in shaping framework of
thinking for the system design planned in this
paper. The entirety of the information obtained
from the secondary data sources are discussed
further in subsections in this chapter.

4.2 Current System Function Analysis
Analysis on system functions reflect the

state of system that the research object currently
uses to deliver loan services to the cooperative’s
members.

4.2.1 Existing infrastructure
The existing infrastructure is monolithic in

nature with a relatively simple workflow. The
application in use is web-based that can only be
accessed through the cooperative official website
link given to users and visitors alike. Parties
attempting access to the application will be directed
to Cloudflare interface. Cloudflare’s main function
is to act as the security layer applied by PT XYZ to
protect the main system from the threat of DDoS
(Distributed Denial-of-Service). The overall
infrastructure used by the cooperative is using
third-party services. Aside from using Cloudflare,
the enterprise also uses service from a well-known

e-commerce tycoon Alibaba such as Alibaba Cloud
which includes ECS (Elastic Computer Service),
OSS (Object Storage Service), and ApsaraDB
(Apsara Database). ECS is a virtual server with
stable performance and better efficiency than
physical server which can cost more due to heavy
requirement to buy capable hardware. Unstructured
data or objects like images in large numbers can be
stored in OSS while for grouping of data and
information to make it easier in identification of
data is handled with ApsaraDB. The concise
illustration of the existing infrastructure is as shown
in Figure 4.

Figure 4: Existing Infrastructure at PT XYZ

4.2.2 Information workflow
Information workflow is divided into

several parts according to the purpose of each
information. Information workflow in PT XYZ
includes Registration Workflow, Loan Application
Workflow, and Loan Calculation Workflow.

Registration Workflow depicts the process
of every individual that attempts to register for the
cooperative membership in PT XYZ. This is the
basic procedure to be eligible for using the services
of the company, like savings and loan to abide by
the mandatory requirement of a cooperative where
only members are allowed to use the services of the
enterprise. The process begins by filling the
registration form. One of the components required
in the registration form is the applicant’s e-mail
(electronic mail). System will give different
response to the submission of the e-mail, depending
on whether the e-mail has been registered
previously or not. If the e-mail has been registered
before, the applicant is requested to submit another
unused e-mail address. Once new e-mail address is
submitted, the system will check for its validity. If
it is not used yet, the system will deem it valid and
send OTP (One Time Password) to the inbox of the
registered e-mail address. Applicant must open the
e-mail containing OTP information from the
applicant’s inbox and enter the correct combination
to the provided column in the application interface.
There is a possibility that the OTP combination will
enter the spam folder instead of the intended inbox
folder as a safety precaution measure applied by the
e-mail service provider to prevent malicious e-mail

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7076

to enter the inbox folder of the e-mail address’
owner. Inputting the correct OTP combination will
complete the registration processes, making the
applicant a formal member of the cooperative.
However, if the OTP combination is wrong, the
applicant should request for another OTP and
recheck their e-mail folders and reinput the new
OTP to complete the registration processes.

Figure 5: Registration Workflow at PT XYZ

Loan Application Workflow depicts the
process of applying for loan or credit involving two
parties, namely the cooperative member as the
applicant, and PT XYZ as the issuing party. Loan
application starts with the applying member filling
the application form and submit personal identity
documents like photocopies of ID Card and Tax ID.
Assigned staff will check the validity of the
documents by using e-KYC (electronic Know-
Your-Customer). If one of the submitted documents
do not comply with the terms, like unclear or poor
visibility of the information contained in the
documents and/or the information in the documents
do not match the records in e-KYC, then the
applicant is required to submit clearer documents.
If the applicant cannot comply or refuse to comply,
the application will be rejected immediately by the
staff. When the documents submitted met the
requirements of the cooperative, a survey and an
interview will be scheduled for the applicant to
learn the reason for their application, to recognize
their personal background, and to know what
collateral the applicant will offer to PT XYZ should
the loan application receives approval from the
committee. Following the survey and interview, the

assessment to determine if the applicant is
creditworthy or not will be conducted. The
assessment consists of credit collectability rating in
PEFINDO credit bureau, an Indonesian credit
bureau in charge of credit rating information
nationwide, and appraisal of the offered collateral
by internal appraisal officer from PT XYZ. If both
assessment are passed, the application will be
approved. If one or both of the assessment are not
passed, application will be rejected. The applicant
is obliged to handover the asset that is offered as a
collateral for the loan after request for loan has
been granted. The collateral will be bound by law
via credit pact with a notary as the authorized
personnel to legalize the credit pact. Pact must be
signed by the applicant and a representative from
PT XYZ. Signed pact is required for credit
disbursement. After receiving loan, the applicant is
officially a borrower to the cooperative.

Figure 6: Loan Application Workflow at PT XYZ

Loan Calculation Workflow is a simple
workflow where the visitor to the web application
of PT XYZ can access a calculator feature built on
it to estimate the costs to spend for paying loans
issued to the applying member should the loan
request be granted. The process is very linear where

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7077

it begin with the visitor accessing the application
and clicking on the calculator feature without
having to login, as loan account is given only to
borrower. Visitor that is not a borrower doesn’t
need to have a borrower account to access the
calculator feature. Then, on the loan calculation
interface, the visitor must input the desired loan
amount from the range between IDR 5 million to
IDR 1 billion and choose credit tenor with the range
between 1 month to 12 months. The next step
requires the visitor to click on Calculation button.
The system will respond by displaying estimation
of the costs with the composition such as provision
fee, amount of loan disbursed, and monthly interest
based on tenor chosen. Calculation result cannot be
displayed if the information is not properly given
by the visitor.

Figure 7: Loan Calculation Workflow at PT XYZ

4.2.3 User workflow
User workflow enables users to engage in

activities that may vary depending on users’ access
rights. PT XYZ divided user workflow into two
parts, they are Information Workflow and Customer
Services Workflow.

Loan Information Workflow portrays the
process of retrieving borrowers’ personal
information kept in the database. Every borrowing
member will be given access to a personal account

with a unique password to retrieve the respective
borrower’s loan information through the
application. These information are exclusive and
private to every holder of each respective account.
Thus, only the owner of the account is authorized to
access it or PT XYZ’s staff with access
authorization. The flow is quite simple. Borrower
only needs to access application website, input the
given account name and password, then the system
will direct to a number of information like
borrower’s name, borrower’s unique identifier
number, loan amount, tenor, next payment amount,
payment due date, phone number of the PIC from
PT XYZ assigned to the borrower’s account, and
another information related with the identity of the
borrower. To exit from the information window, the
borrower as the user only needs to logout from the
account.

