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ABSTRACT 
 

This paper proposes a unified framework for defining opacity properties in both discrete and real-time 
systems. The framework leverages language inclusion problems to establish a common ground for expressing 
and comparing various opacity concepts under different observation categories. We build upon existing 
formalisms for opacity in Labeled Transition Systems (LTS) and Timed Transition Systems (TTS). We explain 
the connection between these automata models and how they are used to represent system behavior. Our 
framework allows for the unification of opacity definitions across these models, enabling easier comparison 
and analysis. Additionally, we present transformations between different opacity concepts and compile 
decidability results for the unified framework. Finally, we illustrate the relationships between key opacity 
studies through a dependency diagram. 

Keywords: Discrete Event System, Real Time System, Opacity, Verification, Decidability. 
 

1. INTRODUCTION 

Ensuring confidentiality in complex systems is 
crucial, especially when dealing with sensitive 
information. Traditional security models like non-
interference might not always suffice. This paper 
delves into a powerful security property called 
opacity. This property guarantees a system's ability to 
hide a specific subset of its behavior, even if the 
general operation is visible to an external observer 
(often referred to as an attacker). This means the 
attacker cannot definitively determine if the system is 
in a secret state or performing a secret action, even by 
observing its public behavior. 

Research on opacity has been steadily growing, 
with applications in diverse areas like cryptography 
and Discrete Event Systems (DES). Different studies 
utilize various system models (e.g., Petri nets [4], 
Labeled Transition Systems [6, 35], Automata [7, 22, 
23], recursive tile [23] and pushdown systems [8]) 
and observation scenarios. This can make it 
challenging to compare and analyze opacity 
properties across these diverse contexts. In a system's 
LTS model, predicates act as spotlights, highlighting 
specific subsets of states or events. LTS, unlike Finite 
State Automata (FSA), aren't limited to a finite 
number of states or transitions in [27, 30, 34]. Then, 
the property of opacity is introduced in a real-time 
system modeled by Timed Transition System (TTS). 
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The author in [21], proposes the timed opacity for 
real-time system modeled by timed automata (TA). 

This paper proposes a unified framework for 
formalizing opacity properties. This framework 
allows us to analyze and compare opacity across 
different system models and observation settings. 
Here's what you can expect: 

 We explore various observation categories 
through clear examples. 

 We unify the definitions of opacity properties 
within our framework. 

 We establish mathematical connections between 
existing opacity formalisms. 

 We compile existing results on the decidability of 
these unified opacity concepts. 

 We present a dependency diagram visualizing the 
relationships among key studies on opacity. 

This unified framework paves the way for a more 
comprehensive understanding of opacity. It allows 
researchers to compare different opacity properties, 
fostering advancements in the field. The framework 
also lays the groundwork for potential future research 
on verification methods and decidability of opacity 
properties under various conditions. 

By the end of this paper, you will have a deeper 
understanding of: 

 The concept of opacity and its importance in 
system security. 

 How a unified framework simplifies the analysis 
of opacity across diverse systems. 

 The existing body of research on opacity and its 
connection to our proposed framework. 

The paper is structured as follows. Section 2 
introduces the background concepts of transition 
systems and languages, including Labeled Transition 
Systems (LTS) and Timed Transition Systems (TTS). 
Section 3 delves into Timed Automata, the standard 
modeling formalism for real-time systems. Section 4 
explores the concept of observation functions, 
covering static, dynamic, and Orwellian projections. 
Section 5 presents established opacity properties for 
discrete systems with static projections. In this 
section, we propose a unified framework for 
formalizing opacity properties. Section 6 explores the 
transformation between different opacity notions. 
Sections 7 and 8 examine opacity with dynamic and 
Orwellian projections, respectively. Section 9 
extends opacity to timed systems with static 
projections using the proposed framework. Section 
10 discusses verification and decidability of opacity 
properties. Section 11 provides a comparative 

overview of existing opacity definitions and our 
proposed framework. Finally, Section 12 concludes 
the paper by summarizing the contributions of the 
unified framework and outlining potential avenues 
for future research. 

2. TRANSITION SYSTEMS AND 
LANGUAGES 

Transition systems can be used to simulate 
software and hardware systems, with states 
representing various configurations and actions 
causing transitions between them, in [35]. One way 
to represent this is by using a graph, where the states 
are represented as vertices and the actions are 
represented as labeled edges. State labeling enhances 
the available information regarding the values of 
variables. The paradigm used for discrete systems is 
referred to as a Labeled Transition System, whereas 
for real-time systems it is called a Timed Transition 
System. 

2.1. Labeled Transition Systems (LTS) and 
Discrete Languages 

LTSs are essentially infinite, directed graphs with 
labeled edges, in [12]. Nodes represent the system's 
states, and edges depict transitions between them 
triggered by specific actions.  

Definition 1: The Labeled Transition System is 
a quadruple 𝐿𝐺 =  (𝑄, Q , 𝛴, →) where: Q is a finite 
set of states,  Σ is a finite set of actions, 𝑄0 ⊂  𝑄 is the 
set of initial state,  →⊆  (𝑄 × Σ∗ ×  𝑄)  is the 
transition relation. 

Note:  ℕ  is the set of natural numbers.  
ℚ, ℚ , ℚ∗ is respectively the set of rational, 
nonnegative rational and positive rational. X is the set 
of clocks i.e., the set of conjunctions of constraints of 
the form 𝑥 ∼  𝑐  and C(X) be the set of convex 
constraints on X, in the form 𝜙 ∶: =  𝑥 − 𝑦 ∼
 𝑐 |𝑥 ∼  𝑐 |  𝜙 ∧ 𝜙 with ∼∈  {<, ≤, =, ≥, >} and x,y 
∈ ℚ . A clock valuation is a mapping 𝜐: 𝑋 ⟶ ℚ . 
(𝜐 + 𝑑)(𝑥) =  𝜐(𝑥) + 𝑑  where 𝑑 ∈ ℚ . 𝜐[𝑋 ⟶
0] = 0 if x X’, otherwise 𝜐[𝑋 ⟶ 0] = 𝜐(𝑥) ,  
X’⊂ X. 

A path  Φ =  q , q , . . q  ..  is an infinite 
sequence of states. Φ [i] is the ith element of Φand 
Φ [. . i] =  q , q ,· · · q , Φ [i. . j] =  q , q , . q  
where 𝑞 ∈ 𝑄  and ∀i ≥ 0,𝑞 ∈ 𝑄. 𝑃𝑎𝑡ℎ(𝐿𝐺,qi) is the 
set of all paths executed by a LTS started by the set 
of state qi and 𝑃𝑎𝑡ℎ(𝐿𝐺) = 𝑃𝑎𝑡ℎ(𝐿𝐺,q0) when q0 is 
the initial states of LG.  We note that the set of path 
is infinite and uncountable set. 

An execution 𝑤 = 𝑒𝑥𝑒𝑐(Φ) =  a , a , . . a  ..  is 
an infinite sequence of actions. The LTS can accept 
the empty string, denoted by . 𝑤  is a prefix of 𝑤  
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denoted by 𝑤 ≼ 𝑤 , if ∃ 𝑤  such that 𝑤 . 𝑤  =  𝑤  
and 𝑤 =  𝑤 − 𝑤 . |𝑤|  returns the length of the 
discrete word 𝑤 where 𝑤, 𝑤 , 𝑤 , 𝑤 ∈ Σ∗. 

A discrete language 𝐿𝑎𝑛𝑔  is an infinite set of 
executions. 𝐿𝑎𝑛𝑔(𝐿𝐺, q , q ) = {𝑒𝑥𝑒𝑐(𝛷[𝑖, 𝑗]),

𝛷[𝑖, 𝑗] ∈ 𝑃𝑎𝑡ℎ(𝐿𝐺)}  is the set of executions stared 
by q   and ended by q . Extended: 
𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q . 
𝐿𝑎𝑛𝑔(𝐿𝐺, q ) = {𝑒𝑥𝑒𝑐(𝛷[𝑖, . . ]), 𝛷[𝑖. . ] ∈ 𝑃𝑎𝑡 (𝐿𝐺)} is 
the set of executions started by 𝑞 . Extended: 
𝐿𝑎𝑛𝑔(𝐿𝐺, Q ) = ∪ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, q ).  
𝐿𝑎𝑛𝑔(𝐿𝐺)  =  𝐿𝑎𝑛𝑔(𝐿𝐺, Q )  is the  set  of  
executions started by initial states. 

