
 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4442 

 

BANYAN AGILE: A NEW APPROACH FOR MONOLITH 
AND MICROSERVICE DEVELOPMENT 

 

VICTOR1 , MARIA SERAPHINA ASTRIANI2 
1Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina Nusantara 

University, Jakarta, Indonesia 11480 

2Computer Science Department, School of Computing and Creative Arts, Bina Nusantara University, 

Jakarta, Indonesia 11480 

E-mail:  1victor010@binus.ac.id, 2seraphina@binus.ac.id   
 
 

ABSTRACT 
 

This research explores the challenges of implementing the Software Development Life Cycle (SDLC) in 
developing software with monolith and microservice architectures. The SDLC method serves as a 
framework guiding the stages of software creation, completion, and maintenance. Challenges arise when 
applying SDLC to software development teams transitioning from monolith to microservice architectures. 
Factors such as synchronization among teams, a lack of expertise in implementing specific SDLC methods, 
and escalating project costs become major problems. This research seeks solutions by proposing a new 
approach called Banyan Agile. Banyan Agile integrates SDLC principles with the flexibility of agile 
methods, creating a framework that can address these challenges and facilitate effective software 
development. The findings reveal that the implementation of Banyan Agile within PT. ASD has positively 
impacted collaboration among cross-functional teams and overall project productivity. Despite 
encountering challenges during the implementation phase, the identification of these hurdles highlights 
areas for improvement to optimize project outcomes.  

Keywords: Software Development, Agile, Monolith, Microservice, Strategic Planning 
 
1. INTRODUCTION 
 
1.1. Background 

 
In the dynamic landscape of software 

development, the choice of architecture and 
methodology plays a crucial role in the success of 
projects. The microservice architecture fosters 
flexibility and modularity, empowering teams to 
develop, test, and deploy each microservice 
autonomously. This approach streamlines rapid 
iteration and facilitates the adoption of diverse 
technologies and configurations tailored to specific 
requirements [1]. The transition from traditional 
monolithic structures, characterized by tightly 
integrated components, to the more modular and 
scalable microservice architectures has become a 
common pursuit for many forward-thinking 
organizations. This architectural shift is driven by 
the desire to enhance flexibility, scalability, and 
overall efficiency in meeting the ever-evolving 
demands of the modern digital landscape. 

 

As organizations embark on this 
transformative journey towards microservices, they 
encounter many challenges ranging from 
complexity of the monolith architecture, 
complexity of the data repository, organizational 
culture of the company, experience of the software 
development team in creating microservices, and 
the ability to make a proper division of the 
monolith architecture to create microservices [2]. 
Microservices, with their decentralized nature, 
promise improved agility and easier maintenance, 
yet the journey towards their adoption requires 
careful consideration of various factors such as 
service communication, data consistency, and 
system observability. Conversely, the prevalence of 
monolithic structures, though deemed more 
straightforward in design, often poses challenges in 
scalability and adaptability, hindering the agility 
required to respond to rapidly changing business 
needs. 

 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4443 

 

Amidst this architectural evolution, the 
implementation of effective Software Development 
Life Cycle (SDLC) methodologies becomes 
paramount. Each SDLC method has strength and 
weaknesses, and that they are appropriate for a 
variety of situations [3]. The waterfall methodology 
represents a sequential approach to development, 
necessitating the completion of each phase before 
the subsequent one can commence [4]. Agile 
methodologies involve iterative and incremental 
processes, where software is developed in brief 
cycles, each resulting in a functional product [5]. 
The traditional SDLC models, while successful, 
may fall short in accommodating the distinctive 
characteristics and requirements of monolithic and 
microservice development. 

 
To summarize, the adoption of either 

monolith or microservices significantly impacts 
software development. However, employing an 
SDLC that inadequately supports the simultaneous 
development of both architectures can impede 
software progress and have repercussions on an 
organization's finances and growth trajectory. As 
organizations grapple with the need for an SDLC 
framework that can seamlessly cater to these 
diverse architectural paradigms, there arises a 
compelling opportunity to innovate and formulate a 
novel approach that transcends the limitations of 
existing models. 

 
The SDLC is applied in software project 

management to guarantee timely, budget-conscious 
completion of projects while meeting the necessary 
quality standards [6]. In this context, the research 
endeavors to propose and explore a new SDLC 
model tailored to address the intricacies of both 
monolithic and microservice development. By 
acknowledging the unique challenges posed by 
each architecture and synthesizing the strengths of 
various existing methodologies, this research aims 
to provide a comprehensive and adaptable 
framework. Such a framework should not only 
facilitate the successful development and 
deployment of software systems but also pave the 
way for a harmonious coexistence of monolithic 
and microservice components within the same 
organizational ecosystem. 

