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ABSTRACT 
 

In this study, the detection and classification of seismic events is a significant concern of this research. A 
volcano eruption is one of the natural disasters on Earth. Monitoring volcano activities is essential to 
analyzing and monitoring volcanoes before their eruption. This activity is beneficial in interpreting signals 
from a volcano before an eruption from the volcano can cause damage. Based on that, a tool has been 
developed to detect and classify volcanic seismic events. The combination of algorithm time series, which 
is STA/LTA and machine learning (LSTM), is being used to analyze data of seismic events. A dataset was 
collected from one of Indonesia's mountains during 2019 – 2021. The dataset will be classified into 
different classes based on the type of seismic events. Noise detection is implemented to classify true or 
false seismic events before continuing to detect and classify them. STA/LTA is used to remove noise 
signals from data seismic events. The next step is to use machine learning to classify labelling signals based 
on the type of seismic events. The experiments use a learning rate of 0.001 and 0.01. They show that tools 
can detect and classify signals of seismic events with an accuracy of around 0,70 – 0,80.  
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1. INTRODUCTION  
 

Volcanic eruptions are one of the natural 
disasters in Indonesia, and they can cause losses to 
many parties. The geographical location of 
Indonesia, which is at the confluence of three 
tectonic plate points, is known as the Ring of Fire 
[1], resulting in many active volcanoes in 
Indonesia. From Sabang to Merauke, Indonesia is 
surrounded by active volcanoes totalling roughly 
130 [2]. The impact of this geographic location 
includes volcanic eruptions that can occur at any 
time. One of the active and dangerous volcanoes in 
Indonesia is Mount Merapi [3], [4]. 

Mount Merapi is a type of stratovolcano with an 
altitude of 2980 meters above sea level, located 25 - 
30 km north of the city of Yogyakarta at 7'32.5' 
south latitude and 110'26.5' east longitude, 
administratively located in 4 districts, namely 
Sleman Regency in Yogyakarta Province, and 

Magelang Regency, Boyolali Regency, and Klaten 
Regency in Central Java Province [5]. 

From the end of the 20th century until the 
beginning of the 21st century, there was an eruption 
every 2 - 5 years at Mount Merapi, where the most 
significant eruption occurred in 2010, the last 100 
years. The 2010 eruption started with a solid 
phreatomagmatic event on 26 October. It reached a 
climax eruptive phase on the night of 4 – 5 
November by producing vertical ash and 
pyroclastic density currents through the area on the 
volcano’s south side towards Yogyakarta [6].  

Monitoring volcanic activity is an initial activity 
to assess risk and provide early warning if there is 
an initial volcanic eruption, primarily intended to 
warn people living in areas around high-risk 
volcanoes [7]. Seismic waveform data is time series 
data, which can be detected using time series 
analysis. Time series analysis can be classified into 
three types: 1) Short-Term Average / Long-Term 
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Average (STA/LTA), 2) template matching, and 3) 
autocorrelation/cross-correlation [8].  

Machine learning (ML) has been implemented in 
seismology in recent years, with various 
applications used to identify invisible signals and 
patterns and extract information features to increase 
understanding related to seismology [9]. On the 
other hand, the use of ML in seismology cannot 
stop volcanic eruptions, but it plays an essential 
role in processing seismic signal data to convey 
information related to volcanic activity. Although 
the application of ML has progressed, there are still 
challenges in its implementation in seismology. 

In this study, the ML model proposed by [10], 
[11] automatically classifies seismic signals related 
to volcanic activity by labelling the dataset to detect 
an event. Other studies related to monitoring 
volcanic activity using several ML models to 
analyze seismic signal data were carried out by [12, 
13, 14], resulting in different levels of accuracy for 
each model applied using seismic signal data using 
the time waveform, frequency spectrum, and 
cepstrum methods with various frequencies ranging 
from 0.5 HZ – 15 HZ to sort out the arrival of the P 
wave signal with class features that have been 
classified in advance by the type of vibration. 