A bounded discrete language 𝐿𝑎𝑛𝑔 , is a finite 
set of executions, where 𝐾 ∈ ℕ is a constant value. 
𝐿𝑎𝑛𝑔 (𝐿𝐺, q ) = {𝑤, ∃ 𝑤 ∈ 𝐿𝑎𝑛𝑔 (𝐿𝐺, 𝑞 ) 𝑠𝑢𝑐ℎ  
 𝑡ℎ𝑎𝑡  𝑤 ≼ 𝑤, |𝑤 − 𝑤| ≤  𝐾 } is the set of 
executions stated by q   and  the  length  of  each  
execution  is less  than  or  equal  to  K. 
𝐿𝑎𝑛𝑔 (𝐿𝐺, Q ) = ∪ ∈ 𝐿𝑎𝑛𝑔 (𝐿𝐺, q ) . 
𝐿𝑎𝑛𝑔 𝐿𝐺, q , q = 𝑤, ∃ 𝑤 ∈

𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , q  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤 ≼ 𝑤, |𝑤 − 𝑤| ≤  𝐾 .  

Extended: 
𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q . 
𝐿𝑎𝑛𝑔 𝐿𝐺, q , q = 𝑤, ∃𝑤 ∈

𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , q  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤 ≼ 𝑤    
Extended:  

𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q .  
The language can be described by a regular 

expression. The regular expressions are all strings 
over the alphabet Σ ∪ {(, ), ∅,∪,∗, } . Formally, 
𝐿𝑎𝑛𝑔(∅) = ∅ ;  

𝐿𝑎𝑛𝑔(𝑎) = {𝑎};    

𝐿𝑎𝑛𝑔 (w , w ) = 𝐿𝑎𝑛𝑔(w )𝐿𝑎𝑛𝑔(w ); 

Lang((w ∪ w )) = 𝐿𝑎𝑛𝑔(w ) ∪ 𝐿𝑎𝑛𝑔(w ); 

𝐿𝑎𝑛𝑔(𝑤∗) = 𝐿𝑎𝑛𝑔(𝑤)∗  

Where a, 𝑤 , 𝑤  and 𝑤∗are regular expression.  

Time is a critical component in a system. The 
researchers introduce the concept of time into 
classical transition systems by assuming that all 
discrete transitions occur instantly, whereas real-time 
restrictions limit the possible times at which these 
transitions might take place. In their work, the 
authors in [37] present the concept of TTSs and 
provide the precise definition of a real-time system as 
a collection of timed execution sequences. The TTS 
is a Long-Term Support (LTS) system that 
encompasses two types of labels: discrete and 
continuous activities of real-time systems. 

2.2. Timed Transition Systems (TTS) and timed 
languages 

Timed Transition Systems (TTS) are 
characterized by a framework that allows for the 
association of time with a transition relationship [37]. 
In a TTS, there are two types of transitions: 
continuous transitions, which depict the passage of 
time or a gradual change, and discrete transitions, 
which represent the progression after a specific action 
or event. 

Definition 2: The Timed Transition System is a 
quadruple 𝐺 =  (𝑄, Q , 𝛴, →)  where: Q is a finite 
set of states,  𝑄0 ⊂  𝑄 is the set of initial state,   Σ is a 
finite set of actions,  →⊆ (𝑄 × (Σ ∪ ℚ ) × 𝑄) is the 
transition relation. 

The relation →  is defined by 𝑞 → 𝑞′ , where 
𝑞, 𝑞 ∈ 𝑄  and e is a transition between them, 
(𝑞, 𝑒, 𝑞 ) ∈→ . There are two kinds of transition 
relation → : continuous transition relation (or delay 

transition relation) 
∈ℚ
⎯⎯  and discrete transition 

relation
∈
⎯ . The properties of TTS are Null delay 

property or 0-delay if 𝑞 → 𝑞′  then 𝑞 = 𝑞′ ; Time 

additivity property if 𝑞


→ 𝑞′  and 𝑞

→𝑞 ′  then 𝑞

 
⎯ 𝑞′′  with ,  ∈ ℚ ; Time continuity property if  

𝑞


→ 𝑞 then , ′  ∈ ℚ such that  =   +    and 

𝑞 ∈ 𝑄  such that 𝑞′

→ 𝑞  and  𝑞′′


→ 𝑞 ; Time 

determinism property if  𝑞


→ 𝑞  and 𝑞


→ 𝑞  then 
𝑞 = 𝑞 . 

We extend by  𝑢 ≼ 𝑣  and |𝑢|  where  𝑤, 𝑣 ∈
(Σ  ℚ )∗. 𝑃𝑎𝑡ℎ is the set of transition-run  that is 
a sequence of states.  

A transition-run =e , 𝑒 , . . 𝑒  ..  is an infinite 
sequence of transitions. For simplicity reason, it is 

denoted by  = 𝑞 → 𝑞 … 𝑞 → …    is a prefix of 

,   ≼   if  =   ⎯ 𝑞 …  and  =  𝑞

→ 𝑞 … 𝑞 → 𝑞 , 𝑖 0. 

 𝑇𝑃𝑎𝑡ℎ(𝐺) is the set of all path executed by G. 
A run 𝜌  of a transition-run ψ is a possibly infinite 
sequence of alternating delay and discrete transition 

relations 𝜌 (ψ) =  𝑞 → 𝑞′ → 𝑞 → 𝑞′ → 𝑞 … 
where 𝑑  corresponds to the duration between 𝑞  and 
𝑞 .  

An execution 𝜌  is a possibly infinite execution 

𝜌 (ψ) =  𝑞
( , )

⎯⎯⎯ 𝑞
( , )

⎯⎯⎯ 𝑞 … .
( , )

⎯⎯ 𝑞 …  

A trace  𝑡𝑟(𝜌 (ψ)) of an execution  𝜌 (ψ) is a 
possibly infinite sequence of alternating time and 
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discrete transition 𝑡𝑟 𝜌 (ψ) =  𝑞
,

⎯⎯⎯ 𝑞
,

⎯⎯⎯ 𝑞 … .
,

⎯⎯ 𝑞 …  where  = 𝑑  and  =

∑ 𝑑  that is the executing time at the state 𝑞  that 
is the sum of all the previous durations in the path.  

A timed word 𝑢  of a given trace 𝑡𝑟(𝜌 (ψ)) is 
𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (ψ))) =  𝑎 ,   𝑎 ,   

… 𝑎 ,  … The set of generated timed words is 

represented by the timed language denoted by 

(𝐺) = {𝑢 = 𝑎 ,    𝑎 ,  … 𝑎 ,  … = 𝑢 =

𝑡𝑤(𝑡𝑟(𝜌 (ψ))), ψ ∈ 𝑇𝑃𝑎𝑡ℎ(𝐺)}.  

The finite timed language is the set of the finite 
timed words 𝑇𝐿∗ = {𝑢, 𝑢 =

𝑎 ,   𝑎 ,  … 𝑎 ,  } . 𝑇𝐿  contains the 
infinite and finite timed words where 𝑇𝐿= 𝑇𝐿 ∪
 𝑇𝐿∗. 

Typically, TTS systems are employed to provide 
the meaning and description of a model. Timed 
Automata (TA) are a type of models that are more 
appropriate for the purposes of modeling, 
verification, and control. 

3. TIMED AUTOMATA AND TIMED 
LANGUAGE 

This section presents the standard modeling 
formalism for real-time systems, known as Timed 
Automata, along with its several subclasses. Timed 
automata, as described in references [5], are automata 
that have a finite control and a finite set of clocks. 
They are used to represent real-time systems that 
operate in continuous time. 

Definition 3: [5] A Timed Automaton (TA) A is 
a tuple 𝐴 = (𝐿, 𝑙 , 𝑋, Σ, 𝐼, 𝑇) where L is a finite set of 
locations; 𝑙 ∈ 𝐿 is the initial location; X is a finite 
set of clocks such that 𝑛 = |𝑋|; Σ is a finite set of 
actions;  𝐼 ∈ 𝐶(𝑋)  is an application that associates 
an invariant to each location; T is a finite set of 
transitions 𝑇 ⊆  𝐿 × 𝐶(𝑋) × Σ × 2 × 𝐿 . In an 
edge 𝑒 = (𝑙, 𝑔, 𝑎, 𝑟, 𝑙 ) ∈ 𝑇, g is the guard, a is the 
action and r is the reset set. 

Definition 4: A Timed Automaton with final 
states 𝐴  is a tuple 𝐴 = (𝐴, 𝐹) where A is the TA as 
defined in Definition 3 and F⊆ 𝐿 is a finite set of final 
locations. 

The semantics of a TA A is determined by a timed 
transition system that is labeled with transitions. The 
delay transition signifies the passage of time, while 
discrete transitions indicate the changeover to the 
next attainable state in A. 

Definition 5: The TTS is a tuple 𝑇𝐺 =
 (𝑄, {𝑞 }, Σ, →)  where 𝑄  is the set of states 𝑄 ∈

(𝐿 × ℚ | |); {𝑞 } is the initial state;  →⊆ (𝑄 × (Σ ∪
ℚ ) × 𝑄) is the transition relation. 