 
Through a meticulous examination of the 

current state of software development practices, this 
research seeks to contribute valuable insights that 
resonate with organizations navigating the 
complexities of architectural choices. It aspires to 
be a guiding beacon for developers, architects, and 

project managers alike, offering pragmatic 
solutions and best practices that align with the 
nuances of both monolithic and microservices 
landscapes. 

 
In essence, this research aims to bridge the 

gap between evolving architectural paradigms and 
effective SDLC methodologies, ushering in a new 
era where organizations can harness the benefits of 
both monolithic and microservice development 
seamlessly and with confidence. 

 
1.2. Challenges in traditional SDLC for 
monoliths and microservices 

 
This research delves into the multifaceted 

challenges encountered by software development 
teams tasked with navigating the intricacies of both 
monolith and microservice architectures, with a 
central focus on achieving an efficient Software 
Development Life Cycle (SDLC) implementation. 
The contemporary software development landscape 
witnesses a pivotal shift as organizations strive to 
harness the benefits of microservices' scalability 
and agility while grappling with the established 
structures of monolithic systems. From the author's 
observations and interviews with employee and 
managers working at PT. ASD in software 
development, challenges were identified in 
maintaining, developing, and migrating several 
software components within both monolithic and 
microservices architectures. 

 
The crux of the challenge lies in striking a 

delicate balance between the rigidity required by a 
structured SDLC and the adaptive flexibility 
demanded by the dynamic nature of microservices. 
This intricate dance poses a unique set of hurdles 
that necessitate a nuanced and comprehensive 
exploration. Key among these challenges are the 
complexities of team synchronization, wherein the 
divergent approaches demanded by monoliths and 
microservices can lead to collaboration gaps and 
operational inefficiencies. 

 
Moreover, the prevalence of skill gaps 

within development teams presents a significant 
obstacle. The diverse skill sets required to navigate 
traditional SDLC methodologies for monolithic 
architectures versus the newer paradigms demanded 
by microservices can lead to a fragmentation of 
expertise. This not only hinders the seamless 
integration of both architectures but also raises 
questions about the efficient utilization of resources 
and the potential need for additional training. 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4444 

 

 
Financial implications further amplify the 

challenges, especially in the context of project 
expansion or transition. Organizations often find 
themselves at a crossroads, weighing the costs 
associated with scaling a monolithic system against 
the potential benefits of adopting a microservices 
architecture. This financial conundrum adds a layer 
of complexity to SDLC decision-making, requiring 
a careful examination of return on investment, 
long-term sustainability, and the adaptability of 
existing resources. 

 
This research aims to dissect and 

understand the multifaceted challenges arising from 
the convergence of monolithic and microservice 
architectures within the realm of SDLC 
implementation. By delving into the intricacies of 
team dynamics, skill development, and financial 
considerations, the goal is to provide actionable 
insights that empower software development teams 
to navigate this complexity successfully and derive 
optimal value from their chosen architectural 
approaches. 

 
2. LITERATURE REVIEW 

 
In software development, the need for 

team management methods and software 
architecture tailored to the requirements and 
conditions of a team is essential. The requirements 
and conditions of one team may vary from those of 
another. Some teams may have the need to develop 
software within a short time frame, while others 
may require maintaining existing software to 
operate effectively. To meet these diverse needs 
and conditions, different planning methods are 
necessary. 

 
2.1. Overview of Existing SDLC Models 
 

In this study, several existing Software 
Development Life Cycle (SDLC) methods will be 
selected for comparison. The chosen methods for 
examination include prototype, agile, and scrum. 
 
2.1.1. Prototype 

 
In 2022, a study by Maulida (2022) asserts 

that the development method of the prototype 
system consist of several stages, incorporating 
system analysis, structured design, and black box 
testing methods [7]. 
 

According to a study by Bhatnagar (2015), 
a prototype is an evolving model. Its development 
process involves gathering requirements, followed 
by developers creating a brief design, and the 
results are then discussed again with the users [8]. 
 
2.1.2. Agile 

 
In 2001, The Agile Alliance engaged in 

discussions and formulated a manifesto known as 
The Agile Manifesto. This manifesto serves as the 
foundation for the development of future agile 
methodologies (The Agile Manifesto, 2001) [9]. 

