
 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4774

REVOLUTIONIZING COTTON FARMING: CO-CNN
INTEGRATION FOR DISEASE IDENTIFICATION AND

YIELD PREDICTION

S.GOVINDASAMY1, D.JAYARAJ2

1Research Scholar, Department of Computer & Information Science, Annamalai University,
Chidambaram, Tamilnadu, India.

2Assistant Professor, Department of Computer Science Govt. Arts & Science College,
Vadalur, Tamilnadu, India.

E-mail: 1govindasamy1412@gmail.com, 2jayarajvnr@gmail.com

ABSTRACT

In agriculture, accurate identification of cotton plant diseases and prediction of yield are crucial for
ensuring crop health and optimizing production. This abstract explores the integration of Cassowary
Optimization (CO) with Convolutional Neural Networks (CNNs) to enhance cotton plant disease
identification and yield prediction. The CO-CNN framework demonstrates superior performance in
accurately classifying instances and capturing underlying patterns in the data. By leveraging the dynamic
optimization capabilities of CO, the model effectively optimizes CNN parameters, leading to improved
convergence and performance. Results across various performance metrics, including Classification
Accuracy, F-Measure, Fowlkes-Mallows Index, and Matthews Correlation Coefficient, showcase the
efficacy of the CO-CNN model in addressing the complexities of real-world classification tasks. This
innovative approach holds significant promise for empowering farmers and agronomists with advanced
tools for early disease detection, yield prediction, and informed decision-making in crop management.

Keywords: Cotton Plant Disease - Yield prediction – CNN – Cassowary Optimization – Disease Identification.

1. INTRODUCTION

Agriculture the backbone of many
economies worldwide, encompasses a diverse array
of practices aimed at cultivating crops and rearing
livestock. Among these practices, cotton farming
holds significant importance due to cotton's
versatility and widespread use in various industries.
Cotton farming involves meticulous planning, from
soil preparation to harvest, to ensure optimal
growth and yield[1]. However, one persistent
challenge faced by cotton farmers is the prevalence
of leaf diseases. These diseases, caused by various
pathogens such as fungi, bacteria, and viruses, can
significantly impact cotton plants' health and
productivity[2]. Among the most common leaf
diseases affecting cotton plants are Fusarium wilt,
Alternaria leaf spot, and bacterial blight. Fusarium
wilt, caused by the fungus Fusarium oxysporum,
leads to wilting and eventual death of the plant[3].
Alternaria leaf spot, caused by the fungus
Alternaria alternata, manifests as dark lesions on
leaves, reducing photosynthetic capacity[1].
Bacterial blight, caused by the bacterium
Xanthomonas campestris pv. malvacearum, results
in water-soaked lesions and defoliation[4].

Managing leaf diseases in cotton farming
requires a combination of preventive measures and
timely interventions. These may include crop
rotation, use of disease-resistant varieties, proper
sanitation practices, and application of fungicides
or bactericides when necessary. By implementing
effective disease management strategies, cotton
farmers can mitigate the impact of leaf diseases and
sustainably improve their crop yields[5].

In modern agricultural practices, advanced
technologies play a pivotal role in disease
identification and crop yield prediction. One such
technology is Convolutional Neural Networks
(CNN), a type of deep learning algorithm used for
image recognition and analysis. CNNs are adept at
analyzing vast amounts of agricultural data,
including images of crops and diseased plants
captured by drones or sensors[6]. By examining
intricate patterns and features within these images,
CNNs can accurately identify various diseases
affecting crops. This capability enables farmers to
swiftly detect and respond to disease outbreaks,
thus minimizing crop losses and ensuring optimal
yields[7].

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4775

CNNs are instrumental in predicting crop
yields by analyzing factors such as weather
patterns, soil quality, and historical yield data[8].
By processing these diverse datasets, CNNs can
generate predictive models that forecast crop yields
with remarkable precision. This predictive
capability empowers farmers to make informed
decisions regarding planting schedules, irrigation
strategies, and resource allocation, ultimately
maximizing crop productivity and profitability[9].

Bio-inspired computing enhances CNN by
mimicking biological processes. Drawing
inspiration from nature, algorithms emulate
behaviors observed in living organisms [10]–[29].
For instance, genetic algorithms simulate natural
selection to optimize CNN parameters[30].
Similarly, swarm intelligence algorithms replicate
the collective behavior of organisms like ants or
bees to improve CNN efficiency. These bio-
inspired approaches offer novel solutions to
enhance CNN performance, enabling more accurate
disease identification and crop yield prediction in
agriculture. By integrating principles from the
natural world, bio-inspired computing contributes
to the advancement of CNN technology in
agricultural applications [31].

1.1. Problem Statement

In agricultural practices, the accurate
identification of crop diseases and prediction of
crop yields are paramount for ensuring optimal
productivity and mitigating losses. Conventional
methods for disease identification and yield
prediction often lack efficiency and precision.
Challenges arise from the complexity of analyzing
vast datasets comprising diverse environmental
factors and crop conditions. Existing approaches
may struggle to adapt to dynamic changes in
disease patterns and environmental variables. To
address these issues, leveraging CNN in
conjunction with bio-inspired computing offers a
promising solution. By harnessing principles
inspired by natural systems, such as genetic
algorithms and swarm intelligence, CNNs can
enhance their ability to analyze intricate patterns
within agricultural data.

1.2. Motivation

The challenges posed by inaccurate
disease identification and crop yield prediction in
agriculture demand innovative solutions.
Conventional methods fall short in effectively
harnessing the wealth of data available and
adapting to dynamic environmental conditions.
Hence, there arises a pressing need to explore

alternative approaches that can revolutionize
agricultural practices. By leveraging the power of
CNN and incorporating principles inspired by
nature through bio-inspired computing, we aim to
address these challenges head-on. Through this
interdisciplinary approach, we strive to enhance the
precision and efficiency of disease identification
and yield prediction, thus empowering farmers to
make informed decisions and optimize crop
productivity.

1.3. Objectives

The objective of this research initiative is
to develop innovative solutions for improving
disease identification and crop yield prediction in
agriculture. Drawing from the challenges outlined
in the introduction, we are motivated to explore
alternative approaches that can revolutionize
agricultural practices. By leveraging CNN and
integrating principles inspired by nature through
bio-inspired computing, our aim is to enhance the
precision and efficiency of disease identification
and yield prediction. Through interdisciplinary
collaboration and leveraging advanced
technologies, we aspire to empower farmers with
tools and insights to make informed decisions and
optimize crop productivity. Ultimately, the
objective is to contribute to a more sustainable and
resilient agricultural future by addressing critical
issues faced by farmers worldwide.

2. LITERATURE REVIEW

“Lightweight Inception Networks” [32]
involve the utilization of Inception Networks,
architecture for a deep neural network, for disease
recognition and detection tasks in rice plants. The
Inception Network’s lightweight version is
designed to balance model complexity and
computational efficiency, making it suitable for
resource-constrained environments. The network is
trained on a labelled rice plant image dataset
covering various disease types. By leveraging the
power of Inception Networks, the approach
captures and learns discriminative features from the
input images, enabling accurate disease recognition
and detection. The lightweight design of the
network ensures efficient inference and facilitates
real-time applications. “IoT-Based Pattern
Recognition” [33] combines multiple classification
algorithms to form an ensemble model that
collectively predicts crop disease patterns. The
system utilizes IoT devices like sensors and
cameras to collect real-time data from the fields.
The collected data is then processed and analyzed
using pattern recognition techniques to identify and

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4776

classify crop diseases. The ensemble model
aggregates the outputs of individual classifiers to
make accurate and robust predictions. The system
enables remote monitoring and timely intervention
in crop disease management by leveraging IoT
technology. Combining ensemble classification and
IoT-based pattern recognition provides a
comprehensive and efficient approach to crop
disease monitoring, contributing to improved
agricultural practices and higher crop yields.

“EfficientNetV2” [9] employs the
EfficientNetV2 model, a state-of-the-art deep
neural network architecture, for disease detection in
cardamom plants. The model is trained on a
labelled cardamom leaf image dataset covering
various disease types. EfficientNetV2 captures and
learns discriminative features from the input
images, enabling accurate disease detection. By
leveraging the power of deep learning, the approach
offers a robust solution for identifying and
classifying cardamom plant diseases. The
EfficientNetV2 model’s architecture balances
model complexity and computational efficiency,
facilitating real-time disease detection applications.
“Soil Sensors-Based Prediction System” [34]
involves collecting data from soil sensors, which
measure various parameters related to soil health
and environmental conditions. The collected data is
subjected to exploratory analysis to uncover
patterns and relationships between soil factors and
plant diseases. Machine learning algorithms are
then employed to develop predictive models based
on the analyzed data. These models learn from
historical data to predict the occurrence and
severity of plant diseases. By integrating soil sensor
data, exploratory data analysis, and machine
learning, the system provides an effective tool for
early detection and prevention of plant diseases.

“Northern Maize Leaf Blight Detection”
[5] leverages convolutional neural networks
(CNNs) to analyze leaf images and accurately
identify disease symptoms. The system achieves
high detection accuracy by employing a pre-trained
CNN model while handling complex field
environments effectively. The proposed approach
effectively extracts discriminative features from the
input images and learns to differentiate between
healthy and infected maize leaves. Deep learning
enables robust and efficient detection of NMLB,
which is crucial for timely intervention and disease
management. The model’s ability to handle
complex field conditions enhances its applicability
in real-world scenarios, improving the overall
accuracy and reliability of Northern Maize Leaf
Blight Detection. “Single Stream Modified

MobileNet” [35] is designed as a single stream
network, enabling efficient feature extraction and
classification. The whale-controlled entropy-based
optimization technique further enhances the
performance by fine-tuning the model’s parameters.
By leveraging this framework, accurate recognition
of citrus fruit diseases can be achieved. The
modified MobileNet V2 architecture effectively
captures relevant features from the input images,
while the optimization framework ensures optimal
parameter adjustments for improved classification
accuracy. Combining these techniques results in a
robust and efficient system for disease recognition
in citrus fruits.