The challenges of implementing ML in 
seismology include processing volcano observation 
data, which is mainly done manually; this process 
should be done automatically. In the detection 
phase, it is generally carried out semi-automatically 
or automatically. In contrast, the classification 
phase is usually carried out manually, which is 
time-consuming and, depending on the user, will 
result in the level of accuracy [10], [12], [15]. 
Another thing that needs to be considered is the 
poor quality of the geophysical dataset for use as 
sampling data, causing interference and incomplete 
data, which is difficult to apply using standard ML 
techniques and can result in poor detection and 
classification performance [9], [13]. 

Based on the challenge of ML, the motivation of 
the research is to build a prediction model for 
detecting and classifying seismic events using 
seismic signal data for volcanic eruption prediction. 
This research aims to detect and classify seismic 
events using seismic signal data with noise 
detection and classification in time series analysis 
and machine learning with more accurate results 
than other proposed ML mentioned before when 
classified data.  

 

Specifically, this research will test the 
performance of automatically predicting volcanic 
eruption status using a modified ML architectural 
model and measure the level of performance and 
accuracy. The model shows us that limited data can 
give better results than other ML methods, which 
generally use extensive data for detection and 
classification. Data taken within a certain period 
continuously comes from raw seismic data to obtain 
data completeness, including the number of events 
from daily observations.  

 
2. DATA ANALYSIS 

 

The use of machine learning in seismology has 
experienced significant developments, which can 
be proven by various research studies related to this 
field. Research in seismology using ML has been 
applied in multiple ways, including monitoring 
volcanoes, earthquake prediction, predicting 
volcanic eruption status, detecting, and classifying 
seismic vibration [10]. The data used in this study 
comes from seismic signal data that is processed 
using time series analysis and the ML model. 

Although ML provides a tool to extract and 
process information from seismic signal data, 
distinguishing true or false and the noise of an 
event requires a trial phase, testing, and application 
of the ML model to differentiate it. The 
experiments used a data primer obtained from one 
of Indonesia's mountains, namely Mount Merapi, as 
mentioned in chapter 1. The data collected comes 
from stations around Mount Merapi every day from 
2019 to 2021 for collection. 

 
Seismic signal preprocessing data removes poor 

signal quality from this study's seismic signal data 
database. To find inconsistencies in the seismic 
signal database, it is necessary to re-check with the 
help of people with knowledge of seismology. Not 
all events recorded by observation stations can 
adequately be observed about volcanic activity. 

 
From this, it is necessary to carry out a visual 

check to determine whether the event has been 
appropriately labelled or not, and this process will 
be more straightforward if the signal quality is 
more robust when compared to the noise level 
around the seismic signal. Patterns in seismic signal 
classification are made by dividing the dataset 
manually into smaller pieces (with different 
durations). Each extracted segment is then 
classified into a particular class according to the 
nature of the underlying physical event (reference 
class). 

 



 Journal of Theoretical and Applied Information Technology 
31st May 2024. Vol.102. No. 10 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4561 

 

Seismic signal data contains information about 
volcanic activity (events) and can be classified into 
different event types based on waveform and 
spectrum. We examine seismic event data before 
categorizing them based on data type with the help 
of experts in the field of seismology. From the 
results of the data categorization, seismic events 
were classified into eight classes, as shown in Table 
1. The total data used was around 2500 from 
monitoring stations around Mount Merapi after data 
categorization. 

 
Table 1: Type Of Data Seismic Events 

No. Type of Data Seismic Events 
1. AP 
2. DG 
3. Low Frequency 
4. Multiple Phase 
5. Rockfalls 
6. Tremor 
7. VT-A 
8. VT-B 

 
 
3. RELATED WORKS 

3.1. Event Detection 

In recent years, research on event detection for 
volcanic eruptions has been carried out to detect an 
event on a volcano, which can detect true or false 
events using noise detection and classification of 
volcanic seismic events on volcanoes. 