There are two kinds of transition relation →in TA: 

Delay transition relation if (𝑙, 𝜈)
( )
⎯ (𝑙 , 𝜈 ) then 𝑙 =

𝑙’, 𝜈 = 𝜈 + 𝑡  and 𝐼(𝑙′)(𝜈′) = 𝑇𝑟𝑢𝑒 ; Discrete 

transition relation if (𝑙, 𝜈) → (𝑙 , 𝜈 )  then 𝑔(𝜈) =
𝑇𝑟𝑢𝑒; 𝜈 = 𝜈[𝑟 → 0]  and 𝐼(𝑙′)(𝜈′) = 𝑇𝑟𝑢𝑒  where 
𝑒 = (𝑙, 𝑔, 𝑎, 𝑟, 𝑙 ) ∈ 𝑇 satisfying the guard g by the 
clock valuation obtained from adding the delay to the 
current valuation. 

Let 𝐴  be a timed automaton with final locations, 
a path in 𝐴  is started by the initial location 𝑙 and 
ended by a final location 𝑙 ∈ 𝐹. This path contains a 
sequence of transition that is called transition-run  

𝜓 = 𝑙 → 𝑙 … ⎯ 𝑙 . 𝑙𝑎𝑠𝑡(𝜓 ) = 𝑙 returns the 
last location of 𝜓 .  

For a finite transition-run 𝜓 , an execution 

automaton 𝜌 𝜓 = 𝑙
( , )

⎯⎯⎯ 𝑙 … 
( , )

⎯⎯⎯⎯⎯⎯⎯ 𝑙 , a 

trace 𝑡𝑟(𝜌 (𝜓 )) = 𝑙
( , )
⎯⎯⎯ 𝑙 … 

( , )
⎯⎯⎯⎯⎯⎯⎯ 𝑙 ,  a 

timed word 𝑢 =

𝑡𝑤(𝑡𝑟(𝜌 (𝜓 ))) =  𝑎 ,   𝑎 ,  … 𝑎 ,  , 

an accepted timed language of 𝐴 is 𝑇𝐿 𝐴 =
{𝑢, 𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (𝜓 ))), 𝜓 ∈ 𝑇𝑃𝑎𝑡ℎ(𝐴 , 𝐹)}  . 

𝑇𝐿 𝐴 , 𝑙 = {𝑢, 𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (𝜓 ))), 𝜓 ∈
𝑇𝑃𝑎𝑡ℎ(𝐴 , 𝐹) 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡(𝜓 ) = 𝑙}  is an accepted 
timed language of 𝐴  where the final location is 𝑙. By 
extension, 𝑇𝐿 𝐴 , 𝑆𝐿 =∪ ∈ 𝑇𝐿 𝐴 , 𝑙  is the timed 
language ended by a subset of locations 𝑆𝐿 ⊆ 𝐿. 

4. THE OBSERVATION FUNCTIONS  

The purpose of opacity is to ascertain whether the 
concealed actions of a particular system are 
effectively hidden from external observers. A 
predicate represents the subset of the system 
behavior. The outsiders are shown as passive 
observers of the system's actions and are referred to 
as intruders. More specifically, the outsider is 
presumed to possess a comprehensive understanding 
of the system's architecture and limited observations 
of the system's functioning. Partial observation 
typically involves the observation of an execution 
when an external observer is unable to perceive a 
subset of events. Hence, the set of events Σ  is 
partitioned into an observable set Σ and an 
unobservable set Σ . The visible behavior by an 
observer is defined by its projection that removes 
from a sequences w all events that are not in Σ . 
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Opacity qualifies a given predicate 𝜑 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺) with respect to an observation function 
𝑂𝑏𝑠  modeling user capabilities for observing the 
system. Formally, 𝑂𝑏𝑠: Σ∗ → Σ ∗, ∀𝑤 ∈ Σ∗, 𝑂𝑏𝑠(𝑤) ∈

 Σ ∗ is an observation function. For two executions 
𝑤, 𝑤 ∈ Lang(LG) ⊆ Σ∗,  𝑤  and 𝑤′  are 
observationally equivalent w.r.t. 𝑂𝑏𝑠  if 𝑂𝑏𝑠(𝑤)  =
 𝑂𝑏𝑠(𝑤′) . Thus, we define some categories of 
projection in literature in the next section. 

4.1. Static projection 

Static observation (projection) is the most used 
observation in the model system, also called simple 
projection. Static observation is defined when the 
same occurrence is always interpreted in the same 
way by an observer. The interface between an 
observer and a system is identified by a set of events 
Σ ⊆ Σ , with Σ − Σ = Σ  where Σ  is the set of 
unobservable events and Σ  is the set of observable 
events. Thus, the static projection is defined for the 
discrete sequence 𝑤 = 𝑎 𝑎 … . . 𝑎 , denoted 𝑏𝑦 𝑃 . 
Formally, 𝑃 : Σ∗ → Σ ∗ is defined as follows: 

𝑃 (𝜀) = 𝜀;                                              

𝑃 (𝑤. 𝑎) = 𝑃 (𝑤)                    𝑖𝑓 𝑎 ∈

𝑃 (𝑤. 𝑎) = 𝑃 (𝑤). 𝑎        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Σ                         (1) 

where 𝑤 ∈ Σ∗, 𝑎 ∈ Σ and 𝜀  is the empty string.  

[𝑤]  represents the set of all execution having 
the same projection as 𝑤 . [32] expressed this 
projection in another form. 

Definition 6: [32] According to observation 
function 𝑂𝑏𝑠: Σ∗ → Σ ∗ the static projection is a 
mapping 𝑂𝑏𝑠 : Σ → Σ ∪ {ε} such that ∀ 𝑤 =
𝑎 𝑎 … . . 𝑎 ∈ Σ∗, 𝑂𝑏𝑠(𝑤) = 𝑂𝑏𝑠 (𝑎 )𝑂𝑏𝑠 (𝑎 ) …  

𝑂𝑏𝑠 (𝑎 ). 

Example 1: Let LG be a labeled transition system 
as shown in Figure 1 with Q = q ,  q , q ,  q ,
q ,  q ,  q } set of states, Σ = {𝑎, 𝑏}  is observable 
events and Σ = {𝑐} is unobservable events. 

The static projection of the word 𝑢 =  𝑐𝑐𝑎𝑏𝑏𝑐 is 
defined by 𝑃 (𝑢) = 𝑎𝑏𝑏. Using the definition by 
[32], the static projection of𝑢 = 𝑐𝑐𝑎𝑏𝑏𝑐 is 𝑂𝑏𝑠(𝑢) =

𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑎)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠′(𝑐) = 
𝜀𝜀𝑎𝑏𝑏𝜀 (where 𝑂𝑏𝑠’ (𝑐) = 𝜀, 𝑂𝑏𝑠 (𝑎) = 𝑎  and 
𝑂𝑏𝑠′(𝑏)  =  𝑏). 

In the same way 𝑃 (𝑣) = 𝑎𝑏𝑏  where 𝑣 =

𝑎𝑏𝑐𝑏. The static projection of the word 𝑣 = 𝑎𝑏𝑐𝑏 is 
𝑂𝑏𝑠(𝑣) = 𝑂𝑏𝑠 (𝑎)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑏) = 𝑎𝑏𝜀𝑏  
(where 𝑂𝑏𝑠’ (𝑐) = 𝜀, 𝑂𝑏𝑠′(𝑎) = 𝑎 and 𝑂𝑏𝑠′(𝑏)  =  𝑏). 

 

Figure 1: Example of automaton 

4.2. Dynamic projection 

Dynamic observation, in contrast, involves the 
study of how a system evolves and changes over 
time. It considers the interactions, processes, and 
behaviors that unfold within the system. This 
approach provides a more holistic understanding by 
capturing the system's temporal aspects, making it 
particularly valuable for analyzing systems with fluid 
and evolving characteristics. 

A filter is employed in dynamic projection to 
impede the transmission of information between the 
system and the attacker. This approach is introduced 
in [10, 25] when the projection dynamically modifies 
the observability of events, and the attackers cannot 
infer secret information from observations. Dynamic 
observation is based on the prefix and an observer 
that can deduce the knowledgement using the 
previous events to interpret the current i.e. the set of 
observable events change over time conforming to a 
dynamic mask. The observer can update after each 
observation the set of events that he can observe. The 
interface between an observer and a system is 
identified by a dynamic observability that is a 
mapping 𝑇 : Σ∗ → 2 . Formally, the dynamic 
projection denoted by 𝑇  is the mapping 𝐷𝑃 : Σ∗ →

Σ∗is defined as follows: 

 𝐷𝑃 (𝜀) = 𝜀;                                                        

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤). 𝑎                  𝑖𝑓 𝑎 ∈

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤)               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 (𝐷𝑃 (𝑤))  (2) 

Dynamic functions are akin to an observer with 
unlimited memory capacity to retain labels. 
However, they can only rely on knowledge of past 
labels to understand the present label and cannot 
subsequently reinterpret it. The dynamic projection 
can be expressed in another form by [32]. 

