
 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4374

TOWARDS A UNIFIED FORMALIZATION OF OPACITY
PROPERTIES IN DISCRETE AND REAL-TIME SYSTEMS

HAFEDH MAHMOUD ZAYANI1 , IKHLASS AMMAR2, MOHAMMAD H. ALGARNI3,
AHMAD ALSHAMMARI4, AMJAD A. ALSUWAYLIMI5, JIHANE BEN SLIMANE6,

MAROUAN KOUKI7, AMANI KACHOUKH8, REFKA GHODHBANI9, TAOUFIK SAIDANI10
1Department of Electrical Engineering, College of Engineering, Northern Border University, Arar, Saudi

Arabia, (corresponding author)

2OASIS Laboratory, National Engineering School of Tunis, University of Tunis El Manar, Faculty of
Sciences of Tunis (FST), Tunisia

3Department of Computer Science Al-Baha University, Saudi Arabia

4,6,9,10Department of Computer Sciences Faculty of Computing and Information Technology, Northern
Border University, Rafha 91911, Saudi Arabia

5Department of Information Technology, College of Computing and Information Technology, Northern
Border University, Saudi Arabia

7,8Department of Information Systems, Faculty of Computing and Information Technology, Northern
Border University, Rafha, Saudi Arabia

E-mail: 1hafedh.zayani@nbu.edu.sa, 2Ikhlass_ammar@yahoo.fr, 3malgarni@bu.edu.sa,
4Ahmad.Almkhaidsh@nbu.edu.sa, 5amjad.alsuwaylimi@nbu.edu.sa, 6jehan.saleh@nbu.edu.sa,
7marouan.kouki@nbu.edu.sa, 8amani.khasookh@nbu.edu.sa, 9Refka.Ghodhbani@nbu.edu.sa,

10Taoufik.Saidan@nbu.edu.sa

ABSTRACT

This paper proposes a unified framework for defining opacity properties in both discrete and real-time
systems. The framework leverages language inclusion problems to establish a common ground for expressing
and comparing various opacity concepts under different observation categories. We build upon existing
formalisms for opacity in Labeled Transition Systems (LTS) and Timed Transition Systems (TTS). We explain
the connection between these automata models and how they are used to represent system behavior. Our
framework allows for the unification of opacity definitions across these models, enabling easier comparison
and analysis. Additionally, we present transformations between different opacity concepts and compile
decidability results for the unified framework. Finally, we illustrate the relationships between key opacity
studies through a dependency diagram.

Keywords: Discrete Event System, Real Time System, Opacity, Verification, Decidability.

1. INTRODUCTION

Ensuring confidentiality in complex systems is
crucial, especially when dealing with sensitive
information. Traditional security models like non-
interference might not always suffice. This paper
delves into a powerful security property called
opacity. This property guarantees a system's ability to
hide a specific subset of its behavior, even if the
general operation is visible to an external observer
(often referred to as an attacker). This means the
attacker cannot definitively determine if the system is
in a secret state or performing a secret action, even by
observing its public behavior.

Research on opacity has been steadily growing,
with applications in diverse areas like cryptography
and Discrete Event Systems (DES). Different studies
utilize various system models (e.g., Petri nets [4],
Labeled Transition Systems [6, 35], Automata [7, 22,
23], recursive tile [23] and pushdown systems [8])
and observation scenarios. This can make it
challenging to compare and analyze opacity
properties across these diverse contexts. In a system's
LTS model, predicates act as spotlights, highlighting
specific subsets of states or events. LTS, unlike Finite
State Automata (FSA), aren't limited to a finite
number of states or transitions in [27, 30, 34]. Then,
the property of opacity is introduced in a real-time
system modeled by Timed Transition System (TTS).

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4375

The author in [21], proposes the timed opacity for
real-time system modeled by timed automata (TA).

This paper proposes a unified framework for
formalizing opacity properties. This framework
allows us to analyze and compare opacity across
different system models and observation settings.
Here's what you can expect:

 We explore various observation categories
through clear examples.

 We unify the definitions of opacity properties
within our framework.

 We establish mathematical connections between
existing opacity formalisms.

 We compile existing results on the decidability of
these unified opacity concepts.

 We present a dependency diagram visualizing the
relationships among key studies on opacity.

This unified framework paves the way for a more
comprehensive understanding of opacity. It allows
researchers to compare different opacity properties,
fostering advancements in the field. The framework
also lays the groundwork for potential future research
on verification methods and decidability of opacity
properties under various conditions.

By the end of this paper, you will have a deeper
understanding of:

 The concept of opacity and its importance in
system security.

 How a unified framework simplifies the analysis
of opacity across diverse systems.

 The existing body of research on opacity and its
connection to our proposed framework.

The paper is structured as follows. Section 2
introduces the background concepts of transition
systems and languages, including Labeled Transition
Systems (LTS) and Timed Transition Systems (TTS).
Section 3 delves into Timed Automata, the standard
modeling formalism for real-time systems. Section 4
explores the concept of observation functions,
covering static, dynamic, and Orwellian projections.
Section 5 presents established opacity properties for
discrete systems with static projections. In this
section, we propose a unified framework for
formalizing opacity properties. Section 6 explores the
transformation between different opacity notions.
Sections 7 and 8 examine opacity with dynamic and
Orwellian projections, respectively. Section 9
extends opacity to timed systems with static
projections using the proposed framework. Section
10 discusses verification and decidability of opacity
properties. Section 11 provides a comparative

overview of existing opacity definitions and our
proposed framework. Finally, Section 12 concludes
the paper by summarizing the contributions of the
unified framework and outlining potential avenues
for future research.

2. TRANSITION SYSTEMS AND
LANGUAGES

Transition systems can be used to simulate
software and hardware systems, with states
representing various configurations and actions
causing transitions between them, in [35]. One way
to represent this is by using a graph, where the states
are represented as vertices and the actions are
represented as labeled edges. State labeling enhances
the available information regarding the values of
variables. The paradigm used for discrete systems is
referred to as a Labeled Transition System, whereas
for real-time systems it is called a Timed Transition
System.

2.1. Labeled Transition Systems (LTS) and
Discrete Languages

LTSs are essentially infinite, directed graphs with
labeled edges, in [12]. Nodes represent the system's
states, and edges depict transitions between them
triggered by specific actions.

Definition 1: The Labeled Transition System is
a quadruple 𝐿𝐺 = (𝑄, Q , 𝛴, →) where: Q is a finite
set of states, Σ is a finite set of actions, 𝑄0 ⊂ 𝑄 is the
set of initial state, →⊆ (𝑄 × Σ∗ × 𝑄) is the
transition relation.

Note: ℕ is the set of natural numbers.
ℚ, ℚ , ℚ∗ is respectively the set of rational,
nonnegative rational and positive rational. X is the set
of clocks i.e., the set of conjunctions of constraints of
the form 𝑥 ∼ 𝑐 and C(X) be the set of convex
constraints on X, in the form 𝜙 ∶: = 𝑥 − 𝑦 ∼
 𝑐 |𝑥 ∼ 𝑐 | 𝜙 ∧ 𝜙 with ∼∈ {<, ≤, =, ≥, >} and x,y
∈ ℚ . A clock valuation is a mapping 𝜐: 𝑋 ⟶ ℚ .
(𝜐 + 𝑑)(𝑥) = 𝜐(𝑥) + 𝑑 where 𝑑 ∈ ℚ . 𝜐[𝑋 ⟶
0] = 0 if x X’, otherwise 𝜐[𝑋 ⟶ 0] = 𝜐(𝑥) ,
X’⊂ X.

A path Φ = q , q , . . q .. is an infinite
sequence of states. Φ [i] is the ith element of Φand
Φ [. . i] = q , q ,· · · q , Φ [i. . j] = q , q , . q
where 𝑞 ∈ 𝑄 and ∀i ≥ 0,𝑞 ∈ 𝑄. 𝑃𝑎𝑡ℎ(𝐿𝐺,qi) is the
set of all paths executed by a LTS started by the set
of state qi and 𝑃𝑎𝑡ℎ(𝐿𝐺) = 𝑃𝑎𝑡ℎ(𝐿𝐺,q0) when q0 is
the initial states of LG. We note that the set of path
is infinite and uncountable set.

An execution 𝑤 = 𝑒𝑥𝑒𝑐(Φ) = a , a , . . a .. is
an infinite sequence of actions. The LTS can accept
the empty string, denoted by . 𝑤 is a prefix of 𝑤

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4376

denoted by 𝑤 ≼ 𝑤 , if ∃ 𝑤 such that 𝑤 . 𝑤 = 𝑤
and 𝑤 = 𝑤 − 𝑤 . |𝑤| returns the length of the
discrete word 𝑤 where 𝑤, 𝑤 , 𝑤 , 𝑤 ∈ Σ∗.

A discrete language 𝐿𝑎𝑛𝑔 is an infinite set of
executions. 𝐿𝑎𝑛𝑔(𝐿𝐺, q , q) = {𝑒𝑥𝑒𝑐(𝛷[𝑖, 𝑗]),

𝛷[𝑖, 𝑗] ∈ 𝑃𝑎𝑡ℎ(𝐿𝐺)} is the set of executions stared
by q and ended by q . Extended:
𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q .
𝐿𝑎𝑛𝑔(𝐿𝐺, q) = {𝑒𝑥𝑒𝑐(𝛷[𝑖, . .]), 𝛷[𝑖. .] ∈ 𝑃𝑎𝑡 (𝐿𝐺)} is
the set of executions started by 𝑞 . Extended:
𝐿𝑎𝑛𝑔(𝐿𝐺, Q) = ∪ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, q).
𝐿𝑎𝑛𝑔(𝐿𝐺) = 𝐿𝑎𝑛𝑔(𝐿𝐺, Q) is the set of
executions started by initial states.