 
A study conducted by Megargel, 

Shankararaman, and Walker in 2020 concludes that 
companies should consider adopting Agile 
practices, utilizing the cloud to expedite software 
development. The study also suggests that 
transforming existing monolithic software into a 
microservices architecture is better achieved 
through a migration method, gradually transitioning 
from existing program segments until the entire 
monolithic program can be discontinued [10]. 

 
Another study by Dirk Beerbaum in 2023 

concludes that diverse Agile methodologies share a 
commonality, emphasizing shared ownership and 
autonomous team collaboration. The study also 
notes that successful Agile implementation requires 
clear communication, training, and support from 
management, necessitating organizational changes 
to embrace Agile practices [11]. 
 
2.1.3. Scrum 

 
In a study by Kadenic, Koumaditis, and 

Junker-Jensen (2023), the composition of team 
factors, such as allocation, member substitution, 
member capabilities, and self-regulation tendencies, 
significantly impacts the implementation of Scrum. 
All predefined roles within Scrum play a crucial 
role. The developer's ability to adapt to planning, 
the product owner's prioritization skills, and the 
Scrum master's ability to ensure adherence to plans 
all influence the success of Scrum implementation 
[12]. 

 
In another study (Verwijs, Russo, 2022), 

an examination of 13 case studies identifies five 
high factors, including responsiveness, stakeholder 
concern, ongoing development, the team's ability to 
achieve goals, and management support. 
Additionally, 13 low factors such as goal focus, 
sprint review quality, and others affect the 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4445 

 

effectiveness of Scrum teams, indicated by their 
ability to satisfy stakeholders and maintain high 
team morale [13]. 

 
A study by Ozkan & Tarhan (2020) 

concludes with an assessment that while Scrum is 
intended to support scaling and agility as team size 
increases, it presents new challenges that question 
its effectiveness. The study suggests considering 
design changes or alterations to the Agile Manifesto 
and its scalability principles [14]. 

 
In another study (Asma Akhtar, Brra 

Bakhtawar, and Samia Akhtar, 2022), a comparison 
between Extreme Programming and Scrum reveals 
numerous similarities and differences. These 
distinctions, when combined, could potentially 
form an experiment leading to a more effective 
methodology [15]. 
 
2.2. Monolith Development 

 
Expanding on the discussion regarding 

monolithic development, the year 2022 witnessed a 
study by Blinowski, Ojdowska, and Przybylek, 
emphasizing the monolith's characterization from 
the operating system standpoint. Described as an 
application operating within a single process on the 
application server, the monolith is praised for its 
inherent simplicity. Deployment becomes more 
straightforward, with the database conveniently 
consolidated in a single location, among other 
benefits [16]. 

 
However, as applications evolve and 

expand, a notable shift occurs. The process of 
transforming a monolithic application becomes 
intricate and challenging. The initial advantages in 
simplicity face the complexities associated with 
scalability and adaptability. This transformational 
phase marks a critical juncture where the once-
straightforward system architecture encounters 
hurdles, necessitating careful consideration and 
strategic planning. 

 
2.3. Microservices Development 

 
A study conducted by Blinowski, 

Ojdowska, and Przybylek in 2022 delves into the 
comparison between monolith and microservice 
architectures, leveraging various cloud providers. 
The research concludes that a monolithic 
architecture is more suitable for smaller systems 
that do not require extensive support for a large 
user base [17]. 

 
On a related note, a study by Abgaz, 

McCarren, Elger, et al. in 2023 explores the 
intricate task of decomposing a monolith into 
microservices. The study highlights the complexity 
of this process and notes the absence of a well-
organized guideline that spans from the initial steps 
to the final stages [18]. 