Figure 8: Loan Information Workflow at PT XYZ

Customer Services Workflow explains
how the website application visitors can discover
solutions to problems or issues the visitors faced or
may encounter in the scope of the cooperative’s
services independently, especially those related
with loan processes. Upon visiting the website, a
menu dedicated to answering questions from the
visitors can be located on the website. The menu,
when clicked, will direct the visitors to compilation
of FAQs (Frequently Asked Questions). The FAQs
are accompanied by relevant answers to help
visitors in solving problems. If the FAQs cannot
solve the problems or if the visitors are unable to
find the expected answers, then the visitors can
send request to be assisted by a customer service
using live chat feature.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7078

Figure 9: Customer Services Workflow at PT XYZ

4.2.4 Endpoints identification
Endpoints in the existing infrastructure is

identified to make mapping of the problems easier
in the process of converting from monolithic
architecture to microservices architecture.
Identified endpoints are later grouped based on the
domains the endpoints interact with and categorized
based on its functions. Endpoints came in the form
of API bridging applications with each other in
interacting with the backend system. API
versioning is also added to anticipate the need of
migrating application to new API while
maintaining REST API currently in use. Table 3 in
appendices section contains the full list of
endpoints being part of the existing API. The list
can help in tracking the trails of the domains
interacting with the endpoints.
4.2.4.1 Endpoints ownership

Endpoints ownership correlates with
parties involved in the business processes of PT
XYZ, particularly as users of respective endpoints.
Ownership identification of endpoints are necessary
to tackle future problems or when APIs are
changed. Owners that can create, maintain, and
modify the endpoints according to each owner
authorization in PT XYZ are grouped into
Administrator & User, Credit Committee, dan
Customer Care, as listed in Table 4 in appendices
section.
4.2.4.2 Endpoints functionalities

In entirety, the loan services for the
cooperative members are divided into 3 major
groups representing each respective function. The
existence of the services are complimenting with
each other. The services comprised of Common

Services, Loan Services, dan User Services.
Common Services have services assisting the
process of an individual attempting to join the
cooperative membership of PT XYZ. Loan Services
are a group of massive service helping in
processing loan applications from the members
from the initial step of applying through the
approval process by credit committee. The self-
service tool to count the estimation of credit costs
are also a part of the Loan Services. User Services
include services facilitating the members of the
cooperative in obtaining information to dissolve or
solve loan related problems, like the assistance
from appointed staff to answer inquiries that is not
contained in the list of FAQs. The complete list of
endpoints functionalities can be seen in Table 5 in
the appendices section.

4.3 Designing System with DDD Approach
One of the foundation of a proper software

development is to instill awareness about domain.
This is the basis of the approach of DDD in
designing microservices architecture as the
replacement of the monolithic architecture PT XYZ
uses in this study. This cooperative enterprise in its
role as the deliverer of loan or credit to the
members ought to consider the stakeholders
interests in loan-related activities, be it the
cooperative members, or staffs in charge of
delivering the loan products to the members, or
regulatory firms as the watchful eye toward the
loan delivery processes.

The current system architecture is entirely
monolithic in handling every aspect of the
cooperative services, including loan services. The
consequences of using this traditional system is the
heavily tied large number of codes required in
running the system functions properly. Services
delivery and features addition are slowed down as
the result. Microservices with DDD approach are
expected to reduce dependency among the loan
services.

Domains are crucial in deliverance of
services in real life practice. Domains work by
informing the requirements and acceptance criteria
of the to be developed system. Thus, domains can
display high-level of segregation to various
business areas. Software developers using DDD
approach work in a team that must abide by the
compliance to general patterns in software
development to have every program capable in
working together in building software. Precise
focus division is needed by putting contexts
boundaries in designing the microservices for PT
XYZ.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7079

Domain model captures the concept and
process of certain business domain that strongly
require understanding of the related business
domain. The best way to comply with the need is to
do event storming to better understand processes
carried out within a domain. Process begins from an
event context happening inside the domain which is
viewed as a fundamental element within a model.

4.4 Designing Microservices
The perks of using microservices

architecture highlighted in this design plan is the
capability of reducing dependency among services,
as explored before in this paper to achieve the
desired system outcomes. System design will use 3
service candidates derived from the existing
endpoints categories, such as Common Services,
Loan Services, and User Services. Services in the
microservices architecture design for PT XYZ will
be contained separately as independently functional
applications. In the architectural model, API
gateway will play a vital role as the entry point of
clients to connect clients with the requested
services. System management will connect the
services with nodes, identify failure should it occur,
and balance the services across nodes. Figure 10
illustrates the difference between the existing
monolithic architecture in PT XYZ and the design
plan for microservices architecture.

Figure 10: Monolithic Versus Microservices in PT XYZ

4.4.1 Domain analysis
The interaction of domain with each other,

including subdomains based on the 5 modules of
PT XYZ are as illustrated below in Figure 11.

Figure 11: Domain Analysis in PT XYZ

Every domain and subdomain have these
roles assigned to help the execution of these tasks:
1. Loan Application is centered in the diagram as

it is the business core, to provide loan for the
cooperative’s members. Loan Application
consists of every process related to loan
applications submitted by members to the loan
department of PT XYZ. Subdomains
correlated with this domain are PT XYZ
Member and Document Submission.

2. PT XYZ Member is acting as users’
management to connect cooperative members
as the candidate to apply loan with various
services, such as: Register, Customer Services,
Loan Calculator, and Loan Information.

3. Register helps an individual to register to
become member of the cooperative, in order to
be eligible for using the products and services
in the cooperative.

4. Customer Services acts as a self-service
feature to connect web application visitors
with FAQs about anything related with the
cooperative, including the loan product
information. Chatbot subdomain is included
into Customer Services domain to deliver the
FAQs and answers to the visitors. Live Chat
subdomain connects visitors with the staff
responsible for answering questions excluded
from the FAQs.

5. Loan Calculator helps visitors in estimating
the costs of loan services. Detailed discussion
of Loan Calculator can be found at the
information workflow subsection previously
discussed.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7080

6. Loan Information is exclusive to the
borrowers as it has private information related
with borrowers and will differ for every
borrower.

7. Document Submission focuses on handling
documents submitted by applicants of loan.
Identity Document and Collateral Information
are the extension of Document Submission,
where Identity Document handles applicants’
personal identity information and Collateral
Information handles information of the
collateral that the applicants offered to
PT XYZ as the loan issuing party.