 
In 2019, research was carried out regarding the 

detection and classification of continuous seismic 
signals for seismic events with the help of the ML 
static model to process data from waveforms using 
several parameters [15]. The research only worked 
for five classes of seismic events data type. 
Classifying eruptive and non-eruptive data is a 
research topic [14] based on volcanic time series 
data by comparing the level of accuracy of the four 
statistical models from the ML used but still not 
implemented with large datasets. 

 
Research conducted by [16] modified the ML 

model to process seismic signal data with the help 
of the polarization analyzer feature for use in areas 
with moderate levels of seismicity. The accuracy of 
the proposed method is still weak. Accurate seismic 
phase detection and identification is essential for 
detecting and estimating seismic events parameters. 
In identifying seismic phases, distinguishing 
between identification for noise and accurate 
seismic signals is very important [17]. The research 
only used a small dataset for the experiments. 

 

An experiment to detect volcanic ash was 
implemented to detect it using a machine-learning 
model [18]. The process needs more time when 
used to detect volcanic ash. It can still be improved 
for time processing. Therefore, an automatic 
detection method is needed to distinguish true or 
false volcanic seismic events efficiently and 
accurately. 

 
3.2. Event Classification 

Volcano event classification classifies a 
volcano’s seismic events, whether included in the 
normal, waspada, siaga, or awas categories. 

Research by [10] uses data from waveform 
seismic events with six parameters to classify a 
signal automatically. The experiments only used six 
classes of type seismic events. Time series analysis 
is applied to process seismic signal data with the 
wavelet transform model using four parameters for 
seismic signal classification carried out in research 
[19]. The research only aims to detect and classify 
four classes of type seismic events.  

Classification of seismic signals in research [12] 
uses the features of the time waveform, the 
spectrum, and the cepstrum from the waveform 
data for signal classification. The automatic 
classification of a seismic signal is a challenge in 
research development, where most of it is still done 
manually in the process, while for automatic 
recognition, an automated recognition model 
related to events from a volcano is needed [12].   
The results of the experiments show lower accuracy 
when used for detection and classification. 

 
4. METHODOLOGY 

4.1. Workflow Model for Detection and 
Classification 

Figure 1 shows a model's workflow for 
predicting a volcano eruption's status. Data from 
seismic signals will be detected first to distinguish 
true or false events using noise detection at the 
event detection stage and at low seismic signals and 
medium seismic signals with time series analysis 
before proceeding to the following process, namely 
seismic signal data preprocessing and signal data 
feature extraction process seismic at the 
classification stage of a seismic signal to classify 
seismic signal data and followed by a learning 
process with machine learning to process seismic 
signal data.  The training and model testing phase is 
carried out next to try a model for predicting the 
status of volcanic eruptions. After all the processes 
have been carried out, it is expected to produce a 
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model that has been validated to detect and classify 
the status of data seismic events with more optimal 
results daily. 

 

Figure 1: Workflow Model Detection and Classification 

4.2.  STA/LTA Algorithm 

Short Term Amplitude (STA) / Long Term 
Amplitude (LTA) is a typical technique for 
earthquake detection, shown in Figure 2. This is 
derived from the results of human detection 
(experts), where a fundamental change in amplitude 
indicates a potential earthquake and can be 
identified visually. STA/LTA has two critical 

parameters: the length of the short term window 
and the length of the long-term window. Standard 
parameter selections may have a short-term 
window of three seconds and a long-term window 
of thirty seconds. The choice of the third parameter 
can be used to change the overlap of the short-term 
window and the tail end of the long-term window 
[8]. 

 

 

Figure 2:  STA/LTA Algorithm 

STA / LTA (with proper alignment) has the 
following equation: 

       (1) 

 
 

  

  

 
STA/LTA does not rely on previous data, 

making it useful when a new station is created and 
no prior data is stored. STA/LTA is beneficial 
because it has no prerequisites, is linear with a time 
complexity of O(n) and can recognize signals with 
unique characteristics. However, it relies on a high 
signal-to-noise ratio to be effective. 