 
2.4. Comparative Analysis 
 

Table 1: Comparison Prototype, Agile, Scrum 
Aspect Prototype Agile Scrum 

Flexibil
ity 

Less flexible 
in change 

Highly 
adaptable to 
change 

Flexible to 
change 

Process Linear, step 
by step 

Iterative and 
incremental 

Iterative and 
incremental 
with specific 
roles 

Output Program 
prototype 
and initial 
features 

Ready-to-use 
program 
iterations 

Sprints with 
program 
enhancements 

Commu
nication 

Development 
team with 
stakeholders 

Intensive 
communicati
on between 
team and 
stakeholders 

Open and 
transparent 
communicatio
n between 
team and 
stakeholders 

Stakeho
lder 

Dependent 
on prototype 
interpretation 

Prioritizing 
based on 
business 
value 

Clear roles 
and 
responsibilitie
s for each 
team member 
and 
stakeholder 

Develo
pment 
Speed 

Tends to be 
slower 

Faster and 
adaptive 

Fast and 
structured 
with 
scheduled 
sprints 

Uncerta
inty and 
risk 

Reducing 
uncertainty 
and risk in 
early 
development 
stages 

Addressing 
uncertainty 
with quick 
responses and 
feedback 

Reducing 
uncertainty 
and risk 
through 
iteration and 
adaptation 

 
Based on Table 1, those studies indicate 

that software development methods have their own 
strengths and weaknesses. The Prototype approach 
provides stakeholders with clear visualizations but 
consumes significant time and proves difficult to 
customize post-approval. On the other hand, Agile 
and Scrum methodologies prioritize customization 
and swift processes, though necessitating teams to 
swiftly adapt and grasp all facets. This contrasts 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4446 

 

with microservices, which call for specialized 
teams to manage each service separately. Further 
research can be conducted by combining the 
differences and requirements of existing methods, 
tailored to specific conditions and needs. This 
approach can result in an effective and efficient 
method for the given circumstances. 

 
The author hypothesizes that the adoption 

and execution of the devised novel method named 
Banyan Agile methodology may lead to a 
noticeable improvement in the overall performance 
of employees within the organizational framework. 

 
3. BANYAN AGILE 
 

The need for introducing a new model 
stem from the evolving landscape of software 
development, marked by the simultaneous 
coexistence of monolithic and microservices 
architectures. Existing Software Development Life 
Cycle (SDLC) models often grapple with the 
challenges posed by these diverse architectural 
paradigms. While traditional models have proven 
effective, the complexities arising from the 
integration of monoliths and microservices within 
the same development lifecycle necessitate a more 
adaptive and comprehensive approach. 

 
The author intends to devise a novel 

method named Banyan Agile. This method, 
formulated by the author, aims to address control 
management issues and supporting monolith and 
microservices architectures. 

 
3.1. Key Principles of Banyan Agile 
 

Banyan Agile is formulated with key roles, 
including the Product Owner, Banyan Leader, 
Team Leader, Quality Assurance, and Developer. 
The Product Owner is responsible for defining 
features or changes to be implemented. The Banyan 
Leader ensures that tasks progress according to the 
set targets. The Team Leader is obligated to ensure 
and support the developer team members in 
completing assigned tasks, ensuring they align with 
the established targets. 

 
Figure 1: Banyan Agile Task Illustration Organization 

 
As seen in Figure 1, Banyan Agile also 

formulates that tasks will be categorized into four 
types: Epic, Story, Task, and Bug. Epic provides a 
broad overview of a target. Story represents a 
feature that needs to be developed or modified to 
fulfill the Epic target. Task is a process that 
developers need to undertake to fulfill the Story. 
Bug refers to issues that arise while maintaining the 
running software. 

 
The tasks assigned to developers will be 

tailored to their respective expertise. If 
collaboration with other teams is required, separate 
tasks will be created to serve as connectors between 
tasks. It is expected that with this method, 
developers with more specialized and expert skills 
will be cultivated. 

 
The process of implementing Banyan 

Agile is as follows: 
1. The Product Owner engages in discussions 

with Quality Assurance (QA) to formulate 
the necessary changes or features. 

2. The Product Owner, Banyan Leader, and 
relevant Team Leader hold discussions, if 
needed, regarding the changes or features 
to be worked on. 

3. Each task (Epic, Story, Task, and Bug) 
will have an Assignee and Quality 
Assurance. The Assignee is responsible for 
ensuring that the task is completed 
according to the target, while Quality 
Assurance ensures that the development 
results align with the target. 

4. Quality Assurance assigns a weight to 
each Story as a variable indicating the 
complexity of the Story. 

5. Every Story and Task is assigned priority 
levels (High, Medium, Low) to determine 
prioritized tasks. Bugs are given a high 
priority (High). 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4447 

 

6. Stories, Tasks, and Bugs have logging 
time to track the time spent by developers. 

7. The Banyan Board does not have a fixed 
set of steps. 

8. Weekly meetings are conducted to review 
the sprint and plan for a new sprint. 

9. A sprint can last 1-2 weeks, adapted to the 
conditions. 
 

3.1.1. Flexibility for both monoliths and 
microservices 

 
With the principles outlined above, the 

organization aims to establish management control 
by leveraging the capabilities of each team leader. 
To address communication challenges in 
microservices, teams are encouraged to 
communicate internally, aligning with their 
respective responsibilities. Additionally, a 
dedicated team is assigned to handle monolith 
projects, facilitating seamless communication 
within the team. 

