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ABSTRACT 

In agriculture, accurate identification of cotton plant diseases and prediction of yield are crucial for 
ensuring crop health and optimizing production. This abstract explores the integration of Cassowary 
Optimization (CO) with Convolutional Neural Networks (CNNs) to enhance cotton plant disease 
identification and yield prediction. The CO-CNN framework demonstrates superior performance in 
accurately classifying instances and capturing underlying patterns in the data. By leveraging the dynamic 
optimization capabilities of CO, the model effectively optimizes CNN parameters, leading to improved 
convergence and performance. Results across various performance metrics, including Classification 
Accuracy, F-Measure, Fowlkes-Mallows Index, and Matthews Correlation Coefficient, showcase the 
efficacy of the CO-CNN model in addressing the complexities of real-world classification tasks. This 
innovative approach holds significant promise for empowering farmers and agronomists with advanced 
tools for early disease detection, yield prediction, and informed decision-making in crop management.  
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1. INTRODUCTION 

Agriculture the backbone of many 
economies worldwide, encompasses a diverse array 
of practices aimed at cultivating crops and rearing 
livestock. Among these practices, cotton farming 
holds significant importance due to cotton's 
versatility and widespread use in various industries. 
Cotton farming involves meticulous planning, from 
soil preparation to harvest, to ensure optimal 
growth and yield[1]. However, one persistent 
challenge faced by cotton farmers is the prevalence 
of leaf diseases. These diseases, caused by various 
pathogens such as fungi, bacteria, and viruses, can 
significantly impact cotton plants' health and 
productivity[2]. Among the most common leaf 
diseases affecting cotton plants are Fusarium wilt, 
Alternaria leaf spot, and bacterial blight. Fusarium 
wilt, caused by the fungus Fusarium oxysporum, 
leads to wilting and eventual death of the plant[3]. 
Alternaria leaf spot, caused by the fungus 
Alternaria alternata, manifests as dark lesions on 
leaves, reducing photosynthetic capacity[1]. 
Bacterial blight, caused by the bacterium 
Xanthomonas campestris pv. malvacearum, results 
in water-soaked lesions and defoliation[4]. 

Managing leaf diseases in cotton farming 
requires a combination of preventive measures and 
timely interventions. These may include crop 
rotation, use of disease-resistant varieties, proper 
sanitation practices, and application of fungicides 
or bactericides when necessary. By implementing 
effective disease management strategies, cotton 
farmers can mitigate the impact of leaf diseases and 
sustainably improve their crop yields[5]. 

In modern agricultural practices, advanced 
technologies play a pivotal role in disease 
identification and crop yield prediction. One such 
technology is Convolutional Neural Networks 
(CNN), a type of deep learning algorithm used for 
image recognition and analysis. CNNs are adept at 
analyzing vast amounts of agricultural data, 
including images of crops and diseased plants 
captured by drones or sensors[6]. By examining 
intricate patterns and features within these images, 
CNNs can accurately identify various diseases 
affecting crops. This capability enables farmers to 
swiftly detect and respond to disease outbreaks, 
thus minimizing crop losses and ensuring optimal 
yields[7]. 



 Journal of Theoretical and Applied Information Technology 
15th June 2024. Vol.102. No. 11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4775 

 

CNNs are instrumental in predicting crop 
yields by analyzing factors such as weather 
patterns, soil quality, and historical yield data[8]. 
By processing these diverse datasets, CNNs can 
generate predictive models that forecast crop yields 
with remarkable precision. This predictive 
capability empowers farmers to make informed 
decisions regarding planting schedules, irrigation 
strategies, and resource allocation, ultimately 
maximizing crop productivity and profitability[9]. 

Bio-inspired computing enhances CNN by 
mimicking biological processes. Drawing 
inspiration from nature, algorithms emulate 
behaviors observed in living organisms [10]–[29]. 
For instance, genetic algorithms simulate natural 
selection to optimize CNN parameters[30]. 
Similarly, swarm intelligence algorithms replicate 
the collective behavior of organisms like ants or 
bees to improve CNN efficiency. These bio-
inspired approaches offer novel solutions to 
enhance CNN performance, enabling more accurate 
disease identification and crop yield prediction in 
agriculture. By integrating principles from the 
natural world, bio-inspired computing contributes 
to the advancement of CNN technology in 
agricultural applications [31]. 

1.1. Problem Statement 

In agricultural practices, the accurate 
identification of crop diseases and prediction of 
crop yields are paramount for ensuring optimal 
productivity and mitigating losses. Conventional 
methods for disease identification and yield 
prediction often lack efficiency and precision. 
Challenges arise from the complexity of analyzing 
vast datasets comprising diverse environmental 
factors and crop conditions. Existing approaches 
may struggle to adapt to dynamic changes in 
disease patterns and environmental variables. To 
address these issues, leveraging CNN in 
conjunction with bio-inspired computing offers a 
promising solution. By harnessing principles 
inspired by natural systems, such as genetic 
algorithms and swarm intelligence, CNNs can 
enhance their ability to analyze intricate patterns 
within agricultural data.  

1.2. Motivation 

The challenges posed by inaccurate 
disease identification and crop yield prediction in 
agriculture demand innovative solutions. 
Conventional methods fall short in effectively 
harnessing the wealth of data available and 
adapting to dynamic environmental conditions. 
Hence, there arises a pressing need to explore 

alternative approaches that can revolutionize 
agricultural practices. By leveraging the power of 
CNN and incorporating principles inspired by 
nature through bio-inspired computing, we aim to 
address these challenges head-on. Through this 
interdisciplinary approach, we strive to enhance the 
precision and efficiency of disease identification 
and yield prediction, thus empowering farmers to 
make informed decisions and optimize crop 
productivity.  

1.3. Objectives 

The objective of this research initiative is 
to develop innovative solutions for improving 
disease identification and crop yield prediction in 
agriculture. Drawing from the challenges outlined 
in the introduction, we are motivated to explore 
alternative approaches that can revolutionize 
agricultural practices. By leveraging CNN and 
integrating principles inspired by nature through 
bio-inspired computing, our aim is to enhance the 
precision and efficiency of disease identification 
and yield prediction. Through interdisciplinary 
collaboration and leveraging advanced 
technologies, we aspire to empower farmers with 
tools and insights to make informed decisions and 
optimize crop productivity. Ultimately, the 
objective is to contribute to a more sustainable and 
resilient agricultural future by addressing critical 
issues faced by farmers worldwide. 

2. LITERATURE REVIEW 

“Lightweight Inception Networks” [32] 
involve the utilization of Inception Networks, 
architecture for a deep neural network, for disease 
recognition and detection tasks in rice plants. The 
Inception Network’s lightweight version is 
designed to balance model complexity and 
computational efficiency, making it suitable for 
resource-constrained environments. The network is 
trained on a labelled rice plant image dataset 
covering various disease types. By leveraging the 
power of Inception Networks, the approach 
captures and learns discriminative features from the 
input images, enabling accurate disease recognition 
and detection. The lightweight design of the 
network ensures efficient inference and facilitates 
real-time applications. “IoT-Based Pattern 
Recognition” [33] combines multiple classification 
algorithms to form an ensemble model that 
collectively predicts crop disease patterns. The 
system utilizes IoT devices like sensors and 
cameras to collect real-time data from the fields. 
The collected data is then processed and analyzed 
using pattern recognition techniques to identify and 
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classify crop diseases. The ensemble model 
aggregates the outputs of individual classifiers to 
make accurate and robust predictions. The system 
enables remote monitoring and timely intervention 
in crop disease management by leveraging IoT 
technology. Combining ensemble classification and 
IoT-based pattern recognition provides a 
comprehensive and efficient approach to crop 
disease monitoring, contributing to improved 
agricultural practices and higher crop yields. 

“EfficientNetV2” [9] employs the 
EfficientNetV2 model, a state-of-the-art deep 
neural network architecture, for disease detection in 
cardamom plants. The model is trained on a 
labelled cardamom leaf image dataset covering 
various disease types. EfficientNetV2 captures and 
learns discriminative features from the input 
images, enabling accurate disease detection. By 
leveraging the power of deep learning, the approach 
offers a robust solution for identifying and 
classifying cardamom plant diseases. The 
EfficientNetV2 model’s architecture balances 
model complexity and computational efficiency, 
facilitating real-time disease detection applications. 
“Soil Sensors-Based Prediction System” [34] 
involves collecting data from soil sensors, which 
measure various parameters related to soil health 
and environmental conditions. The collected data is 
subjected to exploratory analysis to uncover 
patterns and relationships between soil factors and 
plant diseases. Machine learning algorithms are 
then employed to develop predictive models based 
on the analyzed data. These models learn from 
historical data to predict the occurrence and 
severity of plant diseases. By integrating soil sensor 
data, exploratory data analysis, and machine 
learning, the system provides an effective tool for 
early detection and prevention of plant diseases.  