4.3.  Detection of Signal Seismic 

Detection of seismic signal data is the initial 
stage for processing seismic waveform data from a 
volcano observation station. Effective detection can 
save time and effort in obtaining data related to the 
stages and locations of events, especially in areas 
with moderate seismic activity on a local or 
regional scale [16]. Detecting a seismic signal is a 
time series analysis process or matching a pattern 
from seismic waveform data [8] to detect or 
distinguish true or false a volcanic seismic event in 
the presence of noise.  

The process of detecting (event detection) 
seismic signals is usually carried out by applying a 
threshold equal to the seismic amplitude ratio 
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between the short-term average (STA) and the 
long-term average (LTA) of the seismic signal 
amplitude, where STA/LTA is one approach to 
time series analysis [20]. The number of 
disturbance samples (noise) must be several times 
greater than the number of occurrences within an 
incident, and the number of disturbances for each 
station must be the same [15].  

To detect an event, it is necessary to 
continuously obtain the probability of occurrence 
from time to time from each observation station 
around Mount Berapau so that all activities can be 
combined to declare an event. The goal is to 
establish that a genuine seismic event occurred. The 
original seismic event is sufficient to determine 
whether the event is true or false (true or false) of a 
seismic event. It can be defined as grouping an 
event with the noise level of seismic signal data 
[21]. 

4.4.  Data Preprocessing of Data Seismic Events 

Seismic signal preprocessing data removes 
poor signal quality from the seismic signal data 
database for this study. To find inconsistencies in 
the seismic signal database, it is necessary to re-
check with the help of people who know the field 
of seismology. Not all events recorded by 
observation stations can adequately be observed 
about volcanic activity. 

From this, it is necessary to carry out a visual 
check to determine whether the event has been 
appropriately labeled or not, and this process will 
be more straightforward if the signal quality is 
more robust when compared to the noise level 
around the seismic signal. Patterns in seismic signal 
classification are done by dividing the dataset 
manually into smaller pieces (with different 
durations). Each extracted segment is then 
classified into a particular class according to the 
nature of the underlying physical event (reference 
class). Data seismic events are shown in Table 1, 
chapter data analysis. 

4.5.  Data Signal Seismic 

Volcanic activity data collection was obtained 
from observation stations around the volcano. This 
study will use primary data from the Geological 
Disaster Technology Research and Development 
Center (BPPTKG) at the Mount Merapi observation 
station in Yogyakarta at several observation 
stations. 

Seismic signal data related to its activity is 
collected from observation stations around Mount 
Merapi within a certain period. Data is taken with 

conditions at a frequency between 0.5 HZ – 50 HZ. 
The data collected in the form of related images 
from the activity of Mount Merapi, which is used as 
the object of this research, is shown in Figure 3. 

 
Figure 3: Example Data Seismic 

 
4.6.  Long Short Term Memory (LSTM) 
 

An RNN called the Long Short Term Memory 
(LSTM) algorithm was put out by [21]. An artificial 
neural network with memory states included is 
called an RNN. RNN may handle time series data 
as they often include interdependencies. Still, 
Conventional RNN are untrainable because of their 
disappearing and exploding gradients, which 
renders them subpar solutions. An LSTM can solve 
the RNN puzzle. It has three essential parts that are 
referred to as gates. The input gate, forget gate, and 
output gate are these. There are also two memory 
cells: internal and concealed [23]. 

Figure 4:  Long Short-Term Memory (LSTM) 
Architecture 

In the area of seismic events, LSTM has been 
used for a variety of purposes, such as the 
introduction of seismic events [24], the detection of 

P waves in seismic event data [25], the prediction 
of seismic events [26], and the introduction of 
seismic events [27].  

The technique was selected due to its ability to 
simulate long-term dependencies, delete or add 
information from memory cell states, and represent 
the dynamics of changing signal timings [28]. 