8. Loan Application Review is a domain in
charge of the review processes of submitted
loan applications. There are 4 components of
review, which also included Identity
Document and Collateral Information and two
other components from other subdomains
namely, Credit Risk Rating Checking and
Internal Appraisal with the former is in charge
of obtaining credit collectability history of
related applicant and the later in charge of the
valuation of offered collateral. Loan
Application Review domain is also correlated
with Review Result Submission to Credit
Committee domain that is tasked with
collective review to determine the approval
status of loan applications—to reject it, or to
approve it, based on information from the
aforementioned 4 components.

4.4.2 Defining bounded contexts
Bounded contexts can be regarded as a

contextual semantic border in a domain where
every component of software has its own meaning
and unique set of tasks. Bounded contexts is a
central pattern and the deciding factor of assigning
domain roles in DDD approach. Bounded contexts
are used by software developers to know when to
cease from pouring more concepts into the domain
model in design process. Bounded contexts set in
this research are classified into Information
Context, Loan Application Context, and Loan
Review Context. The merging of these domain
contexts are executed by using context mapping
integration with RESTful HTTP (Representational
State Transfer Hypertext Transfer Protocol). The
illustration for bounded contexts set for the DDD
approach can be seen in Figure 12.

Figure 12: Bounded Contexts in Domain Model

of PT XYZ

4.4.3 Defining entities
Following the completion of business

domain mapping and bounded contexts setting,
entities modeling is necessary to govern domain
information. Entities modeling in DDD approach
basically involves data and behavior and
application of additional DDD patterns (aggregates,
value objects, etc.) that can support long term
success of the plan for designing microservices in
this study.

Entities function by representing domain
objects, defined by identities, continuity, and
persistence from time to time, and is not limited to
the attributes consisting of the entities itself.
Entities’ identity can span across microservices or
bounded contexts. Although entities need identity,
there are objects in the system that doesn’t need
identity, like value objects. The following are
model design for entities that are going to be used
in domain design in this research, each
accompanied by respective explanations.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7081

User Entity is a part of the domain storing
and managing access data and information of users
involved in accessing the loan system, such as
cooperative members, reviewers, committees, and
admin staffs and customer service staffs.

Figure 13: User Entity

Member Entity is a part of the domain
storing and manage data of processes in member
registration, where the record of the data in the
form of e-mail, name, national ID number, Tax ID,
and other forms of personal information lie inside.
Member Entity is connected to User Entity as the
User Entity is aggregated to OTP verification code
information required in the process of membership
registration verification.

Figure 14: Member Entity

Borrower Entity is a part of the Loan
Application domain. This entity is aggregated to
Member Entity as an enforcement of a
cooperative’s basic rule where only a member is
allowed to apply for loan services. Information
recorded in this entity are IdentityData and
GuarantorData. IdentityData stores record of
borrower’s personal information, similar to the
member’s personal information stored in Member
Entity, whereas GuarantorData stores information
related with collateral ownership, like collateralized
asset certificate of ownership.

Figure 15: Borrower Entity

Like Borrower Entity, Loan Entity is also a
part of the Loan Application domain, which is
responsible for storing and managing loan
application data. Loan Entity is aggregated to
Borrower Entity that stores the important

information needed by Loan Entity. Both entities
are correlated with each other to realize the Loan
Application domain processes, especially in Loan
Application Review and Loan Application
Approval involving Reviewer and Committee
teams. In reviewing and decision-making of loan
approval, Loan Entity will record ReviewerResult
information containing specific details of
examination, application status change, rejection of
application, or forwarding to the Committee team
for final approval process. CommitteeResult
records the final decision of approving or rejecting
the loan application, if the final decision is to
approve the application, it will also have details of
the loan amount, payment terms, covenant to fulfill,
and another piece of information related with loan
disbursement. All the approval results will also
later be recorded as Loan Result Scheme. In every
loan application information, system will also
record every changes in the process of application
in ApplicationStatus.

Figure 16: Loan Entity

Loan Result Scheme Entity is a part of the
Loan Information domain but also has relationship
with Loan Application domain. This entity plays
the role of keeping and managing the approval
information and the loan specification exclusively
associated with the respective applicant. This entity
is aggregated to Borrower Entity that keeps
essential information like borrower’s personal data.
For easier information storing, Loan Result Scheme
Entity is further divided into smaller information
groups, such as: LoanAmount, LoanTenor,
Installment, Collateral, and LoanPaymentStatus.
LoanAmount has the accepted amount of loan
disbursement. The amount of loan could be equal or
less than the amount requested, but not greater.
LoanTenor is the credit term ranging from 1 month
to 12 months, depending on the approving decision
of the committee. Installment is monthly
expenditure that the borrower must pay as
obligatory act of using the loan in accordance with
LoanTenor. Collateral has the collateralized asset
information, consisting of the collateral type, name
of the owner stated in the collateral legal document,
and another information related with the collateral.
LoanPaymentStatus is useful in monitoring the

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7082

payment status of the borrower to ensure that when
payment is due, the installment and other credit
costs are paid accordingly to prevent the
collectability rating of the borrower to fall into the
category of NPL (Non-Performing Loan).

Figure 17: Loan Result Scheme Entity

FAQ Entity is the central source of
information that acts as the knowledge base of
services and general information surrounding
PT XYZ. FAQ Entity is broken down into smaller
groups, they are Question and Answer. Question is
a compilation of the question mostly asked by
visitors while Answer provides the answers to the
questions. Another small component called Topic is
applied to categorize each question and answer.