 
The incorporation of Quality Assurance 

(QA) in each task is expected to ensure that the 
development outcomes adhere to standards that 
meet the requirements defined in the initial 
planning stages. This strategic approach not only 
enhances management control through team leaders 
but also fosters effective communication within and 
between teams, addressing both microservices and 
monolith development needs. 

 
4. STAGES OF BANYAN AGILE 
 

In developing software, Banyan Agile 
follows stages as shown in Figure 2. 

 
Figure 2: Stages of Banyan Agile 

 
4.1. Problem or Feature Request 

 
The Product Owner extends their role by 

welcoming change requests from users across 
various units within the organization, fostering 
collaboration and addressing needs that may arise 
from different segments of the user community. 

 
4.2. Feature Discussion 

 
The Product Owner collaborates with 

users to thoroughly understand the nuances of the 
requested features and scope. Following this, they 
coordinate with the Banyan Leader, Team Leader, 
and QA to ensure that the proposed request aligns 
with the overall development strategy. After 
reaching a consensus, the request is formally 
scheduled for implementation, marking a seamless 
integration of user input into the development 
workflow. 

 
 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4448 

 

4.3. Task Compilation 
 
The Team Leader meticulously outlines 

the specific tasks required to meet the criteria of the 
user's request. They consider the skills and 
expertise of the team members, ensuring an 
efficient allocation of responsibilities. This detailed 
task planning lays the foundation for a systematic 
and organized approach to implementing the 
requested features. 

 
4.4. Task Assignment 
 

The Team Leader further delegates the 
tasks to the developers, distributing responsibilities 
based on each team member's skills and expertise. 
These tasks are then scheduled during sprint 
meetings, which occur either once or twice a week. 
This regular cadence ensures a consistent and 
transparent workflow, allowing for ongoing 
progress tracking and adjustments as needed. 

 
4.5. Sprint Meeting 

 
The Team Leader conducts meetings to 

discuss the upcoming tasks as per the schedule and 
addresses any issues encountered during the 
development of features. This proactive approach 
fosters effective communication within the team, 
allowing for collaborative problem-solving and 
ensuring a smooth development process. 

 
4.6. Task Processing 

 
The developers proceed to complete the 

tasks assigned to them, leveraging their skills and 
expertise to deliver the required features or 
changes. This phase marks the hands-on 
implementation of the planned development tasks 
by the team. 

 
4.7. Quality Control 
 

The Quality Assurance (QA) team engages 
in testing to assess whether the features meet the 
specified criteria. Through meticulous testing 
processes, QA ensures that the implemented 
features align with the defined standards and fulfill 
the user requirements. 

 
4.8. Feature Delivery 

 
Tasks that meet the criteria are then 

updated, and User Acceptance Testing (UAT) is 
conducted to validate the functionality with the 

users. This step involves seeking user feedback and 
ensuring that the implemented features align 
seamlessly with user expectations and 
requirements. 

 
5. RESULTS AND IMPLEMENTATION 

 
The Banyan Agile methodology has 

undergone testing and integration at PT ASD. PT. 
ASD, established in 2012, is a company operating 
in the healthcare sector. With its headquarters 
located in the city of Medan, Indonesia. PT. ASD 
has expanded its presence with several hospital 
branches in cities such as Jakarta, Bandung, and 
Bali. To facilitate the development and 
maintenance of the software utilized in hospitals, 
PT. ASD maintains an internal IT development 
team dedicated to supporting operational needs. 
The IT development team is subdivided into 
software development, software implementation, 
and hardware teams. 

 
PT. ASD has previously utilized SDLC 

methodologies such as Prototype, Waterfall, and 
Scrum. During the implementation phase, PT. ASD 
had a team of 22 employees dedicated to software 
development. 

 
5.1. Employee Demographics 

 
The total number of employees in the 

software development team at PT. ASD is 22, with 
the following details: 

1. The demographic details of employees 
based on age are provided in Table 2. 

 
Table 2: Employee Demographics by Age 

Age Count 

20-25 years 9 

26-30 years 7 

> 30 years 6 

 
2. The demographic details of employees 

based on gender are provided in Table 3. 
 