“Northern Maize Leaf Blight Detection” 
[5] leverages convolutional neural networks 
(CNNs) to analyze leaf images and accurately 
identify disease symptoms. The system achieves 
high detection accuracy by employing a pre-trained 
CNN model while handling complex field 
environments effectively. The proposed approach 
effectively extracts discriminative features from the 
input images and learns to differentiate between 
healthy and infected maize leaves. Deep learning 
enables robust and efficient detection of NMLB, 
which is crucial for timely intervention and disease 
management. The model’s ability to handle 
complex field conditions enhances its applicability 
in real-world scenarios, improving the overall 
accuracy and reliability of Northern Maize Leaf 
Blight Detection. “Single Stream Modified 

MobileNet” [35] is designed as a single stream 
network, enabling efficient feature extraction and 
classification. The whale-controlled entropy-based 
optimization technique further enhances the 
performance by fine-tuning the model’s parameters. 
By leveraging this framework, accurate recognition 
of citrus fruit diseases can be achieved. The 
modified MobileNet V2 architecture effectively 
captures relevant features from the input images, 
while the optimization framework ensures optimal 
parameter adjustments for improved classification 
accuracy. Combining these techniques results in a 
robust and efficient system for disease recognition 
in citrus fruits. 

“Deep Neural Network Model” [36] 
utilizes a convolutional neural network (CNN) to 
analyze images and accurately identify disease 
symptoms in citrus fruits and leaves. By training 
the CNN model on a large dataset of annotated 
images, the system learns to distinguish between 
healthy and infected samples with high accuracy. 
The deep neural network architecture enables 
extracting meaningful features from the input 
images, helping reliable disease detection. This 
approach offers a robust and automated solution for 
disease identification in citrus fruits and leaves, 
which is crucial for timely intervention and disease 
management. Using deep learning techniques 
enhances the accuracy and efficiency of disease 
detection, making it a valuable tool for the 
agricultural industry. “Deep Features Extraction 
Model” [37] combines transfer learning and the 
Vision Transformer model to effectively extract 
discriminative features from plant images. By 
leveraging a pre-trained model and fine-tuning it on 
a dataset of labelled plant images, this model 
achieves high accuracy in classifying different plant 
diseases. The transfer learning technique enables 
the model to leverage knowledge from large-scale 
datasets, while the Vision Transformer architecture 
captures spatial relationships in the input images. 
Combining these techniques results in a robust and 
efficient model for plant disease classification. 

“Grape Leaf Esca Disease Detection” [38] 
utilizes a compressed CNN model, reducing 
computational complexity while maintaining high 
detection accuracy. By leveraging this lightweight 
model, the system achieves real-time detection of 
Esca disease in grape leaves. The low-cost and low-
power design makes it suitable for deployment in 
resource-constrained environments. The 
compressed CNN effectively analyzes input images 
and identifies disease symptoms, providing 
accurate and timely detection of Esca disease. 
“Grape Leaf Spot Identification” [39] leverages the 
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power of GANs to generate synthetic samples that 
closely resemble the limited available dataset. 
Training the GAN model on a small number of 
labelled images, it learns to create real examples of 
grape leaf spots, enhancing the training data. The 
fine-grained GAN architecture captures the intricate 
details of the disease symptoms, enabling accurate 
identification of grape leaf spots. This approach 
addresses the challenge of limited samples by 
augmenting the dataset with synthetic samples, 
thereby improving the robustness and reliability of 
the classification model. Using fine-grained GANs 
in grape leaf spot identification expands the 
possibilities of disease detection under constrained 
data conditions, providing valuable insights for 
agricultural disease management. 

“Huanglongbing Detection Method” [40] 
leverages the power of deep neural networks to 
analyze leaf images and accurately identify HLB 
symptoms. The model is trained on a large dataset 
of annotated images by utilizing transfer learning, 
enabling it to learn relevant features and patterns 
associated with HLB. This transfer learning 
approach enhances the model’s ability to detect 
HLB even with limited training data. The deep 
neural network architecture effectively extracts 
discriminative features from the input images, 
improving the accuracy and reliability of HLB 
detection. “RiceBioS” [41] utilizes edge computing 
technology to analyze real-time data collected from 
rice fields. The system can detect and classify 
various biotic stress factors affecting rice crops by 
deploying edge devices with advanced sensors and 
image processing capabilities. The Edge-as-a-
Service model ensures efficient data processing and 
analysis at the edge, reducing latency and enabling 
timely decision-making for farmers. The RiceBioS 
approach empowers farmers with quick and 
accurate identification of biotic stress, allowing 
them to take proactive measures to mitigate the 
damage. By harnessing the power of Edge-as-a-
Service, RiceBioS enhances the resilience and 
productivity of rice farming while supporting 
sustainable agricultural practices. 

“Random Forest (RF)” [42] has become 
widely adopted for identifying cotton leaf diseases 
due to its resilient operational framework. This 
method utilizes a collection of decision trees, each 
trained on a random segment of the training dataset. 
During classification, RF amalgamates the 
predictions from all trees to formulate the final 
decision. This ensemble method mitigates the 
influence of individual trees, enhancing the 
accuracy and dependability of disease 
identification. RF introduces variability by 

choosing a subset of input features at each node, 
bolstering its resilience and capacity for 
generalization. In the realm of cotton leaf disease 
identification, RF has demonstrated exceptional 
performance in precisely categorizing various 
disease types based on their symptomatic patterns. 
Its proficiency in managing high-dimensional data, 
handling missing values, and offering insights into 
feature significance renders it an invaluable tool for 
automated disease identification and agricultural 
decision-making. 

“Support Vector Machines (SVM)” [43] 
have garnered considerable interest in the realm of 
cotton leaf disease identification owing to their 
robust operational framework. SVM functions by 
projecting the input data into a higher-dimensional 
feature space via a kernel function, aiming to 
ascertain an optimal hyperplane that effectively 
segregates various disease classes with maximal 
margin. SVM achieves superior generalization and 
adeptly manages intricate relationships between 
disease symptoms and their respective classes. 
Additionally, SVM introduces the concept of 
support vectors, which denote the data points 
positioned closest to the decision boundary by 
maximizing the margin. These support vectors play 
a pivotal role in delineating the decision boundary 
and significantly contribute to the overall 
classification accuracy. Within the domain of 
cotton leaf disease identification, SVM has 
exhibited noteworthy performance in accurately 
categorizing diverse disease types based on their 
symptomatic profiles. Its proficiency in handling 
high-dimensional data, accommodating 
nonlinearity, and delineating effective decision 
boundaries renders it a valuable asset for automated 
disease identification and agricultural decision-
making. 

3. CASSOWARY OPTIMIZATION IN 
CONVOLUTIONAL NEURAL NETWORKS 
(CO-CNN) 

3.1. Convolutional Neural Networks (CNNs) 

The techniques used in deep learning, a 
branch of machine learning, are modelled by how 
the brain's neural networks are structured and 
operate. The goal is to train computers to use 
massive volumes of data for understanding and 
decision-making. By utilizing several layers of 
nonlinear transformations, deep learning algorithms 
endeavour to represent data at high abstraction. 
Algorithms are trained to do tasks like picture and 
audio recognition, natural language processing, and 
decision-making by undergoing these 
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transformations, which allow them to acquire 
information at different levels of abstraction. 

Regarding computer vision and image 
recognition, Convolutional Neural Networks (CNNs) 
are among the most important deep learning 
architectures. Convolutional neural networks 
(CNNs) are a subset of DNNs that can learn feature 
hierarchies from data systematically and 
dynamically. Their strength is their ability to process 
incoming data with a grid-like structure, such as 
photographs. The convolutional layers of a CNN are 
its brains; these layers use convolutional operations 
to sift through incoming data, much like filters or 
kernels. These filters detect features like edges, 
corners, textures, or other patterns in the input 
images. Convolution uses a filter to slide over the 
input data and compute dot products to create feature 
maps. Convolutional neural networks (CNNs) can 
learn more complicated information sequentially 
stack convolutional layers. 

CNNs typically include pooling layers, 
such as max pooling or average pooling, following 
the convolutional layers. Reduce the spatial 
dimensionality of the feature maps acquired from 
the convolutional layers by using pooling layers to 
downsample them. Because of the reduction in 
computational complexity and the creation of 
spatial invariance, the network can recognize 
features independently of their precise placement in 
the input.  

Downsampling with pooling layers 
reduces the spatial dimensionality of the feature 
maps obtained from the convolutional layers. This 
downsampling allows the network to detect features 
regardless of their exact location in the input by 
reducing computational complexity and creating 
spatial invariance. The steps involved in training a 
CNN can be summarized as follows: 

 Data Preprocessing: Prepare the dataset by 
preprocessing the photographs. Data 
normalization, resizing, or augmentation to 
increase diversity may be part of this 
process. 