A bounded discrete language 𝐿𝑎𝑛𝑔 , is a finite
set of executions, where 𝐾 ∈ ℕ is a constant value.
𝐿𝑎𝑛𝑔 (𝐿𝐺, q) = {𝑤, ∃ 𝑤 ∈ 𝐿𝑎𝑛𝑔 (𝐿𝐺, 𝑞) 𝑠𝑢𝑐ℎ
 𝑡ℎ𝑎𝑡 𝑤 ≼ 𝑤, |𝑤 − 𝑤| ≤ 𝐾 } is the set of
executions stated by q and the length of each
execution is less than or equal to K.
𝐿𝑎𝑛𝑔 (𝐿𝐺, Q) = ∪ ∈ 𝐿𝑎𝑛𝑔 (𝐿𝐺, q) .
𝐿𝑎𝑛𝑔 𝐿𝐺, q , q = 𝑤, ∃ 𝑤 ∈

𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , q 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤 ≼ 𝑤, |𝑤 − 𝑤| ≤ 𝐾 .

Extended:
𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q .
𝐿𝑎𝑛𝑔 𝐿𝐺, q , q = 𝑤, ∃𝑤 ∈

𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , q 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤 ≼ 𝑤
Extended:

𝐿𝑎𝑛𝑔 𝐿𝐺, Q , Q = ∪ ∈ ∧ ∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, q , q .
The language can be described by a regular

expression. The regular expressions are all strings
over the alphabet Σ ∪ {(,), ∅,∪,∗, } . Formally,
𝐿𝑎𝑛𝑔(∅) = ∅ ;

𝐿𝑎𝑛𝑔(𝑎) = {𝑎};

𝐿𝑎𝑛𝑔 (w , w) = 𝐿𝑎𝑛𝑔(w)𝐿𝑎𝑛𝑔(w);

Lang((w ∪ w)) = 𝐿𝑎𝑛𝑔(w) ∪ 𝐿𝑎𝑛𝑔(w);

𝐿𝑎𝑛𝑔(𝑤∗) = 𝐿𝑎𝑛𝑔(𝑤)∗

Where a, 𝑤 , 𝑤 and 𝑤∗are regular expression.

Time is a critical component in a system. The
researchers introduce the concept of time into
classical transition systems by assuming that all
discrete transitions occur instantly, whereas real-time
restrictions limit the possible times at which these
transitions might take place. In their work, the
authors in [37] present the concept of TTSs and
provide the precise definition of a real-time system as
a collection of timed execution sequences. The TTS
is a Long-Term Support (LTS) system that
encompasses two types of labels: discrete and
continuous activities of real-time systems.

2.2. Timed Transition Systems (TTS) and timed
languages

Timed Transition Systems (TTS) are
characterized by a framework that allows for the
association of time with a transition relationship [37].
In a TTS, there are two types of transitions:
continuous transitions, which depict the passage of
time or a gradual change, and discrete transitions,
which represent the progression after a specific action
or event.

Definition 2: The Timed Transition System is a
quadruple 𝐺 = (𝑄, Q , 𝛴, →) where: Q is a finite
set of states, 𝑄0 ⊂ 𝑄 is the set of initial state, Σ is a
finite set of actions, →⊆ (𝑄 × (Σ ∪ ℚ) × 𝑄) is the
transition relation.

The relation → is defined by 𝑞 → 𝑞′ , where
𝑞, 𝑞 ∈ 𝑄 and e is a transition between them,
(𝑞, 𝑒, 𝑞) ∈→ . There are two kinds of transition
relation → : continuous transition relation (or delay

transition relation)
∈ℚ
⎯⎯ and discrete transition

relation
∈
⎯ . The properties of TTS are Null delay

property or 0-delay if 𝑞 → 𝑞′ then 𝑞 = 𝑞′ ; Time

additivity property if 𝑞

→ 𝑞′ and 𝑞

→𝑞 ′ then 𝑞

⎯ 𝑞′′ with , ∈ ℚ ; Time continuity property if

𝑞

→ 𝑞 then , ′ ∈ ℚ such that = + and

𝑞 ∈ 𝑄 such that 𝑞′

→ 𝑞 and 𝑞′′

→ 𝑞 ; Time

determinism property if 𝑞

→ 𝑞 and 𝑞

→ 𝑞 then
𝑞 = 𝑞 .

We extend by 𝑢 ≼ 𝑣 and |𝑢| where 𝑤, 𝑣 ∈
(Σ ℚ)∗. 𝑃𝑎𝑡ℎ is the set of transition-run that is
a sequence of states.

A transition-run =e , 𝑒 , . . 𝑒 .. is an infinite
sequence of transitions. For simplicity reason, it is

denoted by = 𝑞 → 𝑞 … 𝑞 → … is a prefix of

, ≼ if = ⎯ 𝑞 … and = 𝑞

→ 𝑞 … 𝑞 → 𝑞 , 𝑖 0.

 𝑇𝑃𝑎𝑡ℎ(𝐺) is the set of all path executed by G.
A run 𝜌 of a transition-run ψ is a possibly infinite
sequence of alternating delay and discrete transition

relations 𝜌 (ψ) = 𝑞 → 𝑞′ → 𝑞 → 𝑞′ → 𝑞 …
where 𝑑 corresponds to the duration between 𝑞 and
𝑞 .

An execution 𝜌 is a possibly infinite execution

𝜌 (ψ) = 𝑞
(,)

⎯⎯⎯ 𝑞
(,)

⎯⎯⎯ 𝑞 … .
(,)

⎯⎯ 𝑞 …

A trace 𝑡𝑟(𝜌 (ψ)) of an execution 𝜌 (ψ) is a
possibly infinite sequence of alternating time and

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4377

discrete transition 𝑡𝑟 𝜌 (ψ) = 𝑞
,

⎯⎯⎯ 𝑞
,

⎯⎯⎯ 𝑞 … .
,

⎯⎯ 𝑞 … where = 𝑑 and =

∑ 𝑑 that is the executing time at the state 𝑞 that
is the sum of all the previous durations in the path.

A timed word 𝑢 of a given trace 𝑡𝑟(𝜌 (ψ)) is
𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (ψ))) = 𝑎 , 𝑎 ,

… 𝑎 , … The set of generated timed words is

represented by the timed language denoted by

(𝐺) = {𝑢 = 𝑎 , 𝑎 , … 𝑎 , … = 𝑢 =

𝑡𝑤(𝑡𝑟(𝜌 (ψ))), ψ ∈ 𝑇𝑃𝑎𝑡ℎ(𝐺)}.

The finite timed language is the set of the finite
timed words 𝑇𝐿∗ = {𝑢, 𝑢 =

𝑎 , 𝑎 , … 𝑎 , } . 𝑇𝐿 contains the
infinite and finite timed words where 𝑇𝐿= 𝑇𝐿 ∪
 𝑇𝐿∗.

Typically, TTS systems are employed to provide
the meaning and description of a model. Timed
Automata (TA) are a type of models that are more
appropriate for the purposes of modeling,
verification, and control.

3. TIMED AUTOMATA AND TIMED
LANGUAGE

This section presents the standard modeling
formalism for real-time systems, known as Timed
Automata, along with its several subclasses. Timed
automata, as described in references [5], are automata
that have a finite control and a finite set of clocks.
They are used to represent real-time systems that
operate in continuous time.

Definition 3: [5] A Timed Automaton (TA) A is
a tuple 𝐴 = (𝐿, 𝑙 , 𝑋, Σ, 𝐼, 𝑇) where L is a finite set of
locations; 𝑙 ∈ 𝐿 is the initial location; X is a finite
set of clocks such that 𝑛 = |𝑋|; Σ is a finite set of
actions; 𝐼 ∈ 𝐶(𝑋) is an application that associates
an invariant to each location; T is a finite set of
transitions 𝑇 ⊆ 𝐿 × 𝐶(𝑋) × Σ × 2 × 𝐿 . In an
edge 𝑒 = (𝑙, 𝑔, 𝑎, 𝑟, 𝑙) ∈ 𝑇, g is the guard, a is the
action and r is the reset set.

Definition 4: A Timed Automaton with final
states 𝐴 is a tuple 𝐴 = (𝐴, 𝐹) where A is the TA as
defined in Definition 3 and F⊆ 𝐿 is a finite set of final
locations.

The semantics of a TA A is determined by a timed
transition system that is labeled with transitions. The
delay transition signifies the passage of time, while
discrete transitions indicate the changeover to the
next attainable state in A.

Definition 5: The TTS is a tuple 𝑇𝐺 =
 (𝑄, {𝑞 }, Σ, →) where 𝑄 is the set of states 𝑄 ∈

(𝐿 × ℚ | |); {𝑞 } is the initial state; →⊆ (𝑄 × (Σ ∪
ℚ) × 𝑄) is the transition relation.

There are two kinds of transition relation →in TA:

Delay transition relation if (𝑙, 𝜈)
()
⎯ (𝑙 , 𝜈) then 𝑙 =

𝑙’, 𝜈 = 𝜈 + 𝑡 and 𝐼(𝑙′)(𝜈′) = 𝑇𝑟𝑢𝑒 ; Discrete

transition relation if (𝑙, 𝜈) → (𝑙 , 𝜈) then 𝑔(𝜈) =
𝑇𝑟𝑢𝑒; 𝜈 = 𝜈[𝑟 → 0] and 𝐼(𝑙′)(𝜈′) = 𝑇𝑟𝑢𝑒 where
𝑒 = (𝑙, 𝑔, 𝑎, 𝑟, 𝑙) ∈ 𝑇 satisfying the guard g by the
clock valuation obtained from adding the delay to the
current valuation.