Figure 18: FAQ Entity

4.4.4 Defining aggregates
Aggregates definition is done to model

transactional invariance. Business process in real
life has a complex relationship network, where
applications are often not properly distributed. A
business transaction can span across several data
storage, runs longer than expected, or require
third-party services to run. The execution in the end
depends on the application to enforce invariance
needed by domain, not the data layer. Aggregate
modeling can help in bounding contexts around one
or more entities to ensure consistency, tracking
invariance, and enforce them. For instance, the
defined aggregates depicted in Figure 19 in the
appendices section has Loan Application running
aggregate function to Borrower, particularly in
determining borrower and guarantor information.
These information are needed to be located and
maintained for consistency in business transaction.
However, from aggregate’s perspective, Borrower
aggregate is not responsible to Loan Application
aggregate to convince that BorrowerID is unique. It
is up to Loan Application aggregate itself to

entirely maintain its invariance in the context of
Loan Application as a domain in the system.
4.4.5 Defining services as the core component

of microservices design
Services to create the microservices design

needs to be formed in regard to the DDD approach.
The components for materialization of services into
the microservices architecture for PT XYZ loan
application system are discussed in the
subsubsections below.
4.4.5.1 Designing single services

Single services are designed to be able to
operate independently yet capable of
communicating with each other with a light
connection mechanism, like HTTP. The services
are designed to suit every business line capabilities
for it to be able to run independently with automatic
deployment by deployment server. Each service has
center management, enabling different
programming languages and database to be used for
each service. The single services consist of a web
server, focused service binary for certain domains,
and Redis cache system.
4.4.5.2 Database for every service

Database are designed for every service
with respect to consistency of aggregate forms with
bounded contexts. Creating database this way will
reduce coupling of the services.
4.4.5.3 Container strategy

Planning for microservices architecture
design on loan application system comes with
consideration for containing the service
applications. This containing is executed to
distribute services in infrastructure level prioritizing
convenient practice and service capabilities to
operate simultaneously yet independent. The
researcher uses Docker for services containment in
this design, which uses vary, i.e.:
1. Provide binary images that prepare

installation, configuration, and testing for
every software needed to form the services for
the designed microservices architecture. Data
distribution is made convenient with the
inclusion of every necessary data needed for
the process.

2. Interactively create images for software
developers to learn the software installation
process transparently. This ability ease the
documentation process of system design with
expected precision.

3. Usage of Docker can reduce the significance
of fixing and improvement of the system with
versioning, changes in system dependency,
security level, addition of features, or deletion

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7083

of outdated software that may potentially
harm the system.

4. Docker tackles constraints in adoption and
reuse of existing system with its reproductive
capabilities for more convenient adaptation
process to the existing system workflow by
management using script.

Container has logic containing mechanism
where applications can be separated by decoupling
that will enable easier use with maintained
consistency. Different containers can exchange
information with each other with this mechanism.
4.4.5.4 API gateway strategy

API gateway connects clients and services
with its capabilities of running tasks across sectors
with aggregation, SSL (Secure Sockets Layer)
checking, and load balancing. In this design plan,
the researcher recommends KrakenD, an API
gateway services with benefits including:
1. Information aggregation from various

information sources to the central endpoints.
2. Manipulating responses along with grouping

and wrapping.
3. Filtering and shrinking of response to enable

abstraction.
4. Limiting unnecessary connection with rate

limiting function.
5. Enabling circuit breaker and/or another system

security measures.
6. Providing various password protocol encoding

formats.
7. Compatible with various middleware and

plugins.
8. Configuration of DSL (Digital Subscriber

Line).
9. Support for usage of scripting language across

sites.
10. Limiting host-based connection.
11. User quota management.
12. Support to SSL.
13. Support to OAuth CCG (Open Authorization

Client Credential Grant).
14. Protection against clickjack.

KrakenD offers benefits that normal API
gateway may not be capable of as it uses backend
for frontend approach, enabling a more efficient
process of adopting existing APIs into newer
system’s API, making it suitable for designing
microservices.
4.4.5.5 Communication strategy

Services relying on microservices-based
system runs simultaneously across more than one
server or host. This simultaneous interaction
becomes a necessity to maintain the complex

system to be able to run without disruption. By
combining two communication protocols across
services, namely sync communication protocol and
async communication protocol to suit various
services requirements, the need for simultaneous
interaction can be carried out with less hassle.

Sync communication protocol works when
a request is sent, and system waits for response
from service receiving the request. The limitation
of this protocol lies on the inability of clients
continuing tasks before server respond to the
request. In contrast with sync communication
protocol, async communication protocol doesn’t
rely on server’s response to continue doing tasks.
The recommended sync communication protocol
and async communication protocol for the
microservices architecture design are HTTP and
Kafka respectively.
4.4.5.6 Proxy and firewall strategy

Firewall and proxy act as the first line of
defense for system security to protect the system
from external threats like hackers attempting to
disable the system. Both protect the system from
harm yet located at different parts of the system.
Firewall is located at network later whilst proxy is
placed at application layer. Firewall halts all
unauthorized access to the system while proxy acts
as an intermediary between the clients and the
network. Cloudflare, a software useful in mitigating
DDoS attacks is capable of doing both tasks of
securing the system. Cloudflare can mitigate the
risk of private information theft in the loan
application system like the cooperative members’
data and borrowers’ data.
4.4.5.7 Resilience strategy

Resilience in the context of IT system
means capability of a system to recover partially or
fully from the aftereffect of system failure. Circuit
breaker can be used in microservices architecture as
a preventive mean to circumvent system failure.
System defense can be upgraded if the circuit
behavior is suited for partial or full network
interaction with the services. Circuit breaker
isolates services with problems so cascading won’t
spread to other services to ensure stability of the
clients and the overall services. The researcher
suggests for a custom build circuit breaker for the
microservices design to give convenience in
customization whenever needed.
4.4.5.8 Monitoring strategy

Services monitoring are going to be done
with logging as a supporting tool in analyzing
issues in the system and to better understand the
needs of borrowers as the service users to improve
loan products and services performance.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7084

Graylog is a log management software
suggested by the researcher to monitor the services
in PT XYZ microservices architecture design. It is
capable of reducing complexity and time required
to explore large amounts of data so clients of the
system can interpret data to make decision faster.
4.4.5.9 Testing strategy

The tiniest unit of separated business logic
is the basis of constructing microservices. To
ensure the business logic can interact with each
other through network, testing on this unit is
important. Testing is conducted by validating each
business logic or service separately.

Katalon Studio is a software suggested for
testing of service applications qualities and
functions. The software is capable of testing web-
based applications and APIs without requiring
mastery of a specific programming language. This
removes one hurdle for testers in doing automated
testing. Both expert testers or beginners can utilize
Katalon Studio easily because of its simple yet
informative UI (User Interface). Testing can also be
done across different web browsers, which means
testing on several browsers can be done at the same
time to save time and effort from the testers.
4.4.5.10 IAM (Identify and access management)

strategy
IAM (Identify and Access Management)

can be utilized to manage access and user identities
surrounding system, application, and network so
each user can have access rights accordingly, or to
identify if the user is the authorized person, in
regard to access time and access purpose.

Keycloak can be used to support IAM
processes with its varying features, they are:
1. Users don’t have to authenticate the

applications one by one. The authentication
process can be replaced by Single-Sign On,
making one attempt is enough to login to all
applications. The same principle also applies
for logout, where Single-Sign Out enables
logging out from all applications with only
one attempt.