 Architecture Design: Specify the CNN's 
design, including its size, the amount of 
convolutional and pooling layers, and the 
fully connected and filtering layers. 

 Forward Propagation: Pass the input 
images through the network, applying 
convolution, activation functions (e.g., 
ReLU), and pooling operations to generate 
feature maps. 

 Loss Computation: Using an appropriate 
loss function, like categorical cross-entropy 
for classification problems, determine the 
discrepancy between the anticipated output 
and the ground truth labels. 

 Backpropagation: Using optimization 
methods such as stochastic gradient descent 
(SGD) or its variations, propagate the 
mistake backwards through the network to 
update the weights and biases. 

 Parameter Optimization: Optimize the 
model's prediction accuracy by adjusting the 
network's parameters to minimize the loss 
function. 

 Evaluation: It is essential to test the trained 
model's generalizability to new data by 
running it on a different validation dataset. 

 Fine-tuning: If desired, tweak the model's 
hyperparameters or use methods like transfer 
learning to use pre-trained models already 
trained for comparable tasks. 

By following these steps, CNNs can be 
trained effectively to recognize patterns and make 
predictions in various domains, ranging from image 
classification to object detection and segmentation. 

3.2. Cassowary Optimization (CO) 

Cassowary Optimization (CO) is a 
heuristic optimization algorithm inspired by the 
foraging behavior of the cassowary bird, native to 
tropical forests. It mimics the bird's efficient search 
strategy for finding food in complex environments. 
CO operates by iteratively adjusting the parameters 
of a solution space based on the evaluation of an 
objective function. Unlike traditional optimization 
methods, CO dynamically balances exploration and 
exploitation, allowing it to efficiently navigate 
diverse solution landscapes. By iteratively updating 
solutions while considering constraints, CO 
converges towards optimal or near-optimal 
solutions. This approach makes CO suitable for a 
wide range of optimization problems, particularly 
those characterized by non-linearity, multimodality, 
and complex constraints. CO's ability to adapt to 
changing environments and efficiently explore 
solution spaces makes it a promising optimization 
technique in various domains, including 
engineering, finance, and biology. 

A) Dynamic Exploration: 

In the initial step of CO, establishing a 
framework for dynamically exploring the search 
space to locate promising regions that might 



 Journal of Theoretical and Applied Information Technology 
15th June 2024. Vol.102. No. 11 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4779 

 

efficiently contain optimal solutions. Dynamic 
Exploration aims to balance exploitation and 
Exploration, enabling the algorithm to navigate the 
solution space effectively while avoiding premature 
convergence to local optima. The algorithm 
dynamically adjusts its exploration strategy based 
on the evolving characteristics of the search space. 
This dynamic adaptation helps efficiently explore 
local and global regions, enhancing the algorithm's 
ability to discover diverse solutions. The 
exploration process is guided by the inherent 
properties of the optimization problem and the 
information gathered during the search. 

The Dynamic Exploration phase involves 
formulating adaptive exploration mechanisms that 
regulate the exploration-exploitation trade-off. One 
such mechanism could be the incorporation of a 
dynamic exploration parameter𝛼, which controls 
the degree of Exploration in the search space. This 
parameter can be adjusted during optimization 
based on the algorithm's performance and 
convergence behaviour.  

Integrating adaptive strategies within the 
search algorithm is a common approach to 
implementing dynamic Exploration. For instance, a 
dynamic adjustment of the step size 𝛿 in the search 
direction can facilitate the Exploration of diverse 
regions. The step size adaptation can be governed 
by a function that responds to the local landscape of 
the objective function, represented mathematically 
in Eq.(1). 

𝛿 =
𝛿

1 + 𝑒𝑥𝑝 −𝛽 𝑓(𝑥 ) − 𝑓(𝑥 )
 (1) 

 

where 𝛿  represents the adjusted step size at 
iteration 𝑘, 𝛿  is the maximum step size, 𝑓(𝑥 ) 
denotes the objective function value at iteration 𝑘, 
𝑓(𝑥 ) It is the best objective function value 
encountered so far, and 𝛽 controls the rate of 
adaptation. 

Incorporating adaptive mutation 
mechanisms can further enhance dynamic 
Exploration. For instance, a mutation parameter 𝜇 
can be adaptively adjusted to control the diversity 
of solutions generated during the search process. 
The mutation operator can be mathematically 
represented in Eq.(2). 

𝑥 = 𝑥 + 𝜇. (𝑥 − 𝑥 ) (2) 

where 𝑥  represents the mutated solution, 𝑥  is the 
current solution, and 𝑥  Denotes the best solution 
found so far. 

Leveraging dynamic population 
management strategies can contribute to compelling 
Exploration. By dynamically adjusting the 
population size based on the convergence status and 
the diversity of solutions, the algorithm can allocate 
computational resources more efficiently towards 
Exploration or exploitation. A dynamic population 
size 𝑁 can be determined using a mechanism that 
balances the exploration-exploitation trade-off, is 
shown in Eq.(3). 

𝑁 = 𝑟𝑜𝑢𝑑 𝑁 −
𝑘

max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 . (𝑁  

− 𝑁 )  

(3) 

where 𝑁  represents the population size at iteration 
𝑘, 𝑁  and 𝑁  Denote the maximum and 
minimum population sizes, respectively, and 
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the maximum number of 
iterations. 

B) Adaptive Behavior: 

Adaptive Behavior aims to imbue the 
algorithm with the capability to adjust its strategies 
and parameters in real time based on the feedback 
obtained during the optimization process. This 
adaptability enables CO to navigate complex and 
dynamic search spaces effectively, improving 
convergence and solution quality. 

The algorithm dynamically adjusts its Behavior and 
parameters to optimize its performance and adapt to 
the evolving characteristics of the problem. 
Adaptive Behavior encompasses various aspects, 
including parameter adaptation, strategy 
adjustment, and response to environmental changes. 

Adaptive Behavior entails formulating 
adaptive mechanisms that govern the algorithm's 
behaviour and parameter settings. One such 
mechanism involves adaptive step size adjustment, 
where the step size 𝛿 is dynamically updated based 
on the progress of the optimization process. This 
adaptive step size represented mathematically in 
Eq.(4). 

𝛿 = 𝛿 . 𝑒𝑥𝑝 −
𝑘

𝜏
 (4) 

where 𝛿  represents the adjusted step size at 
iteration 𝑘, 𝛿  Is the maximum step size, 𝜏 is a 
parameter controlling the rate of adaptation. 
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Incorporating adaptive mutation 
mechanisms can enhance the algorithm's adaptive 
Behavior. The mutation rate 𝜇 can be adaptively 
adjusted to balance Exploration and exploitation. 
An adaptive mutation rate is shown in Eq.(5). 

𝜇 = 𝜇 . 𝑒𝑥𝑝 −
𝑘

𝜏
 (5) 

where 𝜏  is the initial state, 𝜇   is the rate of 
mutation at iteration 𝑘, 𝜇  is the mutation rate at 
its maximum and Manages the pace at which 
mutations are adapted. 

Adaptive Behavior involves the dynamic 
adjustment of strategies employed by the algorithm. 
For instance, the selection of operators such as 
crossover and mutation can be dynamically 
determined based on the performance and 
convergence status of the algorithm. This adaptive 
strategy selection can be represented 
mathematically in Eq.(6). 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 =
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,   𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛,     𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 (6) 

where 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 represents the selected operator at 
iteration 𝑘, and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  are 
adaptive conditions based on the algorithm's 
Behavior. 

Persistence and Resilience 

Persistence and Resilience involve 
formulating mechanisms that promote continuous 
progress and robustness in the optimization process. 
One such mechanism is incorporating persistence 
factors that encourage the algorithm to explore 
promising search space regions. This can be 
achieved through the integration of a persistence 
factor 𝛾 into the objective function, guiding the 
algorithm towards areas with potentially higher 
fitness values. 

𝑓 (𝑥) = 𝑓(𝑥) + 𝛾. 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) (7) 

where in Eq.(7), 𝑓 (𝑥) represents the modified 
objective function with the persistence factor, and 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) penalizes solutions that deviate from 
promising regions. 

Resilience mechanisms can be 
incorporated to enable the algorithm to recover 
from disruptions and maintain robust performance. 
One approach is to introduce adaptive damping 
factors that regulate the impact of disturbances on 
the optimization process. The damping factor 𝛿 can 
be adaptively adjusted based on the magnitude of 

disturbances encountered during the search is 
represented mathematically in Eq.(8). 