Let 𝐴 be a timed automaton with final locations,
a path in 𝐴 is started by the initial location 𝑙 and
ended by a final location 𝑙 ∈ 𝐹. This path contains a
sequence of transition that is called transition-run

𝜓 = 𝑙 → 𝑙 … ⎯ 𝑙 . 𝑙𝑎𝑠𝑡(𝜓) = 𝑙 returns the
last location of 𝜓 .

For a finite transition-run 𝜓 , an execution

automaton 𝜌 𝜓 = 𝑙
(,)

⎯⎯⎯ 𝑙 …
(,)

⎯⎯⎯⎯⎯⎯⎯ 𝑙 , a

trace 𝑡𝑟(𝜌 (𝜓)) = 𝑙
(,)
⎯⎯⎯ 𝑙 …

(,)
⎯⎯⎯⎯⎯⎯⎯ 𝑙 , a

timed word 𝑢 =

𝑡𝑤(𝑡𝑟(𝜌 (𝜓))) = 𝑎 , 𝑎 , … 𝑎 , ,

an accepted timed language of 𝐴 is 𝑇𝐿 𝐴 =
{𝑢, 𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (𝜓))), 𝜓 ∈ 𝑇𝑃𝑎𝑡ℎ(𝐴 , 𝐹)} .

𝑇𝐿 𝐴 , 𝑙 = {𝑢, 𝑢 = 𝑡𝑤(𝑡𝑟(𝜌 (𝜓))), 𝜓 ∈
𝑇𝑃𝑎𝑡ℎ(𝐴 , 𝐹) 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡(𝜓) = 𝑙} is an accepted
timed language of 𝐴 where the final location is 𝑙. By
extension, 𝑇𝐿 𝐴 , 𝑆𝐿 =∪ ∈ 𝑇𝐿 𝐴 , 𝑙 is the timed
language ended by a subset of locations 𝑆𝐿 ⊆ 𝐿.

4. THE OBSERVATION FUNCTIONS

The purpose of opacity is to ascertain whether the
concealed actions of a particular system are
effectively hidden from external observers. A
predicate represents the subset of the system
behavior. The outsiders are shown as passive
observers of the system's actions and are referred to
as intruders. More specifically, the outsider is
presumed to possess a comprehensive understanding
of the system's architecture and limited observations
of the system's functioning. Partial observation
typically involves the observation of an execution
when an external observer is unable to perceive a
subset of events. Hence, the set of events Σ is
partitioned into an observable set Σ and an
unobservable set Σ . The visible behavior by an
observer is defined by its projection that removes
from a sequences w all events that are not in Σ .

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4378

Opacity qualifies a given predicate 𝜑 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺) with respect to an observation function
𝑂𝑏𝑠 modeling user capabilities for observing the
system. Formally, 𝑂𝑏𝑠: Σ∗ → Σ ∗, ∀𝑤 ∈ Σ∗, 𝑂𝑏𝑠(𝑤) ∈

 Σ ∗ is an observation function. For two executions
𝑤, 𝑤 ∈ Lang(LG) ⊆ Σ∗, 𝑤 and 𝑤′ are
observationally equivalent w.r.t. 𝑂𝑏𝑠 if 𝑂𝑏𝑠(𝑤) =
 𝑂𝑏𝑠(𝑤′) . Thus, we define some categories of
projection in literature in the next section.

4.1. Static projection

Static observation (projection) is the most used
observation in the model system, also called simple
projection. Static observation is defined when the
same occurrence is always interpreted in the same
way by an observer. The interface between an
observer and a system is identified by a set of events
Σ ⊆ Σ , with Σ − Σ = Σ where Σ is the set of
unobservable events and Σ is the set of observable
events. Thus, the static projection is defined for the
discrete sequence 𝑤 = 𝑎 𝑎 … . . 𝑎 , denoted 𝑏𝑦 𝑃 .
Formally, 𝑃 : Σ∗ → Σ ∗ is defined as follows:

𝑃 (𝜀) = 𝜀;

𝑃 (𝑤. 𝑎) = 𝑃 (𝑤) 𝑖𝑓 𝑎 ∈

𝑃 (𝑤. 𝑎) = 𝑃 (𝑤). 𝑎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Σ (1)

where 𝑤 ∈ Σ∗, 𝑎 ∈ Σ and 𝜀 is the empty string.

[𝑤] represents the set of all execution having
the same projection as 𝑤 . [32] expressed this
projection in another form.

Definition 6: [32] According to observation
function 𝑂𝑏𝑠: Σ∗ → Σ ∗ the static projection is a
mapping 𝑂𝑏𝑠 : Σ → Σ ∪ {ε} such that ∀ 𝑤 =
𝑎 𝑎 … . . 𝑎 ∈ Σ∗, 𝑂𝑏𝑠(𝑤) = 𝑂𝑏𝑠 (𝑎)𝑂𝑏𝑠 (𝑎) …

𝑂𝑏𝑠 (𝑎).

Example 1: Let LG be a labeled transition system
as shown in Figure 1 with Q = q , q , q , q ,
q , q , q } set of states, Σ = {𝑎, 𝑏} is observable
events and Σ = {𝑐} is unobservable events.

The static projection of the word 𝑢 = 𝑐𝑐𝑎𝑏𝑏𝑐 is
defined by 𝑃 (𝑢) = 𝑎𝑏𝑏. Using the definition by
[32], the static projection of𝑢 = 𝑐𝑐𝑎𝑏𝑏𝑐 is 𝑂𝑏𝑠(𝑢) =

𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑎)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠′(𝑐) =
𝜀𝜀𝑎𝑏𝑏𝜀 (where 𝑂𝑏𝑠’ (𝑐) = 𝜀, 𝑂𝑏𝑠 (𝑎) = 𝑎 and
𝑂𝑏𝑠′(𝑏) = 𝑏).

In the same way 𝑃 (𝑣) = 𝑎𝑏𝑏 where 𝑣 =

𝑎𝑏𝑐𝑏. The static projection of the word 𝑣 = 𝑎𝑏𝑐𝑏 is
𝑂𝑏𝑠(𝑣) = 𝑂𝑏𝑠 (𝑎)𝑂𝑏𝑠 (𝑏)𝑂𝑏𝑠 (𝑐)𝑂𝑏𝑠 (𝑏) = 𝑎𝑏𝜀𝑏
(where 𝑂𝑏𝑠’ (𝑐) = 𝜀, 𝑂𝑏𝑠′(𝑎) = 𝑎 and 𝑂𝑏𝑠′(𝑏) = 𝑏).

Figure 1: Example of automaton

4.2. Dynamic projection

Dynamic observation, in contrast, involves the
study of how a system evolves and changes over
time. It considers the interactions, processes, and
behaviors that unfold within the system. This
approach provides a more holistic understanding by
capturing the system's temporal aspects, making it
particularly valuable for analyzing systems with fluid
and evolving characteristics.

A filter is employed in dynamic projection to
impede the transmission of information between the
system and the attacker. This approach is introduced
in [10, 25] when the projection dynamically modifies
the observability of events, and the attackers cannot
infer secret information from observations. Dynamic
observation is based on the prefix and an observer
that can deduce the knowledgement using the
previous events to interpret the current i.e. the set of
observable events change over time conforming to a
dynamic mask. The observer can update after each
observation the set of events that he can observe. The
interface between an observer and a system is
identified by a dynamic observability that is a
mapping 𝑇 : Σ∗ → 2 . Formally, the dynamic
projection denoted by 𝑇 is the mapping 𝐷𝑃 : Σ∗ →

Σ∗is defined as follows:

 𝐷𝑃 (𝜀) = 𝜀;

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤). 𝑎 𝑖𝑓 𝑎 ∈

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇 (𝐷𝑃 (𝑤)) (2)

Dynamic functions are akin to an observer with
unlimited memory capacity to retain labels.
However, they can only rely on knowledge of past
labels to understand the present label and cannot
subsequently reinterpret it. The dynamic projection
can be expressed in another form by [32].

Definition 7: [32] According to observation
function : Σ∗ → Σ ∗, Σ ⊆ Σ. The dynamic projection
is a mapping 𝑂𝑏𝑠 : Σ × Σ∗ → Σ ∪ {ε} such that
∀ 𝑤 = 𝑎 𝑎 … . . 𝑎 ∈ Σ∗, 𝑂𝑏𝑠(𝑤) =

𝑂𝑏𝑠 (𝑎 , 𝜀) 𝑂𝑏𝑠 𝑎 ,, 𝑎 … 𝑂𝑏𝑠 (𝑎 , 𝑎 . . 𝑎)

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4379

Example 2: We recall the LTS system LG of
Example 1 in Figure 1. The dynamic observability is
defined as follows:

𝑇 (𝑤) = {𝑎} 𝑖𝑓 𝑇 (𝑤) ∈ 𝑐∗𝑎

𝑇 (𝑤) = {𝑎, 𝑏, 𝑐} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑤 ∈ Σ∗)
 (3)

Figure 2: Details Of Dynamic Projection

According to the Figure 2, the dynamic projection
of 𝑢 = 𝑐𝑐𝑎𝑏𝑐 is 𝐷𝑃 (𝑢) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) = 𝑐𝑐𝑎 .
In the same way, (𝑐𝑐𝑎𝑏𝑐) = 𝑂𝑏𝑠 (𝑐, 𝜀) 𝑂𝑏𝑠 (𝑐, 𝑐)
 𝑂𝑏𝑠 (𝑎, 𝑐𝑐) 𝑂𝑏𝑠 (𝑏, 𝑐𝑐𝑎) 𝑂𝑏𝑠 (𝑐, 𝑐𝑐𝑎𝑏) =
 𝑐. 𝑐. 𝑎. 𝜀. 𝜀 = 𝑐𝑐𝑎.