“Deep Neural Network Model” [36]
utilizes a convolutional neural network (CNN) to
analyze images and accurately identify disease
symptoms in citrus fruits and leaves. By training
the CNN model on a large dataset of annotated
images, the system learns to distinguish between
healthy and infected samples with high accuracy.
The deep neural network architecture enables
extracting meaningful features from the input
images, helping reliable disease detection. This
approach offers a robust and automated solution for
disease identification in citrus fruits and leaves,
which is crucial for timely intervention and disease
management. Using deep learning techniques
enhances the accuracy and efficiency of disease
detection, making it a valuable tool for the
agricultural industry. “Deep Features Extraction
Model” [37] combines transfer learning and the
Vision Transformer model to effectively extract
discriminative features from plant images. By
leveraging a pre-trained model and fine-tuning it on
a dataset of labelled plant images, this model
achieves high accuracy in classifying different plant
diseases. The transfer learning technique enables
the model to leverage knowledge from large-scale
datasets, while the Vision Transformer architecture
captures spatial relationships in the input images.
Combining these techniques results in a robust and
efficient model for plant disease classification.

“Grape Leaf Esca Disease Detection” [38]
utilizes a compressed CNN model, reducing
computational complexity while maintaining high
detection accuracy. By leveraging this lightweight
model, the system achieves real-time detection of
Esca disease in grape leaves. The low-cost and low-
power design makes it suitable for deployment in
resource-constrained environments. The
compressed CNN effectively analyzes input images
and identifies disease symptoms, providing
accurate and timely detection of Esca disease.
“Grape Leaf Spot Identification” [39] leverages the

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4777

power of GANs to generate synthetic samples that
closely resemble the limited available dataset.
Training the GAN model on a small number of
labelled images, it learns to create real examples of
grape leaf spots, enhancing the training data. The
fine-grained GAN architecture captures the intricate
details of the disease symptoms, enabling accurate
identification of grape leaf spots. This approach
addresses the challenge of limited samples by
augmenting the dataset with synthetic samples,
thereby improving the robustness and reliability of
the classification model. Using fine-grained GANs
in grape leaf spot identification expands the
possibilities of disease detection under constrained
data conditions, providing valuable insights for
agricultural disease management.

“Huanglongbing Detection Method” [40]
leverages the power of deep neural networks to
analyze leaf images and accurately identify HLB
symptoms. The model is trained on a large dataset
of annotated images by utilizing transfer learning,
enabling it to learn relevant features and patterns
associated with HLB. This transfer learning
approach enhances the model’s ability to detect
HLB even with limited training data. The deep
neural network architecture effectively extracts
discriminative features from the input images,
improving the accuracy and reliability of HLB
detection. “RiceBioS” [41] utilizes edge computing
technology to analyze real-time data collected from
rice fields. The system can detect and classify
various biotic stress factors affecting rice crops by
deploying edge devices with advanced sensors and
image processing capabilities. The Edge-as-a-
Service model ensures efficient data processing and
analysis at the edge, reducing latency and enabling
timely decision-making for farmers. The RiceBioS
approach empowers farmers with quick and
accurate identification of biotic stress, allowing
them to take proactive measures to mitigate the
damage. By harnessing the power of Edge-as-a-
Service, RiceBioS enhances the resilience and
productivity of rice farming while supporting
sustainable agricultural practices.

“Random Forest (RF)” [42] has become
widely adopted for identifying cotton leaf diseases
due to its resilient operational framework. This
method utilizes a collection of decision trees, each
trained on a random segment of the training dataset.
During classification, RF amalgamates the
predictions from all trees to formulate the final
decision. This ensemble method mitigates the
influence of individual trees, enhancing the
accuracy and dependability of disease
identification. RF introduces variability by

choosing a subset of input features at each node,
bolstering its resilience and capacity for
generalization. In the realm of cotton leaf disease
identification, RF has demonstrated exceptional
performance in precisely categorizing various
disease types based on their symptomatic patterns.
Its proficiency in managing high-dimensional data,
handling missing values, and offering insights into
feature significance renders it an invaluable tool for
automated disease identification and agricultural
decision-making.

“Support Vector Machines (SVM)” [43]
have garnered considerable interest in the realm of
cotton leaf disease identification owing to their
robust operational framework. SVM functions by
projecting the input data into a higher-dimensional
feature space via a kernel function, aiming to
ascertain an optimal hyperplane that effectively
segregates various disease classes with maximal
margin. SVM achieves superior generalization and
adeptly manages intricate relationships between
disease symptoms and their respective classes.
Additionally, SVM introduces the concept of
support vectors, which denote the data points
positioned closest to the decision boundary by
maximizing the margin. These support vectors play
a pivotal role in delineating the decision boundary
and significantly contribute to the overall
classification accuracy. Within the domain of
cotton leaf disease identification, SVM has
exhibited noteworthy performance in accurately
categorizing diverse disease types based on their
symptomatic profiles. Its proficiency in handling
high-dimensional data, accommodating
nonlinearity, and delineating effective decision
boundaries renders it a valuable asset for automated
disease identification and agricultural decision-
making.

3. CASSOWARY OPTIMIZATION IN
CONVOLUTIONAL NEURAL NETWORKS
(CO-CNN)

3.1. Convolutional Neural Networks (CNNs)

The techniques used in deep learning, a
branch of machine learning, are modelled by how
the brain's neural networks are structured and
operate. The goal is to train computers to use
massive volumes of data for understanding and
decision-making. By utilizing several layers of
nonlinear transformations, deep learning algorithms
endeavour to represent data at high abstraction.
Algorithms are trained to do tasks like picture and
audio recognition, natural language processing, and
decision-making by undergoing these

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4778

transformations, which allow them to acquire
information at different levels of abstraction.

Regarding computer vision and image
recognition, Convolutional Neural Networks (CNNs)
are among the most important deep learning
architectures. Convolutional neural networks
(CNNs) are a subset of DNNs that can learn feature
hierarchies from data systematically and
dynamically. Their strength is their ability to process
incoming data with a grid-like structure, such as
photographs. The convolutional layers of a CNN are
its brains; these layers use convolutional operations
to sift through incoming data, much like filters or
kernels. These filters detect features like edges,
corners, textures, or other patterns in the input
images. Convolution uses a filter to slide over the
input data and compute dot products to create feature
maps. Convolutional neural networks (CNNs) can
learn more complicated information sequentially
stack convolutional layers.

CNNs typically include pooling layers,
such as max pooling or average pooling, following
the convolutional layers. Reduce the spatial
dimensionality of the feature maps acquired from
the convolutional layers by using pooling layers to
downsample them. Because of the reduction in
computational complexity and the creation of
spatial invariance, the network can recognize
features independently of their precise placement in
the input.

Downsampling with pooling layers
reduces the spatial dimensionality of the feature
maps obtained from the convolutional layers. This
downsampling allows the network to detect features
regardless of their exact location in the input by
reducing computational complexity and creating
spatial invariance. The steps involved in training a
CNN can be summarized as follows:

 Data Preprocessing: Prepare the dataset by
preprocessing the photographs. Data
normalization, resizing, or augmentation to
increase diversity may be part of this
process.

 Architecture Design: Specify the CNN's
design, including its size, the amount of
convolutional and pooling layers, and the
fully connected and filtering layers.

 Forward Propagation: Pass the input
images through the network, applying
convolution, activation functions (e.g.,
ReLU), and pooling operations to generate
feature maps.

 Loss Computation: Using an appropriate
loss function, like categorical cross-entropy
for classification problems, determine the
discrepancy between the anticipated output
and the ground truth labels.

 Backpropagation: Using optimization
methods such as stochastic gradient descent
(SGD) or its variations, propagate the
mistake backwards through the network to
update the weights and biases.

 Parameter Optimization: Optimize the
model's prediction accuracy by adjusting the
network's parameters to minimize the loss
function.

 Evaluation: It is essential to test the trained
model's generalizability to new data by
running it on a different validation dataset.

 Fine-tuning: If desired, tweak the model's
hyperparameters or use methods like transfer
learning to use pre-trained models already
trained for comparable tasks.

By following these steps, CNNs can be
trained effectively to recognize patterns and make
predictions in various domains, ranging from image
classification to object detection and segmentation.

3.2. Cassowary Optimization (CO)

Cassowary Optimization (CO) is a
heuristic optimization algorithm inspired by the
foraging behavior of the cassowary bird, native to
tropical forests. It mimics the bird's efficient search
strategy for finding food in complex environments.
CO operates by iteratively adjusting the parameters
of a solution space based on the evaluation of an
objective function. Unlike traditional optimization
methods, CO dynamically balances exploration and
exploitation, allowing it to efficiently navigate
diverse solution landscapes. By iteratively updating
solutions while considering constraints, CO
converges towards optimal or near-optimal
solutions. This approach makes CO suitable for a
wide range of optimization problems, particularly
those characterized by non-linearity, multimodality,
and complex constraints. CO's ability to adapt to
changing environments and efficiently explore
solution spaces makes it a promising optimization
technique in various domains, including
engineering, finance, and biology.

A) Dynamic Exploration:

In the initial step of CO, establishing a
framework for dynamically exploring the search
space to locate promising regions that might

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4779

efficiently contain optimal solutions. Dynamic
Exploration aims to balance exploitation and
Exploration, enabling the algorithm to navigate the
solution space effectively while avoiding premature
convergence to local optima. The algorithm
dynamically adjusts its exploration strategy based
on the evolving characteristics of the search space.
This dynamic adaptation helps efficiently explore
local and global regions, enhancing the algorithm's
ability to discover diverse solutions. The
exploration process is guided by the inherent
properties of the optimization problem and the
information gathered during the search.

The Dynamic Exploration phase involves
formulating adaptive exploration mechanisms that
regulate the exploration-exploitation trade-off. One
such mechanism could be the incorporation of a
dynamic exploration parameter𝛼, which controls
the degree of Exploration in the search space. This
parameter can be adjusted during optimization
based on the algorithm's performance and
convergence behaviour.

Integrating adaptive strategies within the
search algorithm is a common approach to
implementing dynamic Exploration. For instance, a
dynamic adjustment of the step size 𝛿 in the search
direction can facilitate the Exploration of diverse
regions. The step size adaptation can be governed
by a function that responds to the local landscape of
the objective function, represented mathematically
in Eq.(1).

𝛿 =
𝛿

1 + 𝑒𝑥𝑝 −𝛽 𝑓(𝑥) − 𝑓(𝑥)
 (1)

where 𝛿 represents the adjusted step size at
iteration 𝑘, 𝛿 is the maximum step size, 𝑓(𝑥)
denotes the objective function value at iteration 𝑘,
𝑓(𝑥) It is the best objective function value
encountered so far, and 𝛽 controls the rate of
adaptation.