Definition 7: [32] According to observation 
function : Σ∗ → Σ ∗, Σ ⊆ Σ. The dynamic projection 
is a mapping 𝑂𝑏𝑠 : Σ × Σ∗ → Σ ∪ {ε} such that 
∀ 𝑤 = 𝑎 𝑎 … . . 𝑎 ∈ Σ∗,   𝑂𝑏𝑠(𝑤) =

𝑂𝑏𝑠 (𝑎 , 𝜀) 𝑂𝑏𝑠 𝑎 ,, 𝑎  … 𝑂𝑏𝑠 (𝑎 , 𝑎 . . 𝑎 ) 
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Example 2: We recall the LTS system LG of 
Example 1 in Figure 1. The dynamic observability is 
defined as follows: 

𝑇 (𝑤) = {𝑎}                         𝑖𝑓 𝑇 (𝑤) ∈ 𝑐∗𝑎

𝑇 (𝑤) = {𝑎, 𝑏, 𝑐}        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑤 ∈ Σ∗)
   (3) 

Figure 2:  Details Of Dynamic Projection

According to the Figure 2, the dynamic projection 
of 𝑢 = 𝑐𝑐𝑎𝑏𝑐  is 𝐷𝑃 (𝑢) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) = 𝑐𝑐𝑎 . 
In the same way, (𝑐𝑐𝑎𝑏𝑐) = 𝑂𝑏𝑠 (𝑐, 𝜀) 𝑂𝑏𝑠 (𝑐, 𝑐)  
 𝑂𝑏𝑠 (𝑎, 𝑐𝑐) 𝑂𝑏𝑠 (𝑏, 𝑐𝑐𝑎) 𝑂𝑏𝑠 (𝑐, 𝑐𝑐𝑎𝑏) =
 𝑐. 𝑐. 𝑎. 𝜀. 𝜀 = 𝑐𝑐𝑎. 

Initially, all events are perceivable. However, 
when event a takes place, it obscures all occurrences 
of events 𝑏 𝑜𝑟 𝑐, allowing just the observation of 𝑎. 
Once 𝑎  has been spotted, the mask reveals its 
concealment by allowing 𝑎, 𝑏 , and 𝑐  to be visible 
once more. 

Consider Σ ⊆ Σ, if 𝐷𝑃 is a dynamic projection 
where this projection defines a constant mapping 
making events in Σ  observable, then we extend the 
dynamic projection as 𝐷𝑃 = 𝐷𝑃 . For this, we 
present the dynamic mask encoding a dynamic 
projection using automata. 

Definition 8: A mask is a complete and 
deterministic labeled automaton 𝐿𝐺 =
 (𝑄 , 𝑄 , Σ, Γ, 𝑇) for a LTS 𝐿𝐺 where 𝑄 is the set 
of states, 𝑄  is the initial states 𝑞  ∈ 𝑄 , Σ is the 
set of events, Γ: 𝑄 → 2    is a labeling function that 
specifies the set of events that the mask keeps 
observable at state q. 𝑇: 𝑄 × Σ∗ → 𝑄 is the transition 
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function. The transition started by 𝑞, ended by state 
𝑞’ and execute the action a, is denoted by 𝑇(𝑞, 𝑎) =
𝑞′ correspond to the transition relation (𝑞, 𝑎, 𝑞′) ∈ → 
in 𝐿𝐺 = (𝑄, 𝑄 , Σ, →) . The transition function is 
defined as follows: 

⎩
⎨

⎧
𝑇(𝑞, 𝜀) = 𝑞                                                                   

𝑇(𝑞, 𝑤. 𝑎) = 𝑇(𝑇(𝑞, 𝑤), 𝑎)                                         

=
𝑇(𝑞 , 𝑎) 𝑖𝑓 𝑎 ∈  Γ(𝑇(𝑞, 𝑤)) 𝑎𝑛𝑑 𝑇(𝑞, 𝑤)) = 𝑞′ 

𝑇(𝑞, 𝑤)  𝑖𝑓 𝑎 ∉ Γ(𝑇(𝑞, 𝑤))                                     
  

 (4) 

Therefore, each dynamic projection 𝐷𝑃 can be 
associated with a dynamic mask 𝐷𝑃 . 

Example 3: According to Example 1, we 
determine the mask as shown in Figure 3. Let 𝑤 be 
an execution, the dynamic projection of 𝑤 =  𝑐𝑐𝑎𝑏𝑐 
is presented as follows (where ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝑐∗𝑎) , 
𝑇 (𝑤) = {𝑎} and ∀ 𝑤 ∈ Σ∗, 𝑇 (𝑤) = {𝑎, 𝑏, 𝑐}: 

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) = 𝐷𝑃 (𝑐𝑐𝑎𝑏). 𝑐  
and 𝑤 =  𝑐𝑐𝑎𝑏  ∉ 𝐿𝑎𝑛𝑔(𝑐∗𝑎)  then 𝑇 (𝑤) =
{𝑎, 𝑏, 𝑐} and 𝑐 is an observable action. 

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏). 𝑐 = 𝐷𝑃 (𝑐𝑐𝑎) and   
𝑤 =  𝑐𝑐𝑎 ∈ 𝐿𝑎𝑛𝑔(𝑐∗𝑎) then 𝑇 (𝑤) = {𝑎} and 
𝑏, 𝑐  are unobservable events. 𝐷𝑃 (𝑤) =
𝐷𝑃 (𝑐𝑐𝑎) = 𝑐𝑐𝑎. 

 In the same way, 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) =

𝐷𝑃 (𝑐𝑐𝑎𝑏) and  𝑐 ∉ Γ(𝑇(𝑞, 𝑐𝑐𝑎𝑏)). 

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏) = 𝐷𝑃 (𝑐𝑐𝑎)  and b ∉

Γ(𝑇(𝑞, 𝑐𝑐𝑎)). 

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎) = 𝐷𝑃 (𝑐𝑐). 𝑎 =

𝐷𝑃 (𝑐). 𝑐𝑎 = 𝑐𝑐𝑎,  𝑎 ∈  Γ(𝑇(𝑞, 𝑐𝑐)) and 𝑐 ∈
 Γ(𝑇(𝑞, 𝑐)). 

 

Figure 3: A dynamic mask according to Figure 2 

To summarize this part, we define the dynamic 
projection for a LTS 𝐿𝐺 = (𝑄, 𝑄 , Σ, →)  and a 
correspond mask 𝐿𝐺 =  (𝑄 , 𝑄 , Σ, Γ, 𝑇)  as 
follows where 𝑄 = {𝑞 }: 

𝐷𝑃 (𝜀) = 𝜀;                                                        

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤). 𝑎                      𝑖𝑓 𝑎 ∈

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Γ(𝑇(𝑞 , 𝑤))            (5) 

4.3. Orwellian projection 

Orwellian observation is based on the prefix and 
suffix of the trace and an observer that can deduce the 
knowledge to reinterpret events. This projection is 
studied in [5]. The interface between a system and an 

observer is specified by the set of observable events 
Σ ⊆ Σ and the subset of downgrading events Σ ⊆
Σ. Thus, The Orwellian projection is defined for the 
discrete sequence  𝑤 = 𝑎 𝑎 … . . 𝑎 , denoted by 
𝑃 , . Formally, 𝑃 , : Σ∗ → Σ ∗ 

⎩
⎪
⎨

⎪
⎧

𝑃 , (𝜀) = 𝜀;                                                            

𝑃 , (𝑤. 𝑎) = 𝑤. 𝑎                                 𝑖𝑓 𝑎 ∈ Σ

𝑃 , (𝑤. 𝑎) = 𝑃 , (𝑤). 𝑎                    𝑖𝑓 𝑎 ∈ Σ

𝑃 , (𝑤. 𝑎) = 𝑃 , (𝑤)                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (6) 

Orwellian functions pertain to an observer with 
the capacity for unlimited memory to retain labels 
and the ability to employ knowledge of other labels, 
whether acquired before or after, to reinterpret a 
label. The Orwellian projection can be expressed in 
another form by [32]. 

Definition 9: [32] According to observation 
function  𝑂𝑏𝑠: Σ∗ → Σ ∗ , Σ ⊆ Σ  and Σ ⊆ Σ . The 
Orwellian projection is a mapping 𝑂𝑏𝑠 : Σ × Σ∗ →
Σ ∪ {ε} such that ∀ 𝑤 = 𝑎 𝑎 … . . 𝑎 ∈
Σ∗, 𝑂𝑏𝑠(𝑤) =
𝑂𝑏𝑠 (𝑎 , 𝑤)𝑂𝑏𝑠 (𝑎 , 𝑤) … 𝑂𝑏𝑠 (𝑎 , 𝑤) 

Example 4: Consider the automaton A shown in 
Figure 2 with Σ = {𝑎}  , Σ = {𝑐}   and Σ = {𝑏} . 
Table 1 represents the Orwellian projection of 
executions. 