5. RESULTS 
AND 
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DISCUSSIONS  
 

In this stage, detection and classification will 
be built to detect true or false events using noise 
detection and automatically classify the 
classification of seismic signal data for volcano 
eruption prediction. At this stage, data 
identification and feature extraction will be carried 
out. The data obtained is analyzed to determine 
whether it is sufficient to build the expected 
machine learning model or not. Conducting data 
cleansing to train the best machine learning model 
to get the best detection and classification of data 
seismic events. For this experiment, the seismic 
data will be divided into eight classes of seismic 
event data. 

 
For input, the ML model input can be defined 

as follows: 
 AP                                         
 DG 
 LF 

 = MP                            (2) 
RF 

 TR 
 VTA 
 VTB 

Data analysis is also carried out related to the 
results of data classification by involving people 
who are experts in the field of seismology. When 
testing data that has been carried out repeatedly, it 
is necessary to test data validation to get the most 
optimal results from the model that is built. The 
stages in training and testing the model detection 
and classification of seismic events.  

Results of training and validation accuracy of 
Classic LSTM using a learning rate of 0.001 are 
shown in Figure 5, Figure 6, Figure 7, and Figure 8 

Figure 5: Training and Validation Accuracy Epochs 
25 Classic LSTM 

Figure 6: Training and Validation Accuracy Epochs 50 
Classic LSTM 

Figure 7: Training and Validation Accuracy Epochs 75 
Classic LSTM 

Figure 8: Training and Validation Accuracy Epochs 100 
Classic LSTM 

Figure 5, Figure 6, Figure 7, and Figure 8 show 
the training and accuracy results of Classic LSTM 
using epochs between 25 and 100, producing an 
accuracy between 0.73 and 0.77. 

The training and validation accuracy results for 
Vanilla LSTM with a learning rate of 0.001 are 
shown in Figure 9, Figure 10, Figure 11, and Figure 
12. 

Figure 9: Training and Accuracy Loss Epochs 25 
with Vanilla LSTM 

 
 

Figure 10: Training 
and Validation 

Accuracy Epochs 50 
Vanilla LSTM 
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Figure 11: Training and Validation Accuracy Epochs 75 
Vanilla LSTM 

 

Figure 12: Training and Validation Accuracy Epochs 
100 Vanilla LSTM 

Figure 9, Figure 10, Figure 11, and Figure 12 
show the training and accuracy results for Vanilla 
LSTM with epochs from 25 to 100, with accuracies 
ranging from 0.76 to 0.78. 

BiLSTM with a 0.001 learning rate training and 
validation accuracy results are displayed in Figure 
13, Figure 14, Figure 15, and Figure 16. 

 
Figure 13: Training and Accuracy Loss Epochs 25 with 

BiLSTM 

 

Figure 14: Training and Accuracy Loss Epochs 50 
with BiLSTM 

 

Figure 15: Training and Accuracy Loss Epochs 75 
with BiLSTM 

Figure 16: Training and Accuracy Loss Epochs 100 
with BiLSTM 

 

The training and accuracy results for the 
BiLSTM with epochs ranging from 25 to 100 and 
accuracies between 0.77 and 0.80 are displayed in 
Figure 13, Figure 14, Figure 15, and Figure 16. 

The results of detection and classification are 
shown in Table 2. 

Table 2 shows the results of experiments on the 
detection and classification of seismic signals for 
volcano eruption prediction for training and 
validation accuracy of the data used. The Classic 
LSTM model at epochs 25 produces an output of 
0.73 compared to the Vanilla LSTM model, which 
produces a result of 0.77, which is the same as the 
BiLSTM model. At epochs 50, Classic LSTM gave 
the lowest results at 0.76, a difference of 0.1 points 
when compared to the results from the Vanilla 
LSTM model at 0.77, but this was still below the 
results from the BiLSTM model at 0.78. 