𝛿 = 𝛿 . 𝑒𝑥𝑝 −
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒

τ
 (8) 

where 𝛿  denotes the adjusted damping factor at 
iteration 𝑘, 𝛿  is the maximum damping factor, 
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒  quantifies the magnitude of a 
disturbance at iteration 𝑘, and τ controls the rate of 
adaptation. 

D) Multi-Objective Optimization 

It extends the optimization framework to 
scenarios where multiple conflicting objectives 
must be simultaneously optimized. This step aims 
to equip the algorithm with the capability to handle 
such multi-objective optimization problems 
effectively, enabling it to discover trade-off 
solutions that represent a balance between 
competing objectives. The algorithm is extended to 
handle multiple objective functions simultaneously. 
Improving one target could result in the 
deterioration of others; this is a common occurrence 
in objective functions. Finding a collection of 
solutions that constitute the optimal trade-off, 
where no objective can be enhanced without 
deteriorating another objective, is referred to as the 
Pareto frontier. 

Multi-Objective Optimization involves 
formulating mechanisms for handling multiple 
objective functions and identifying Pareto-optimal 
solutions. A typical strategy uses scalarization 
techniques to reduce the optimization issue from 
several objectives to a single target. The weighted 
sum technique is one such strategy; it uses 
weighted coefficients to combine many objectives 
into one is shown in Eq.(9). 

𝑓(𝑥) = 𝑤 . 𝑓 (𝑥) (9) 

where 𝑓(𝑥) represents the combined objective 
function, 𝑓 (𝑥) denotes the individual objective 
functions and 𝑤  are the weights assigned to each 
objective. The weights are typically adjusted to 
explore different regions of the Pareto frontier. 

The algorithm can employ mechanisms for 
maintaining diversity and coverage of solutions 
along the Pareto frontier. This may involve 
integrating diversity-preserving mechanisms, such 
as crowding distance or niche formation, to ensure 
the algorithm explores a wide range of trade-off 
solutions. 

The mechanisms for selecting solutions 
from the Pareto frontier can be incorporated based 
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on preferences or decision-making criteria. One 
common approach is to use dominance-based 
selection methods, such as the non-dominated 
sorting genetic algorithm (NSGA-II), which 
categorizes solutions into Pareto fronts based on 
dominance relationships and selects solutions from 
diverse fronts to maintain diversity along the Pareto 
frontier. 

E) Communication and Collaboration 

Communication and Collaboration aim to 
harness the collective intelligence of the algorithm 
by facilitating the exchange of information, sharing 
of knowledge, and coordinating efforts among 
individuals. The algorithm is extended to 
incorporate mechanisms for individuals to 
communicate, collaborate, and coordinate their 
actions. This collaborative approach enables the 
algorithm to leverage synergy and cooperation 
among individuals, enhancing Exploration, 
exploitation, and optimization performance. 

Communication and Collaboration involve 
formulating mechanisms for individuals to 
exchange information and coordinate their actions. 
One approach is to incorporate communication 
channels through which individuals can share 
knowledge, experiences, and solutions. This may 
involve the formulation of communication 
functions that govern the exchange of information 
among individuals: 

𝑐𝑜𝑚𝑚 = 𝑒𝑥𝑝 −
𝑑

𝜎
 (10) 

where in Eq.(10), 𝑐𝑜𝑚𝑚  represents the 
communication strength between individuals 𝑖 and 
𝑗, 𝑑  denotes the distance between individuals and 
𝜎  controls the rate of communication decay with 
distance. 

Collaboration can be facilitated through 
mechanisms for individuals to collaborate on tasks 
or share computational resources. For instance, 
individuals can form collaborative groups to tackle 
specific sub-problems or share computational 
workload collectively is shown in Eq.(11). 

𝑔𝑟𝑜𝑢𝑝_𝑡𝑎𝑠𝑘

=
1,   𝑖𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒 𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

where 𝑔𝑟𝑜𝑢𝑝_𝑡𝑎𝑠𝑘   denotes the assignment of 
collaborative tasks between individuals 𝑖 and 𝑗. The 
mechanisms for coordinating actions among 
individuals can be integrated to ensure coherence 
and alignment of efforts towards common 
objectives. This may involve the formulation of 

coordination strategies that synchronize the actions 
of individuals based on shared goals or objectives is 
represented mathematically in Eq.(12). 

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑠 𝜃  (12) 

where 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛  represents the coordination 
strength between individuals 𝑖 and 𝑗, and 𝜃  
denotes the angle between their respective action 
vectors. 

F) Local Search Refinement 

Local Search Refinement aims to enhance 
the exploration and exploitation capabilities of the 
algorithm by incorporating mechanisms for fine-
tuning solutions in the vicinity of promising regions 
identified during the optimization process. The 
algorithm employs local search techniques to refine 
solutions and exploit local information within the 
search space. Local search refinement enables the 
algorithm to zoom in on promising regions and 
improve the quality of solutions by iteratively 
exploring the neighbourhood of candidate 
solutions. 

Local Search Refinement involves 
formulating mechanisms for performing local 
search operations around promising solutions. One 
approach is to employ gradient-based optimization 
methods, such as gradient descent or Newton's 
method, to update solutions towards local optima 
iteratively. The update rule for gradient descent can 
be expressed mathematically in Eq.(13). 

𝑥 = 𝑥 − 𝜂∇𝑓(𝑥 ) (13) 

where 𝑥  represents the current solution, 𝜂 denotes 
the step size, and ∇𝑓(𝑥 ) denotes the gradient of 
the objective function concerning 𝑥 . 

Local Search Refinement can incorporate 
mechanisms for exploring the neighbourhood of 
solutions using local exploration operators. One 
such operator is the mutation operator, which 
introduces small perturbations to solutions to 
examine nearby regions of the search space. 

𝑥 = 𝑥 + 𝜖 (14) 

where in Eq.(14), 𝑥  represents the perturbed 
solution, 𝑥 denotes the original solution, and 𝜖 
represents a small perturbation vector. 

The mechanisms for local exploitation of 
promising regions can be integrated to effectively 
exploit information gathered during optimization. 
This may involve the formulation of exploitation 
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strategies that prioritize Exploration in areas with 
high potential for improvement is shown in Eq.(15). 

𝑥 = 𝑥 + 𝛼. 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑥 ) (15) 

where 𝑥  represents the refined solution, 𝑥  
denotes the current solution, 𝛼 represents the 
exploration factor, and 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑥 ) 
represents the direction of Exploration based on 
local information. 

G) Constraint Handling: 

Constraint Handling is crucial for 
addressing optimization problems with constraints, 
ensuring that solutions generated by the algorithm 
satisfy both the objective function requirements and 
the imposed restrictions. The algorithm is extended 
to effectively incorporate mechanisms for handling 
constraints. These mechanisms aim to guide the 
search process towards feasible regions of the 
solution space while maintaining the Exploration of 
the objective function landscape. 

Constraint Handling involves formulating 
mechanisms for enforcing constraints and guiding 
the search towards feasible solutions. One common 
approach is to penalize infeasible solutions by 
modifying the objective function to include penalty 
terms. The modified objective function can be 
expressed in Eq.(16). 

𝑓 (𝑥) = 𝑓(𝑥) + 𝜆 . 𝑔 (𝑥)  (16) 

where 𝑓 (𝑥) represents the penalized 
objective function, 𝑓(𝑥) denotes the original 
objective function, 𝜆  represents penalty 
coefficients, 𝑔 (𝑥) denotes the 𝑖-th constraint 
function, and 𝑛 is the total number of constraints. 

Mechanisms for handling inequality 
constraints can be incorporated using barrier or 
penalty methods. Barrier methods introduce 
barriers around infeasible regions to prevent the 
algorithm from exploring them, while penalty 
methods impose penalties on infeasible solutions to 
discourage their selection. The barrier function can 
be expressed in Eq.(17). 

𝐵(𝑥) = −
1

𝑔 (𝑥)
 (17) 

 

where 𝐵(𝑥) represents the barrier function and 
𝑔 (𝑥) denotes the 𝑖-th constraint function. The 
Mechanisms for handling equality constraints can 
be integrated using Lagrange multipliers or penalty 

methods. Lagrange multipliers introduce additional 
variables to enforce equality constraints, while 
penalty methods penalize violations of equality 
constraints in the objective function. The penalty 
function for equality constraints can be expressed in 
Eq.(18). 

𝑃(𝑥) = 𝜆 . |ℎ (𝑥)| (18) 

where 𝑃(𝑥) represents the penalty function for 
equality constraints, 𝜆  denotes penalty coefficients, 
ℎ (𝑥) denotes the 𝑖-th equality constraint function, 
and 𝑚 is the total number of equality constraints. 