Incorporating adaptive mutation
mechanisms can further enhance dynamic
Exploration. For instance, a mutation parameter 𝜇
can be adaptively adjusted to control the diversity
of solutions generated during the search process.
The mutation operator can be mathematically
represented in Eq.(2).

𝑥 = 𝑥 + 𝜇. (𝑥 − 𝑥) (2)

where 𝑥 represents the mutated solution, 𝑥 is the
current solution, and 𝑥 Denotes the best solution
found so far.

Leveraging dynamic population
management strategies can contribute to compelling
Exploration. By dynamically adjusting the
population size based on the convergence status and
the diversity of solutions, the algorithm can allocate
computational resources more efficiently towards
Exploration or exploitation. A dynamic population
size 𝑁 can be determined using a mechanism that
balances the exploration-exploitation trade-off, is
shown in Eq.(3).

𝑁 = 𝑟𝑜𝑢𝑑 𝑁 −
𝑘

max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 . (𝑁

− 𝑁)

(3)

where 𝑁 represents the population size at iteration
𝑘, 𝑁 and 𝑁 Denote the maximum and
minimum population sizes, respectively, and
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the maximum number of
iterations.

B) Adaptive Behavior:

Adaptive Behavior aims to imbue the
algorithm with the capability to adjust its strategies
and parameters in real time based on the feedback
obtained during the optimization process. This
adaptability enables CO to navigate complex and
dynamic search spaces effectively, improving
convergence and solution quality.

The algorithm dynamically adjusts its Behavior and
parameters to optimize its performance and adapt to
the evolving characteristics of the problem.
Adaptive Behavior encompasses various aspects,
including parameter adaptation, strategy
adjustment, and response to environmental changes.

Adaptive Behavior entails formulating
adaptive mechanisms that govern the algorithm's
behaviour and parameter settings. One such
mechanism involves adaptive step size adjustment,
where the step size 𝛿 is dynamically updated based
on the progress of the optimization process. This
adaptive step size represented mathematically in
Eq.(4).

𝛿 = 𝛿 . 𝑒𝑥𝑝 −
𝑘

𝜏
 (4)

where 𝛿 represents the adjusted step size at
iteration 𝑘, 𝛿 Is the maximum step size, 𝜏 is a
parameter controlling the rate of adaptation.

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4780

Incorporating adaptive mutation
mechanisms can enhance the algorithm's adaptive
Behavior. The mutation rate 𝜇 can be adaptively
adjusted to balance Exploration and exploitation.
An adaptive mutation rate is shown in Eq.(5).

𝜇 = 𝜇 . 𝑒𝑥𝑝 −
𝑘

𝜏
 (5)

where 𝜏 is the initial state, 𝜇 is the rate of
mutation at iteration 𝑘, 𝜇 is the mutation rate at
its maximum and Manages the pace at which
mutations are adapted.

Adaptive Behavior involves the dynamic
adjustment of strategies employed by the algorithm.
For instance, the selection of operators such as
crossover and mutation can be dynamically
determined based on the performance and
convergence status of the algorithm. This adaptive
strategy selection can be represented
mathematically in Eq.(6).

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 =
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 (6)

where 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 represents the selected operator at
iteration 𝑘, and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 are
adaptive conditions based on the algorithm's
Behavior.

Persistence and Resilience

Persistence and Resilience involve
formulating mechanisms that promote continuous
progress and robustness in the optimization process.
One such mechanism is incorporating persistence
factors that encourage the algorithm to explore
promising search space regions. This can be
achieved through the integration of a persistence
factor 𝛾 into the objective function, guiding the
algorithm towards areas with potentially higher
fitness values.

𝑓 (𝑥) = 𝑓(𝑥) + 𝛾. 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) (7)

where in Eq.(7), 𝑓 (𝑥) represents the modified
objective function with the persistence factor, and
𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) penalizes solutions that deviate from
promising regions.

Resilience mechanisms can be
incorporated to enable the algorithm to recover
from disruptions and maintain robust performance.
One approach is to introduce adaptive damping
factors that regulate the impact of disturbances on
the optimization process. The damping factor 𝛿 can
be adaptively adjusted based on the magnitude of

disturbances encountered during the search is
represented mathematically in Eq.(8).

𝛿 = 𝛿 . 𝑒𝑥𝑝 −
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒

τ
 (8)

where 𝛿 denotes the adjusted damping factor at
iteration 𝑘, 𝛿 is the maximum damping factor,
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 quantifies the magnitude of a
disturbance at iteration 𝑘, and τ controls the rate of
adaptation.

D) Multi-Objective Optimization

It extends the optimization framework to
scenarios where multiple conflicting objectives
must be simultaneously optimized. This step aims
to equip the algorithm with the capability to handle
such multi-objective optimization problems
effectively, enabling it to discover trade-off
solutions that represent a balance between
competing objectives. The algorithm is extended to
handle multiple objective functions simultaneously.
Improving one target could result in the
deterioration of others; this is a common occurrence
in objective functions. Finding a collection of
solutions that constitute the optimal trade-off,
where no objective can be enhanced without
deteriorating another objective, is referred to as the
Pareto frontier.

Multi-Objective Optimization involves
formulating mechanisms for handling multiple
objective functions and identifying Pareto-optimal
solutions. A typical strategy uses scalarization
techniques to reduce the optimization issue from
several objectives to a single target. The weighted
sum technique is one such strategy; it uses
weighted coefficients to combine many objectives
into one is shown in Eq.(9).

𝑓(𝑥) = 𝑤 . 𝑓 (𝑥) (9)

where 𝑓(𝑥) represents the combined objective
function, 𝑓 (𝑥) denotes the individual objective
functions and 𝑤 are the weights assigned to each
objective. The weights are typically adjusted to
explore different regions of the Pareto frontier.

The algorithm can employ mechanisms for
maintaining diversity and coverage of solutions
along the Pareto frontier. This may involve
integrating diversity-preserving mechanisms, such
as crowding distance or niche formation, to ensure
the algorithm explores a wide range of trade-off
solutions.

The mechanisms for selecting solutions
from the Pareto frontier can be incorporated based

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4781

on preferences or decision-making criteria. One
common approach is to use dominance-based
selection methods, such as the non-dominated
sorting genetic algorithm (NSGA-II), which
categorizes solutions into Pareto fronts based on
dominance relationships and selects solutions from
diverse fronts to maintain diversity along the Pareto
frontier.

E) Communication and Collaboration

Communication and Collaboration aim to
harness the collective intelligence of the algorithm
by facilitating the exchange of information, sharing
of knowledge, and coordinating efforts among
individuals. The algorithm is extended to
incorporate mechanisms for individuals to
communicate, collaborate, and coordinate their
actions. This collaborative approach enables the
algorithm to leverage synergy and cooperation
among individuals, enhancing Exploration,
exploitation, and optimization performance.

Communication and Collaboration involve
formulating mechanisms for individuals to
exchange information and coordinate their actions.
One approach is to incorporate communication
channels through which individuals can share
knowledge, experiences, and solutions. This may
involve the formulation of communication
functions that govern the exchange of information
among individuals:

𝑐𝑜𝑚𝑚 = 𝑒𝑥𝑝 −
𝑑

𝜎
 (10)

where in Eq.(10), 𝑐𝑜𝑚𝑚 represents the
communication strength between individuals 𝑖 and
𝑗, 𝑑 denotes the distance between individuals and
𝜎 controls the rate of communication decay with
distance.

Collaboration can be facilitated through
mechanisms for individuals to collaborate on tasks
or share computational resources. For instance,
individuals can form collaborative groups to tackle
specific sub-problems or share computational
workload collectively is shown in Eq.(11).

𝑔𝑟𝑜𝑢𝑝_𝑡𝑎𝑠𝑘

=
1, 𝑖𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒 𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

where 𝑔𝑟𝑜𝑢𝑝_𝑡𝑎𝑠𝑘 denotes the assignment of
collaborative tasks between individuals 𝑖 and 𝑗. The
mechanisms for coordinating actions among
individuals can be integrated to ensure coherence
and alignment of efforts towards common
objectives. This may involve the formulation of

coordination strategies that synchronize the actions
of individuals based on shared goals or objectives is
represented mathematically in Eq.(12).

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑠 𝜃 (12)

where 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 represents the coordination
strength between individuals 𝑖 and 𝑗, and 𝜃
denotes the angle between their respective action
vectors.

F) Local Search Refinement

Local Search Refinement aims to enhance
the exploration and exploitation capabilities of the
algorithm by incorporating mechanisms for fine-
tuning solutions in the vicinity of promising regions
identified during the optimization process. The
algorithm employs local search techniques to refine
solutions and exploit local information within the
search space. Local search refinement enables the
algorithm to zoom in on promising regions and
improve the quality of solutions by iteratively
exploring the neighbourhood of candidate
solutions.

Local Search Refinement involves
formulating mechanisms for performing local
search operations around promising solutions. One
approach is to employ gradient-based optimization
methods, such as gradient descent or Newton's
method, to update solutions towards local optima
iteratively. The update rule for gradient descent can
be expressed mathematically in Eq.(13).

𝑥 = 𝑥 − 𝜂∇𝑓(𝑥) (13)

where 𝑥 represents the current solution, 𝜂 denotes
the step size, and ∇𝑓(𝑥) denotes the gradient of
the objective function concerning 𝑥 .

Local Search Refinement can incorporate
mechanisms for exploring the neighbourhood of
solutions using local exploration operators. One
such operator is the mutation operator, which
introduces small perturbations to solutions to
examine nearby regions of the search space.

𝑥 = 𝑥 + 𝜖 (14)

where in Eq.(14), 𝑥 represents the perturbed
solution, 𝑥 denotes the original solution, and 𝜖
represents a small perturbation vector.

The mechanisms for local exploitation of
promising regions can be integrated to effectively
exploit information gathered during optimization.
This may involve the formulation of exploitation

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4782

strategies that prioritize Exploration in areas with
high potential for improvement is shown in Eq.(15).

𝑥 = 𝑥 + 𝛼. 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑥) (15)

where 𝑥 represents the refined solution, 𝑥
denotes the current solution, 𝛼 represents the
exploration factor, and 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑥)
represents the direction of Exploration based on
local information.