Table 1: Executions with Orwellian projection 

Events 
(read 
part) 

Orwellian 
observation 

Events 
(read part) 

Orwellian 
observation 

𝒄 𝜺 𝒄 𝜺 
𝒄𝒄 𝜺 𝒄𝒂 𝒂 

𝒄𝒄𝒂 𝒂 𝒄𝒂𝒃 𝒄𝒂𝒃 
𝒄𝒄𝒂𝒄 𝒂 𝒄𝒂𝒃𝒄 𝒄𝒂𝒃 

𝒄𝒄𝒂𝒄𝒃 𝒄𝒄𝒂𝒄𝒃 𝒄𝒂𝒃𝒄𝒄 𝒄𝒂𝒃 
𝒄𝒄𝒂𝒄𝒃𝒄 𝒄𝒄𝒂𝒄𝒃 𝒄𝒂𝒃𝒄𝒄𝒃 𝒄𝒂𝒃𝒄𝒄𝒃 

The Orwellian concept is extended to the m-
Orwellian category further by incorporating modern 
technologies and methods of mass surveillance.  M-
Orwellian observation involves the use of advanced 
monitoring tools, data analytics, and interconnected 
systems to exert pervasive control. It often raises 
concerns about privacy, data ethics, and the potential 
misuse of technology for surveillance purposes. 

Orwellian observation is defined for a fixed 
number of observation events that are called m-
Orwellian observation. The number of observable 
events before a downgrading action is less than or 
equal to m. The m-Orwellian projection can be 
defined as follows by [32]. 

Definition 10: [32] According to observation 
function 𝑂𝑏𝑠: Σ∗ → Σ ∗ , Σ ⊆ Σ , Σ ⊆ Σ  and 𝑚 ∈
ℕ∗.  
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The m-Orwellian projection is a mapping 
𝑂𝑏𝑠 : Σ × Σ∗ → Σ ∪ {ε} such that ∀ 𝑤 =
𝑎  𝑎 … . . 𝑎 ∈ Σ∗ ,  𝑂𝑏𝑠(𝑤) = 𝑂𝑏𝑠 (𝑎 , 𝑗 )  
𝑂𝑏𝑠 (𝑎 , 𝑗 ) … 𝑂𝑏𝑠 (𝑎 , 𝑗 ) where ∀ 𝑤 ∈∥ 1, 𝑛 ∥,
𝑗 = 𝑎 ( , ) 𝑎 ( , )  … 𝑎min (1,𝑝+𝑚−1)   

4.4. Timed static projection 

Timed static projection can be reflected in 
narratives that focus on pivotal moments in a 
society's history, capturing the static essence of each 
era while acknowledging the temporal transitions 
between them. This approach allows authors to 
explore the nuanced interplay between stability and 
change within complex systems, offering readers a 
richer understanding of the narrative's temporal 
landscape.  

The static projection is expanded into a timed 
sequence on a real-time system. Formally, 
𝑇𝑃 : (Σ × ℚ )∗ → (Σ × ℚ )∗ is defined by: 

𝑇𝑃 ((𝜀, 𝛾)) = (𝜀, 𝛾);                                                

𝑇𝑃 (𝑢. (𝑎, 𝛾)) = 𝑇𝑃 (𝑢)                            𝑖𝑓 𝑎 ∈

𝑇𝑃 (𝑢. (𝑎, 𝛾)) = 𝑇𝑃 (𝑢). (𝑎, 𝛾)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Σ       (7) 

where 𝑢 ∈ (Σ × ℚ )∗, 𝑎 ∈ Σ , 𝛾 ∈ ℚ and 𝜀   is 
the empty string. The notion [𝑢]  is extended that 
represents the set of all timed executions having the 
same projection as 𝑢. 

5. DISCRETE OPACITY WITH STATIC 
PROJECTION 

The opacity properties are introduced for the first 
time for the analysis of cryptographic protocols in 
[33, 36]. Next, the opacity is defined in the 
communication network. In [4, 24], opacity has been 
introduced in DES when the system can be modeled 
by Petri nets. In [5], previous work has been 
deepened by studying opacity in more general 
systems and which are labelled LTS.  

The opacity parameters are determined by the 
following conditions: (1) 𝑆 contains a collection of 
confidential information; (2) the intruder is an 
observer of 𝑆 who possesses complete understanding 
of the architecture of 𝐴 . An opaque system is 
characterized by the presence of a non-secret 
behavior that is indistinguishable from a secret 
behavior, hence making it impossible for an outsider 
to discern the secret behavior. Consequently, the 
invader remains uncertain about the occurrence of the 
secret. Building on existing research, [4] delves into 
opacity for DES by FSA with partial transition 
observability. Previous literature, however, categori-
zes formal LTS opacity definitions into two main 
families. 

5.1. Language Based Opacity 

The concept of LBO was initially introduced in 
[9]. The secret behavior is defined by a language 
called 𝐿𝑎𝑛𝑔𝑆, which is a subset of 𝛴∗. Additionally, 
it is known as trace-based opacity. The system is 
opaque w.r.t. 𝐿𝑎𝑛𝑔𝑆  and the projection map 𝑃 if 
the intruder should be unable to ascertain if the word 
is in the secret language or not. Yet, in [11], The LBO 
is specified across two sub languages of the system, 
(𝐿𝑎𝑛𝑔1, 𝐿𝑎𝑛𝑔2) ⊆  (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 0)) . The term 
"opaque" is used between 𝐿𝑎𝑛𝑔1 and 𝐿𝑎𝑛𝑔2 under 
the projection map 𝑃 , if the intruder has an 
ambiguity between every string in 𝐿𝑎𝑛𝑔1 with some 
strings in 𝐿𝑎𝑛𝑔2 under the projection map. Consider 
that 𝐿𝑎𝑛𝑔 = 𝐿𝑎𝑛𝑔𝑆 ∪ 𝐿𝑎𝑛𝑔𝑁𝑆 is a language where 
𝐿𝑎𝑛𝑔𝑆  and 𝐿𝑎𝑛𝑔𝑁𝑆  are secret and non-secret 
languages. 

Definition 11: The secret language 𝐿𝑎𝑛𝑔𝑆 is said 
language-based opaque under 𝑃 if: ∀ 𝑤 ∈

𝐿𝑎𝑛𝑔𝑆, ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔𝑁𝑆  such that 𝑃 (𝑤) =

𝑃 (𝑤 )  

A secret language is considered opaque if every 
string 𝑤  in the secret language, 𝐿𝑎𝑛𝑔𝑆 , has a 
corresponding string 𝑤′, having the same projection, 
in 𝐿𝑎𝑛𝑔𝑁𝑆. In other words, we present the following 
Lemma. 

Lemma 1: The secret language 𝐿𝑎𝑛𝑔𝑆  is said 
language-based opaque under 𝑃 iff: 𝑃 (LangS) 
⊆ 𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆) 

Definition 12: The secret language 𝐿𝑎𝑛𝑔𝑆 is said 
weakly opaque under 𝑃 if: for some  𝑤 ∈

𝐿𝑎𝑛𝑔𝑆, ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔𝑁𝑆  such that 𝑃 (𝑤) =

𝑃 (𝑤 ) 

The secret language is considered weakly opaque 
if there is a string 𝑤  in 𝐿𝑎𝑛𝑔𝑆  such that there is 
another string 𝑤′  in 𝐿𝑎𝑛𝑔𝑁𝑆  that has the same 
projection. We give a more formal notation in 
Lemma 2. 

Lemma 2: The secret languages 𝐿𝑎𝑛𝑔𝑆  is said 
weakly opaque under 𝑃 iff: 𝑃 (LangS) ∩

𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆) ≠ ∅ 

Definition 13: The secret language 𝐿𝑎𝑛𝑔𝑆 is said 
no-opaque under 𝑃 if 𝐿𝑎𝑛𝑔𝑆 is not weakly opaque 
under 𝑃 . 