H) Diversity Preservation: 

Diversity Preservation aims to maintain a 
diverse population of solutions throughout the 
optimization process, ensuring the algorithm 
explores many promising regions in the solution 
space. The algorithm incorporates mechanisms for 
preserving diversity among individuals, preventing 
premature convergence to suboptimal solutions, 
and promoting solution space exploration. It also 
involves formulating mechanisms for maintaining 
diversity within the population of solutions. One 
approach is to incorporate diversity measures that 
quantify the population's dissimilarity or spread of 
solutions. One commonly used diversity measure is 
the crowding distance, which measures the average 
distance of a solution to its nearest neighbours is 
represented mathematically in Eq.(19). 

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥 )

=
1

𝑘
𝑥 − 𝑥  

(19) 

where 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥 ) represents the 
crowding distance of the solution 𝑥 , 𝑥  denotes the 
nearest neighbour of 𝑥 , and 𝑘 is the number of 
nearest neighbours considered. 

This mechanisms for promoting diversity 
can be incorporated into selection and reproduction 
operators to ensure that individuals from diverse 
regions of the solution space are retained and 
propagated. One approach is to introduce diversity-
based selection mechanisms that prioritize 
individuals with low crowding distances or high 
dissimilarity is shown in Eq.(20). 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥 )

=
𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥 )

∑ 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥 )
 

(20) 

where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥 ) represents the 
probability of selecting a solution 𝑥  for 
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reproduction, and 𝑁 is the total number of solutions 
in the population. 

Mechanisms for promoting niche 
formation and speciation can be integrated to 
encourage the emergence of diverse subpopulations 
within the population. This can be achieved through 
the introduction of niche radius parameters and 
mechanisms for promoting competition and 
cooperation among individuals within niches is 
mathematically represented in Eq.(21). 

𝑁𝑖𝑐ℎ𝑒 ( ) =
1

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 ( )
 (21) 

where 𝑁𝑖𝑐ℎ𝑒_𝑅𝑎𝑑𝑖𝑢𝑠(𝑥 ) represents the niche 
radius of the solution 𝑥 , and 
𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥 ) is used to determine the 
size of the niche. 

I) Termination Criteria 

Termination Criteria are the guidelines for 
determining when to halt the optimization process, 
ensuring that computational resources are utilized 
efficiently and effectively. The algorithm 
incorporates mechanisms for evaluating 
convergence, assessing solution quality, and 
determining when to stop the optimization process 
based on predefined criteria. Termination Criteria 
involve formulating conditions for assessing 
convergence and solution quality. One commonly 
used criterion is to monitor the convergence of the 
objective function values over successive iterations. 
A convergence criterion based on the change in the 
best objective function value (𝑓 ) over iterations 
can be expressed in Eq.(22). 

𝑓
( )

− 𝑓
( )

𝑓
( )

≤ 𝜖 (22) 

where 𝑓
( )  represents the best objective function 

value at iteration 𝑘, and 𝜖 denotes a small tolerance 
threshold. 

Termination Criteria can incorporate 
mechanisms for assessing solution diversity and 
coverage of the solution space. One approach is to 
monitor the spread of solutions in the population 
using diversity measures such as the average 
crowding distance or the standard deviation of 
solution distances is represented mathematically in 
Eq.(23). 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ≤ 𝛿 (23) 

where 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 represents a measure 
of solution diversity, and 𝛿 denotes a predefined 

threshold. The Mechanisms for assessing 
computational resources and budget can be 
integrated into Termination Criteria to ensure that 
the optimization process does not exceed 
predefined limits. This may involve monitoring the 
number of iterations, function evaluations, or 
computational time is mathematically represented 
in Eq.(24). 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑈𝑠𝑎𝑔𝑒 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 (24) 

where 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑈𝑠𝑎𝑔𝑒 represents the cumulative 
resource usage during the optimization process, and 
𝐵𝑢𝑑𝑔𝑒𝑡 denotes the predefined resource budget. 

3.3. CO-CNN (Cassowary Optimization for 
Convolutional Neural Networks) 

It is a novel approach that leverages 
Cassowary Optimization (CO) to optimize 
Convolutional Neural Networks (CNNs) 
effectively. CO-CNN aims to enhance the 
performance of CNNs by dynamically adjusting 
network parameters and architecture based on the 
evolving optimization landscape. Here are the steps 
to optimize CNN with Cassowary Optimization. 

 Problem Formulation: Define the 
optimization problem for CO-CNN, specifying 
the objective function to be optimized, which 
typically involves minimizing the classification 
error or maximizing accuracy on a given 
dataset. 

 Representation of Solutions: Represent CNN 
architectures and parameters as solutions in the 
optimization space. This includes defining the 
network topology, such as the number of 
layers, filter sizes, and activation functions, as 
well as the parameters of each layer. 

 Initialization: Initialize a population of CNN 
architectures and parameters using random or 
heuristic methods. Each solution represents a 
potential CNN configuration to be optimized. 

 Evaluation: Evaluate the performance of each 
CNN configuration in the population using the 
specified objective function, typically through 
training and validation on a subset of the 
dataset. 

 Optimization Process: Apply Cassowary 
Optimization to update the population of CNN 
configurations iteratively. During each 
iteration, solutions are refined based on their 
performance and the optimization landscape. 
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 Dynamic Exploration: Incorporate dynamic 
exploration mechanisms to effectively explore 
diverse regions of the solution space. This 
involves adjusting parameters such as learning 
rates, filter sizes, and network architectures to 
promote Exploration while avoiding premature 
convergence. 

 Adaptive Behavior: Integrate adaptive 
strategies to dynamically adjust CNN 
parameters and architectures based on the 
optimization progress. This includes adapting 
learning rates, activation functions, and 
dropout rates to optimize convergence and 
solution quality. 

 Local Search Refinement: Implement 
techniques to fine-tune CNN configurations 
and exploit local information in the 
optimization landscape. This may involve 
gradient-based optimization methods or 
neighbourhood search algorithms to improve 
solution quality. 

 Constraint Handling: Address constraints 
inherent in CNN optimization, such as 
computational resource limitations or 
architectural constraints. Ensure that CNN 
configurations satisfy constraints while 
optimizing performance using penalty methods 
or constraint satisfaction techniques. 

 Termination Criteria: Define termination 
criteria to stop the optimization process 
effectively. Termination may occur based on 
convergence of the objective function, resource 
utilization constraints, or predefined budget 
limits. 

CO-CNN optimizes CNN architectures 
and parameters effectively, improving performance 
and generalization on various tasks, including 
image classification, object detection, and image 
segmentation. CO-CNN's adaptive and dynamic 
nature allows it to navigate the complex 
optimization landscape of CNNs efficiently, 
resulting in superior performance compared to 
traditional optimization methods. 

A) Problem Formulation: 

Formulating the optimization problem and 
defining the objective function to be optimized. 
Inspired by Cassowary Optimization, CO-CNN 
aims to maximize the performance of CNN by 
minimizing classification error or maximizing 
accuracy on a given dataset. The objective function 
is typically defined based on the discrepancy 

between predicted and actual class labels for input 
samples. 

The objective function 𝑂𝑏𝑗(𝑊) can be formulated 
as the average loss over a dataset 𝐷 of 𝑁 samples is 
shown in Eq.(25). 

𝑂𝑏𝑗(𝑊) =
1

𝑁
𝐿(𝑦 , 𝑦 ) (25) 

where 𝑊 represents the parameters of the CNN 
model, 𝑦  denotes the actual class label for the 𝑖-th 
sample, 𝑦  denotes the predicted class label, and 
𝐿(𝑦 , 𝑦 ) the loss function quantifies the 
discrepancy between the actual and predicted 
labels. The optimization problem can be formulated 
as a minimization problem, where the goal is to 
find the optimal set of parameters. 𝑊∗ that 
minimizes the objective function is mathematically 
represented in Eq.(26). 

𝑊∗ = argmin 𝑂𝑏𝑗(𝑊) (26) 

The objective function captures the 
performance of the CNN model in terms of its ability 
to classify input samples accurately. By minimizing 
the objective function, CO-CNN aims to optimize 
the parameters of the CNN model to achieve higher 
classification accuracy and better generalization on 
unseen data. The problem formulation may also 
incorporate regularization terms to prevent 
overfitting and encourage smoother solutions. 
Regularization can be achieved by adding a 
regularization term to the objective function, 
penalizing large parameter values: 

𝑂𝑏𝑗 (𝑊) = 𝑂𝑏𝑗(𝑊) + 𝜆𝑅(𝑊) (27) 

 

where in Eq.(27), 𝜆 is the regularization parameter, 
and 𝑅(𝑊) is the regularization term that penalizes 
large parameter values. 