Initially, all events are perceivable. However,
when event a takes place, it obscures all occurrences
of events 𝑏 𝑜𝑟 𝑐, allowing just the observation of 𝑎.
Once 𝑎 has been spotted, the mask reveals its
concealment by allowing 𝑎, 𝑏 , and 𝑐 to be visible
once more.

Consider Σ ⊆ Σ, if 𝐷𝑃 is a dynamic projection
where this projection defines a constant mapping
making events in Σ observable, then we extend the
dynamic projection as 𝐷𝑃 = 𝐷𝑃 . For this, we
present the dynamic mask encoding a dynamic
projection using automata.

Definition 8: A mask is a complete and
deterministic labeled automaton 𝐿𝐺 =
 (𝑄 , 𝑄 , Σ, Γ, 𝑇) for a LTS 𝐿𝐺 where 𝑄 is the set
of states, 𝑄 is the initial states 𝑞 ∈ 𝑄 , Σ is the
set of events, Γ: 𝑄 → 2 is a labeling function that
specifies the set of events that the mask keeps
observable at state q. 𝑇: 𝑄 × Σ∗ → 𝑄 is the transition

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4380

function. The transition started by 𝑞, ended by state
𝑞’ and execute the action a, is denoted by 𝑇(𝑞, 𝑎) =
𝑞′ correspond to the transition relation (𝑞, 𝑎, 𝑞′) ∈ →
in 𝐿𝐺 = (𝑄, 𝑄 , Σ, →) . The transition function is
defined as follows:

⎩
⎨

⎧
𝑇(𝑞, 𝜀) = 𝑞

𝑇(𝑞, 𝑤. 𝑎) = 𝑇(𝑇(𝑞, 𝑤), 𝑎)

=
𝑇(𝑞 , 𝑎) 𝑖𝑓 𝑎 ∈ Γ(𝑇(𝑞, 𝑤)) 𝑎𝑛𝑑 𝑇(𝑞, 𝑤)) = 𝑞′

𝑇(𝑞, 𝑤) 𝑖𝑓 𝑎 ∉ Γ(𝑇(𝑞, 𝑤))

 (4)

Therefore, each dynamic projection 𝐷𝑃 can be
associated with a dynamic mask 𝐷𝑃 .

Example 3: According to Example 1, we
determine the mask as shown in Figure 3. Let 𝑤 be
an execution, the dynamic projection of 𝑤 = 𝑐𝑐𝑎𝑏𝑐
is presented as follows (where ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝑐∗𝑎) ,
𝑇 (𝑤) = {𝑎} and ∀ 𝑤 ∈ Σ∗, 𝑇 (𝑤) = {𝑎, 𝑏, 𝑐}:

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) = 𝐷𝑃 (𝑐𝑐𝑎𝑏). 𝑐
and 𝑤 = 𝑐𝑐𝑎𝑏 ∉ 𝐿𝑎𝑛𝑔(𝑐∗𝑎) then 𝑇 (𝑤) =
{𝑎, 𝑏, 𝑐} and 𝑐 is an observable action.

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏). 𝑐 = 𝐷𝑃 (𝑐𝑐𝑎) and
𝑤 = 𝑐𝑐𝑎 ∈ 𝐿𝑎𝑛𝑔(𝑐∗𝑎) then 𝑇 (𝑤) = {𝑎} and
𝑏, 𝑐 are unobservable events. 𝐷𝑃 (𝑤) =
𝐷𝑃 (𝑐𝑐𝑎) = 𝑐𝑐𝑎.

 In the same way, 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏𝑐) =

𝐷𝑃 (𝑐𝑐𝑎𝑏) and 𝑐 ∉ Γ(𝑇(𝑞, 𝑐𝑐𝑎𝑏)).

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎𝑏) = 𝐷𝑃 (𝑐𝑐𝑎) and b ∉

Γ(𝑇(𝑞, 𝑐𝑐𝑎)).

 𝐷𝑃 (𝑤) = 𝐷𝑃 (𝑐𝑐𝑎) = 𝐷𝑃 (𝑐𝑐). 𝑎 =

𝐷𝑃 (𝑐). 𝑐𝑎 = 𝑐𝑐𝑎, 𝑎 ∈ Γ(𝑇(𝑞, 𝑐𝑐)) and 𝑐 ∈
 Γ(𝑇(𝑞, 𝑐)).

Figure 3: A dynamic mask according to Figure 2

To summarize this part, we define the dynamic
projection for a LTS 𝐿𝐺 = (𝑄, 𝑄 , Σ, →) and a
correspond mask 𝐿𝐺 = (𝑄 , 𝑄 , Σ, Γ, 𝑇) as
follows where 𝑄 = {𝑞 }:

𝐷𝑃 (𝜀) = 𝜀;

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤). 𝑎 𝑖𝑓 𝑎 ∈

𝐷𝑃 (𝑤. 𝑎) = 𝐷𝑃 (𝑤) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Γ(𝑇(𝑞 , 𝑤)) (5)

4.3. Orwellian projection

Orwellian observation is based on the prefix and
suffix of the trace and an observer that can deduce the
knowledge to reinterpret events. This projection is
studied in [5]. The interface between a system and an

observer is specified by the set of observable events
Σ ⊆ Σ and the subset of downgrading events Σ ⊆
Σ. Thus, The Orwellian projection is defined for the
discrete sequence 𝑤 = 𝑎 𝑎 … . . 𝑎 , denoted by
𝑃 , . Formally, 𝑃 , : Σ∗ → Σ ∗

⎩
⎪
⎨

⎪
⎧

𝑃 , (𝜀) = 𝜀;

𝑃 , (𝑤. 𝑎) = 𝑤. 𝑎 𝑖𝑓 𝑎 ∈ Σ

𝑃 , (𝑤. 𝑎) = 𝑃 , (𝑤). 𝑎 𝑖𝑓 𝑎 ∈ Σ

𝑃 , (𝑤. 𝑎) = 𝑃 , (𝑤) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

Orwellian functions pertain to an observer with
the capacity for unlimited memory to retain labels
and the ability to employ knowledge of other labels,
whether acquired before or after, to reinterpret a
label. The Orwellian projection can be expressed in
another form by [32].

Definition 9: [32] According to observation
function 𝑂𝑏𝑠: Σ∗ → Σ ∗ , Σ ⊆ Σ and Σ ⊆ Σ . The
Orwellian projection is a mapping 𝑂𝑏𝑠 : Σ × Σ∗ →
Σ ∪ {ε} such that ∀ 𝑤 = 𝑎 𝑎 … . . 𝑎 ∈
Σ∗, 𝑂𝑏𝑠(𝑤) =
𝑂𝑏𝑠 (𝑎 , 𝑤)𝑂𝑏𝑠 (𝑎 , 𝑤) … 𝑂𝑏𝑠 (𝑎 , 𝑤)

Example 4: Consider the automaton A shown in
Figure 2 with Σ = {𝑎} , Σ = {𝑐} and Σ = {𝑏} .
Table 1 represents the Orwellian projection of
executions.

Table 1: Executions with Orwellian projection

Events
(read
part)

Orwellian
observation

Events
(read part)

Orwellian
observation

𝒄 𝜺 𝒄 𝜺
𝒄𝒄 𝜺 𝒄𝒂 𝒂

𝒄𝒄𝒂 𝒂 𝒄𝒂𝒃 𝒄𝒂𝒃
𝒄𝒄𝒂𝒄 𝒂 𝒄𝒂𝒃𝒄 𝒄𝒂𝒃

𝒄𝒄𝒂𝒄𝒃 𝒄𝒄𝒂𝒄𝒃 𝒄𝒂𝒃𝒄𝒄 𝒄𝒂𝒃
𝒄𝒄𝒂𝒄𝒃𝒄 𝒄𝒄𝒂𝒄𝒃 𝒄𝒂𝒃𝒄𝒄𝒃 𝒄𝒂𝒃𝒄𝒄𝒃

The Orwellian concept is extended to the m-
Orwellian category further by incorporating modern
technologies and methods of mass surveillance. M-
Orwellian observation involves the use of advanced
monitoring tools, data analytics, and interconnected
systems to exert pervasive control. It often raises
concerns about privacy, data ethics, and the potential
misuse of technology for surveillance purposes.

Orwellian observation is defined for a fixed
number of observation events that are called m-
Orwellian observation. The number of observable
events before a downgrading action is less than or
equal to m. The m-Orwellian projection can be
defined as follows by [32].

Definition 10: [32] According to observation
function 𝑂𝑏𝑠: Σ∗ → Σ ∗ , Σ ⊆ Σ , Σ ⊆ Σ and 𝑚 ∈
ℕ∗.

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4381

The m-Orwellian projection is a mapping
𝑂𝑏𝑠 : Σ × Σ∗ → Σ ∪ {ε} such that ∀ 𝑤 =
𝑎 𝑎 … . . 𝑎 ∈ Σ∗ , 𝑂𝑏𝑠(𝑤) = 𝑂𝑏𝑠 (𝑎 , 𝑗)
𝑂𝑏𝑠 (𝑎 , 𝑗) … 𝑂𝑏𝑠 (𝑎 , 𝑗) where ∀ 𝑤 ∈∥ 1, 𝑛 ∥,
𝑗 = 𝑎 (,) 𝑎 (,) … 𝑎min (1,𝑝+𝑚−1)

4.4. Timed static projection

Timed static projection can be reflected in
narratives that focus on pivotal moments in a
society's history, capturing the static essence of each
era while acknowledging the temporal transitions
between them. This approach allows authors to
explore the nuanced interplay between stability and
change within complex systems, offering readers a
richer understanding of the narrative's temporal
landscape.