2. Login is made convenient with options to
login from social network.

3. Keycloak can be opted to connect to LDAP
(Lightweight Directory Access Protocol) or to
active directory.

4. Admin console makes it possible to activate or
deactivate application features, managing
application authorization and services, and
managing users.

5. Using standard protocol that supports OpenID
Connect, OAuth 2.0, and SAML (Security
Assertion Markup Language).

In entirety, Keycloak is helpful to manage
user authorization to suit the needs of developer
team or as desired.
4.4.5.11 CI/CD (Continuous integration/

continuous development) strategy
As explained before, containing using

Docker can be a solution to lessen the gap between
applications and system infrastructure. However, if
applications grow in number in the microservices
architecture, the management and deployment of
services will be harder as services containment
won’t suffice. And so, usage of container on
services can be merged with CI/CD approach for
automatic deployment processes of the service
whenever update is needed to the applications.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7085

Figure 20: CI/CD Workflow in
Microservices Design for PT XYZ

CI/CD is a combination of CI (Continuous
Integration) and CD (Continuous Deployment). CI
is common in software development. It works by
storing application codes in the repository to be
tested automatically and quickly with high testing
frequency. A completed CI process will be
continued to CD process immediately. CD works
by using script that will take the codes from the
codes center in the repository to prepare for
construction and installation of applications into the
services environment. CD doesn’t manual
interference nor confirmation.

CI/CD approach for the design in this
research will use GitLab, a multifunctional version
control software to operates several software
simultaneously. GitLab helps different developers
to collaborate in system management and reduce
difficulty in program updating processes
automatically without rendering the system to
experience downtime whenever update is needed.
For every update to be performed, the system must
be able to continue working so that delivery of loan
services to the cooperative members will be timely.
Figure 20 shows the workflow of CI/CD that is
applied to microservices design for PT XYZ.

4.5 Findings and Discussion
A series of discussions surrounding the

services development aspect in microservices
design for PT XYZ correlates with recommended
software to shape the design into a solid
architecture design. Software stack in this respect,
is a unity of system pillar to support the system.
Table 6 is listing down the software components
proposed for the design plan of microservices using
DDD approach in this research paper.

Table 6: Software Stack for Microservices
Architecture Design of PT XYZ

No. Category Candidate Name
1 Programming Language Golang
2 Database Postgre Database
3 Cache Redis
4 Web Server Google Cloud

Platform
5 API Gateway KrakenD
6 Logging Graylog
7 WEB UI Next JS
8 Container Docker
9 Firewall Cloudflare
10 Proxy Cloudflare
11 Sync Communication HTTP
12 Async Communication Kafka
13 Access Management Keycloak
14 Circuit Breaker Custom Build

15 Test Framework Katalon Studio
16 CI/CD Gitlab
17 Versioning Control Gitlab

Modernization of loan services in a
cooperative is semi-automatic. PT XYZ is no
exception as the cooperative enterprise needs a
dynamic system architecture design that can move
across sectors. Microservices as the evolution of
traditional SOA, can answer that need. Use of
microservices is suitable for loan application
system of PT XYZ whose services are divided into
domains and subdomains.

Microservices architecture benefits that PT
XYZ can experience if this cooperative decides to
convert from monolithic architecture into
microservices architecture are as follows:
1. Distribution of software composition capable

of communicating to the entire network.
System failure related to loan business line
working across domains can be minimized or
mitigated quickly.

2. Services dependency with each other can be
minimized by building a dedicated database
for each service category.

3. Services in loan business line can be contained
and excluded from each other. Every service
can be programmed using a different
programming language.

4. Microservices design for PT XYZ is capable
of producing a more effective API result and
existing APIs can be reused in the future. All
of these processes can run in a system
environment with high flexibility.

5. System users can choose which
communication protocol to use between sync
or async protocols, depending on the needs.

6. Conversion into microservice architecture
doesn’t lower protection against threat of
system attack by external parties.

7. If system failure occurs in one of the services,
the system can disable that service to prevent
the error from affecting other services.

8. Can effectively accommodate the effort to
monitor the services available because of the
system capability of managing large amount
of data in a short time. Decision-making
regarding issues surrounding the loan
application system can be made faster.

9. Testing on the system is easy and fast and can
be performed by developers lacking the ability
of running difficult programming languages.

10. Better control to user access, especially in
assigning authorization for each system user.

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7086

11. Continuous integration and services
deployment are possible to do because every
developers or system administrators can work
together for maintenance or deployment of the
services.

In comparison with the previous researches
highlighted during the analysis of literatures to
construct the theoretical framework for this
research, the microservices architecture design has
addressed the software requirements in a more
specific way compared to the referred past
researches. Moreover, these past researches only
mentioned the necessity of setting bounded contexts
among domains and its subdomains but lacking any
concrete suggestions of what software are needed to
spawn a more realistic microservices architecture
design. Peering into the business orientation of a
cooperative enterprise, the company emphasizes on
delivering financial services to customers, which is
similar to Fintech companies. Fintech companies,
particularly the Fintech 3.0 companies outshine
cooperatives when it comes to utilization of
information technologies in business. The
revolutionary form of financial service providers
have been using technology to deliver services for
customers since the day of the Fintech 3.0’s
inception. A cooperative enterprise can improve
significantly by merely enhancing the IT system of
the cooperation. By adapting the use of a more
computerized operating mechanisms that are
properly regulated, the companies are more likely to
catch the attention of potential customers and
existing customers who favor the use of IT-based
financial services. Converting to microservices will
bring greater flexibility in modifying the system
should the need arise in the future. With so little to
no problems to face, the cooperative enterprises can
dedicate more focus into delivering services to
customers. The use of IT itself is not just to increase
competitiveness among financial service providers
but is a complete necessity. Keeping up with the
technological trends in the financial industry can
also prevent the Fintech companies to dominate the
entire industry.

Microservices design for PT XYZ doesn’t
offer solutions without making room for possible
issues, mainly from security perspective. Even
though with the mitigation measures to defend from
cyber-attacks. That is why DDD approach with
proper setting of bounded contexts on domains and
subdomains are proposed to lessen the risk by
shrinking the code base of services. Large code
base can create a security hole where system is
more likely to be vulnerable to attacks. The

proposed design is going to be discussed in FGD
(Focus Group Discussion) where system
practitioners in PT XYZ are taking part in the
discussion, including CTO and the IT team
comprises of UI/UX, system developer, frontend
developer, web developer, QA, and system analyst.
The purpose of conducting FGD is conducted to
reach consensus on which part of the proposed
design can be implemented in the future.