 

Table 2: Average Test Accuracy for Detection and 
Classification with Learning Rate 0,001 

No Model Epochs Average Test 
Accuracy 
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1 Classic LSTM 25 0,73 

2 Classic LSTM  50 0,76 

3  Classic LSTM 75 0,77 

4 Classic LSTM  100 0,77 

5 Vanilla LSTM 25 0,76 

6  Vanilla LSTM 50 0,77 

7 Vanilla LSTM  75 0,78 

8 Vanilla LSTM  100 0,78 

9 BiLSTM 25 0,77 

10  BiLSTM 50 0,78 

11  BiLSTM 75 0,79 

12  BiLSTM 100 0,8 
 

Meanwhile, in epochs 75 Classic LSTM gave a 
result of 0.77, which is slightly different from the 
results with the Vanilla LSTM and BiLSTM 
models with a difference between 0.1 - 0.2, for 
Vanilla LSTM it gave a result of 0.78 and BiLSTM 
at 0, 79. For epochs 100, BILSTM gives the best 
results compared to Classic LSTM and Vanilla 
LSTM with results of 0.80 compared to other 
models at 0.77 for Classic LSTM and 0,78 for 
Vanilla LSTM. 

Another experiment we used for detection and 
classification using a learning rate of 0,01 to 
compare with a learning rate of 0,001 using mode 

Classic LSTM, Vanilla LSTM, and BiLSTM.  

The Classis LSTM with a learning rate of 0.01 
results are shown in Figure 17. 

 

Figure 17: Training and Validation Accuracy 
Epochs 25 Classic LSTM 

The training and accuracy results of the Classic 
LSTM employing epochs ranging from 25 to 100 
are displayed in Figure 17, Figure 18, Figure 19, 
and Figure 20, with accuracy of 0.72 to 0.76. 

 

Figure 18: Training and Validation Accuracy Epochs 50 
Classic LSTM 

 

Figure 19: Training and Validation Accuracy Epochs 75 
Classic LSTM 

 

 

Figure 20: Training and Validation Accuracy Epochs 
100 Classic LSTM 

Figure 21, Figure 22, Figure 23, and Figure 24 
display the training and validation accuracy results 
for a Vanilla LSTM with a learning rate of 0.01. 
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Figure 21: Training and Validation Accuracy Epochs 
25 Vanilla LSTM 

 
Figure 22: Training and Validation Accuracy Epochs 

50 Vanilla LSTM 
 

Figure 23: Training and Validation Accuracy Epochs 75 
Vanilla LSTM 

Figure 24: Training and Validation Accuracy Epochs 
100 Vanilla LSTM 

Figure 17, Figure 18, Figure 19, and Figure 20 
show the training and accuracy results of the 
Classic LSTM with epochs ranging from 25 to 100, 
with an accuracy of 0.75 to 0.78. 

Figure 25, Figure 26, Figure 27, and Figure 28 
display the accuracy results for training and 
validation of the BiLSTM model with a learning 
rate of 0.01.  

Figure 25: Training and Validation Accuracy Epochs 25 
BiLSTM 

 

Figure 26: Training and Validation Accuracy Epochs 50 
BiLSTM 

Figure 27: Training and Validation Accuracy Epochs 75 
BiLSTM 
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Figure 28: Training and Validation Accuracy Epochs 
100 BiLSTM 

 

Figure 25, Figure 26, Figure 27, and Figure 28 
show the training and accuracy results for the 
BiLSTM with epochs ranging from 25 to 100 and 
accuracies between 0.77 and 0.80. 

Table 3 displays the outcomes of the detection 
and classification processes. 

Table 3 displays the findings from tests on the 
detection and categorization of seismic signal data 
for training and validation. At epoch 25, the 
conventional LSTM model provides an output of 
0.72, while the vanilla LSTM model produces a 
result of 0.75, which is identical to the BiLSTM 
model. At epoch 50, the Classic LSTM model had 
the lowest results at 0.74, a 0.2 point difference 
from the Vanilla LSTM model at 0.76. However, 
this was still lower than the BiLSTM model at 0.78, 
with a value difference of roughly 0.2. Meanwhile, 
in epochs 75, Classic LSTM produced a result of 
0.75, which differs significantly from the results of 
the Vanilla LSTM and BiLSTM models by 0.01 - 
0.02; Vanilla LSTM produced a result of 0.77, 
while BiLSTM produced 0.79. For epochs 100, 
BILSTM outperforms Classic LSTM and Vanilla 
LSTM with results of 0.80, whereas Classic LSTM 
and Vanilla LSTM produce 0.77 and 0.78, 
respectively.  