The static projection is expanded into a timed
sequence on a real-time system. Formally,
𝑇𝑃 : (Σ × ℚ)∗ → (Σ × ℚ)∗ is defined by:

𝑇𝑃 ((𝜀, 𝛾)) = (𝜀, 𝛾);

𝑇𝑃 (𝑢. (𝑎, 𝛾)) = 𝑇𝑃 (𝑢) 𝑖𝑓 𝑎 ∈

𝑇𝑃 (𝑢. (𝑎, 𝛾)) = 𝑇𝑃 (𝑢). (𝑎, 𝛾) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Σ (7)

where 𝑢 ∈ (Σ × ℚ)∗, 𝑎 ∈ Σ , 𝛾 ∈ ℚ and 𝜀 is
the empty string. The notion [𝑢] is extended that
represents the set of all timed executions having the
same projection as 𝑢.

5. DISCRETE OPACITY WITH STATIC
PROJECTION

The opacity properties are introduced for the first
time for the analysis of cryptographic protocols in
[33, 36]. Next, the opacity is defined in the
communication network. In [4, 24], opacity has been
introduced in DES when the system can be modeled
by Petri nets. In [5], previous work has been
deepened by studying opacity in more general
systems and which are labelled LTS.

The opacity parameters are determined by the
following conditions: (1) 𝑆 contains a collection of
confidential information; (2) the intruder is an
observer of 𝑆 who possesses complete understanding
of the architecture of 𝐴 . An opaque system is
characterized by the presence of a non-secret
behavior that is indistinguishable from a secret
behavior, hence making it impossible for an outsider
to discern the secret behavior. Consequently, the
invader remains uncertain about the occurrence of the
secret. Building on existing research, [4] delves into
opacity for DES by FSA with partial transition
observability. Previous literature, however, categori-
zes formal LTS opacity definitions into two main
families.

5.1. Language Based Opacity

The concept of LBO was initially introduced in
[9]. The secret behavior is defined by a language
called 𝐿𝑎𝑛𝑔𝑆, which is a subset of 𝛴∗. Additionally,
it is known as trace-based opacity. The system is
opaque w.r.t. 𝐿𝑎𝑛𝑔𝑆 and the projection map 𝑃 if
the intruder should be unable to ascertain if the word
is in the secret language or not. Yet, in [11], The LBO
is specified across two sub languages of the system,
(𝐿𝑎𝑛𝑔1, 𝐿𝑎𝑛𝑔2) ⊆ (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 0)) . The term
"opaque" is used between 𝐿𝑎𝑛𝑔1 and 𝐿𝑎𝑛𝑔2 under
the projection map 𝑃 , if the intruder has an
ambiguity between every string in 𝐿𝑎𝑛𝑔1 with some
strings in 𝐿𝑎𝑛𝑔2 under the projection map. Consider
that 𝐿𝑎𝑛𝑔 = 𝐿𝑎𝑛𝑔𝑆 ∪ 𝐿𝑎𝑛𝑔𝑁𝑆 is a language where
𝐿𝑎𝑛𝑔𝑆 and 𝐿𝑎𝑛𝑔𝑁𝑆 are secret and non-secret
languages.

Definition 11: The secret language 𝐿𝑎𝑛𝑔𝑆 is said
language-based opaque under 𝑃 if: ∀ 𝑤 ∈

𝐿𝑎𝑛𝑔𝑆, ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔𝑁𝑆 such that 𝑃 (𝑤) =

𝑃 (𝑤)

A secret language is considered opaque if every
string 𝑤 in the secret language, 𝐿𝑎𝑛𝑔𝑆 , has a
corresponding string 𝑤′, having the same projection,
in 𝐿𝑎𝑛𝑔𝑁𝑆. In other words, we present the following
Lemma.

Lemma 1: The secret language 𝐿𝑎𝑛𝑔𝑆 is said
language-based opaque under 𝑃 iff: 𝑃 (LangS)
⊆ 𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆)

Definition 12: The secret language 𝐿𝑎𝑛𝑔𝑆 is said
weakly opaque under 𝑃 if: for some 𝑤 ∈

𝐿𝑎𝑛𝑔𝑆, ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔𝑁𝑆 such that 𝑃 (𝑤) =

𝑃 (𝑤)

The secret language is considered weakly opaque
if there is a string 𝑤 in 𝐿𝑎𝑛𝑔𝑆 such that there is
another string 𝑤′ in 𝐿𝑎𝑛𝑔𝑁𝑆 that has the same
projection. We give a more formal notation in
Lemma 2.

Lemma 2: The secret languages 𝐿𝑎𝑛𝑔𝑆 is said
weakly opaque under 𝑃 iff: 𝑃 (LangS) ∩

𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆) ≠ ∅

Definition 13: The secret language 𝐿𝑎𝑛𝑔𝑆 is said
no-opaque under 𝑃 if 𝐿𝑎𝑛𝑔𝑆 is not weakly opaque
under 𝑃 .

The secret language is no-opaque if for each
string 𝑤 in 𝐿𝑎𝑛𝑔𝑆 , there not exists a string 𝑤’ in
𝐿𝑎𝑛𝑔𝑁𝑆 with the same projection. In other words,
we present the following Lemma.

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4382

Lemma 3: The secret languages 𝐿𝑎𝑛𝑔𝑆 is said
no-opaque under 𝑃 iff: 𝑃 (LangS) ∩

𝑃 (𝐿𝑎𝑛𝑔𝑁𝑆) = ∅

Example 5: We consider the secret language
𝐿𝑎𝑛𝑔𝑆 = 𝐿𝑎𝑛𝑔(aba(cba)∗) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗)
and the non-secret language 𝐿𝑎𝑛𝑔𝑁𝑆 =
 𝐿𝑎𝑛𝑔(a(bac)∗) ∪ 𝐿𝑎𝑛𝑔(a(bac)∗𝑏) ∪
𝐿𝑎𝑛𝑔(a(bac)∗ 𝑏𝑎𝑏) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗𝑏) ∪
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎𝑎) where
Σ = {𝑎, 𝑏} and Σ = {𝑐} are the set observable and
unobservable actions. The intruder is not sure of each
word that is observationally equivalent to a word in
secret language or equivalent to a word in non-secret
language. Therefore, the secret language 𝐿𝑎𝑛𝑔𝑆
under 𝑃 . is language-based opaque.

5.2. State Based Opacity

The state-based approach is associated with the
covert actions of a single state or a group of states.
Multiple opacity properties have been established
based on the type of secret being considered. Let LG
be a LTS, with Σ ⊆ Σ and S ⊆ F as secret states
where F ⊆ Q is final states.

1) Current-State Opacity or CSO:
CSO is initially presented in [4] for the

application of Petri Nets. The state property pertains
to the inclusion of the system's final state inside a
specific set of undisclosed states. This property was
adapted to LTS in [2,4, 28, 35].

Definition 14: The secret S is said current-state
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆), ∃ 𝑤′ ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆); 𝑃 (𝑤) = 𝑃 (𝑤)

The system is deemed opaque in its current state
if the intruder, although possessing comprehensive
knowledge of the system's architecture and making
partial observations of its behavior, is unaware of the
true essence of the outcome. Definition 5 presents a
direct consequence of Lemma 4:

 Lemma 4: The secret S is said current-state
opaque under 𝑃 iff:

𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))

Example 6: According to Example 1, we built a
LTS system LG corresponding to the secret and non-
secret languages as shown in Figure 4, with,
Q={q , q , q , q , q , q , q , q , q , q } is the set of
states, Σ = {𝑎, 𝑏} and Σ = {𝑐}. If we consider that
S = {q } , then S is a CSO because the intruder
confuses between the word 𝑎𝑏𝑎 and 𝑐𝑎𝑏𝑎. Thus, the
outsider is not certain if the system is in q ∈ 𝑆 or in
q ∈ 𝑄 − 𝑆 . But, if S = {q , q } , then S is not a

CSO. The outsider is certain whether the system is in
q when 𝑐𝑎𝑏𝑎𝑎 is executed.

Figure 4: Opacity example

2) The Initial-State Opacity or ISO
ISO is defined within Petri Nets models in [4]. Thus,
this property is an extension of LTS in [7, 22]. ISO
refers to a state property that pertains to the inclusion
of the system’s starting state in a collection of
confidential states. If the intruder is unable to
conclude if the initial state of the system is a secret or
not, then the system is opaque in its initial state.

Definition 15: The secret S is said initial-state
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆), ∃ 𝑤′ ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 − 𝑆) such that 𝑃 (𝑤) = 𝑃 (𝑤)

The system is completely opaque in its initial
state. For each individual word 𝑤 that comes from a
confidential state 𝑞 ∈ 𝑆 ⊆ 𝑄 , there is another word
𝑤’ from a non-confidential initial state 𝑞 ∈ 𝑄 − 𝑆,
such that 𝑤 and 𝑤’ are observationally similar. Thus,
the intruder is unable to ascertain if the system
originated from a confidential state 𝑞 or from a non-
confidential state 𝑞′. Formally, ISO can be defined in
the following Lemma.