G) Constraint Handling:

Constraint Handling is crucial for
addressing optimization problems with constraints,
ensuring that solutions generated by the algorithm
satisfy both the objective function requirements and
the imposed restrictions. The algorithm is extended
to effectively incorporate mechanisms for handling
constraints. These mechanisms aim to guide the
search process towards feasible regions of the
solution space while maintaining the Exploration of
the objective function landscape.

Constraint Handling involves formulating
mechanisms for enforcing constraints and guiding
the search towards feasible solutions. One common
approach is to penalize infeasible solutions by
modifying the objective function to include penalty
terms. The modified objective function can be
expressed in Eq.(16).

𝑓 (𝑥) = 𝑓(𝑥) + 𝜆 . 𝑔 (𝑥) (16)

where 𝑓 (𝑥) represents the penalized
objective function, 𝑓(𝑥) denotes the original
objective function, 𝜆 represents penalty
coefficients, 𝑔 (𝑥) denotes the 𝑖-th constraint
function, and 𝑛 is the total number of constraints.

Mechanisms for handling inequality
constraints can be incorporated using barrier or
penalty methods. Barrier methods introduce
barriers around infeasible regions to prevent the
algorithm from exploring them, while penalty
methods impose penalties on infeasible solutions to
discourage their selection. The barrier function can
be expressed in Eq.(17).

𝐵(𝑥) = −
1

𝑔 (𝑥)
 (17)

where 𝐵(𝑥) represents the barrier function and
𝑔 (𝑥) denotes the 𝑖-th constraint function. The
Mechanisms for handling equality constraints can
be integrated using Lagrange multipliers or penalty

methods. Lagrange multipliers introduce additional
variables to enforce equality constraints, while
penalty methods penalize violations of equality
constraints in the objective function. The penalty
function for equality constraints can be expressed in
Eq.(18).

𝑃(𝑥) = 𝜆 . |ℎ (𝑥)| (18)

where 𝑃(𝑥) represents the penalty function for
equality constraints, 𝜆 denotes penalty coefficients,
ℎ (𝑥) denotes the 𝑖-th equality constraint function,
and 𝑚 is the total number of equality constraints.

H) Diversity Preservation:

Diversity Preservation aims to maintain a
diverse population of solutions throughout the
optimization process, ensuring the algorithm
explores many promising regions in the solution
space. The algorithm incorporates mechanisms for
preserving diversity among individuals, preventing
premature convergence to suboptimal solutions,
and promoting solution space exploration. It also
involves formulating mechanisms for maintaining
diversity within the population of solutions. One
approach is to incorporate diversity measures that
quantify the population's dissimilarity or spread of
solutions. One commonly used diversity measure is
the crowding distance, which measures the average
distance of a solution to its nearest neighbours is
represented mathematically in Eq.(19).

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥)

=
1

𝑘
𝑥 − 𝑥

(19)

where 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥) represents the
crowding distance of the solution 𝑥 , 𝑥 denotes the
nearest neighbour of 𝑥 , and 𝑘 is the number of
nearest neighbours considered.

This mechanisms for promoting diversity
can be incorporated into selection and reproduction
operators to ensure that individuals from diverse
regions of the solution space are retained and
propagated. One approach is to introduce diversity-
based selection mechanisms that prioritize
individuals with low crowding distances or high
dissimilarity is shown in Eq.(20).

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)

=
𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥)

∑ 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥)

(20)

where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥) represents the
probability of selecting a solution 𝑥 for

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4783

reproduction, and 𝑁 is the total number of solutions
in the population.

Mechanisms for promoting niche
formation and speciation can be integrated to
encourage the emergence of diverse subpopulations
within the population. This can be achieved through
the introduction of niche radius parameters and
mechanisms for promoting competition and
cooperation among individuals within niches is
mathematically represented in Eq.(21).

𝑁𝑖𝑐ℎ𝑒 () =
1

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 ()
 (21)

where 𝑁𝑖𝑐ℎ𝑒_𝑅𝑎𝑑𝑖𝑢𝑠(𝑥) represents the niche
radius of the solution 𝑥 , and
𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥) is used to determine the
size of the niche.

I) Termination Criteria

Termination Criteria are the guidelines for
determining when to halt the optimization process,
ensuring that computational resources are utilized
efficiently and effectively. The algorithm
incorporates mechanisms for evaluating
convergence, assessing solution quality, and
determining when to stop the optimization process
based on predefined criteria. Termination Criteria
involve formulating conditions for assessing
convergence and solution quality. One commonly
used criterion is to monitor the convergence of the
objective function values over successive iterations.
A convergence criterion based on the change in the
best objective function value (𝑓) over iterations
can be expressed in Eq.(22).

𝑓
()

− 𝑓
()

𝑓
()

≤ 𝜖 (22)

where 𝑓
() represents the best objective function

value at iteration 𝑘, and 𝜖 denotes a small tolerance
threshold.

Termination Criteria can incorporate
mechanisms for assessing solution diversity and
coverage of the solution space. One approach is to
monitor the spread of solutions in the population
using diversity measures such as the average
crowding distance or the standard deviation of
solution distances is represented mathematically in
Eq.(23).

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ≤ 𝛿 (23)

where 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 represents a measure
of solution diversity, and 𝛿 denotes a predefined

threshold. The Mechanisms for assessing
computational resources and budget can be
integrated into Termination Criteria to ensure that
the optimization process does not exceed
predefined limits. This may involve monitoring the
number of iterations, function evaluations, or
computational time is mathematically represented
in Eq.(24).

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑈𝑠𝑎𝑔𝑒 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 (24)

where 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑈𝑠𝑎𝑔𝑒 represents the cumulative
resource usage during the optimization process, and
𝐵𝑢𝑑𝑔𝑒𝑡 denotes the predefined resource budget.

3.3. CO-CNN (Cassowary Optimization for
Convolutional Neural Networks)

It is a novel approach that leverages
Cassowary Optimization (CO) to optimize
Convolutional Neural Networks (CNNs)
effectively. CO-CNN aims to enhance the
performance of CNNs by dynamically adjusting
network parameters and architecture based on the
evolving optimization landscape. Here are the steps
to optimize CNN with Cassowary Optimization.

 Problem Formulation: Define the
optimization problem for CO-CNN, specifying
the objective function to be optimized, which
typically involves minimizing the classification
error or maximizing accuracy on a given
dataset.

 Representation of Solutions: Represent CNN
architectures and parameters as solutions in the
optimization space. This includes defining the
network topology, such as the number of
layers, filter sizes, and activation functions, as
well as the parameters of each layer.

 Initialization: Initialize a population of CNN
architectures and parameters using random or
heuristic methods. Each solution represents a
potential CNN configuration to be optimized.

 Evaluation: Evaluate the performance of each
CNN configuration in the population using the
specified objective function, typically through
training and validation on a subset of the
dataset.

 Optimization Process: Apply Cassowary
Optimization to update the population of CNN
configurations iteratively. During each
iteration, solutions are refined based on their
performance and the optimization landscape.

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4784

 Dynamic Exploration: Incorporate dynamic
exploration mechanisms to effectively explore
diverse regions of the solution space. This
involves adjusting parameters such as learning
rates, filter sizes, and network architectures to
promote Exploration while avoiding premature
convergence.

 Adaptive Behavior: Integrate adaptive
strategies to dynamically adjust CNN
parameters and architectures based on the
optimization progress. This includes adapting
learning rates, activation functions, and
dropout rates to optimize convergence and
solution quality.

 Local Search Refinement: Implement
techniques to fine-tune CNN configurations
and exploit local information in the
optimization landscape. This may involve
gradient-based optimization methods or
neighbourhood search algorithms to improve
solution quality.

 Constraint Handling: Address constraints
inherent in CNN optimization, such as
computational resource limitations or
architectural constraints. Ensure that CNN
configurations satisfy constraints while
optimizing performance using penalty methods
or constraint satisfaction techniques.

 Termination Criteria: Define termination
criteria to stop the optimization process
effectively. Termination may occur based on
convergence of the objective function, resource
utilization constraints, or predefined budget
limits.

CO-CNN optimizes CNN architectures
and parameters effectively, improving performance
and generalization on various tasks, including
image classification, object detection, and image
segmentation. CO-CNN's adaptive and dynamic
nature allows it to navigate the complex
optimization landscape of CNNs efficiently,
resulting in superior performance compared to
traditional optimization methods.

A) Problem Formulation:

Formulating the optimization problem and
defining the objective function to be optimized.
Inspired by Cassowary Optimization, CO-CNN
aims to maximize the performance of CNN by
minimizing classification error or maximizing
accuracy on a given dataset. The objective function
is typically defined based on the discrepancy

between predicted and actual class labels for input
samples.

The objective function 𝑂𝑏𝑗(𝑊) can be formulated
as the average loss over a dataset 𝐷 of 𝑁 samples is
shown in Eq.(25).

𝑂𝑏𝑗(𝑊) =
1

𝑁
𝐿(𝑦 , 𝑦) (25)

where 𝑊 represents the parameters of the CNN
model, 𝑦 denotes the actual class label for the 𝑖-th
sample, 𝑦 denotes the predicted class label, and
𝐿(𝑦 , 𝑦) the loss function quantifies the
discrepancy between the actual and predicted
labels. The optimization problem can be formulated
as a minimization problem, where the goal is to
find the optimal set of parameters. 𝑊∗ that
minimizes the objective function is mathematically
represented in Eq.(26).

𝑊∗ = argmin 𝑂𝑏𝑗(𝑊) (26)

The objective function captures the
performance of the CNN model in terms of its ability
to classify input samples accurately. By minimizing
the objective function, CO-CNN aims to optimize
the parameters of the CNN model to achieve higher
classification accuracy and better generalization on
unseen data. The problem formulation may also
incorporate regularization terms to prevent
overfitting and encourage smoother solutions.
Regularization can be achieved by adding a
regularization term to the objective function,
penalizing large parameter values:

𝑂𝑏𝑗 (𝑊) = 𝑂𝑏𝑗(𝑊) + 𝜆𝑅(𝑊) (27)

where in Eq.(27), 𝜆 is the regularization parameter,
and 𝑅(𝑊) is the regularization term that penalizes
large parameter values.