B) Representation of Solutions 

In CNNs, solutions refer to different 
network architectures and configurations, including 
the number of layers, filter sizes, activation 
functions, and other architectural parameters. A 
solution 𝑆 in CO-CNN can be represented as a 
vector of parameters 𝑝 = [𝑝 , 𝑝 , … . . , 𝑝 ], where 
each parameter 𝑝  corresponds to a specific 
architectural aspect of the CNN model. The vector 
𝑝 encapsulates the entire configuration of the CNN 
model, enabling the optimization process to explore 
different architectural possibilities are 
mathematically represented in Eq.(28). 
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[𝑝 , 𝑝 , … . . , 𝑝 ] (28) 

 

The representation of solutions can be 
augmented with encoding schemes to handle 
categorical and discrete parameters. For instance, 
the number of layers in the CNN architecture may 
be encoded as a categorical variable, where each 
category corresponds to a different number of 
layers is shown in Eq.(29). 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑦𝑒𝑟𝑠 = {1,2,3, … . , 𝐿 } (29) 

Other architectural parameters, such as 
filter sizes and activation functions, can be encoded 
using appropriate schemes to facilitate the 
optimization process. The representation of 
solutions can include mechanisms for specifying 
parameter ranges and constraints. For example, the 
range of filter sizes may be constrained to a 
predefined interval is shown in Eq.(30). 

𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 ∈  [𝐹 , 𝐹 ] (30) 

where 𝐹  and 𝐹  denote the minimum and 
maximum allowable filter sizes, respectively. 
Solutions in CO-CNN may incorporate parameter 
sharing and transfer learning mechanisms, allowing 
the optimization process to leverage pre-trained 
models or shared parameters across different tasks 
or domains.  

C) Initialization 

This phase involves initializing a 
population of CNN architectures and parameters. 
The initialization process aims to create an initial 
set of solutions that will undergo optimization 
through the Cassowary Optimization algorithm. 
The initialization of solutions can be represented as 
follows. Let 𝑃 = [𝑝 , 𝑝 , … . , 𝑝 ] denote the 
population of solutions, where each 𝑝  represents an 
individual solution vector. Initialization involves 
generating random or predefined values for each 
parameter within the specified ranges and 
constraints is represented in Eq.(31). 

𝑃 = [𝑝 , 𝑝 , … . , 𝑝 ] (31) 

 

The initialization process can incorporate 
diversity-promoting mechanisms to ensure a 
diverse population of solutions. This may involve 
introducing randomness or heuristic strategies to 
generate solutions that explore different regions of 
the solution space is mathematically represented in 
Eq.(32). 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒

=
1

𝑁
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝 , 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑) 

(32) 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝 , 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑) represents the 
distance between the solution 𝑝  and the centroid of 
the population. The initialization process may 
include mechanisms for incorporating prior 
knowledge or domain-specific information into the 
population generation process. This can be 
achieved by biasing the initialization towards 
effective configurations in similar tasks or domains 
is shown in Eq.(33). 

𝑝 = 𝑝 + 𝐷𝑜𝑚𝑎𝑖𝑛_𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 (33) 

 

The initial solutions in CO-CNN may 
involve strategies for warm-starting the 
optimization process. This can be done by 
initializing a portion of the population with 
solutions obtained from previous optimization runs 
or pre-trained models is represented in Eq.(34). 

𝑃 = [𝑝 , 𝑝 , … , 𝑝 ] + 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (34) 

 

This initialization scheme allows CO-CNN 
to explore various architectural possibilities and 
configurations effectively, improving performance 
on CNN-related tasks. 

D) Evaluation 

The evaluation of a CNN configuration 𝑝  
can be represented by the objective function 
𝑂𝑏𝑗(𝑝 ), quantifying the discrepancy between 
predicted and actual class labels for input samples. 

𝑂𝑏𝑗(𝑝 ) =
1

𝑁
𝐿 𝑦 , 𝑦  (35) 

where in Eq.(35), 𝑁 represents the number of 
samples in the dataset, 𝑦  denotes the actual class 
label for 𝑗-th sample, and 𝑦  denotes the predicted 

class label. 𝐿 𝑦 , 𝑦  the loss function quantifies the 
discrepancy between the actual and predicted 
labels. 

The evaluation process may include 
mechanisms for assessing additional performance 
metrics such as accuracy, precision, recall, or F1-
score, depending on the specific task and objectives 
is mathematically represented in Eq.(36). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (36) 
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where 𝑇𝑃 denotes true positives, 𝑇𝑁 denotes true 
negatives, 𝐹𝑃 denotes false positives, and 𝐹𝑁 
denotes false negatives. The evaluation of CNN 
configurations can incorporate mechanisms for 
handling overfitting and generalization. This may 
involve cross-validation, regularization, or early 
stopping to prevent overfitting on the training data 
and promote generalization to unseen data are 
mathematically represented in Eq.(37). 

𝑂𝑏𝑗 (𝑝 ) = 𝑂𝑏𝑗(𝑝 ) + 𝜆𝑅(𝑝 ) (37) 

The regularisation term that penalizes high 
parameter values is denoted by 𝜆𝑅(𝑝 ), and the 
regularisation parameter is denoted by 𝜆. The 
evaluation process in CO-CNN may include 
mechanisms for computational efficiency, such as 
mini-batch training or parallel processing, to 
expedite the evaluation of multiple CNN 
configurations simultaneously. 

E) Optimization Process: 

The optimization process in CO-CNN can be 
represented using iterative update equations that 
adjust the parameters of each CNN configuration. 
𝑝  based on their performance evaluated by the 
objective function 𝑂𝑏𝑗(𝑝 ) is mathematically 
represented in Eq.(38) 

𝑝
( )

= 𝑝
( )

+ ∆𝑝
( ) (38) 

where 𝑝
( ) represents the parameters of CNN 

configuration 𝑝  at iteration 𝑡, and ∆𝑝
( )   denotes 

the update applied to the parameters in the current 
iteration. The optimization process may incorporate 
adaptive mechanisms to dynamically adjust the step 
sizes or learning rates of the updates based on the 
convergence behaviour and progress of the 
optimization process is represented in Eq.(39). 

∆𝑝
( )

= 𝛼. ∇𝑂𝑏𝑗 𝑝
( )  (39) 

where 𝛼 represents the learning rate and 

∇𝑂𝑏𝑗 𝑝
( )  denotes the gradient of the objective 

function concerning the parameters of the CNN 

configuration 𝑝
( )

. The optimization process may 
also include mechanisms for promoting diversity 
among solutions to prevent premature convergence 
and encourage solution space exploration. This can 
be achieved by introducing diversity-promoting 
terms in the update equations that promote 
solutions to move away from each other. 

∆𝑝
( )

= 𝛽. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (40) 

where in Eq.(40), 𝛽 represents a diversity-
promoting factor, and 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 
quantifies the diversity among solutions in the 
population. 

 

The optimization process in CO-CNN may 
incorporate mechanisms for handling constraints 
and enforcing architectural constraints during the 
parameter updates. This ensures the updated CNN 
configurations remain valid and feasible throughout 
the optimization process is represented in Eq.(41). 

𝑝
( )

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝
( )

+ ∆𝑝
( )  (41) 

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(⋅) represents a projection 
operator that enforces constraints on the updated 
parameters. 

Dynamic Exploration: 

The Dynamic Exploration can be achieved 
by introducing adaptive mechanisms that adjust the 
exploration parameters or strategies based on the 
convergence behaviour and progress of the 
optimization process. One approach is to 
dynamically change the learning rates or step sizes 
of the parameter updates to control the magnitude 
of Exploration is represented in Eq.(42). 

𝛼( ) = 𝛼( ) × 𝑒𝑥𝑝(−𝛾. 𝑡) (42) 

where 𝛼( ) represents the learning rate at iteration 𝑡, 
and 𝛾 is a decay factor that controls the rate of 
decrease of the learning rate over iterations. This 
Dynamic Exploration can involve mechanisms for 
balancing Exploration and exploitation to 
effectively navigate the trade-off between exploring 
new regions of the solution space and exploiting 
promising areas. This can be achieved by 
introducing adaptive mechanisms that prioritize 
Exploration during early iterations and gradually 
shift towards exploitation as the optimization 
progresses are shown in Eq.(43). 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦( )

= 𝑚𝑖𝑛(1, 𝛽. 𝑡) 
(43) 

where 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦( ) represents the 
probability of selecting exploration strategies at 
iteration 𝑡, and 𝛽 is a scaling factor that controls the 
rate of increase of the exploration probability over 
iterations. 
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Dynamic Exploration in CO-CNN can 
incorporate mechanisms for adjusting the diversity-
promoting strategies based on the convergence 
behaviour of the optimization process. This may 
involve dynamically adjusting the diversity-
promoting factor to encourage Exploration when 
convergence slows down and exploitation when 
convergence accelerates. 