Lemma 5: The secret S is said initial-state
opaque under 𝑃 iff:

𝑃 (Lang(𝐿𝐺, 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 − 𝑆))

Example 7: We consider the LTS system LG as
shown in Figure 4 and Q = {𝑞 , 𝑞 }. If S = {𝑞 },
then S is initial-state opaque. The set of word starting
from 𝑞 is 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆) = 𝐿𝑎𝑛𝑔(a(bac)∗) ∪
𝐿𝑎𝑛𝑔(a(bac)∗𝑏) ∪ 𝐿𝑎𝑛𝑔(a(bac)∗𝑏𝑎𝑏). The set of
the words starting from 𝑞 is 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑆) =
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏) ∪ 𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎) ∪
𝐿𝑎𝑛𝑔(ca(bac)∗𝑏𝑎𝑎). If S = {𝑞 } , then S isn’t
initial-state opaque. The outsider is convinced that
the system is initiated by 𝑞 and ending by 𝑞 when
the discrete word 𝑎𝑏𝑎𝑎 is executed.

The efficient resolution of both CSO and ISO can
be achieved in bounded Petri nets by utilizing a
concise depiction of the reachability graph [15].

3) Initial-and-Final-State Opacity or IFO

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4383

IFO is a state property that is related to both
system’s initial and final states [13]. This property
defines secret states as a pair of states.

Definition 16: The secret S is said initial-and-
final state opaque under 𝑃 if: ∀(𝑞 , 𝑞) ∈ 𝑆,

𝑎𝑛𝑑 ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞), ∃(𝑞 , 𝑞) ∈ (𝑄 ×

𝑄) − 𝑆, 𝑎𝑛𝑑 ∃ 𝑤′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞); 𝑃 (𝑤) =

𝑃 (𝑤)

The system is initial-and-final-state opaque if for
every word 𝑤 starting from 𝑞 and ending at 𝑞 , there
exists another word 𝑤’ beginning from 𝑞′ and
terminated at 𝑞′ such that 𝑤 and 𝑤′ are the same
observationally. Thus, the outsider is unable to
ascertain the secrecy of the state couple. We propose
another definition for this property in Lemma 6.

Lemma 6: The secret S is said initial-and-final
opaque under 𝑃 iff:

𝑃 ∪ (,)∈ 𝐿𝑎𝑛𝑔 𝐿𝐺, 𝑞 , 𝑞

⊆ 𝑃 (∪ (,)∈(×) 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞′ , 𝑞′))

According to the previous Lemma, IFO is similar
to strong language-based opacity where LangS =

∪ (,)∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞 , 𝑞) is the secret language and

LangNS =∪ (,)∈(×) 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑞′ , 𝑞′) is
the non-secret language.

Example 8: We recall LG as shown in Figure 4
and 𝑄 = {𝑞 , 𝑞 }. If 𝑆 = {(𝑞 , 𝑞)}, then S is initial-
and-final-state opaque. The outsider is never certain
whether the word 𝑎𝑏𝑎 corresponding to the secret
state pair (𝑞 , 𝑞).

4) K-step opacity:
It was initially presented in [4], and later in [7]. It

allows for the verification of whether a system has a
concealed state K that could be observed through past
events. Two forms of this property are presented in
[3] strong and weak.

a) K-step weakly opacity

Definition 17: The secret S is said K-weakly
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀ 𝑤 ≼

𝑤 and |𝑤 − 𝑤| ≤ 𝐾 such that 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆) ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀ 𝑣 ≼ 𝑣
and |𝑣 _𝑣| ≤ 𝐾 ; 𝑃 (𝑣) = 𝑃 (𝑤) , 𝑃 (𝑣) =

𝑃 (𝑤) and 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)

The system is K-weakly opaque if for every
discrete word 𝑤 where 𝐾 longest of its prefixes lead
to a secret state, there is another compatible discrete
word where the 𝐾 longest of its prefixes do not lead
to a secret state.

This definition is reformulated in [1], for every
execution 𝑤 and where 𝑤 is the prefix of 𝑤 and the
difference between the observable executions is less
or equal to K, there is 𝑤’ and 𝑤′ executions have
the same projection as 𝑤 and 𝑤 where 𝑤′ is not a
secret execution. In other words, we present the
following Lemma.

Lemma 7: The secret S is said K-weakly opaque
under 𝑃 iff: 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) and 𝑃 (Lang (𝐿𝐺, 𝑆))
⊆ 𝑃 (Lang (𝐿𝐺, 𝑄 − 𝑆))

The K-weakly opacity is similar to language-base
opaque where 𝐿𝑎𝑛𝑔𝑆 = {𝑤, 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆); 𝑤 ≼
𝑤 𝑎𝑛𝑑 |𝑤 − 𝑤 | ≤ 𝐾} is the secret language and
𝐿𝑎𝑛𝑔𝑁𝑆 = {𝑤, 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , Q − S); 𝑤 ≼ 𝑤 𝑎𝑛𝑑 |𝑤 − 𝑤 | ≤
𝐾} is the non-secret language.

Example 9: Let LG as shown in Figure 4. If we
consider that 𝑆 = {𝑞 , 𝑞 } and K=2, then S is K-
weakly opaque. However, if K=3, then S is not K-
weakly opaque because there is not observationally
equivalent to the word 𝑐𝑎𝑏𝑎𝑎. The outsider
concludes where the system passes via the secret state
𝑞 .

b) K-step strong opacity

It acts as a detective, scrutinizing the system's
recent history (the last K observable actions) to
uncover any hidden visits to secret states. It ensures
that even a cunning observer, armed with partial
knowledge, can't definitively tell if the system dipped
into the shadows of secrecy within this timeframe.

Definition 18: The secret S is said K-strongly
opaque under 𝑃 if: ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 0), ∃ 𝑣 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 0); 𝑃 (𝑣) = 𝑃 (𝑤) ∀ 𝑣 ≼ 𝑣 with
|𝑣 _𝑣| ≤ 𝐾 and 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)

A system boasts K-strong opacity if, for every
possible behavior sequence, there's another identical-
looking one (same "projection") that avoids secret
states within the last K observed actions. This ensures
even a watchful observer can't definitively tell if the
system dipped into the shadows of secrecy recently.
Definition 9 is formulated in Lemma 8.

Lemma 8: The secret S is said K-strongly
opaque under 𝑃 iff: 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆)) ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) and
𝑃 (Lang (𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆))

Example 10: Let LG be a LTS as shown in Figure
4. If S = {q , q } and K=1, then S is K-strongly

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4384

opaque. However, if K=2, then S is not K-strongly
opaque because there is no word that does not pass
through any secret.

The property of K-step opacity is translated on
trace-based K-step opacity (or trajectory) when the
system has recently been in a specific state, in [14,
20]. This property is defined as follows: for any given
word w, there exists at least one discrete word that is
observationally similar to w. Additionally, the states
visited while generating the last K actions are
exclusively non-secret states in w. The distinction
between K-step opacity and trace-based K-step
opacity is in the timing of when the system's state is
revealed. Hence, if the system exhibits trace-based K-
step opacity, it likewise demonstrates K-step weak
opacity. The concept of K-step opacity has been
expanded to include infinite-step opacity in the works
cited [18, 20].

Definition 19: The secret S is said weakly
infinite-step opaque under 𝑃 if: ∀ 𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ; ∀ 𝑤′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆),
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤′ ≼ 𝑤 , ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) and
∃ 𝑣′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆); 𝑃 (𝑣) = 𝑃 (𝑤) and
𝑃 (𝑣′) = 𝑃 (𝑤′).

The system is infinite-step opaque if for every 𝑤,
the outsider is unable to deduce that the system was
previously in a concealed state.

Lemma 9: The secret S is infinite-step opaque
under 𝑃 iff:
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) and
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆))

The weak infinite-step opacity is similar to
language based opaque where 𝐿𝑎𝑛𝑔𝑆 = {𝑤, 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

 𝑤′ ≼ 𝑤} is the secret language and 𝐿𝑎𝑛𝑔𝑁𝑆 =
{𝑤, 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 −

𝑆) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤′ ≼ 𝑤} is the non-secret language.

Definition 20: The secret S is strongly infinite-
step opaque under the projection map 𝑃 if: ∀𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄), ∃ 𝑣 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑃 (𝑣) =

𝑃 (𝑤) ∀ 𝑣′ ≼ 𝑣 and 𝑣′ ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)

Lemma 10: The secret S is strongly infinite-step
opaque under 𝑃 iff: 𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆

𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑄 − 𝑆)) and
𝑃 (𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)) ⊆ 𝑃 (Lang(𝐿𝐺, 𝑄 , 𝑆))

Example 11: Let LG be an LTS system as shown
in Figure 4. If S = {q , q } and K=3 then S is not K-
weakly opaque, then S is not infinite-step opaque.

Those notions have strong connections between
each other and the transformations relationships
between them.

6. TRANSFORMATION BETWEEN
DIFFERENT NOTIONS OF OPACITY

The opacity property can be reduced to varying
degrees of transparency with a polynomial time
complexity that is defined in [13]. The relationships
are presented in Figure 5.

Figure 5: Transformation between notions of opacity

6.1. Transformation between K-step weak
opacity and CSO

CSO is equal to K-step opacity where K = 0. Let
LG be an LTS, 𝑆 ⊆ 𝑄is the secret states and 𝐾 ∈
ℕ is a constant value. We consider that 𝑆 is K-step
weak opaque. From the K-step weak opacity, we
determine S where S is the current secret states.
Formally, 𝑆 = {𝑞 , ∀𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) ∃ 𝑤 ∈

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆) ; 𝑤 ≼ 𝑤, |𝑃 (𝑤) − 𝑃 (𝑤)| ≤

𝐾 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡(𝑤1) = 𝑞𝑠} is the set of current secret
states. Then, we determine the non-secret state 𝑁𝑆 =
 𝑄 − 𝑆. To verify if 𝑆 is K-step weak opaque, we
check if every string that pass through by a secret
state 𝑞 ∈ 𝑆 has the same projection as a string that
pass through by a non-secret state 𝑞′ ∈ 𝑁𝑆 . If every
string ending by 𝑞 ∈ 𝑆 there is a string ending by
𝑞 ∈ 𝑁𝑆 having the same observability. This
approach is identical to determining whether S is
current-state opaque.