B) Representation of Solutions

In CNNs, solutions refer to different
network architectures and configurations, including
the number of layers, filter sizes, activation
functions, and other architectural parameters. A
solution 𝑆 in CO-CNN can be represented as a
vector of parameters 𝑝 = [𝑝 , 𝑝 , … . . , 𝑝], where
each parameter 𝑝 corresponds to a specific
architectural aspect of the CNN model. The vector
𝑝 encapsulates the entire configuration of the CNN
model, enabling the optimization process to explore
different architectural possibilities are
mathematically represented in Eq.(28).

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4785

[𝑝 , 𝑝 , … . . , 𝑝] (28)

The representation of solutions can be
augmented with encoding schemes to handle
categorical and discrete parameters. For instance,
the number of layers in the CNN architecture may
be encoded as a categorical variable, where each
category corresponds to a different number of
layers is shown in Eq.(29).

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑦𝑒𝑟𝑠 = {1,2,3, … . , 𝐿 } (29)

Other architectural parameters, such as
filter sizes and activation functions, can be encoded
using appropriate schemes to facilitate the
optimization process. The representation of
solutions can include mechanisms for specifying
parameter ranges and constraints. For example, the
range of filter sizes may be constrained to a
predefined interval is shown in Eq.(30).

𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 ∈ [𝐹 , 𝐹] (30)

where 𝐹 and 𝐹 denote the minimum and
maximum allowable filter sizes, respectively.
Solutions in CO-CNN may incorporate parameter
sharing and transfer learning mechanisms, allowing
the optimization process to leverage pre-trained
models or shared parameters across different tasks
or domains.

C) Initialization

This phase involves initializing a
population of CNN architectures and parameters.
The initialization process aims to create an initial
set of solutions that will undergo optimization
through the Cassowary Optimization algorithm.
The initialization of solutions can be represented as
follows. Let 𝑃 = [𝑝 , 𝑝 , … . , 𝑝] denote the
population of solutions, where each 𝑝 represents an
individual solution vector. Initialization involves
generating random or predefined values for each
parameter within the specified ranges and
constraints is represented in Eq.(31).

𝑃 = [𝑝 , 𝑝 , … . , 𝑝] (31)

The initialization process can incorporate
diversity-promoting mechanisms to ensure a
diverse population of solutions. This may involve
introducing randomness or heuristic strategies to
generate solutions that explore different regions of
the solution space is mathematically represented in
Eq.(32).

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒

=
1

𝑁
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝 , 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

(32)

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝 , 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑) represents the
distance between the solution 𝑝 and the centroid of
the population. The initialization process may
include mechanisms for incorporating prior
knowledge or domain-specific information into the
population generation process. This can be
achieved by biasing the initialization towards
effective configurations in similar tasks or domains
is shown in Eq.(33).

𝑝 = 𝑝 + 𝐷𝑜𝑚𝑎𝑖𝑛_𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 (33)

The initial solutions in CO-CNN may
involve strategies for warm-starting the
optimization process. This can be done by
initializing a portion of the population with
solutions obtained from previous optimization runs
or pre-trained models is represented in Eq.(34).

𝑃 = [𝑝 , 𝑝 , … , 𝑝] + 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (34)

This initialization scheme allows CO-CNN
to explore various architectural possibilities and
configurations effectively, improving performance
on CNN-related tasks.

D) Evaluation

The evaluation of a CNN configuration 𝑝
can be represented by the objective function
𝑂𝑏𝑗(𝑝), quantifying the discrepancy between
predicted and actual class labels for input samples.

𝑂𝑏𝑗(𝑝) =
1

𝑁
𝐿 𝑦 , 𝑦 (35)

where in Eq.(35), 𝑁 represents the number of
samples in the dataset, 𝑦 denotes the actual class
label for 𝑗-th sample, and 𝑦 denotes the predicted

class label. 𝐿 𝑦 , 𝑦 the loss function quantifies the
discrepancy between the actual and predicted
labels.

The evaluation process may include
mechanisms for assessing additional performance
metrics such as accuracy, precision, recall, or F1-
score, depending on the specific task and objectives
is mathematically represented in Eq.(36).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (36)

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4786

where 𝑇𝑃 denotes true positives, 𝑇𝑁 denotes true
negatives, 𝐹𝑃 denotes false positives, and 𝐹𝑁
denotes false negatives. The evaluation of CNN
configurations can incorporate mechanisms for
handling overfitting and generalization. This may
involve cross-validation, regularization, or early
stopping to prevent overfitting on the training data
and promote generalization to unseen data are
mathematically represented in Eq.(37).

𝑂𝑏𝑗 (𝑝) = 𝑂𝑏𝑗(𝑝) + 𝜆𝑅(𝑝) (37)

The regularisation term that penalizes high
parameter values is denoted by 𝜆𝑅(𝑝), and the
regularisation parameter is denoted by 𝜆. The
evaluation process in CO-CNN may include
mechanisms for computational efficiency, such as
mini-batch training or parallel processing, to
expedite the evaluation of multiple CNN
configurations simultaneously.

E) Optimization Process:

The optimization process in CO-CNN can be
represented using iterative update equations that
adjust the parameters of each CNN configuration.
𝑝 based on their performance evaluated by the
objective function 𝑂𝑏𝑗(𝑝) is mathematically
represented in Eq.(38)

𝑝
()

= 𝑝
()

+ ∆𝑝
() (38)

where 𝑝
() represents the parameters of CNN

configuration 𝑝 at iteration 𝑡, and ∆𝑝
() denotes

the update applied to the parameters in the current
iteration. The optimization process may incorporate
adaptive mechanisms to dynamically adjust the step
sizes or learning rates of the updates based on the
convergence behaviour and progress of the
optimization process is represented in Eq.(39).

∆𝑝
()

= 𝛼. ∇𝑂𝑏𝑗 𝑝
() (39)

where 𝛼 represents the learning rate and

∇𝑂𝑏𝑗 𝑝
() denotes the gradient of the objective

function concerning the parameters of the CNN

configuration 𝑝
()

. The optimization process may
also include mechanisms for promoting diversity
among solutions to prevent premature convergence
and encourage solution space exploration. This can
be achieved by introducing diversity-promoting
terms in the update equations that promote
solutions to move away from each other.

∆𝑝
()

= 𝛽. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (40)

where in Eq.(40), 𝛽 represents a diversity-
promoting factor, and 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒
quantifies the diversity among solutions in the
population.

The optimization process in CO-CNN may
incorporate mechanisms for handling constraints
and enforcing architectural constraints during the
parameter updates. This ensures the updated CNN
configurations remain valid and feasible throughout
the optimization process is represented in Eq.(41).

𝑝
()

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝
()

+ ∆𝑝
() (41)

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(⋅) represents a projection
operator that enforces constraints on the updated
parameters.

Dynamic Exploration:

The Dynamic Exploration can be achieved
by introducing adaptive mechanisms that adjust the
exploration parameters or strategies based on the
convergence behaviour and progress of the
optimization process. One approach is to
dynamically change the learning rates or step sizes
of the parameter updates to control the magnitude
of Exploration is represented in Eq.(42).

𝛼() = 𝛼() × 𝑒𝑥𝑝(−𝛾. 𝑡) (42)

where 𝛼() represents the learning rate at iteration 𝑡,
and 𝛾 is a decay factor that controls the rate of
decrease of the learning rate over iterations. This
Dynamic Exploration can involve mechanisms for
balancing Exploration and exploitation to
effectively navigate the trade-off between exploring
new regions of the solution space and exploiting
promising areas. This can be achieved by
introducing adaptive mechanisms that prioritize
Exploration during early iterations and gradually
shift towards exploitation as the optimization
progresses are shown in Eq.(43).

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦()

= 𝑚𝑖𝑛(1, 𝛽. 𝑡)
(43)

where 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦() represents the
probability of selecting exploration strategies at
iteration 𝑡, and 𝛽 is a scaling factor that controls the
rate of increase of the exploration probability over
iterations.

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4787

Dynamic Exploration in CO-CNN can
incorporate mechanisms for adjusting the diversity-
promoting strategies based on the convergence
behaviour of the optimization process. This may
involve dynamically adjusting the diversity-
promoting factor to encourage Exploration when
convergence slows down and exploitation when
convergence accelerates.

𝛽() = 𝛽() + 𝛿 (44)

where in Eq.(44)m 𝛽() represents the diversity-
promoting factor at iteration 𝑡, and 𝛿 is a parameter
that controls the rate of change of the diversity-
promoting factor over iterations.

Dynamic Exploration may involve
mechanisms for adapting the exploration strategies
based on the characteristics of the optimization
landscape. This can be achieved by incorporating
adaptive mechanisms that dynamically adjust the
exploration parameters based on the curvature and
gradient information of the objective function are
mathematically represented in Eq.(45).

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟()

= 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟()

− 𝜂. ∇𝑂𝑏𝑗 𝑝()
Eq.(45)

where 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟() represents the
exploration parameter at iteration 𝑡, and 𝜂 is a
learning rate parameter that controls the rate of
adjustment of the exploration parameter based on
the gradient of the objective function.

Adaptive Behavior:

Adaptive Behavior in CO-CNN can be
achieved through mechanisms that dynamically
adjust various parameters and strategies based on
the optimization progress. One approach is to
dynamically change the parameter updates' learning
rates or step sizes based on the convergence
behaviour.

𝛼() = 𝛼() × 𝑒𝑥𝑝(−𝛾. 𝑡) (46)|

where 𝛼() represents the learning rate at iteration 𝑡,
and 𝛾 is a decay factor that controls the rate of
decrease of the learning rate over iterations. The
Adaptive Behavior may involve mechanisms for
adjusting architectural parameters such as the
number of layers, filter sizes, and activation
functions based on the convergence behaviour and
performance of the CNN configurations are
represented mathematically in Eq.(47).

𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠() = 𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠() + 𝛿 (47)

where 𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠() represents the number of
layers at iteration 𝑡, and 𝛿 is a parameter that
controls the rate of change of the number of layers
over iterations. Adaptive Behavior in CO-CNN can
incorporate mechanisms for dynamically adjusting
regularization parameters to prevent overfitting and
promote generalization. This may involve adaptive
mechanisms that dynamically change the
regularization strength based on the convergence
behaviour and performance of the CNN
configurations.