𝛽( ) = 𝛽( ) + 𝛿 (44) 

where in Eq.(44)m 𝛽( ) represents the diversity-
promoting factor at iteration 𝑡, and 𝛿 is a parameter 
that controls the rate of change of the diversity-
promoting factor over iterations. 

Dynamic Exploration may involve 
mechanisms for adapting the exploration strategies 
based on the characteristics of the optimization 
landscape. This can be achieved by incorporating 
adaptive mechanisms that dynamically adjust the 
exploration parameters based on the curvature and 
gradient information of the objective function are 
mathematically represented in Eq.(45). 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟( )

= 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟( )

− 𝜂. ∇𝑂𝑏𝑗 𝑝( )  
Eq.(45) 

where 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟( ) represents the 
exploration parameter at iteration 𝑡, and 𝜂 is a 
learning rate parameter that controls the rate of 
adjustment of the exploration parameter based on 
the gradient of the objective function. 

Adaptive Behavior: 

Adaptive Behavior in CO-CNN can be 
achieved through mechanisms that dynamically 
adjust various parameters and strategies based on 
the optimization progress. One approach is to 
dynamically change the parameter updates' learning 
rates or step sizes based on the convergence 
behaviour. 

𝛼( ) = 𝛼( ) × 𝑒𝑥𝑝(−𝛾. 𝑡) (46)| 

where 𝛼( ) represents the learning rate at iteration 𝑡, 
and 𝛾 is a decay factor that controls the rate of 
decrease of the learning rate over iterations. The 
Adaptive Behavior may involve mechanisms for 
adjusting architectural parameters such as the 
number of layers, filter sizes, and activation 
functions based on the convergence behaviour and 
performance of the CNN configurations are 
represented mathematically in Eq.(47). 

𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠( ) = 𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠( ) + 𝛿 (47) 

where 𝑁𝑢𝑚_𝐿𝑎𝑦𝑒𝑟𝑠( )  represents the number of 
layers at iteration 𝑡, and 𝛿 is a parameter that 
controls the rate of change of the number of layers 
over iterations. Adaptive Behavior in CO-CNN can 
incorporate mechanisms for dynamically adjusting 
regularization parameters to prevent overfitting and 
promote generalization. This may involve adaptive 
mechanisms that dynamically change the 
regularization strength based on the convergence 
behaviour and performance of the CNN 
configurations. 

𝜆( ) = 𝜆( ) + 𝜖 (48) 

where in Eq.(48), 𝜆( ) represents the regularization 
parameter at iteration 𝑡, and 𝜖 is a parameter that 
controls the rate of change of the regularization 
parameter over iterations. Adaptive Behavior may 
involve mechanisms for dynamically adjusting 
dropout rates and other regularization techniques 
based on the convergence behaviour and 
performance of the CNN configurations is shown in 
Eq.(49). 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒( )

= 𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒( ) + 𝜁 
(49) 

Where 𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑅𝑎𝑡𝑒( ) represents the dropout 
rate at iteration 𝑡, and 𝜁 is a parameter that controls 
the rate of change of the dropout rate over 
iterations. 

Local Search Refinement: 

Local search refinement phase aims to 
further improve the quality of solutions by 
exploring the regional neighbourhood of promising 
solutions. Inspired by cassowary optimization, CO-
CNN incorporates local search refinement to refine 
CNN architectures and parameters to achieve 
superior performance iteratively. Local search 
refinement in CO-CNN can be represented using 
iterative update equations that explore the regional 
neighbourhood of each CNN configuration. 𝑝  
based on their performance evaluated by the 
objective function 𝑂𝑏𝑗( 𝑝 ) is mathematically 
represented in Eq.(50). 

𝑝
( )

= 𝑝
( )

+ ∆𝑝
( ) (50) 

where 𝑝
( ) represents the parameters of CNN 

configuration 𝑝  at iteration 𝑡, and ∆𝑝
( )  denotes 

the update applied to the parameters in the current 
iteration. 

Local search refinement may incorporate 
mechanisms for adjusting the step sizes or learning 
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rates of the updates to control the magnitude of 
Exploration within the local neighbourhood. 

𝛼( ) = 𝛼( ) × 𝑒𝑥𝑝(−𝛾. 𝑡) (51) 

where in Eq.(51), 𝛼( ) represents the learning rate at 
iteration 𝑡, and 𝛾 is a decay factor that controls the 
rate of decrease of the learning rate over iterations. 
This local search refinement in CO-CNN can 
incorporate mechanisms for promoting diversity 
among solutions within the local neighbourhood. 
This may involve introducing randomness or 
heuristic strategies to explore diverse regions of the 
regional solution space is mathematically 
represented in Eq.(52). 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑀𝑒𝑎𝑠𝑢𝑟𝑒( )

=
1

𝑁
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝

( )
, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑( )  

(52) 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝
( )

, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑( )  represents the 

distance between the solution 𝑝
( ) and the centroid 

of the local neighbourhood, and 𝑁 is the number of 
solutions in the local neighbourhood. 

This phase y involve mechanisms for 
handling constraints and enforcing architectural 
constraints during the parameter updates within the 
local neighbourhood is represented in Eq.(53). 

𝑝
( )

= 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝
( )

+ ∆𝑝
( )  (53) 

where 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(. ) represents a projection 
operator that enforces constraints on the updated 
parameters within the local neighbourhood. 

J) Termination Criteria 

Defining termination criteria to determine 
when to stop the optimization process. Termination 
criteria ensure that the optimization process halts 
once certain conditions are met, such as achieving a 
satisfactory level of performance or reaching a 
predefined number of iterations. CO-CNN 
incorporates termination criteria to manage 
computational resources and prevent overfitting 
efficiently. 

Termination criteria in CO-CNN can be 
represented by conditions evaluated at each 
iteration of the optimization process. One common 
termination criterion is to stop the optimization 
process once a maximum number of iterations 
𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is reached. 

𝑡 ≥ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (54) 

where in Eq.(54), 𝑡 denotes the current iteration 
number. 

It may include conditions based on the 
convergence behaviour of the optimization process. 
For example, the optimization process can be 
stopped once the improvement in the objective 
function value falls below a certain threshold 𝜖 
represented in Eq.(55). 

𝑂𝑏𝑗 𝑝( ) − 𝑂𝑏𝑗 𝑝( ) ≤ 𝜖 (55) 

where 𝑂𝑏𝑗 𝑝( )  represents the objective function 
value at iteration 𝑡. 

This phase may incorporate mechanisms 
for monitoring the performance of the CNN 
configurations and stopping the optimization 
process once a satisfactory level of performance is 
achieved represented in Eq.(56). 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒( ) ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (56) 

where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒( ) represents a performance 
metric (e.g., accuracy, loss) at iteration 𝑡, and 
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a predefined threshold value. 

Termination criteria may involve 
mechanisms for controlling the computational 
resources allocated to the optimization process, 
such as stopping the optimization process once a 
specified amount of time or computational budget 
is exhausted. 

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 (57) 

where in Eq.(57), 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 represents the 
time elapsed since the start of the optimization 
process, and 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 is the maximum allowable 
time. 

3.4. Identification and Prediction using CO-CNN 

Cotton is one of the most economically 
important crops globally, serving as a primary 
source of fibre for the textile industry. The Cotton 
cultivation faces significant challenges due to 
various diseases that severely impact yield and 
quality. The Cotton plants were infected by 
Bacteria, Fungus and Viruses. Bacterial diseases 
pose significant threats to cotton plants, impacting 
yield and quality. These diseases pose significant 
threats to crop health and yield. Angular leaf spot 
caused by Xanthomonas campestris pv. 
malvacearum manifests as water-soaked lesions on 
leaves, leading to defoliation. Bacterial wilt, caused 
by Ralstonia solanacearum, induces wilting and 
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eventual death of infected plants, challenging 
cotton cultivation endeavors. The bacterial 
infection in cotton plants is depicted in Fig 1. 

   

Fig 1. Bacterial Infection 

Fungal diseases pose significant threats to 
cotton plants. One prevalent fungal disease is 
Fusarium wilt, caused by Fusarium oxysporum. This 
pathogen infiltrates the plant's vascular system, 
resulting in wilting and death. Alternaria leaf spot, 
caused by Alternaria alternata, manifests as dark 
lesions on leaves, impacting photosynthesis. 
Rhizoctonia solani causes root rot, hindering nutrient 
uptake and stunting growth. These fungal diseases 
necessitate vigilant management practices to mitigate 
their detrimental effects on cotton cultivation. The 
Fungal infection in cotton plants is depicted in Fig 2. 

   

Fig 2. Fungal Infection 

Viral diseases pose significant threats to 
cotton plants, compromising their health and yield. 
Cotton leaf curl virus, transmitted by whiteflies, 
induces curling and yellowing of leaves, stunting 
plant growth. Cotton leaf crumple virus causes 
crumpling and deformation of leaves, impacting 
photosynthesis. Cotton mosaic virus leads to 
mosaic patterns on leaves, diminishing their 
functionality. The viral infection in cotton plants is 
depicted in Fig 3. 