5. CONCLUSION

5.1 Research Conclusions

The design of microservices using DDD
approach yielded a detailed analysis that answers
these formulated research questions:
1. How using microservices architecture to

design the loan application system for
PT XYZ can reduce the difficulty of the
system design processes?
Reduction of dependency among service
groups in microservices architecture gives
convenience toward IT system design
processes at PT XYZ. Each service can be
contained without having to be dependent on
each other.

2. How the DDD (Domain Driven Design)
approach can help in designing microservices
for the loan application system of PT XYZ
cooperative enterprise?
SOA is implemented by focusing business into
services, where the main service in this case is
loan service provided by PT XYZ for its
members. Microservices have pivotal role in
breaking apart the loan services into smaller
subcomponents. These subcomponents are
visualized in 5 different modules, which is
also classified similarly in the current
monolithic architecture, namely: Customer
Services, Loan Application, Loan Calculation,
Loan Information, and Register modules. The
complexity of design using microservices are
apparent due to it using large amounts of code,
creating a potential for security breach. To
circumvent it, DDD (Domain Driven Design)
is used to define bounded contexts to reduce
the code base in every domain and subdomain
in the scope of designed system. The reduction
of code base will reduce the chance of hacker
attacks.

In addition, the realization of
microservices depends on the final decision of the
authorized personnel in PT XYZ. The design
components take care of the monotony in the
current monolithic system design but may create

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7087

the problem of complexity. Some components
require the handling by experts, while other
components might be friendlier to inexperienced
programmers. Dissection of the domains and
subdomains can be time consuming as it is
necessary to execute the task carefully. Reducing
code base with careful setting of bounded contexts
among domains and subdomains is essential to
prevent future errors to occur. Microservices, like
monolithic architecture also possess its own flaws
that should not be taken lightly. Despite these
difficulties, the potential benefits of implementing
microservices can overshadow the design
difficulties, among these benefits is the guaranteed
capability in handling large number of system
users, which in the end can boost PT XYZ’s
business performance in delivering loan for
members of the cooperation.

Thus, by enhancing the performance of the
loan application system in scaling up business with
the ability to establish low dependency among
applications, the research is exclusively aimed to
solve the system architectural problem in
cooperative enterprises like PT XYZ.

5.2 Research Limitations
Determining the correct approach in

designing microservices can proved to be a
challenge. Since there are a lot of mention about
DDD in various literatures, the approach is believed
to be the most reliable in designing microservices
architecture. However, whether it truly is the most
reliable approach in designing microservices is still
a matter of question. There is other approach called
Clean Architecture proposed by a software
practitioner named Robert C. Martin or more well-
known by the nickname Uncle Bob [31]. The
author claimed that it is a method suitable for
designing microservices, but the narratives are built
in a book instead of a research paper, making it not
suitable to be cited for this research. Not to mention
it is also viewed as being impractical and not
suitable for rapid application development or
product prototyping [32]. It can be concluded that
the limitation of this research lies in the difficulty in
discovering the possibility of other approaches
better than DDD in designing microservices
architecture.

5.3 Future Research Recommendations
Microservices might be the solution to

reduce dependence among services. However,
usage of microservices are more complicated
compared to traditional system architecture, which
needs intensive care and special countermeasure to
tackle potential issues. The researcher recommends

which area needs to be improved furthermore, in
order for the microservices to be able to run
smoother with less issues. These recommendations
are not limited to PT XYZ as the research object of
this case study, but also for other researchers
interested in similar field of study to inspire future
researches to be conducted, with the hope that an
even better suggestions can be created to perfect the
already designed IT system architecture. These are
those recommendations:
1. Freedom to use various programming

languages between services creates service
integration issue. Usage of technological
enablers that support the development of
microservices without relying on a specific
programming language is advised to prevent
integration trouble.

2. System practitioners in an organization or firm
must have knowledge of domain modeling in
an IT system because it is indirectly useful in
reducing codes used to prevent hacking risk
from unauthorized parties.

3. DDD implementation plan can unnecessarily
waste effort and time. DDD is actually more
effective to be used on a system with complex
domain structure. An approach of system
development that is compatible with both
simple and complex systems are strongly
needed.

4. Microservices existence depend on automation
process too much. Cloud technology used to
store data needs to be put into consideration
carefully so in the case of force majeure, the
services can continue to work fine as is.

REFERENCES:

[1] Otoritas Jasa Keuangan, “Perkembangan
Fintech Lending Desember 2020,” Otoritas
Jasa Keuang., pp. 1–11, 2020, [Online].
Available:
https://www.ojk.go.id/id/kanal/iknb/data-dan-
statistik/fintech/Documents/Statistik Fintech
Lending Desember 2020.pdf.

[2] Badan Pusat Statistik, “Ekonomi Indonesia
2020 Turun sebesar 2,07 Persen (c-to-c),”
2021.
https://www.bps.go.id/pressrelease/2021/02/0
5/1811/ekonomi-indonesia-202 (accessed Jul.
15, 2022).

[3] Sudarsono and Edilius, Koperasi dalam Teori
& Praktik, 5th ed. Rineka Cipta, 2010.

[4] D. J. Teece, “Business models and dynamic
capabilities,” Long Range Plann., vol. 51, no.
1, pp. 40–49, Feb. 2017, doi:

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7088

10.1016/J.LRP.2017.06.007.
[5] F. Dahri, A. M. El Hanafi, D. Handoko, and

N. Wulan, “Implementation of Microservices
Architecture in Learning Management System
E-Course Using Web Service Method,” Sink.
J. dan Penelit. Tek. Inform., vol. 7, no. 1, pp.
76–82, Jan. 2022, doi:
10.33395/SINKRON.V7I1.11229.

[6] G. Munawar and A. Hodijah, “Analisis Model
Arsitektur Microservice Pada Sistem
Informasi DPLK,” Sink. J. dan Penelit. Tek.
Inform., vol. 3, no. 1, pp. 232–239, 2018,
[Online]. Available:
https://jurnal.polgan.ac.id/index.php/sinkron/a
rticle/view/197/125.

[7] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-
a-service for microservices-based cloud
applications,” IEEE 7th, pp. 50–57, 2015, doi:
10.1109/CloudCom.2015.93.

[8] C. Richardson and F. Smith, “Microservices:
From Design to Deployment,” NGINX, Inc.,
p. 80, 2016, [Online]. Available:
https://www.nginx.com/resources/library/desi
gning-deploying-microservices/.