𝜆() = 𝜆() + 𝜖 (48)

where in Eq.(48), 𝜆() represents the regularization
parameter at iteration 𝑡, and 𝜖 is a parameter that
controls the rate of change of the regularization
parameter over iterations. Adaptive Behavior may
involve mechanisms for dynamically adjusting
dropout rates and other regularization techniques
based on the convergence behaviour and
performance of the CNN configurations is shown in
Eq.(49).

𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒()

= 𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒() + 𝜁
(49)

Where 𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒() represents the dropout
rate at iteration 𝑡, and 𝜁 is a parameter that controls
the rate of change of the dropout rate over
iterations.

Local Search Refinement:

Local search refinement phase aims to
further improve the quality of solutions by
exploring the regional neighbourhood of promising
solutions. Inspired by cassowary optimization, CO-
CNN incorporates local search refinement to refine
CNN architectures and parameters to achieve
superior performance iteratively. Local search
refinement in CO-CNN can be represented using
iterative update equations that explore the regional
neighbourhood of each CNN configuration. 𝑝
based on their performance evaluated by the
objective function 𝑂𝑏𝑗(𝑝) is mathematically
represented in Eq.(50).

𝑝
()

= 𝑝
()

+ ∆𝑝
() (50)

where 𝑝
() represents the parameters of CNN

configuration 𝑝 at iteration 𝑡, and ∆𝑝
() denotes

the update applied to the parameters in the current
iteration.

Local search refinement may incorporate
mechanisms for adjusting the step sizes or learning

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4788

rates of the updates to control the magnitude of
Exploration within the local neighbourhood.

𝛼() = 𝛼() × 𝑒𝑥𝑝(−𝛾. 𝑡) (51)

where in Eq.(51), 𝛼() represents the learning rate at
iteration 𝑡, and 𝛾 is a decay factor that controls the
rate of decrease of the learning rate over iterations.
This local search refinement in CO-CNN can
incorporate mechanisms for promoting diversity
among solutions within the local neighbourhood.
This may involve introducing randomness or
heuristic strategies to explore diverse regions of the
regional solution space is mathematically
represented in Eq.(52).

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒()

=
1

𝑁
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝

()
, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑()

(52)

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝
()

, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑() represents the

distance between the solution 𝑝
() and the centroid

of the local neighbourhood, and 𝑁 is the number of
solutions in the local neighbourhood.

This phase y involve mechanisms for
handling constraints and enforcing architectural
constraints during the parameter updates within the
local neighbourhood is represented in Eq.(53).

𝑝
()

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝
()

+ ∆𝑝
() (53)

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(.) represents a projection
operator that enforces constraints on the updated
parameters within the local neighbourhood.

J) Termination Criteria

Defining termination criteria to determine
when to stop the optimization process. Termination
criteria ensure that the optimization process halts
once certain conditions are met, such as achieving a
satisfactory level of performance or reaching a
predefined number of iterations. CO-CNN
incorporates termination criteria to manage
computational resources and prevent overfitting
efficiently.

Termination criteria in CO-CNN can be
represented by conditions evaluated at each
iteration of the optimization process. One common
termination criterion is to stop the optimization
process once a maximum number of iterations
𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is reached.

𝑡 ≥ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (54)

where in Eq.(54), 𝑡 denotes the current iteration
number.

It may include conditions based on the
convergence behaviour of the optimization process.
For example, the optimization process can be
stopped once the improvement in the objective
function value falls below a certain threshold 𝜖
represented in Eq.(55).

𝑂𝑏𝑗 𝑝() − 𝑂𝑏𝑗 𝑝() ≤ 𝜖 (55)

where 𝑂𝑏𝑗 𝑝() represents the objective function
value at iteration 𝑡.

This phase may incorporate mechanisms
for monitoring the performance of the CNN
configurations and stopping the optimization
process once a satisfactory level of performance is
achieved represented in Eq.(56).

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒() ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (56)

where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒() represents a performance
metric (e.g., accuracy, loss) at iteration 𝑡, and
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a predefined threshold value.

Termination criteria may involve
mechanisms for controlling the computational
resources allocated to the optimization process,
such as stopping the optimization process once a
specified amount of time or computational budget
is exhausted.

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 (57)

where in Eq.(57), 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 represents the
time elapsed since the start of the optimization
process, and 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 is the maximum allowable
time.

3.4. Identification and Prediction using CO-CNN

Cotton is one of the most economically
important crops globally, serving as a primary
source of fibre for the textile industry. The Cotton
cultivation faces significant challenges due to
various diseases that severely impact yield and
quality. The Cotton plants were infected by
Bacteria, Fungus and Viruses. Bacterial diseases
pose significant threats to cotton plants, impacting
yield and quality. These diseases pose significant
threats to crop health and yield. Angular leaf spot
caused by Xanthomonas campestris pv.
malvacearum manifests as water-soaked lesions on
leaves, leading to defoliation. Bacterial wilt, caused
by Ralstonia solanacearum, induces wilting and

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4789

eventual death of infected plants, challenging
cotton cultivation endeavors. The bacterial
infection in cotton plants is depicted in Fig 1.

Fig 1. Bacterial Infection

Fungal diseases pose significant threats to
cotton plants. One prevalent fungal disease is
Fusarium wilt, caused by Fusarium oxysporum. This
pathogen infiltrates the plant's vascular system,
resulting in wilting and death. Alternaria leaf spot,
caused by Alternaria alternata, manifests as dark
lesions on leaves, impacting photosynthesis.
Rhizoctonia solani causes root rot, hindering nutrient
uptake and stunting growth. These fungal diseases
necessitate vigilant management practices to mitigate
their detrimental effects on cotton cultivation. The
Fungal infection in cotton plants is depicted in Fig 2.

Fig 2. Fungal Infection

Viral diseases pose significant threats to
cotton plants, compromising their health and yield.
Cotton leaf curl virus, transmitted by whiteflies,
induces curling and yellowing of leaves, stunting
plant growth. Cotton leaf crumple virus causes
crumpling and deformation of leaves, impacting
photosynthesis. Cotton mosaic virus leads to
mosaic patterns on leaves, diminishing their
functionality. The viral infection in cotton plants is
depicted in Fig 3.

Fig 3. Viral Infection

Bacterial blight, triggered by Acidovorax
avenae subsp. citrulli, leads to necrotic lesions on
cotton leaves, stems, and bolls. This disease
severely impacts plant health and productivity,
necessitating prompt management strategies for
mitigation. The Bacterial blight in cotton plants is
depicted in Fig 4.

Fig 4. Bacterial Blight

The CNN architecture is optimized using
CO to enhance its performance in disease
identification and yield prediction tasks. CO
dynamically adjusts the parameters of the CNN
model based on evaluating its performance using an
objective function. This adaptive Behavior of CO
ensures that the CNN model effectively explores the
solution space and converges to optimal solutions for
disease identification and yield prediction. The
training of the CO-CNN model involves iterative
updates to the CNN parameters, guided by the
optimization process facilitated by CO. During
exercise; the model learns to extract relevant features
from the input images and classify them based on
disease symptoms and yield-related factors. The
optimization continues until termination criteria are
met, ensuring the model performs satisfactorily.

Once trained, the CO-CNN model can be
deployed for real-time disease identification and
yield prediction in cotton fields. By capturing
images of cotton leaves using drones or
smartphones, farmers can quickly assess the health
status of their crops and take timely actions to
mitigate disease spread and optimize yield. The
CO-CNN model provides accurate and reliable
results, enabling farmers to make informed
decisions and implement targeted interventions to
maximize crop productivity.

Fig 5. Bacterial Infection identification

Fig 5 depicts bacterial infection
identification, showcasing necrotic lesions caused
by Acidovorax avenae subsp. citrulli on cotton
leaves, stems, and bolls. This visual aid aids in
prompt recognition and management of bacterial
blight in cotton plants.

Fig 6. Fungal Infection Identification

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4790

Fig 6 illustrates fungal infection
identification, displaying dark lesions caused by
Alternaria alternata on cotton leaves. This visual
reference assists in swift recognition and control of
fungal diseases in cotton cultivation.

Fig 7. Viral Infection Identification

In Fig 7, viral infection identification is
demonstrated, showcasing symptoms of cotton leaf
curl virus, including leaf curling and yellowing.
This visual aid aids in rapid detection and
management of viral diseases in cotton plants. Fig 8
portrays bacterial blight identification, highlighting
necrotic lesions on cotton leaves, stems, and bolls
caused by Acidovorax avenae subsp. citrulli. This
visual aid facilitates prompt recognition and control
of bacterial blight in cotton cultivation.

Fig 8. Bacterial Blight Identification

Integrating CO-CNN for cotton leaf
disease identification and yield prediction offers
several advantages over traditional methods. The
deep learning capabilities of CNNs enable the
model to learn complex patterns and variations in
cotton leaf images, leading to more accurate disease
diagnosis. The optimization provided by CO
enhances the efficiency and effectiveness of the
CNN model, ensuring optimal performance in
disease identification and yield prediction tasks.
CO-CNN provides a scalable and adaptable
solution that can be customized to suit different
geographical regions and crop varieties. By training
the model on localized datasets, CO-CNN can
capture region-specific disease patterns and
environmental factors, enhancing its accuracy and
relevance for local farming communities.
Implementing CO-CNN for cotton leaf disease
identification and yield prediction involves several
steps, each leveraging the capabilities of
Convolutional Neural Networks (CNNs) and
Cassowary Optimization (CO) to achieve accurate
and efficient results.

A) Data Collection and Preprocessing

 CNN: CNNs are crucial in processing image
data collected from cotton fields. They extract

relevant features from the images, such as leaf
morphology and disease symptoms.

 CO: CO dynamically adjusts the preprocessing
parameters to enhance the quality of the image
dataset, ensuring uniformity and normalization
across different images.

B) Model Architecture Design

 CNN: CNNs are responsible for designing the
architecture of the neural network model. This
includes determining the number of layers,
filters, and activation functions to optimize
feature extraction and classification.

 CO: CO optimizes the architecture parameters
of the CNN model, such as the number of
neurons in each layer and the connectivity
between layers, to improve the model's
performance in disease identification and yield
prediction tasks.

C) Training Process

 CNN: During training, CNNs learn to extract
features from the input images and classify
them based on disease symptoms and yield-
related factors. This involves iterative updates
to the parameters of the CNN model.