 
Table 3: Average Test Accuracy for Detection and 

Classification with Learning Rate 0,01 

No Model Epochs 
Average Test 

Accuracy 

1 Classic LSTM 25 0,72 

2 Classic LSTM 50 0,74 

3 Classic LSTM 75 0,75 

4 Classic LSTM 100 0,76 

5 Vanilla LSTM 25 0,75 

6 Vanilla LSTM 50 0,76 

7 Vanilla LSTM 75 0,77 

8 Vanilla LSTM 100 0,78 

9 BiLSTM 25 0,77 

10 BiLSTM 50 0,78 

11 BiLSTM 75 0,79 

12 BiLSTM 100 0,8 
 
Table 3 displays the findings from tests on the 

detection and categorization of seismic signal data 
for training and validation. At epoch 25, the 
conventional LSTM model provides an output of 
0.72, while the vanilla LSTM model produces a 
result of 0.75, which is identical to the BiLSTM 
model. At epoch 50, the Classic LSTM model had 
the lowest results at 0.74, a 0.2 point difference 
from the Vanilla LSTM model at 0.76. However, 
this was still lower than the BiLSTM model at 0.78, 
with a value difference of roughly 0.2. Meanwhile, 
in epochs 75, Classic LSTM produced a result of 
0.75, which differs significantly from the results of 
the Vanilla LSTM and BiLSTM models by 0.01 - 
0.02; Vanilla LSTM produced a result of 0.77, 
while BiLSTM produced 0.79. For epochs 100, 
BILSTM outperforms Classic LSTM and Vanilla 
LSTM with results of 0.80, whereas Classic LSTM 
and Vanilla LSTM produce 0.77 and 0.78, 
respectively.  

 
The research is focused on building a model for 

detection and classification to predict volcano 
eruption using time series analysis, which is  
STA/LTA, and machine learning (LSTM). Based 
on the experiments, the model that we built gives 
better results when detecting and classifying 
seismic events using a small dataset. The accuracy 
reached point 0,80.  

 
The model we build combines time series 

analysis and machine learning, which is LSTM, to 
detect and classify signals of seismic events, 
showing that the model can recognize seismic 
events that are already classified in the eight major 
categories better using the model we build. The 
experiments show that for events using a small 
dataset, the model gives an accuracy of around 
0,80.   

 
6. CONCLUSIONS 
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From the experimental results, we can conclude 
that the model we propose, namely STA LTA  and 
BiLSTM, shows better results when used for 
detecting and classifying seismic events for volcanic 
eruption prediction using epochs 25 – 100. It can be 
concluded that although it can be recognized using 
small seismic event data, the model we propose, 
namely STA/LTA and BiLSTM, shows better 
results. At epochs 25, it gives a result of 0.77, 
whereas at epochs 50, it shows a result of 0.78. 
Meanwhile, for epoch 75, it was at 0.79, and the 
accuracy at epoch 100 was 0.80. the level of 
accuracy may be further improved by increasing the 
amount of data and modifying the machine learning 
models we use. The open issue of this research is 
how to use another time series analysis and machine 
learning to detect and classify seismic events and 
how accurate it is when using large datasets. 

Future work of this research is to improve the 
accuracy of the detection and classification model of 
seismic event data using more datasets or different 
datasets to classify and detect seismic events. Other 
work in the future is to build a parallel volcanic 
eruption status model by adding larger seismic event 
data to obtain more precise results in terms of 
determining the volcanic eruption status. 
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