6.2. Transformation from K-step weak opacity
to LBO

We consider that 𝑆 is K-step weak opaque.
From the K-step weak opacity, we determine the
secret language 𝐿 = {𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) ∃ 𝑤 ∈
𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆); 𝑤 ≼ 𝑤, |𝑃 (𝑤) − 𝑃 (𝑤)| ≤

𝐾}. Similarly, we determine the non-secret language
𝐿 = {𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) ∃ 𝑤 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄) ;
𝑤 ≼ 𝑤, |𝑃 (𝑤) − 𝑃 (𝑤)| ≤ 𝐾 𝑎𝑛𝑑 𝑤 ∉

𝐿𝑎𝑛𝑔(𝐿𝐺, 𝑄 , 𝑆)} . To verify if 𝑆 is K-step weak
opaque, we check if every string that pass through by

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4385

a secret state 𝑞 ∈ 𝑆 has the same projection as a
string passing through by 𝑞′ ∈ 𝑁𝑆 , that is, if every
word 𝑤 ∈ 𝐿 has the same projection as a string 𝑤′ ∈
𝐿 . This approach is identical to determining
whether 𝐿 is language-based opaque.

7. DISCRETE OPACITY WITH DYNAMIC
PROJECTION

In this section, we generalize the opacity
approach by considering the notion of dynamic
projections encoded by dynamic masks. Based on
these assumptions, we define opacity under the
dynamic projection as follows [2].

Definition 21: Let LG be a LTS and 𝑆 × 𝑄 is
secret states. The system S is opaque under 𝐷𝑃 if :

∀ 𝑢 ∈ 𝐿𝑎𝑛𝑔(𝐿𝐺), 𝑙𝑎𝑠𝑡 [𝑢] ⊈ 𝑆
Where [𝑢] represents the set of words
observationally equivalent to u under the dynamic
projection map 𝐷𝑃 .

Example 12: Let LG be a LTS as shown in Figure
4. If 𝑆 = {𝑞 } is secret and the dynamic projection
map as follows: 𝑇 (𝜀) = {𝑎} , 𝑇 (𝑎𝑏) = {𝑎} ,
𝑇 (𝑎𝑏𝑎) = {𝑎, 𝑏} and 𝑇 (𝑢) = {𝑎, 𝑏, 𝑐} otherwise,
then S is opaque under 𝐷𝑃 . However, if the
dynamic projection map as follows: 𝑇 (𝑎𝑏) = {𝑎, 𝑏}
and 𝑇 (𝑢) = {𝑎, 𝑏, 𝑐} otherwise, then 𝑆 isn’t
opaque. There is not observationally equivalence to
the sequence 𝑎𝑏𝑎 . Therefore, the intruder can
conclude that the system is in the secret state 𝑞 .

The issue of verification opacity is exacerbated
by using dynamic projection compared to static
projection. Specifically, the verification opacity
problem becomes PSPACE-complete.

Dynamic projection is frequently employed to
ensure opacity. The opacity is specified within the
Orwellian projection map illustrated in the following
section.

8. DISCRETE OPACITY WITH
ORWELLIAN PROJECTION

This section examines the opacity property in
relation to the Orwellian projection in [39]. The
observability of 𝑤 under the Orwellian projection is
determined by the observability of all actions that
occur prior to each downgrading action. With more
simplicity, each discrete word is partitioned in two
parts 𝐷(𝑤) and 𝐶(𝑤, 𝐿𝑎𝑛𝑔) where 𝐷(𝑤) represents
the first part of w ending by the last downgrading
action and 𝐶(𝑤, 𝐿𝑎𝑛𝑔) is the continuation of 𝐷(𝑤)
and does not contain the downgrading actions.
Formally, ∀ 𝑤 ∈ 𝐿𝑎𝑛𝑔, 𝑤 = 𝐷(𝑤). 𝐶(𝑤, 𝐿𝑎𝑛𝑔)
where 𝐷(𝑤) ⊆ {𝜀} ∪ (𝐿𝑎𝑛𝑔 ∩ Σ∗Σ) where 𝐿𝑎𝑛𝑔

is the prefix of Lang ending in downgrading action
and 𝐶(𝑤, 𝐿𝑎𝑛𝑔)= (Σ ∪ Σ)∗ ∩ 𝐿𝑎𝑛𝑔 where 𝐿𝑎𝑛𝑔
is a continuation of 𝐿𝑎𝑛𝑔 . We extend 𝐷(𝑤) to
𝐷(𝐿𝑎𝑛𝑔) = {𝜀} ∪ (𝐿𝑎𝑛𝑔 ∩ Σ∗Σ) . The following
definition presents the opacity property under the
Orwellian projection map.

Definition 22: Let LG be a LTS and S a secret
state. The secret is opaque under 𝑃 , if ∀ 𝑢 ∈

𝐷(𝐿𝑎𝑛𝑔(𝐿𝐺)) , 𝐶(𝑢, 𝐿𝑎𝑛𝑔(𝐿𝐺)) is opaque under
𝑃 .

Example 12: Let LG be a LTS as shown in Figure
4, Σ = {𝑎} and Σ = {𝑏}. If 𝑆 = {𝑞 } then S isn’t
opaque under 𝑃 , .

9. TIMED OPACITY WITH STATIC
PROJECTION

The concept of opacity is expanded to temporal
settings to explore the problem of language-based
opacity [21]. Timed opacity is a fascinating extension
of opacity that considers the measurement of time for
an intruder, where the secret is a collection of specific
locations. This characteristic guarantees that the
system cannot definitively determine if this sequence
is present in the secret or not.

Definition 23: Let A be a timed automaton, Σ be
a set of observable actions and 𝑆 ⊆ L be secret
actions. The secret S is timed opaque under 𝑇𝑃 if :
∀ 𝑢 ∈ 𝑇𝐿 (𝐴), ∃ 𝑢 ∈ 𝑇𝐿 (𝐴) ; 𝑇𝑃 (𝑢) =

𝑇𝑃 (𝑢)

A system is considered timed opaque if, for every
timed word 𝑢, there exists another timed word 𝑢 that
has the same projection as 𝑢 and leads to non-secret
locations. Language-opacity is defined as the state of
being opaque for a real-time automaton, as stated in
[21, 32]. An alternative formulation of this definition
can be stated as:

Lemma 12: [32] The secret S is timed opaque
under 𝑇𝑃 if ∀ 𝑢 ∈ 𝑇𝑃 (𝑇𝐿 (𝐴)), [𝑢] ⊈ 𝑆

Lemma 13: [17] Language-opacity
𝑇𝑃 (𝑇𝐿(𝐴) ∩ 𝑇𝐿) ⊆ 𝑇𝑃 (𝑇𝐿(𝐴) − 𝑇𝐿)

Figure 6: Example of TA in [32]

Example 13: Let A be a TA shown in Figure 6
where Σ = {𝑏} and 𝑆 = {𝑙 }. Then, A isn’t opaque.
The outsider is certain that the system in 𝑙 when he

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4386

observes the projection of word b that occur at time 1
under 𝑇𝑃 .

10. VERIFICATION AND DECIDABITY OF
OPACITY

The opacity property requires that a system has a
hidden secret behavior from an intruder. This
property is verified using different frameworks such
that:

 Labeled Petri Nets (LPN) is used to verify ISO in
[15, 26], CSO in [16] and Language-based
opacity in [31].

 Symbolic Observation Graph (SOG) is used to
verify simple opacity in [38], K-step weak and
strong opacity in [15].

 Labeled Transition System (LTS) is followed in
several research such as [2,7,9,18,20,22]. The
opacity properties are verified on the building of
the observer automaton.

To assess the opacity of these systems, it is
essential to establish if a system is opaque in relation
to a specific secret [11 13, 22, 24, 31]. Numerous
studies have been conducted on the decidability of
the property of opacity in DESs, as evidenced by the
works in [4, 35]. For instance, the decidability of
CSO, ICO, and language opacity in LTS has been
demonstrated. ISO is decidable for bounded Petri
nets in [4] and undecidable in Petri nets unbounded
in [35]. The decidability and complexity results are
synthesized, in [29], related to opacity problems for
such discrete system model and projection map.

Timed opacity is generally undecidable for timed
automata and event recording automata used in real-
time systems. The problem of determining timed
opacity using non-deterministic Timed Automata is
impossible to solve, but it can be solved with Event
Recording Automata. The problem of language
opacity and the problem of starting opacity are
determinable for Real-Time Automata, as stated in
reference [17].

11. COMPARISON WITH EXIST WORKS

This section recapitulates the different definitions
of opacity for both discrete and real-time systems.
We present a comparative overview using Table 2.
On one hand, the table shows established notions

from previous research. On the other hand, it
showcases the corresponding definitions based on
our proposed lemma introduced earlier.

Table 2: Executions with Orwellian projection

Projection
Opacity

properties
Existing
works

Our
work

Static
projection

Language
Based Opacity

[9, 11]
Definition 11

Lemma 1

weakly
opaque

[11]
Definition 12

Lemma 2

No Opacity [11]
Definition 13

Lemma 3

Current-State
Opacity

[2,4,28,35]
Definition 14

Lemma 4

Initial State
Opacity

[4,7,22]

Definition 15
Lemma 5

Initial-and-
Final State

Opacity

[13]
Definition 16

Lemma 6

K-step
Weakly
Opacity

[1,3,4,7]
Definition 17

Lemma 7

K-step
Strongly
Opacity

[3,4,7]
Definition 18

Lemma 8

Weakly
Infinite Step

Opacity

[18,20]
Definition 19

Lemma 9

Strongly
Infinite Step

Opacity

[18,20]
Definition 20

Lemma
10

Dynamic
projection

Opacity [2]
Definition 21

-

Orwellian
projection

Opacity [39]
Definition 22

-

Timed Static
projection

Opacity
[21,32]

Definition 23
Lemma

12

Note that the complexity of those notions of
opacity remains the same complexity because the
verification of each opacity property is based on the
verification of inclusion problem.