 CO: CO dynamically adjusts the parameters of
the CNN model based on evaluating its
performance using an objective function. This
adaptive Behavior ensures that the CNN model
effectively explores the solution space and
converges to optimal solutions.

D) Optimization

 CNN: CNNs optimize the features extracted
from the input images to improve disease
identification accuracy and yield prediction.
This involves adjusting the weights and biases
of the neural network based on training data.

 CO: CO optimizes the CNN architecture and
parameters to enhance the efficiency and
effectiveness of the model. It dynamically
adjusts the learning rates and regularization
parameters to ensure optimal convergence and
prevent overfitting.

E) Evaluation and Validation

 CNN: CNNs evaluate the performance of the
trained model on validation datasets to assess
its accuracy and generalization capabilities.

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4791

 CO: CO monitors the convergence behaviour
of the optimization process and evaluates the
performance of the CNN model using objective
metrics. It ensures the model performs
satisfactorily in disease identification and yield
prediction tasks.

F) Deployment

 CNN: Once trained and validated, CNNs are
deployed for real-time disease identification
and yield prediction in cotton fields. They
analyze images captured from the field and
provide accurate assessments of disease
severity and yield potential.

 CO: CO continues optimizing the CNN model
during deployment, ensuring it adapts to
changing environmental conditions and disease
patterns. It dynamically adjusts the model
parameters to maintain optimal performance in
real-world scenarios.

By integrating CNNs with CO, the CO-
CNN approach offers a robust and efficient solution
for cotton leaf disease identification and yield
prediction.

4. ABOUT DATASET

The "Cotton Plant Disease Dataset"
comprises 26,100 high-resolution images captured
from cotton fields, showcasing various stages of
cotton plant development and manifestations of
diseases. This comprehensive dataset serves as a
valuable resource for researchers, agronomists, and
farmers seeking to understand and address
challenges related to cotton plant health. Each
image in the dataset provides detailed insights into
the visual symptoms exhibited by cotton plants
affected by different diseases, including Cotton
Leaf Curl Disease (CLCuD), Fusarium Wilt, and
Bacterial Blight. These images capture the
morphological changes, discoloration, lesions, and
deformities observed in infected cotton leaves,
stems, and bolls.

The dataset offers a diverse range of
samples, encompassing healthy cotton plants as
well as those afflicted by various diseases.
Researchers can utilize this extensive collection to
develop and validate machine learning models for
automated disease detection, classification, and
yield prediction tasks. Access to such a large and
diverse dataset empowers stakeholders in the cotton
industry to leverage advanced computational
techniques, such as image processing and deep
learning, to enhance disease management strategies
and optimize crop yield. By leveraging the insights

gleaned from this dataset, stakeholders can make
informed decisions, implement targeted
interventions, and safeguard cotton plant health and
productivity.

5. RESULTS AND DISCUSSION

5.1. Evaluation of Classifiers using Classification
Accuracy (CA) and F-Measure (FM) Analysis:

Classification Accuracy (CA) and F-
Measure (FM) are essential performance metrics
used to evaluate the effectiveness of classification
models. CA represents the proportion of correctly
classified instances among all instances in the
dataset, providing an overall measure of the model's
accuracy. On the other hand, FM considers both
precision and recall, offering a balanced assessment
of the model's ability to correctly classify positive
instances while minimizing false positives and false
negatives.

In the results of three classification models shown
in Table 1, there are notable differences in CA and
FM values. CO-CNN exhibits the highest CA of
95.6280%, indicating that it correctly classifies the
majority of instances in the dataset. This high CA
suggests that CO-CNN is highly accurate in
predicting both positive and negative instances,
making it a reliable model for classification tasks.

Table 1: CA and FM

Classification Algorithms CA FM

RF 50.487 52.013

SVM 64.333 63.757

CO-CNN 95.628 95.722

When comparing the FM values, CO-CNN also
outperforms RF and SVM with an FM score of
95.7219%. This high FM score indicates that CO-
CNN achieves a good balance between precision
and recall, effectively minimizing false positives
and false negatives. In contrast, RF and SVM
exhibit lower FM scores of 52.0125% and
63.7571%, respectively, indicating a less balanced
performance in terms of precision and recall.

Fig 9. depicts the trend of CA and FM across the
three classification models. We can observe that
CO-CNN consistently outperforms RF and SVM in
both CA and FM metrics. This indicates that CO-
CNN achieves higher accuracy and a better balance
between precision and recall compared to the other
models.

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4792

Fig.9. CA and FM

The results demonstrate that CO-CNN is
the most effective model among the three
evaluated, achieving superior performance in terms
of both CA and FM. This suggests that CO-CNN is
a promising approach for classification tasks,
offering high accuracy and balanced precision-
recall trade-offs. These findings highlight the
importance of utilizing advanced techniques like
CO-CNN for achieving optimal classification
performance in various domains.

5.2. Evaluation of Classifiers using Classification
Accuracy (CA) and F-Measure (FM) Analysis:

The Fowlkes-Mallows Index (FMI) and
Matthews Correlation Coefficient (MCC) are two
important metrics used to evaluate the performance
of classification models, particularly in binary
classification tasks. FMI measures the similarity
between clusters or classes, while MCC takes into
account true positives, true negatives, false
positives, and false negatives to assess the overall
performance of a classifier.

In the results of three classification models
shown in Table 2, RF model achieved an FMI of
52.016%, the SVM model achieved an FMI of
63.763%, and the CO-CNN model achieved an
impressive FMI of 95.722%. These FMI values
indicate the degree of similarity between the
predicted and actual classes, with higher values
indicating better clustering or classification
performance.

Table 2: FMI and MCC

Classification Algorithms FMI MCC

RF 52.016 0.887

SVM 63.763 28.669

CO-CNN 95.722 91.254

The MCC values for the RF, SVM, and
CO-CNN models are 0.8874, 28.6694, and
91.2543, respectively. The MCC ranges from -1 to

1, where 1 indicates perfect classification, 0
indicates random classification, and -1 indicates
perfect disagreement between observed and
predicted classifications. The high MCC values
obtained by the CO-CNN model indicate its
superior performance in accurately classifying
instances and capturing the true underlying patterns
in the data.

Fig 10. FMI & MCC

Fig. 10 illustrates the trends of FMI and
MCC across the three models. The CO-CNN model
exhibits a significant improvement over the RF and
SVM models in both metrics, demonstrating its
effectiveness in accurately clustering or classifying
instances and achieving high correlation between
observed and predicted classifications.

The results highlight the superior
performance of the CO-CNN model in terms of
both FMI and MCC. These findings underscore the
effectiveness of CO-CNN in accurately clustering
or classifying instances and capturing the true
underlying patterns in the data. The high FMI and
MCC values obtained by the CO-CNN model
validate its potential for various classification tasks,
particularly in scenarios where clustering or
classification accuracy is critical for decision-
making and analysis.

6. CONCLUSION

The analysis of various performance
metrics across different classification models, in
that Cassowary Optimization-based Convolutional
Neural Network (CO-CNN), has provided valuable
insights into their effectiveness in solving binary
classification tasks. Through comprehensive
evaluation using metrics such as True Positive Rate
(TPR), True Negative Rate (TNR), False Positive
Rate (FPR), False Negative Rate (FNR),
Classification Accuracy, F-Measure, Matthews
Correlation Coefficient (MCC), and Fowlkes-
Mallows Index (FMI), the superiority of the CO-
CNN model has been demonstrated. The CO-CNN

0

20

40

60

80

100

CA FM

R
es

ul
ts

 (
%

)

Performance Metrics

RF SVM CO-CNN

0

20

40

60

80

100

FMI MCC

R
es

ul
ts

 (
%

)
Performance Metrics

RF SVM CO-CNN

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4793

model consistently outperformed RF and SVM
models across all metrics, showcasing its capability
to accurately classify instances, achieve a balanced
trade-off between precision and recall, and capture
the true underlying patterns in the data. These
findings underscore the potential of CO-CNN as a
robust and efficient approach for solving binary
classification tasks in various domains, offering
promising opportunities for improving decision-
making and analysis processes.

REFERENCES

[1] P. Sobiyaa, K. S. Jayareka, K. Maheshkumar,
S. Naveena, and K. S. Rao, “Paddy disease
classification using machine learning
technique,” Mater. Today Proc., vol. 64, pp.
883–887, 2022, doi: 10.1016/j. matpr.
2022.05.398.

[2] D. Unal, M. Hammoudeh, M. A. Khan, A.
Abuarqoub, G. Epiphaniou, and R. Hamila,
“Integration of federated machine learning and
blockchain for the provision of secure big data
analytics for Internet of Things,” Comput.
Secur., vol. 109, p. 102393, 2021, doi:
10.1016/j.cose.2021.102393.

[3] S. Talasila, K. Rawal, G. Sethi, S. MSS, and S.
P. R. M, “Black gram Plant Leaf Disease
(BPLD) dataset for recognition and
classification of diseases using computer-
vision algorithms,” Data Br., vol. 45, p.
108725, 2022, doi: 10.1016/j. dib. 2022.
108725.

[4] B. Swaminathan and S. Vairavasundaram,
“D2CNN: Double-staged deep CNN for stress
identification and classification in cropping
system,” Agric. Syst., vol. 216, p. 103886,
2024, doi: https://doi.org/10.1016/
j.agsy.2024.103886

[5] J. Sun, Y. Yang, X. He, and X. Wu, “Northern
Maize Leaf Blight Detection under Complex
Field Environment Based on Deep Learning,”
IEEE Access, vol. 8, pp. 33679–33688, 2020,
doi: 10.1109/ ACCESS.2020.2973658.

[6] M. Karthiga, V. Santhi, and S. Sountharrajan,
“Hybrid optimized convolutional neural
network for efficient classification of ECG
signals in healthcare monitoring,” Biomed.
Signal Process. Control, vol. 76, p. 103731,
2022, doi: https://doi.org/10.1016/j. bspc.
2022. 03731

[7] A. Bajaj and D. K. Vishwakarma,
“HOMOCHAR: A novel adversarial attack
framework for exposing the vulnerability of
text based neural sentiment classifiers,” Eng.

Appl. Artif. Intell., vol. 126, p. 106815, 2023,
doi: 10.1016/j.engappai. 2023.106815.