The secret language is no-opaque if for each 
string 𝑤  in 𝐿𝑎𝑛𝑔𝑆 , there not exists a string 𝑤’  in 
𝐿𝑎𝑛𝑔𝑁𝑆 with the same projection. In other words, 
we present the following Lemma.  
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Lemma 3: The secret languages 𝐿𝑎𝑛𝑔𝑆  is said 
no-opaque under 𝑃 iff: 𝑃 (LangS) ∩

𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆) = ∅ 

Example 5: We consider the secret language 
𝐿𝑎𝑛𝑔𝑆 =  𝐿𝑎𝑛𝑔(aba(cba)∗) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗) 
and the non-secret language 𝐿𝑎𝑛𝑔𝑁𝑆 =
 𝐿𝑎𝑛𝑔(a(bac)∗) ∪  𝐿𝑎𝑛𝑔(a(bac)∗𝑏) ∪
𝐿𝑎𝑛𝑔(a(bac)∗ 𝑏𝑎𝑏) ∪  𝐿𝑎𝑛𝑔(ca(bac)∗𝑏)  ∪
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎) ∪  𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎𝑎)  where 
Σ = {𝑎, 𝑏} and Σ = {𝑐} are the set observable and 
unobservable actions. The intruder is not sure of each 
word that is observationally equivalent to a word in 
secret language or equivalent to a word in non-secret 
language. Therefore, the secret language 𝐿𝑎𝑛𝑔𝑆 
under 𝑃 . is language-based opaque. 

5.2. State Based Opacity 

The state-based approach is associated with the 
covert actions of a single state or a group of states. 
Multiple opacity properties have been established 
based on the type of secret being considered. Let LG 
be a LTS, with Σ ⊆ Σ  and S ⊆ F  as secret states 
where F ⊆ Q is final states. 

1) Current-State Opacity or CSO:   
CSO is initially presented in [4] for the 

application of Petri Nets. The state property pertains 
to the inclusion of the system's final state inside a 
specific set of undisclosed states. This property was 
adapted to LTS in [2,4, 28, 35].  

Definition 14: The secret S is said current-state 
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆), ∃ 𝑤′ ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆); 𝑃 (𝑤) = 𝑃 (𝑤 )  

The system is deemed opaque in its current state 
if the intruder, although possessing comprehensive 
knowledge of the system's architecture and making 
partial observations of its behavior, is unaware of the 
true essence of the outcome. Definition 5 presents a 
direct consequence of Lemma 4: 

 Lemma 4: The secret S is said current-state 
opaque under 𝑃 iff:  

𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))  

Example 6:  According to Example 1, we built a 
LTS system LG corresponding to the secret and non-
secret languages as shown in Figure 4, with, 
Q={q , q , q , q , q , q , q , q , q , q } is the set of 
states, Σ = {𝑎, 𝑏} and Σ = {𝑐}. If we consider that 
S = {q } , then S is a CSO because the intruder 
confuses between the word 𝑎𝑏𝑎 and 𝑐𝑎𝑏𝑎. Thus, the 
outsider is not certain if the system is in q ∈ 𝑆 or in 
q ∈ 𝑄 − 𝑆 . But, if S = {q , q } , then S is not a 

CSO. The outsider is certain whether the system is in 
q when 𝑐𝑎𝑏𝑎𝑎 is executed. 

 

Figure 4: Opacity example 

2) The Initial-State Opacity or ISO 
ISO is defined within Petri Nets models in [4]. Thus, 
this property is an extension of LTS in [7, 22].  ISO 
refers to a state property that pertains to the inclusion 
of the system’s starting state in a collection of 
confidential states. If the intruder is unable to 
conclude if the initial state of the system is a secret or 
not, then the system is opaque in its initial state. 

Definition 15: The secret S is said initial-state 
opaque under  𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆), ∃ 𝑤′ ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 − 𝑆) such that 𝑃 (𝑤) = 𝑃 (𝑤 )  

The system is completely opaque in its initial 
state. For each individual word 𝑤 that comes from a 
confidential state 𝑞 ∈ 𝑆 ⊆ 𝑄 , there is another word 
𝑤’ from a non-confidential initial state 𝑞 ∈ 𝑄 − 𝑆, 
such that 𝑤 and 𝑤’ are observationally similar. Thus, 
the intruder is unable to ascertain if the system 
originated from a confidential state 𝑞  or from a non-
confidential state 𝑞′. Formally, ISO can be defined in 
the following Lemma. 

Lemma 5: The secret S is said initial-state 
opaque under 𝑃 iff:  

𝑃 (Lang(𝐿𝐺, 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 − 𝑆)) 

Example 7: We consider the LTS system LG as 
shown in Figure 4 and Q = {𝑞 , 𝑞 }. If S = {𝑞 }, 
then S is initial-state opaque. The set of word starting 
from 𝑞 is 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆) = 𝐿𝑎𝑛𝑔(a(bac)∗) ∪
𝐿𝑎𝑛𝑔(a(bac)∗𝑏) ∪ 𝐿𝑎𝑛𝑔(a(bac)∗𝑏𝑎𝑏). The set of 
the words starting from 𝑞  is 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆) =
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎) ∪
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎𝑎). If S = {𝑞 } , then S isn’t 
initial-state opaque. The outsider is  convinced that 
the system is initiated by 𝑞  and ending by 𝑞 when 
the discrete word 𝑎𝑏𝑎𝑎 is executed.  

The efficient resolution of both CSO and ISO can 
be achieved in bounded Petri nets by utilizing a 
concise depiction of the reachability graph [15].   

3) Initial-and-Final-State Opacity or IFO 
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IFO is a state property that is related to both 
system’s initial and final states [13]. This property 
defines secret states as a pair of states. 

Definition 16: The secret S is said initial-and-
final state opaque under 𝑃 if:  ∀(𝑞 , 𝑞 ) ∈ 𝑆,

𝑎𝑛𝑑 ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞 ), ∃(𝑞 , 𝑞 ) ∈ (𝑄 ×

𝑄) − 𝑆, 𝑎𝑛𝑑 ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞 );  𝑃 (𝑤) =

𝑃 (𝑤 )  

The system is initial-and-final-state opaque if for 
every word 𝑤 starting from 𝑞  and ending at 𝑞 , there 
exists another word 𝑤’  beginning from 𝑞′  and 
terminated at 𝑞′  such that 𝑤  and 𝑤′  are the same 
observationally. Thus, the outsider is unable to 
ascertain the secrecy of the state couple. We propose 
another definition for this property in Lemma 6. 

Lemma 6: The secret S is said initial-and-final 
opaque under 𝑃 iff: 

𝑃 ∪ ( , )∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , 𝑞  

⊆ 𝑃 (∪ ( , )∈( × ) 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞′ , 𝑞′ )) 

According to the previous Lemma, IFO is similar 
to strong language-based opacity where LangS =

∪ ( , )∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞 ) is the secret language and  

LangNS =∪ ( , )∈( × ) 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞′ , 𝑞′ )  is 
the non-secret language. 

Example 8: We recall LG as shown in Figure 4 
and 𝑄 = {𝑞 , 𝑞 }. If 𝑆 = {(𝑞 , 𝑞 )}, then S is initial-
and-final-state opaque. The outsider is never certain 
whether the word 𝑎𝑏𝑎  corresponding to the secret 
state pair (𝑞 , 𝑞 ). 

4) K-step opacity:  
It was initially presented in [4], and later in [7]. It 

allows for the verification of whether a system has a 
concealed state K that could be observed through past 
events. Two forms of this property are presented in 
[3] strong and weak. 

a) K-step weakly opacity 

Definition 17: The secret S is said K-weakly 
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∀ 𝑤  ≼

𝑤  and |𝑤 − 𝑤| ≤ 𝐾  such that 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆) ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∀ 𝑣  ≼ 𝑣 
and  |𝑣 _𝑣| ≤ 𝐾 ;  𝑃 (𝑣) = 𝑃 (𝑤) ,  𝑃 (𝑣 ) =

𝑃 (𝑤 ) and 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)  

The system is K-weakly opaque if for every 
discrete word 𝑤 where 𝐾 longest of its prefixes lead 
to a secret state, there is another compatible discrete 
word where the 𝐾 longest of its prefixes do not lead 
to a secret state. 

This definition is reformulated in [1], for every 
execution 𝑤 and where 𝑤  is the prefix of 𝑤 and the 
difference between the observable executions is less 
or equal to K, there is 𝑤’ and 𝑤′   executions have 
the same projection as 𝑤 and 𝑤  where 𝑤′  is not a 
secret execution. In other words, we present the 
following Lemma. 

Lemma 7: The secret S is said K-weakly opaque 
under 𝑃 iff: 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))  and 𝑃 (Lang (𝐿𝐺, 𝑆)) 
⊆ 𝑃 (Lang (𝐿𝐺, 𝑄 − 𝑆)) 

The K-weakly opacity is similar to language-base 
opaque where 𝐿𝑎𝑛𝑔𝑆 = {𝑤, 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆);   𝑤 ≼
𝑤 𝑎𝑛𝑑 |𝑤 − 𝑤 | ≤ 𝐾}  is the secret language and 
𝐿𝑎𝑛𝑔𝑁𝑆 = {𝑤, 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∀𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , Q − S); 𝑤 ≼ 𝑤 𝑎𝑛𝑑 |𝑤 − 𝑤 | ≤
𝐾} is the non-secret language. 