[9] M. Villamizar et al., “Evaluating the
Monolithic and the Microservice Architecture
Pattern to Deploy Web Applications in the
Cloud,” 2015 10th Colomb. Comput. Conf.
10CCC 2015, pp. 583–590, Nov. 2015, doi:
10.1109/COLUMBIANCC.2015.7333476.

[10] K. Ayuwuragil, “Kemenkop UKM: 3,79 Juta
UMKM Sudah Go Online,” CNN Indonesia,
2017.
https://www.cnnindonesia.com/ekonomi/2017
1115161037-78-255819/kemenkop-ukm-379-
juta-umkm-sudah-go-online (accessed Jul. 15,
2022).

[11] A. Barczak and M. Barczak, “Performance
comparison of monolith and microservices
based applications,” 2021, [Online].
Available:
https://www.iiis.org/CDs2021/CD2021Summ
er/papers/SA354XK.pdf.

[12] K. Anjaria and A. Mishra, “Quantitative
analysis of information leakage in service
oriented architecture based web services,”
Kybernetes, vol. 46, no. 3, pp. 479–500, 2017,
doi: 10.1108/K-07-2016-0178.

[13] Sasana Digital, “Scale Up Bisnis: Pengertian,
Fungsi, Strategi, dan 7 Cirinya,” 2022.
https://sasanadigital.com/pengertian-dan-
strategi-scale-up-bisnis/#:~:text=Scale Up
Bisnis adalah suatu,proses%2C teknologi%2C
hingga mitra. (accessed Sep. 05, 2022).

[14] UppLabs and T. Smirnova, “From legacy
monolith app to microservices infrastructure.
Case study,” 2020.
https://upplabs.medium.com/from-legacy-
monolith-app-to-microservices-infrastructure-
case-study-90b57821b7ea (accessed Sep. 05,
2022).

[15] J. A. Suthendra and M. A. I. Pakereng,
“Implementation of Microservices
Architecture on E-Commerce Web Service,”
ComTech, vol. 11, no. December, pp. 89–95,
2020, doi: 10.21512/comtech.v11i2.6453.

[16] S. Santoso, N. Azizah, and A. Astari,
“Aplikasi Sistem Informasi Pengajuan Kredit
Berbasis Web Pada PD. BPR Kerta Raharja
Cabang Balaraja,” Konf. Nas. Sist. Inf. 2018,
pp. 849–855, 2018, [Online]. Available:
http://digilib.mercubuana.ac.id/manager/t!@fi
le_artikel_abstrak/Isi_Artikel_822617291516.
pdf.

[17] C. Dremel, M. M. Herterich, J. Wulf, J.-C.
Waizmann, and W. Brenner, “How AUDI AG
Established Big Data Analytics in Its Digital
Transformation,” MIS Q. Exec., vol. 16, no. 2,
pp. 81–100, 2017, [Online]. Available:
https://www.researchgate.net/publication/317
232875_How_AUDI_AG_Established_Big_
Data_Analytics_in_its_Digital_Transformatio
n.

[18] M. Fischer, F. Imgrund, C. Janiesch, and A.
Winkelmann, “Directions for future research
on the integration of SOA, BPM, and BRM,”
Bus. Process Manag. J., vol. 25, no. 7, pp.
1491–1519, 2019, doi: 10.1108/BPMJ-05-
2018-0130.

[19] H. F. E. Yamany, M. A. M. Capretz, and D. S.
Allison, “Quality of Security Service for Web
Services within SOA,” Serv. 2009 - 5th 2009
World Congr. Serv., no. PART 1, pp. 653–
660, 2009, doi: 10.1109/SERVICES-
I.2009.95.

[20] I. L. Salvadori, A. Huf, B. C. N. Oliveira, R.
dos S. Mello, and F. Siqueira, “Improving
entity linking with ontology alignment for
semantic microservices composition,” Int. J.
Web Inf. Syst., vol. 13, no. 3, pp. 302–323,
2017, doi: 10.1108/IJWIS-04-2017-0029.

[21] Microsoft, “Microservices architecture
design,” 2019. https://docs.microsoft.com/en-
us/azure/architecture/microservices/ (accessed
Jul. 17, 2022).

[22] F. Rademacher, J. Sorgalla, and S. Sachweh,
“Challenges of Domain-Driven Microservice
Design,” IEEE Softw., pp. 36–43, 2018, doi:

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7089

10.1109/MS.2018.2141028.
[23] A. V. Thakor, “Fintech and banking: What do

we know?,” J. Financ. Intermediation, vol.
41, 2019, doi: 10.1016/j.jfi.2019.100833.

[24] M. A. Chen, Q. Wu, and B. Yang, “How
Valuable Is FinTech Innovation?,” Rev.
Financ. Stud., vol. 32, no. 5, pp. 2062–2106,
2019, doi: 10.1093/rfs/hhy130.

[25] Consumers International, “Banking on the
future: An exploration of fintech and the
consumer interest,” Financ. Dev., vol. 56, no.
1, pp. 24–25, 2017, [Online]. Available:
https://www.consumersinternational.org/medi
a/154710/banking-on-the-future-full-
report.pdf.

[26] T. S. Partomo, L. Krisnawati, and R.
Soejoedono, Ekonomi skala kecil/menengah
dan koperasi. Ghalia Indonesia, 2002.

[27] World Council of Credit Unions, “World
Council of Credit Unions Official Website,”
2021. https://www.woccu.org/ (accessed Jul.
18, 2022).

[28] P. Merson and J. Yoder, “Modeling
Microservices with DDD,” Proc. - 2020 IEEE
Int. Conf. Softw. Archit. Companion, ICSA-C
2020, pp. 7–8, 2020, doi: 10.1109/ICSA-
C50368.2020.00010.

[29] A. N. Fajar, E. Novianti, and Firmansyah,
“Design and Implementation of Microservices
System Based on Domain-Driven Design,”
Int. J. Emerg. Trends Eng. Res., vol. 8, no. 7,
pp. 3058–3062, 2020, doi:
10.30534/ijeter/2020/30872020.

[30] C. S. Budi and A. M. Bachtiar, “Implementasi
Arsitektur Microservices pada Backend
Comrades,” p. 6, 2019, [Online]. Available:
https://elib.unikom.ac.id/files/disk1/801/jbptu
nikompp-gdl-cahyantose-40046-8-20.10114-
a.pdf.