Figure 7 illustrates the relation between different
publications addressing the opacity properties,
described in Section 5. Each arrow, linking paper X
to paper Y in the diagram, means that paper Y
introduces a new notion of opacity based on obtained
result in paper X.

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4387

Figure 7: Reference Graph Between Opacity Notions

12. CONCLUSION

This paper presented a unified framework for
defining opacity properties applicable to both
discrete and real-time systems. This framework
addresses a key challenge in the field of opacity
research - the difficulty of comparing and analyzing
opacity properties across various system models and
observation scenarios. By leveraging language
inclusion problems as a foundation, the framework
allows researchers to analyze opacity properties in a
consistent manner, regardless of the underlying
system type or observation setting. This not only
simplifies analysis but also facilitates the
identification of connections between existing
opacity formalisms. Furthermore, the paper
establishes a foundation for future research by
compiling existing decidability results for these
unified opacity concepts and outlining potential

avenues for exploring verification methods under
various conditions.

In conclusion, this work offers a significant
contribution to the field of opacity research. The
proposed unified framework promotes a more
comprehensive understanding of opacity properties
in security systems. It empowers researchers to
effectively compare different opacity concepts,
paving the way for advancements in this crucial area
of security analysis. It also opens exciting avenues for
future exploration.

Building upon this foundation, future work can
delve into areas such as:

 Extending the framework to incorporate
additional opacity properties beyond those
currently supported.

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4388

 Developing automated verification techniques
specifically tailored to the unified opacity
framework.

 Investigating the applicability of the framework
to analyze opacity in even more complex system
models, including distributed and hybrid
systems.

 Exploring the potential for leveraging the
framework in practical security analysis tools for
real-world systems.

By pursuing these avenues, researchers can
further refine and extend the power of the unified
framework, leading to a deeper understanding of
opacity and its role in securing complex systems.

REFERENCES

[1] Y. Falcone, H. Marchand, “Enforcement and
validation (at runtime) of various notions of
opacity”. Discrete Event Dynamic Systems:
Theory and Applications, 2014.

[2] F. Cassez, J. Dubreil, H. Marchand, “Synthesis
of opaque systems with static and dynamic
masks”. Formal Methods in System Design,
Vol. 40, 2012, pp. 88–115.

[3] Y. Falcone, H. Marchand, “Various notions of
opacity verified and enforced at Runtime”,
INRIA, 2010.

[4] J. Bryans, M. Koutny, P. Ryan, “Modelling
opacity using Petri nets”, Electronic Notes in
Theoretical Computer Science, Vol. 121, 2005,
pp. 101–115.

[5] R. Alur, D. Dill, “A theory of timed automata”,
Theoretical Computer Science 2nd ed., vol. 3,
1994, pp. 183–235.

[6] R. Alur, P. Cerny, S. Zdancewic, “Preserving
secrecy under refinement”, Automata,
Languages and Programming, 2006, pp. 107–
118.

[7] A. Saboori, C. N. Hadjicostis, “Verification of
initialstate opacity in security applications of
DES”, Discrete Event Systems, 2008, pp. 328–
333.

[8] K. Kobayashi, K. Hiraishi, “Verification of
opacity and diagnosability for pushdown
systems”, Journal of Applied Mathematics,
2013.

[9] J. Dubreil, P. Darondeau, H. Marchand,
“Opacity enforcing control synthesis”, Discrete
Event Systems, 2008, pp. 28–35.

[10] E. Badouel, M. Bednarczyk, A. Borzyszkowski,
B. Caillaud, P. Darondeau, "Concurrent secrets.
Discrete Event Dynamic Systems", vol. 17,
2007, pp. 425–446.

[11] F. Lin, “Opacity of discrete event systems and
its applications”, Automatica, vol. 47, 2011, pp.
496–503.

[12] R.M. Kellery, “Formal Verification of Parallel
Programs”, Communications of the ACM, vol.
19, 1976, pp. 371–384.

[13] Y. Wu, S. Lafortune, “Comparative analysis of
related notions of opacity in centralized and
coordinated architectures”, Discrete Event
Dynamic Systems, pp. Saboori, C. N.
Hadjicostis, “Notions of security and opacity in
discrete event systems”. IEEE, Conference on
Decision and Control, Vol. 3, 2013, pp.307–
339.

[14] A. Saboori, C. N. Hadjicostis. Verification of
infite-step opacity and analysis of its
complexity. Dependable control of discrete
systems, Vol. 2, 2009, pp. 46–51.

[15] Y. Tong, Z. Li, C. Seatzu, A. Giua,
“Decidability of opacity verification problems
in labeled Petri net systems”. Automatica, Vol.
80, 2017, pp. 48–53.

[16] X. Cong, M. P. Fanti, A. M. Mangini, Z. Li,
“On-line verification of current-state opacity by
Petri nets and integer linear programming”,
Elsevier Science direct, Vol. 94, 2018, pp. 205–
213.

[17] L. Wang, N. Zhan, J. An, “The opacity of Real
Time Automata”, IEEE Transactions on
Computer-Aided Design of Automata, Vol. 37,
2018, pp 2845–2856.

[18] A. Saboori, C. N. Hadjicostis, “Verification of
infinite step opacity and complexity
considerations”, IEEE Transactions on
Automatic Control, Vol. 57, 2012, pp. 1265–
1269.

[19] A. Saboori, C. N. Hadjicostis, “Opacity
enfonrcing supervisory strategies via state
estimatorconstructions”, Automatic Control,
Vol. 57, 2012, pp. 1155–1165.

[20] X. Yina, S. Lafortune, “A new approach for the
verification of infinite-step and K-step opacity
using twoway observers”, Elsiver Automatica,
2018.

[21] Franck Cassez. The Dark Side of Timed
Opacity. International Conference on
Information Security and Assurance, Springer,
Vol. 5576, 2009, pp. 21–30.

[22] J. Dubreil, Philippe Darondeau and Herve
Marchand. Supervisory Control for Opacity.
IEEE, Transactions on Automatic Control, Vol.
55, 2010, pp. 1089–1100.

[23] S. Chedor, C. Morvan, S. Pinchinat, H.
Marchand, al., “Analysis of partially observed

 Journal of Theoretical and Applied Information Technology
31st May 2024. Vol.102. No. 10

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4389

recursive tile systems”, Workshop on Discrete
Event Systems, 2012, pp.265-271.

[24] Y. Tong, Z. Li, C. Seatzu, A. Giua,
“Verification of state-based opacity using Petri
nets”. Transactions on Automatic Control,
2017.

[25] F. Cassez, Tripakis S. “Fault diagnosis with
static or dynamic diagnosers”, Fundamenta
Informatica, 2008, pp 97–540.

[26] Y. Tong, Z. Li, C. Seatzu, A. Giua,
“Verification of Initial-State Opacity in Petri
Nets”, 54th IEEE Conference on Decision and
Control (CDC), 2015.

[27] A. Saboori, C. N. Hadjicostis, “Notions of
security and opacity in discrete event systems”.
IEEE, Conference on Decision and Control,
2007, pp.5056–5061.

[28] A. Saboori, C. N. Hadjicostis. Probabilistic
current-state opacity is undecidable.
International Symposium on Mathematical
Theory of Networks and Systems MTNS, 2010,
pp. 477–483.

[29] R. Jacob, J. J. Leasage, J. M. Faure, “Overview
of DESs Opacity: models, validation and
quantification”, Annual Reviews in Control,
2016.

[30] A. Saboori, C. N. Hadjicostis, “Verification of
initial state opacity in security applications of
discrete event systems”, Information Science,
2013, pp. 115–132.

[31] Y. Tong, Z. Li, C. Seatzu, A. Giua,
“Verification of language-based opacity using
Petri nets using verifier”. American Control
Conference, 2016, pp. 757-763.

[32] J. Bryans, M. Koutny, Mazare L., P. Ryan,
“Opacity generalised to transition systems”,
International Workshop on Formal Aspects in
Security and Trust, 2005, pp. 81–95.

[33] B. Zhang, S. Shu, F. Lin, “Polynomial
algosurithms to check opacity in DESs”,
Control and Descion Conference, 2012, pp.
763-769.

[34] A. Saboori, C. N. Hadjicostis. Verification of
initial-state opacity in security applications of
discrete event systems. Information Science,
2013, pp. 115–132.

[35] J. W. Bryans, M. Koutny, L. Mazare, P. Y.
Ryan, "Opacity generalised to transition
systems", in International Journal of
Information Security, 2008, pp. 421–435.

[36] L. Mazare, “Using unification for opacity
properties”, Proceedings of Workshop on
Information Technology and Systems, Vol. 4,
2004, pp. 165–176.

[37] T. A. Henzinger, Z. Manna, A. “Pnueli. Timed
transition systems”, Computer Science, 1992,
pp. 226–251.

[38] J. Dubreil, “Monitoriting and Supervisory
Control for Opacity Properties. University of
Rennes 1, 2009.

[39] John Mullins, Moez Yeddes. Opacity with
Orwellian Observers and Intransitive Non-
interference. Discrete Event Dynamic Systems,
vol. 12, pp. 344–349, (2014).