Example 9: Let LG as shown in Figure 4. If we 
consider that 𝑆 = {𝑞 , 𝑞 }   and K=2, then S is K-
weakly opaque. However, if K=3, then S is not K-
weakly opaque because there is not observationally 
equivalent to the word 𝑐𝑎𝑏𝑎𝑎.  The outsider 
concludes where the system passes via the secret state 
𝑞 . 

b) K-step strong opacity  

It acts as a detective, scrutinizing the system's 
recent history (the last K observable actions) to 
uncover any hidden visits to secret states. It ensures 
that even a cunning observer, armed with partial 
knowledge, can't definitively tell if the system dipped 
into the shadows of secrecy within this timeframe. 

Definition 18: The secret S is said K-strongly 
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 0),  ∃ 𝑣 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 0);   𝑃 (𝑣) = 𝑃 (𝑤) ∀ 𝑣  ≼ 𝑣  with 
|𝑣 _𝑣| ≤ 𝐾 and 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)  

A system boasts K-strong opacity if, for every 
possible behavior sequence, there's another identical-
looking one (same "projection") that avoids secret 
states within the last K observed actions. This ensures 
even a watchful observer can't definitively tell if the 
system dipped into the shadows of secrecy recently. 
Definition 9 is formulated in Lemma 8. 

Lemma 8: The secret S is said K-strongly 
opaque under 𝑃 iff: 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆))  ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))  and 
𝑃 (Lang (𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) 

Example 10: Let LG be a LTS as shown in Figure 
4. If S = {q , q }  and K=1, then S is K-strongly 
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opaque. However, if K=2, then S is not K-strongly 
opaque because there is no word that does not pass 
through any secret. 

The property of K-step opacity is translated on 
trace-based K-step opacity (or trajectory) when the 
system has recently been in a specific state, in [14, 
20]. This property is defined as follows: for any given 
word w, there exists at least one discrete word that is 
observationally similar to w. Additionally, the states 
visited while generating the last K actions are 
exclusively non-secret states in w. The distinction 
between K-step opacity and trace-based K-step 
opacity is in the timing of when the system's state is 
revealed. Hence, if the system exhibits trace-based K-
step opacity, it likewise demonstrates K-step weak 
opacity. The concept of K-step opacity has been 
expanded to include infinite-step opacity in the works 
cited [18, 20]. 

Definition 19: The secret S is said weakly 
infinite-step opaque under 𝑃 if: ∀ 𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ; ∀ 𝑤′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆),
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤′ ≼ 𝑤 , ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 )  and  
∃ 𝑣′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆); 𝑃 (𝑣) = 𝑃 (𝑤)  and 
𝑃 (𝑣′) = 𝑃 (𝑤′). 

The system is infinite-step opaque if for every 𝑤, 
the outsider is unable to deduce that the system was 
previously in a concealed state. 

Lemma 9: The secret S is infinite-step opaque 
under 𝑃 iff:  
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) and 
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) 

The weak infinite-step opacity is similar to 
language based opaque where 𝐿𝑎𝑛𝑔𝑆 = {𝑤, 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ),  ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝑤′ ≼ 𝑤}  is the secret language and 𝐿𝑎𝑛𝑔𝑁𝑆 =
{𝑤, 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 −

𝑆) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑤′ ≼ 𝑤} is the non-secret language. 

Definition 20: The secret S is strongly infinite-
step opaque under the projection map 𝑃 if: ∀𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ), ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 )  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑃 (𝑣) =

𝑃 (𝑤) ∀ 𝑣′ ≼ 𝑣 and 𝑣′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆) 

Lemma 10: The secret S is strongly infinite-step 
opaque under 𝑃 iff: 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆))  ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))  and 
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) 

Example 11: Let LG be an LTS system as shown 
in Figure 4. If S = {q , q } and K=3 then S is not K-
weakly opaque, then S is not infinite-step opaque. 

Those notions have strong connections between 
each other and the transformations relationships 
between them. 

6. TRANSFORMATION BETWEEN 
DIFFERENT NOTIONS OF OPACITY 

The opacity property can be reduced to varying 
degrees of transparency with a polynomial time 
complexity that is defined in [13]. The relationships 
are presented in Figure 5. 

  
Figure 5: Transformation between notions of opacity 

6.1. Transformation between K-step weak 
opacity and CSO 

CSO is equal to K-step opacity where K = 0. Let 
LG be an LTS, 𝑆 ⊆ 𝑄is the secret states and 𝐾 ∈
ℕ is a constant value. We consider that 𝑆  is K-step 
weak opaque. From the K-step weak opacity, we 
determine S where S is the current secret states. 
Formally, 𝑆 = {𝑞 , ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ) ∃ 𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆 )  ;  𝑤 ≼ 𝑤, |𝑃 (𝑤 ) − 𝑃 (𝑤)| ≤

𝐾 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡(𝑤1)  =  𝑞𝑠}  is the set of current secret 
states. Then, we determine the non-secret state 𝑁𝑆 =
 𝑄 − 𝑆. To verify if 𝑆  is K-step weak opaque, we 
check if every string that pass through by a secret 
state 𝑞 ∈ 𝑆  has the same projection as a string that 
pass through by a non-secret state 𝑞′ ∈ 𝑁𝑆 . If every 
string ending by 𝑞 ∈ 𝑆 there is a string ending by 
𝑞 ∈ 𝑁𝑆  having the same observability. This 
approach is identical to determining whether S is 
current-state opaque. 

6.2. Transformation from K-step weak opacity 
to LBO 

We consider that 𝑆  is K-step weak opaque. 
From the K-step weak opacity, we determine the 
secret language 𝐿 = {𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ) ∃ 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆 );  𝑤 ≼ 𝑤, |𝑃 (𝑤 ) − 𝑃 (𝑤)| ≤

𝐾}. Similarly, we determine the non-secret language 
𝐿 = {𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ) ∃ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 ) ; 
𝑤 ≼ 𝑤, |𝑃 (𝑤 ) − 𝑃 (𝑤)| ≤ 𝐾 𝑎𝑛𝑑 𝑤 ∉

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)} . To verify if 𝑆 is K-step weak 
opaque, we check if every string that pass through by 
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a secret state 𝑞 ∈ 𝑆   has the same projection as a 
string passing through by 𝑞′ ∈ 𝑁𝑆 , that is, if every 
word 𝑤 ∈ 𝐿  has the same projection as a string 𝑤′ ∈
𝐿 . This approach is identical to determining 
whether 𝐿  is language-based opaque. 

7. DISCRETE OPACITY WITH DYNAMIC 
PROJECTION 

In this section, we generalize the opacity 
approach by considering the notion of dynamic 
projections encoded by dynamic masks. Based on 
these assumptions, we define opacity under the 
dynamic projection as follows [2]. 

Definition 21: Let LG be a LTS and 𝑆 × 𝑄  is 
secret states. The system S is opaque under 𝐷𝑃  if : 

∀ 𝑢 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺), 𝑙𝑎𝑠𝑡 [𝑢] ⊈ 𝑆 
Where [𝑢] represents the set of words 
observationally equivalent to u under the dynamic 
projection map 𝐷𝑃 . 

Example 12: Let LG be a LTS as shown in Figure 
4. If 𝑆 = {𝑞 }  is secret and the dynamic projection 
map as follows: 𝑇 (𝜀) = {𝑎} , 𝑇 (𝑎𝑏) = {𝑎} , 
𝑇 (𝑎𝑏𝑎) = {𝑎, 𝑏}  and 𝑇 (𝑢) = {𝑎, 𝑏, 𝑐}  otherwise, 
then S is opaque under  𝐷𝑃 . However, if the 
dynamic projection map as follows: 𝑇 (𝑎𝑏) = {𝑎, 𝑏} 
and 𝑇 (𝑢) = {𝑎, 𝑏, 𝑐}  otherwise, then 𝑆  isn’t 
opaque. There is not observationally equivalence to 
the sequence  𝑎𝑏𝑎 . Therefore, the intruder can 
conclude that the system is in the secret state 𝑞 . 

The issue of verification opacity is exacerbated 
by using dynamic projection compared to static 
projection. Specifically, the verification opacity 
problem becomes PSPACE-complete. 

Dynamic projection is frequently employed to 
ensure opacity. The opacity is specified within the 
Orwellian projection map illustrated in the following 
section. 