[31] R. C. Martin, “Clean Architecture: A
Craftsman’s Guide to Software Structure and
Design,” Prentice Hall. p. 432, 2017,
[Online]. Available:
https://www.amazon.com/Clean-Architecture-
Craftsmans-Software-
Structure/dp/0134494164%0Ahttps://www.sa
faribooksonline.com/library/view/clean-
architecture-a/9780134494272/.

[32] D. Lezhnev, “When clean architecture is not
worth it,” 2017.
https://lessthan12ms.com/when-clean-
architecture-is-not-worth-it.html (accessed
Sep. 09, 2022).

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7090

Table 3: Endpoints List in Existing Infrastructure of PT XYZ

No Function Name URL
1 Register Membership {domain}/api/v1/user/register
2 Verify Member Registration Form {domain}/api/v1/user/register/?email={email}
3 Get OTP {domain}/api/v1/user/getOTP
4 Verify OTP {domain}/api/v1/user/verifyOTP/?otp={otp_code}
5 Create Membership ID Number {domain}/api/v1/user/create
6 Apply Loan {domain}/api/v1/loan_application/

7 Check Applicant’s Personal Identity
Information

{domain}/api/v1/loan_application/checkBiodata/?npwp={npwp}&?k
tp={ktp}

8 Check Applicant’s Identity Documents {domain}/api/v1/loan_application/checkId/?data={data}
9 Check Collateral Information {domain}/api/v1/loan_application/checkCollateral/?data={data}
10 Check Guarantor Information {domain}/api/v1/loan_application/checkGuarantor/?data={data}
11 Created Unique Identifier for Loan

Application
{domain}/api/v1/loan_application/create

12 Input Collateral Appraisal Information {domain}/api/v1/loan_application/editCollateral/?data={data}
13 Input Loan Collectability Information {domain}/api/v1/loan_application/editPaymentCollectibility/?data={

data}
14 Forward Loan Application to Committee {domain}/api/v1/loan_application/submitForApproval
15 Change Loan Application Data {domain}/api/v1/loan_application/edit/?applicant={applicant_id}
16 Change Loan Application Status {domain}/api/v1/loan_application/editStatus/?applicant={applicant_i

d}
17 Publish Loan Application Result {domain}/api/v1/loan_application/notify/?applicant={applicant_id}
18 Display Loan Application Approval Result {domain}/api/v1/loan_application/detail/?applicant={applicant_id}
19 Calculate Loan {domain}/api/v1/loan_calculator/
20 Check Loan Calculation Form {domain}/api/v1/loan_calculator/calculate/?tenor={tenor}&amount=

{amount}
21 Display Loan Calculation Result {domain}/api/v1/loan_calculator/result
22 Login {domain}/api/v1/login
23 Verify Login Form {domain}/api/v1/loan_information/verifyLogin/?id={memberId}&pa

ss={password}
24 Display Borrower’s Information Category {domain}/api/v1/loan_information/dashboard
25 Display Loan Amount Information {domain}/api/v1/loan_information/loanAmount
26 Display Tenor Information {domain}/api/v1/loan_information/tenor
27 Display Installment Information {domain}/api/v1/loan_information/installment
28 Display Collateral Information {domain}/api/v1/loan_information/collateral
29 Display Chatbot {domain}/api/v1/customer_service/chatbot
30 Display FAQ {domain}/api/v1/customer_service/chatbot/faq
31 Redirect to Live Chat {domain}/api/v1/customer_service/livechat

Table 4: Endpoints Ownership in Existing Infrastructure of PT XYZ

No Function Name Endpoints Ownership
1 Register Membership Administrator & User
2 Verify Member Registration Form Administrator & User
3 Get OTP Administrator & User
4 Verify OTP Administrator & User
5 Create Membership ID Number Administrator & User
6 Apply Loan Credit Committee
7 Check Applicant’s Personal Identity

Information
Credit Committee

8 Check Applicant’s Identity Documents Credit Committee
9 Check Collateral Information Credit Committee
10 Check Guarantor Information Credit Committee
11 Created Unique Identifier for Loan

Application
Credit Committee

12 Input Collateral Appraisal Information Credit Committee
13 Input Loan Collectability Information Credit Committee
14 Forward Loan Application to Committee Credit Committee
15 Change Loan Application Data Credit Committee
16 Change Loan Application Status Credit Committee
17 Publish Loan Application Result Credit Committee
18 Display Loan Application Approval Result Credit Committee

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7091

19 Calculate Loan Administrator & User
20 Check Loan Calculation Form Administrator & User
21 Display Loan Calculation Result Administrator & User
22 Login Administrator & User
23 Verify Login Form Administrator & User
24 Display Borrower’s Information Category Administrator & User
25 Display Loan Amount Information Administrator & User
26 Display Tenor Information Administrator & User
27 Display Installment Information Administrator & User
28 Display Collateral Information Administrator & User
29 Display Chatbot Customer Care
30 Display FAQ Customer Care
31 Redirect to Live Chat Customer Care

Table 5: Endpoints Functionalities in Existing Infrastructure of PT XYZ

No Function Name Endpoints Ownership
1 Register Membership Common Services
2 Verify Member Registration Form Common Services
3 Get OTP Common Services
4 Verify OTP Common Services
5 Create Membership ID Number Common Services
6 Apply Loan Loan Services

7
Check Applicant’s Personal Identity
Information

Loan Services

8 Check Applicant’s Identity Documents Loan Services
9 Check Collateral Information Loan Services
10 Check Guarantor Information Loan Services

11
Created Unique Identifier for Loan
Application

Loan Services

12 Input Collateral Appraisal Information Loan Services
13 Input Loan Collectability Information Loan Services
14 Forward Loan Application to Committee Loan Services
15 Change Loan Application Data Loan Services
16 Change Loan Application Status Loan Services
17 Publish Loan Application Result Loan Services

18
Display Loan Application Approval
Result

Loan Services

19 Calculate Loan Loan Services
20 Check Loan Calculation Form Loan Services
21 Display Loan Calculation Result Loan Services
22 Login Loan Services
23 Verify Login Form Loan Services

24
Display Borrower’s Information
Category

Loan Services

25 Display Loan Amount Information Loan Services
26 Display Tenor Information Loan Services
27 Display Installment Information Loan Services
28 Display Collateral Information Loan Services
29 Display Chatbot User Services
30 Display FAQ User Services
31 Redirect to Live Chat User Services

Journal of Theoretical and Applied Information Technology
15th December 2022. Vol.100. No 23

© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7092

Figure 19: Domain Aggregate