Table 3: Employee Demographics by Gender 
Gender Count 

Man 14 

Woman 8 

 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4449 

 

3. The demographic details of employees 
based on education and majors are 
provided in Table 4. 

 
Table 4: Employee Demographics by Education and 

Majors 
Education and Majors Count 

Bachelor's degree in information 
technology 

7 

Bachelor's degree in information 
systems 

14 

Master's degree in computer science 1 

 
 

4. The demographic details of employees 
based on the duration of work experience 
at PT. ASD are provided in Table 5. 

 
Table 5: Employee Demographics by Duration of work 

experience at PT. ASD 
Duration of work experience Count 

1-3 years 9 

3-5 years 5 

>5 years 8 

 
 

5.2. Challenges in Implementation 
 
From the observation and document 

analysis, issues identified in the implementation of 
Banyan Agile at PT. ASD include: 

1. There is documentation of change requests 
that have been left unprocessed for an 
extended period due to various reasons, 
such as low priority, insufficiently detailed 
requirements from the user, and the user's 
lack of experience as an information 
source. 

2. Task documentation remains incomplete in 
some cases due to urgent requests and 
communication through chat media, 
leading to oversight in documentation. 

3. Tasks have been divided with a scope of 
35 hours per week within a 40-hour work 
week, yet there are still instances where 
tasks exceed the allocated time due to 
additional time spent on activities such as 
meetings, discussions, and 
underestimation of the expected time 
spent. 

4. Many additional tasks have been identified 
that are not documented, causing 
disruptions to the overall planning. 

5. There are tasks that have been technically 
completed but have not been tested by QA 
because the user is still seeking QA 
support for software implementation. 

 
6. COMPARISON 
 
6.1. Comparison before and after 
implementation of Banyan Agile 
 

We collected the pooling data from 
employees of PT. ASD before and after the 
implementation of Banyan Agile, generating 
noticeable values as depicted in Table 6. 
 

Table 6: Employee Pooling before and after 
implementation of Banyan Agile (0 means worse, 10 

means best) 
No
. 

Subject Averag
e before 

Averag
e after 

Chang
es 

1 Communicatio
n between 
teams 

5.27 7.32 +2.05 

2 Task conflict 5.18 7.23 +2.05 

3 Collaboration 4.95 6.68 +1.73 

4 Productivity 5.36 7.09 +1.73 

5 Workload 5.27 6.73 +1.46 

6 Bugs that arise 5.4 6.32 +0.92 

7 Overtime 5.05 5.36 +0.31 

 
The pooling results indicate improvement 

across all measured dimensions. Communication 
between teams experienced a rising average score 
of 5.27 points to 7.32 points (Δ = +2.05). Similarly, 
task conflict showed increase (Δ = +2.05), with 
average scores climbing from 5.18 points to 7.23 
points. Collaboration and productivity also increase 
(Δ = +1.73) each (Collaboration: 4.95 points to 6.68 
points, Productivity: 5.36 points to 7.09 points). 
Workload perception among team members 
decreased, showing an improvement of (Δ = +1.46) 
from 5.27 points to 6.73 points). The occurrence of 
bugs decreased marginally, with a change of (Δ = 
+0.92) from 5.4 points to 6.32 points. Overtime 
hours demonstrated a modest decreased, with 
increase (Δ = +0.31) from 5.05 points to 5.36 
points. When correlated with observational findings 
and document reviews, further enhancement is 
achievable by addressing issues that occurred 
during implementation. 

 
 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4450 

 

6.2. Feedback from Employees 
 

Based on the interview results with the 
employee in the software development team at PT. 
ASD after implementing Banyan Agile, key 
feedback points obtained include: 