[8] R. Kusumaningrum, I. Z. Nisa, R. Jayanto, R.
P. Nawangsari, and A. Wibowo, “Deep
learning-based application for multilevel
sentiment analysis of Indonesian hotel
reviews,” Heliyon, vol. 9, no. 6, p. e17147,
2023, doi: 10.1016/j.heliyon.2023.e17147.

[9] C. K. Sunil, C. D. Jaidhar, and N. Patil,
“Cardamom Plant Disease Detection Approach
Using EfficientNetV2,” IEEE Access, vol. 10,
pp. 789–804, 2022, doi: 10.1109/ACCE SS.20
213138920.

[10] J. Ramkumar, A. Senthilkumar, M. Lingaraj, R.
Karthikeyan, and L. Santhi, “Optimal Approach
for Minimizing Delays in Iot-Based Quantum
Wireless Sensor Networks Using Nm-Leach
Routing Protocol,” J. Theor. Appl. Inf. Technol.,
vol. 102, no. 3, pp. 1099–1111, 2024.

[11] J. Ramkumar, R. Vadivel, B. Narasimhan, S.
Boopalan, and B. Surendren, “Gallant Ant
Colony Optimized Machine Learning
Framework (GACO-MLF) for Quality of
Service Enhancement in Internet of Things-
Based Public Cloud Networking,” J. M. R. S.
Tavares, J. J. P. C. Rodrigues, D. Misra, and D.
Bhattacherjee, Eds., Singapore: Springer Nature
Singapore, 2024, pp. 425–438. doi:
10.1007/978-981-99-5435-3_30.

[12] J. Ramkumar and R. Vadivel, “Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio wireless
sensor network,” Int. J. Comput. Networks
Appl., vol. 8, no. 4, pp. 455–464, 2021, doi:
10.22247/ijcna /2021/209711.

[13] R. Jaganathan and R. Vadivel, “Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks,” Int. J. Comput. Digit. Syst., vol. 10,
no. 1, pp. 1063–1074, 2021, doi: 10.12785
/ijcds/100196.

[14] P. Menakadevi and J. Ramkumar, “Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data,”
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022, pp. 1–5, Mar. 2022, doi:
10.1109/ICACTA54488.2022.9753203.

[15] J. Ramkumar and R. Vadivel, CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks, vol. 556.
2017. doi: 10.1007/978-981-10-3874-7_14.

[16] J. Ramkumar, C. Kumuthini, B. Narasimhan,
and S. Boopalan, “Energy Consumption
Minimization in Cognitive Radio Mobile Ad-

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4794

Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol,” in 2022
International Conference on Advanced
Computing Technologies and Applications,
ICACTA 2022, 2022. doi: 10.1109/ICACTA
54488.2022.9752899.

[17] L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless Sensor
Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

[18] R. Jaganathan, V. Ramasamy, L. Mani, and N.
Balakrishnan, “Diligence Eagle Optimization
Protocol for Secure Routing (DEOPSR) in
Cloud-Based Wireless Sensor Network,” Res.
Sq., 2022, doi: 10.21203/rs.3.rs-1759040/v1.

[19] J. Ramkumar, R. Vadivel, and B. Narasimhan,
“Constrained Cuckoo Search Optimization
Based Protocol for Routing in Cloud
Network,” Int. J. Comput. Networks Appl., vol.
8, no. 6, pp. 795–803, 2021, doi:
10.22247/ijcna/2021/210727.

[20] J. Ramkumar, S. S. Dinakaran, M. Lingaraj, S.
Boopalan, and B. Narasimhan, “IoT-Based
Kalman Filtering and Particle Swarm
Optimization for Detecting Skin Lesion,” in
Lecture Notes in Electrical Engineering, K.
Murari, N. Prasad Padhy, and S. Kamalasadan,
Eds., Singapore: Springer Nature Singapore,
2023, pp. 17–27. doi: 10.1007/978-981-19-
8353-5_2.

[21] J. Ramkumar and R. Vadivel, “Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks,” Wirel. Pers. Commun., vol.
120, no. 2, pp. 887–909, Apr. 2021, doi:
10.1007/s11277-021-08495-z.

[22] D. Jayaraj, J. Ramkumar, M. Lingaraj, and B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network,” Int. J. Comput. Networks Appl., vol.
10, no. 1, pp. 119–129, 2023, doi: 10.22247/
ijcna/2023/218516.

[23] R. Jaganathan and V. Ramasamy,
“Performance modeling of bio-inspired routing
protocols in Cognitive Radio Ad Hoc Network
to reduce end-to-end delay,” Int. J. Intell. Eng.
Syst., vol. 12, no. 1, pp. 221–231, 2019, doi:
10.22266/IJIES2019.0228.22.

[24] J. Ramkumar, K. S. Jeen Marseline, and D. R.
Medhunhashini, “Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-

Based Ad-Hoc Networks,” Int. J. Comput.
Networks Appl., vol. 10, no. 4, pp. 668–687,
Aug. 2023, doi: 10.22247/ijcna/2023/223319.

[25] J. Ramkumar and R. Vadivel, “Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN),”
World J. Eng., vol. 15, no. 2, pp. 306–311,
2018, doi: 10.1108/WJE-08-2017-0260.

[26] M. Lingaraj, T. N. Sugumar, C. S. Felix, and J.
Ramkumar, “Query aware routing protocol for
mobility enabled wireless sensor network,” Int.
J. Comput. Networks Appl., vol. 8, no. 3, pp.
258–267, 2021, doi: 10.22247/ijcna/2021/
209192.

[27] R. Vadivel and J. Ramkumar, “QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare applications,”
Inc. Internet Things Healthc. Appl. Wearable
Devices, pp. 109–121, 2019, doi: 10.4018/978-
1-7998-1090-2.ch006.

[28] J. Ramkumar and R. Vadivel, “Improved Wolf
prey inspired protocol for routing in cognitive
radio Ad Hoc networks,” Int. J. Comput.
Networks Appl., vol. 7, no. 5, pp. 126–136,
2020, doi: 10.22247/ijcna/2020/202977.

[29] A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, and B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing,” Int. J. Comput.
Networks Appl., vol. 10, no. 2, pp. 217–230,
2023, doi: 10.22247/ijcna/2023/220737.

[30] M. K. Suddle and M. Bashir, “Metaheuristics
based long short term memory optimization for
sentiment analysis,” Appl. Soft Comput., vol.
131, 2022, doi: 10.1016/j.asoc.2022.109794.

[31] R. Karthikeyan and R. Vadivel, “Proficient
Dazzling Crow Optimization Routing Protocol
(PDCORP) for Effective Energy Administration
in Wireless Sensor Networks,” in 2023
International Conference on Electrical,
Electronics, Communication and Computers
(ELEXCOM), 2023, pp. 1–6. doi :10.1109/
ELEXCOM58812.2023.10370559

[32] J. Chen, W. Chen, A. Zeb, S. Yang, and D.
Zhang, “Lightweight Inception Networks for
the Recognition and Detection of Rice Plant
Diseases,” IEEE Sens. J., vol. 22, no. 14, pp.
14628–14638, 2022, doi: 10.1109/JSEN.2022
.3182304.

[33] G. Nagasubramanian, R. K. Sakthivel, R.
Patan, M. Sankayya, M. Daneshmand, and A.
H. Gandomi, “Ensemble Classification and
IoT-Based Pattern Recognition for Crop

 Journal of Theoretical and Applied Information Technology
15th June 2024. Vol.102. No. 11

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4795

Disease Monitoring System,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12847–12854,
2021, doi: 10.1109/JIOT.2021.3072908.

[34] M. Kumar, A. Kumar, and V. S. Palaparthy,
“Soil Sensors-Based Prediction System for
Plant Diseases Using Exploratory Data
Analysis and Machine Learning,” IEEE Sens.
J., vol. 21, no. 16, pp. 17455–17468, 2021, doi:
10.1109/JSEN.2020.3046295.

[35] M. Hassam et al., “A Single Stream Modified
MobileNet V2 and Whale Controlled Entropy
Based Optimization Framework for Citrus
Fruit Diseases Recognition,” IEEE Access, vol.
10, pp. 91828–91839, 2022, doi:
10.1109/ACCESS.2022.3201338.

[36] A. Khattak et al., “Automatic Detection of
Citrus Fruit and Leaves Diseases Using Deep
Neural Network Model,” IEEE Access, vol. 9,
pp. 112942–112954, 2021, doi: 10.1109/
ACCESS.2021.3096895.

[37] A. Tabbakh and S. S. Barpanda, “A Deep
Features Extraction Model Based on the
Transfer Learning Model and Vision
Transformer ‘TLMViT’ for Plant Disease
Classification,” IEEE Access, vol. 11, pp.
45377–45392, 2023, doi: 10.1109/
ACCESS.2023.3273317.

[38] L. Falaschetti et al., “A Low-Cost, Low-Power
and Real-Time Image Detector for Grape Leaf
Esca Disease Based on a Compressed CNN,”
IEEE J. Emerg. Sel. Top. Circuits Syst., vol.
11, no. 3, pp. 468–481, 2021, doi: 10.1109/
JETCAS.2021.3098454.

[39] C. Zhou, Z. Zhang, S. Zhou, J. Xing, Q. Wu,
and J. Song, “Grape leaf spot identification
under limited samples by fine grained-GAN,”
IEEE Access, vol. 9, pp. 100480–100489,
2021, doi: 10.1109/ACCESS.2021.3097050.

[40] W. Gomez-Flores, J. J. Garza-Saldana, and S.
E. Varela-Fuentes, “A Huanglongbing
Detection Method for Orange Trees Based on
Deep Neural Networks and Transfer
Learning,” IEEE Access, vol. 10, pp. 116686–
116696, 2022, doi: 10.1109/ACCESS. 2022.
3219481.

[41] P. Joshi, D. Das, V. Udutalapally, M. K.
Pradhan, and S. Misra, “RiceBioS:
Identification of Biotic Stress in Rice Crops
Using Edge-as-a-Service,” IEEE Sens. J., vol.
22, no. 5, pp. 4616–4624, 2022, doi:
10.1109/JSEN.2022.3143950.

[42] L. Breiman, “Random forests,” Mach. Learn.,
vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:
1010933404324.

[43] C. Cortes and V. Vapnik, “Support-vector
networks,” Mach. Learn., vol. 20, no. 3, pp.
273–297, 1995, doi: 10.1007/bf00994018.