8. DISCRETE OPACITY WITH 
ORWELLIAN PROJECTION 

This section examines the opacity property in 
relation to the Orwellian projection in [39]. The 
observability of 𝑤 under the Orwellian projection is 
determined by the observability of all actions that 
occur prior to each downgrading action. With more 
simplicity, each discrete word is partitioned in two 
parts 𝐷(𝑤) and 𝐶(𝑤, 𝐿𝑎𝑛𝑔) where 𝐷(𝑤) represents 
the first part of w ending by the last downgrading 
action and 𝐶(𝑤, 𝐿𝑎𝑛𝑔) is the continuation of 𝐷(𝑤) 
and does not contain the downgrading actions. 
Formally, ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔, 𝑤 = 𝐷(𝑤). 𝐶(𝑤, 𝐿𝑎𝑛𝑔) 
where 𝐷(𝑤) ⊆ {𝜀} ∪ (𝐿𝑎𝑛𝑔 ∩ Σ∗Σ )  where 𝐿𝑎𝑛𝑔 

is the prefix of Lang ending in downgrading action 
and 𝐶(𝑤, 𝐿𝑎𝑛𝑔)=  (Σ ∪ Σ )∗ ∩ 𝐿𝑎𝑛𝑔  where 𝐿𝑎𝑛𝑔 
is a continuation of 𝐿𝑎𝑛𝑔 . We extend 𝐷(𝑤)  to 
𝐷(𝐿𝑎𝑛𝑔) = {𝜀} ∪ (𝐿𝑎𝑛𝑔 ∩ Σ∗Σ ) . The following 
definition presents the opacity property under the 
Orwellian projection map. 

Definition 22: Let LG be a LTS and S a secret 
state. The secret is opaque under 𝑃 ,  if ∀ 𝑢 ∈

𝐷(𝐿𝑎𝑛𝑔(𝐿𝐺)) , 𝐶(𝑢, 𝐿𝑎𝑛𝑔(𝐿𝐺))  is opaque under 
𝑃 . 

Example 12: Let LG be a LTS as shown in Figure 
4, Σ = {𝑎} and Σ = {𝑏}. If 𝑆 = {𝑞 }  then S isn’t 
opaque under 𝑃 , . 

9. TIMED OPACITY WITH STATIC 
PROJECTION 

The concept of opacity is expanded to temporal 
settings to explore the problem of language-based 
opacity [21]. Timed opacity is a fascinating extension 
of opacity that considers the measurement of time for 
an intruder, where the secret is a collection of specific 
locations. This characteristic guarantees that the 
system cannot definitively determine if this sequence 
is present in the secret or not. 

Definition 23: Let A be a timed automaton, Σ be 
a set of observable actions and 𝑆 ⊆ L be secret 
actions. The secret S is timed opaque under 𝑇𝑃 if : 
∀ 𝑢 ∈ 𝑇𝐿 (𝐴), ∃ 𝑢 ∈ 𝑇𝐿 (𝐴) ; 𝑇𝑃 (𝑢) =

𝑇𝑃 (𝑢 ) 

A system is considered timed opaque if, for every 
timed word 𝑢, there exists another timed word 𝑢 that 
has the same projection as 𝑢 and leads to non-secret 
locations. Language-opacity is defined as the state of 
being opaque for a real-time automaton, as stated in 
[21, 32]. An alternative formulation of this definition 
can be stated as: 

Lemma 12: [32] The secret S is timed opaque 
under 𝑇𝑃 if ∀ 𝑢 ∈ 𝑇𝑃 (𝑇𝐿 (𝐴)), [𝑢] ⊈ 𝑆 

Lemma 13: [17] Language-opacity 
𝑇𝑃 (𝑇𝐿(𝐴) ∩ 𝑇𝐿 ) ⊆ 𝑇𝑃 (𝑇𝐿(𝐴) − 𝑇𝐿 ) 

 

Figure 6: Example of TA in [32] 

Example 13: Let A be a TA shown in Figure 6 
where Σ = {𝑏} and 𝑆 = {𝑙 }. Then, A isn’t opaque. 
The outsider is certain that the system in 𝑙  when he 
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observes the projection of word b that occur at time 1 
under  𝑇𝑃 . 

10. VERIFICATION AND DECIDABITY OF 
OPACITY  

The opacity property requires that a system has a 
hidden secret behavior from an intruder. This 
property is verified using different frameworks such 
that: 

 Labeled Petri Nets (LPN) is used to verify ISO in 
[15, 26], CSO in [16] and Language-based 
opacity in [31]. 

 Symbolic Observation Graph (SOG) is used to 
verify simple opacity in [38], K-step weak and 
strong opacity in [15]. 

 Labeled Transition System (LTS) is followed in 
several research such as [2,7,9,18,20,22]. The 
opacity properties are verified on the building of 
the observer automaton. 

To assess the opacity of these systems, it is 
essential to establish if a system is opaque in relation 
to a specific secret [11 13, 22, 24, 31]. Numerous 
studies have been conducted on the decidability of 
the property of opacity in DESs, as evidenced by the 
works in [4, 35]. For instance, the decidability of 
CSO, ICO, and language opacity in LTS has been 
demonstrated. ISO is decidable for bounded Petri 
nets in [4] and undecidable in Petri nets unbounded 
in [35]. The decidability and complexity results are 
synthesized, in [29], related to opacity problems for 
such discrete system model and projection map. 

Timed opacity is generally undecidable for timed 
automata and event recording automata used in real-
time systems. The problem of determining timed 
opacity using non-deterministic Timed Automata is 
impossible to solve, but it can be solved with Event 
Recording Automata. The problem of language 
opacity and the problem of starting opacity are 
determinable for Real-Time Automata, as stated in 
reference [17].  

11. COMPARISON WITH EXIST WORKS 

This section recapitulates the different definitions 
of opacity for both discrete and real-time systems. 
We present a comparative overview using Table 2. 
On one hand, the table shows established notions 

from previous research. On the other hand, it 
showcases the corresponding definitions based on 
our proposed lemma introduced earlier. 

Table 2: Executions with Orwellian projection 

Projection 
Opacity 

properties 
Existing 
works 

Our 
work 

Static 
projection 

Language 
Based Opacity 

[9, 11] 
Definition 11 

Lemma 1 

weakly 
opaque 

[11] 
Definition 12 

Lemma 2 

No Opacity [11] 
Definition 13 

Lemma 3 

Current-State 
Opacity 

[2,4,28,35] 
Definition 14 

Lemma 4 

Initial State 
Opacity 

[4,7,22] 

Definition 15 
Lemma 5 

Initial-and-
Final State 

Opacity 

[13] 
Definition 16 

Lemma 6 

K-step 
Weakly 
Opacity 

[1,3,4,7] 
Definition 17 

Lemma 7 

K-step 
Strongly 
Opacity 

[3,4,7] 
Definition 18 

Lemma 8 

Weakly 
Infinite Step 

Opacity 

[18,20] 
Definition 19 

Lemma 9 

Strongly 
Infinite Step 

Opacity 

[18,20] 
Definition 20 

Lemma 
10 

Dynamic 
projection 

Opacity [2] 
Definition 21 

- 

Orwellian 
projection 

Opacity [39] 
Definition 22 

- 

Timed Static 
projection 

Opacity 
[21,32] 

Definition 23 
Lemma 

12 

Note that the complexity of those notions of 
opacity remains the same complexity because the 
verification of each opacity property is based on the 
verification of inclusion problem. 

Figure  7 illustrates the relation between different 
publications addressing the opacity properties, 
described in Section 5. Each arrow, linking paper X 
to paper Y in the diagram, means that paper Y 
introduces a new notion of opacity based on obtained 
result in paper X. 
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Figure 7: Reference Graph Between Opacity Notions

12. CONCLUSION  

This paper presented a unified framework for 
defining opacity properties applicable to both 
discrete and real-time systems.  This framework 
addresses a key challenge in the field of opacity 
research - the difficulty of comparing and analyzing 
opacity properties across various system models and 
observation scenarios.  By leveraging language 
inclusion problems as a foundation, the framework 
allows researchers to analyze opacity properties in a 
consistent manner, regardless of the underlying 
system type or observation setting.  This not only 
simplifies analysis but also facilitates the 
identification of connections between existing 
opacity formalisms.  Furthermore, the paper 
establishes a foundation for future research by 
compiling existing decidability results for these 
unified opacity concepts and outlining potential 

avenues for exploring verification methods under 
various conditions. 

In conclusion, this work offers a significant 
contribution to the field of opacity research.  The 
proposed unified framework promotes a more 
comprehensive understanding of opacity properties 
in security systems.  It empowers researchers to 
effectively compare different opacity concepts, 
paving the way for advancements in this crucial area 
of security analysis. It also opens exciting avenues for 
future exploration.  

Building upon this foundation, future work can 
delve into areas such as: 

 Extending the framework to incorporate 
additional opacity properties beyond those 
currently supported. 
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 Developing automated verification techniques 
specifically tailored to the unified opacity 
framework. 

 Investigating the applicability of the framework 
to analyze opacity in even more complex system 
models, including distributed and hybrid 
systems. 

 Exploring the potential for leveraging the 
framework in practical security analysis tools for 
real-world systems. 

By pursuing these avenues, researchers can 
further refine and extend the power of the unified 
framework, leading to a deeper understanding of 
opacity and its role in securing complex systems. 
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