1. The need for improved documentation for 
each task. 

2. A stronger commitment to implementing 
Banyan Agile. 

3. Continuous training to better understand 
the concepts of Banyan Agile. 

4. Selecting tools that support the 
implementation of Banyan Agile. 

 
6.3. Comparison with existing methodology 
 

Table 7: Comparison Banyan Agile, Prototype, Agile, 
Scrum 

Aspect Banyan 
Agile 

Protot
ype 

Agile Scrum 

Flexibilit
y 

Flexible 
to change 

Less 
flexible 
in 
change 

Highly 
adaptabl
e to 
change 

Flexible 
to 
change 

Process Iteratif 
and 
incremen
tal with 
sepecific 
roles 

Linear, 
step by 
step 

Iterative 
and 
incremen
tal 

Iterative 
and 
incremen
tal with 
specific 
roles 

Output Sprints 
with 
program 
enhance
ments 

Progra
m 
prototy
pe and 
initial 
features 

Ready-
to-use 
program 
iterations 

Sprints 
with 
program 
enhance
ments 

Commun
ication 

Commun
ication 
by 
Product 
Owner 
and 
stakehold
ers 

Develo
pment 
team 
with 
stakeho
lders 

Intensive 
commun
ication 
between 
team and 
stakehol
ders 

Open 
and 
transpare
nt 
commun
ication 
between 
team and 
stakehol
ders 

Stakehol
der 

Clear 
roles and 
responsib
ilities for 
each 
team 
member 
and 
stakehold
er 

Depend
ent on 
prototy
pe 
interpre
tation 

Prioritizi
ng based 
on 
business 
value 

Clear 
roles and 
responsi
bilities 
for each 
team 
member 
and 
stakehol
der 

Develop
ment 

Fast and 
structure

Tends 
to be 

Faster 
and 

Fast and 
structure

Speed d with 
schedule 
sprints 

slower adaptive d with 
schedule
d sprints 

Uncertai
nty and 
risk 

Reducing 
uncertain
ty and 
risk 
through 
Quality 
Assuranc
e, 
iteration 
and 
adaptatio
n 

Reduci
ng 
uncertai
nty and 
risk in 
early 
develop
ment 
stages 

Addressi
ng 
uncertain
ty with 
quick 
response
s and 
feedback 

Reducin
g 
uncertain
ty and 
risk 
through 
iteration 
and 
adaptatio
n 

Team 
Structure
d 

Team 
divide 
based on 
specialty 
and/or 
organizat
ion 
structure
d 

Not 
specific
ally 
specifie
d 

Not 
specifica
lly 
specified 
and 
requires 
role 
rotation 
over 
time 

Not 
specifica
lly 
specified 
 

 
Based on Table 7, The Banyan Agile 

framework is tailored to suit organizations in their 
software development endeavors, whether 
employing monolithic or microservices 
architectures. It must exhibit flexibility and agility 
to effectively respond to the organization's evolving 
dynamics and the adoption of new technologies, all 
while preserving the organizational structure and 
ensuring the high quality of the software output. 
 
7. CONCLUSION 
 
7.1. Summary of Findings 

 
This research delves into the introduction 

of Banyan Agile and its practical implementation 
on a PT. ASD. The study aimed to assess the 
effectiveness and adaptability of Banyan Agile 
approach in enhancing project management 
processes in software development using monolith 
and microservice architectures. The findings reveal 
some positive impact on improving collaboration 
among cross functional teams and productivity on 
overall project achievement. 

 
Some challenges encountered during the 

implementation phase were also identified, 
shedding light on areas that required consideration 
to further improve the project outcomes like 
improving documentation, implementation 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4451 

 

collaboration and training and tools in improving 
Banyan Agile. 

 
7.2. Implications for The Industry 
 
The integration of Banyan Agile implies that 
embracing this methodology holds the potential to 
enhance collaboration and boost productivity within 
the industry. This suggests that by incorporating 
Banyan Agile practices, the industry stands to reap 
significant benefits in terms of improved teamwork 
and increased efficiency, thereby contributing to 
overall growth and success. 
 
7.3. Recommendation 

 
As this study contributes to the discourse 

on the introduction and implementation of a 
Banyan Agile, several recommendations for future 
exploration and development emerge. 

 
1. Deepening Understanding through 

Longitudinal Studies 
 
Conduct longitudinal studies to capture the 

long-term impact and sustainability of Banyan 
Agile. This approach would provide insights into 
how Banyan Agile practices evolve over time and 
their enduring effects on organizational dynamics. 

 
2. Exploring Industry-Specific Applications 

 
Tailor Banyan Agile methodologies to 

specific industries or sectors. Future studies could 
delve into customizing Banyan Agile practices to 
address the unique challenges and requirements of 
diverse industries, fostering a more nuanced 
understanding of its applicability. 
 

3. Cultural and Organizational Adoption 
Studies 
 
Investigate cultural and organizational 

factors that influence the successful implementation 
of methodologies. Future research could delve 
deeper into the cultural nuances and organizational 
structures that facilitate or hinder the adoption of 
Banyan Agile practices, providing actionable 
insights for diverse contexts. 

 

REFERENCES: 

[1]  Dragoni, N., Giallorenzo, S., Lluch-Lafuente, 
A., Mazzara, M., Lafuente, A. L., Montesi, F., 
Mustafin, R., & Safina, L. (2017). 

Microservices: yesterday, today, and tomorrow 
Data Mining and Machine Learning for 
Knowledge Discovery and Predictive Analysis 
View project Combining Two Modelling 
Approaches: GQM and KAOS in an Open 
Source Project View project Microservices: 
yesterday, today, and tomorrow. 
https://www.researchgate.net/publication/31566
4446_Microservices_yesterday_today_and_tom
orrow 

[2]  Velepucha, V., & Flores, P. (2023). A Survey on 
Microservices Architecture: Principles, Patterns 
and Migration Challenges. IEEE Access, 11, 
88339–88358. 
https://doi.org/10.1109/ACCESS.2023.3305687 

[3]  Diansyah, A. F., Rahman, M. R., Handayani, R., 
Nur Cahyo, D. D., & Utami, E. (2023). 
Comparative Analysis of Software 
Development Lifecycle Methods in Software 
Development: A Systematic Literature Review. 
International Journal of Advances in Data and 
Information Systems, 4(2), 97–106. 
https://doi.org/10.25008/IJADIS.V4I2.1295 

[4]   Hurst, J. (2014). Comparing Software 
Development Life Cycles. SANNS Software 
Security 

[5] Taya, S., & Gupta, S. (2011). Comparative 
Analysis of Software Development Life Cycle 
Models.IJCST, 2(4), Oct.-Dec. 

[6]  Hossain, M. I.. (2023). Software Development 
Life Cycle (SDLC) Methodologies for 
Information Systems Project Management. 
International Journal For Multidisciplinary 
Research, 5(5). 
https://doi.org/10.36948/IJFMR.2023.V05I05.6
223 

[7]  Maulida, N, “Studi Literatur Penerapan Metode 
Prototype dan Waterfall dalam Pembuatan 
Sebuah Aplikasi atau Website”, 
https://www.researchgate.net/publication/35981
4579, April 2022. 

[8]  Bhatnagar, V, “A Comparative Study of 
Software Development Life Cycle Models”, 
International Journal of Application or 
Innovation in Engineering & Management, Vol. 
4, Issue 10, 2015, pp. 23-29. 

[9]   Principles behind the Agile Manifesto. 2001. 
https://agilemanifesto.org/principles.html 

[10]  Megargel, A., Shankararaman, V., & Walker, 
D. K. (2020). Migrating from Monoliths to 
Cloud-Based Microservices: A Banking 
Industry Example. 85–108. 
https://doi.org/10.1007/978-3-030-33624-0_4 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4452 

 

[11] Beerbaum, D. (2023, March). Agile Strategy - 
Achieving Sustainable Advantage. 
https://www.researchgate.net/publication/36944
0853 

[12]  Kadenic, M. D., Koumaditis, K., & Junker-
Jensen, L. (2023). Mastering scrum with a focus 
on team maturity and key components of scrum. 
Information and Software Technology, 153. 
https://doi.org/10.1016/J.INFSOF.2022.107079 

[13] Verwijs, C., & Russo, D. (2022). A Theory of 
Scrum Team Effectiveness. ACM Transactions 
on Software Engineering and Methodology. 
https://doi.org/10.1145/3571849 

[14] Ozkan, N., & Tarhan, A. K. (2020). Evaluation 
of Scrum-based agile scaling models for causes 
of scalability challenges. ENASE 2020 - 
Proceedings of the 15th International 
Conference on Evaluation of Novel Approaches 
to Software Engineering, 365–373. 
https://doi.org/10.5220/0009390403650373 

[15] Akhtar, A., Bakhtawar, B., & Akhtar, S. (2022, 
November). Extreme Programming VS Scrum: 
A Comparison of Agile Models. 
https://www.researchgate.net/publication/36511
8765 

[16] Blinowski, G., Ojdowska, A., & Przybylek, A. 
(2022). Monolithic vs. Microservice 
Architecture: A Performance and Scalability 
Evaluation. IEEE Access, 10, 20357–20374. 
https://doi.org/10.1109/ACCESS.2022.3152803 

[17] Blinowski, G., Ojdowska, A., & Przybylek, A. 
(2022). Monolithic vs. Microservice 
Architecture: A Performance and Scalability 
Evaluation. IEEE Access, 10, 20357–20374. 
https://doi.org/10.1109/ACCESS.2022.3152803 

[18] Abgaz, Y., McCarren, A., Elger, P., Solan, D., 
Lapuz, N., Bivol, M., Jackson, G., Yilmaz, M., 
Buckley, J., & Clarke, P. (2023). 
Decomposition of Monolith Applications Into 
Microservices Architectures: A Systematic 
Review. IEEE Transactions on Software 
Engineering, 1–32. 
https://doi.org/10.1109/TSE.2023.3287297 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