   

Fig 3. Viral Infection 

Bacterial blight, triggered by Acidovorax 
avenae subsp. citrulli, leads to necrotic lesions on 
cotton leaves, stems, and bolls. This disease 
severely impacts plant health and productivity, 
necessitating prompt management strategies for 
mitigation. The Bacterial blight in cotton plants is 
depicted in Fig 4. 

   

Fig 4. Bacterial Blight 

The CNN architecture is optimized using 
CO to enhance its performance in disease 
identification and yield prediction tasks. CO 
dynamically adjusts the parameters of the CNN 
model based on evaluating its performance using an 
objective function. This adaptive Behavior of CO 
ensures that the CNN model effectively explores the 
solution space and converges to optimal solutions for 
disease identification and yield prediction. The 
training of the CO-CNN model involves iterative 
updates to the CNN parameters, guided by the 
optimization process facilitated by CO. During 
exercise; the model learns to extract relevant features 
from the input images and classify them based on 
disease symptoms and yield-related factors. The 
optimization continues until termination criteria are 
met, ensuring the model performs satisfactorily. 

Once trained, the CO-CNN model can be 
deployed for real-time disease identification and 
yield prediction in cotton fields. By capturing 
images of cotton leaves using drones or 
smartphones, farmers can quickly assess the health 
status of their crops and take timely actions to 
mitigate disease spread and optimize yield. The 
CO-CNN model provides accurate and reliable 
results, enabling farmers to make informed 
decisions and implement targeted interventions to 
maximize crop productivity. 

   

Fig 5. Bacterial Infection identification 

Fig 5 depicts bacterial infection 
identification, showcasing necrotic lesions caused 
by Acidovorax avenae subsp. citrulli on cotton 
leaves, stems, and bolls. This visual aid aids in 
prompt recognition and management of bacterial 
blight in cotton plants. 

   

Fig 6. Fungal Infection Identification 
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Fig 6 illustrates fungal infection 
identification, displaying dark lesions caused by 
Alternaria alternata on cotton leaves. This visual 
reference assists in swift recognition and control of 
fungal diseases in cotton cultivation. 

   

Fig 7. Viral Infection Identification 

In Fig 7, viral infection identification is 
demonstrated, showcasing symptoms of cotton leaf 
curl virus, including leaf curling and yellowing. 
This visual aid aids in rapid detection and 
management of viral diseases in cotton plants. Fig 8 
portrays bacterial blight identification, highlighting 
necrotic lesions on cotton leaves, stems, and bolls 
caused by Acidovorax avenae subsp. citrulli. This 
visual aid facilitates prompt recognition and control 
of bacterial blight in cotton cultivation. 

   

Fig 8. Bacterial Blight Identification 

Integrating CO-CNN for cotton leaf 
disease identification and yield prediction offers 
several advantages over traditional methods. The 
deep learning capabilities of CNNs enable the 
model to learn complex patterns and variations in 
cotton leaf images, leading to more accurate disease 
diagnosis. The optimization provided by CO 
enhances the efficiency and effectiveness of the 
CNN model, ensuring optimal performance in 
disease identification and yield prediction tasks. 
CO-CNN provides a scalable and adaptable 
solution that can be customized to suit different 
geographical regions and crop varieties. By training 
the model on localized datasets, CO-CNN can 
capture region-specific disease patterns and 
environmental factors, enhancing its accuracy and 
relevance for local farming communities. 
Implementing CO-CNN for cotton leaf disease 
identification and yield prediction involves several 
steps, each leveraging the capabilities of 
Convolutional Neural Networks (CNNs) and 
Cassowary Optimization (CO) to achieve accurate 
and efficient results. 

A) Data Collection and Preprocessing 

 CNN: CNNs are crucial in processing image 
data collected from cotton fields. They extract 

relevant features from the images, such as leaf 
morphology and disease symptoms. 

 CO: CO dynamically adjusts the preprocessing 
parameters to enhance the quality of the image 
dataset, ensuring uniformity and normalization 
across different images. 

B) Model Architecture Design 

 CNN: CNNs are responsible for designing the 
architecture of the neural network model. This 
includes determining the number of layers, 
filters, and activation functions to optimize 
feature extraction and classification. 

 CO: CO optimizes the architecture parameters 
of the CNN model, such as the number of 
neurons in each layer and the connectivity 
between layers, to improve the model's 
performance in disease identification and yield 
prediction tasks. 

 

C) Training Process 

 CNN: During training, CNNs learn to extract 
features from the input images and classify 
them based on disease symptoms and yield-
related factors. This involves iterative updates 
to the parameters of the CNN model. 

 CO: CO dynamically adjusts the parameters of 
the CNN model based on evaluating its 
performance using an objective function. This 
adaptive Behavior ensures that the CNN model 
effectively explores the solution space and 
converges to optimal solutions. 

D) Optimization 

 CNN: CNNs optimize the features extracted 
from the input images to improve disease 
identification accuracy and yield prediction. 
This involves adjusting the weights and biases 
of the neural network based on training data. 

 CO: CO optimizes the CNN architecture and 
parameters to enhance the efficiency and 
effectiveness of the model. It dynamically 
adjusts the learning rates and regularization 
parameters to ensure optimal convergence and 
prevent overfitting. 

E) Evaluation and Validation 

 CNN: CNNs evaluate the performance of the 
trained model on validation datasets to assess 
its accuracy and generalization capabilities. 
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 CO: CO monitors the convergence behaviour 
of the optimization process and evaluates the 
performance of the CNN model using objective 
metrics. It ensures the model performs 
satisfactorily in disease identification and yield 
prediction tasks. 

F) Deployment 

 CNN: Once trained and validated, CNNs are 
deployed for real-time disease identification 
and yield prediction in cotton fields. They 
analyze images captured from the field and 
provide accurate assessments of disease 
severity and yield potential. 

 CO: CO continues optimizing the CNN model 
during deployment, ensuring it adapts to 
changing environmental conditions and disease 
patterns. It dynamically adjusts the model 
parameters to maintain optimal performance in 
real-world scenarios. 

By integrating CNNs with CO, the CO-
CNN approach offers a robust and efficient solution 
for cotton leaf disease identification and yield 
prediction.  

4. ABOUT DATASET 

The "Cotton Plant Disease Dataset" 
comprises 26,100 high-resolution images captured 
from cotton fields, showcasing various stages of 
cotton plant development and manifestations of 
diseases. This comprehensive dataset serves as a 
valuable resource for researchers, agronomists, and 
farmers seeking to understand and address 
challenges related to cotton plant health. Each 
image in the dataset provides detailed insights into 
the visual symptoms exhibited by cotton plants 
affected by different diseases, including Cotton 
Leaf Curl Disease (CLCuD), Fusarium Wilt, and 
Bacterial Blight. These images capture the 
morphological changes, discoloration, lesions, and 
deformities observed in infected cotton leaves, 
stems, and bolls. 

The dataset offers a diverse range of 
samples, encompassing healthy cotton plants as 
well as those afflicted by various diseases. 
Researchers can utilize this extensive collection to 
develop and validate machine learning models for 
automated disease detection, classification, and 
yield prediction tasks. Access to such a large and 
diverse dataset empowers stakeholders in the cotton 
industry to leverage advanced computational 
techniques, such as image processing and deep 
learning, to enhance disease management strategies 
and optimize crop yield. By leveraging the insights 

gleaned from this dataset, stakeholders can make 
informed decisions, implement targeted 
interventions, and safeguard cotton plant health and 
productivity. 

5. RESULTS AND DISCUSSION 

5.1. Evaluation of Classifiers using Classification 
Accuracy (CA) and F-Measure (FM) Analysis: 

Classification Accuracy (CA) and F-
Measure (FM) are essential performance metrics 
used to evaluate the effectiveness of classification 
models. CA represents the proportion of correctly 
classified instances among all instances in the 
dataset, providing an overall measure of the model's 
accuracy. On the other hand, FM considers both 
precision and recall, offering a balanced assessment 
of the model's ability to correctly classify positive 
instances while minimizing false positives and false 
negatives. 

In the results of three classification models shown 
in Table 1, there are notable differences in CA and 
FM values. CO-CNN exhibits the highest CA of 
95.6280%, indicating that it correctly classifies the 
majority of instances in the dataset. This high CA 
suggests that CO-CNN is highly accurate in 
predicting both positive and negative instances, 
making it a reliable model for classification tasks. 

Table 1: CA and FM 

Classification Algorithms CA FM 

RF 50.487 52.013 

SVM 64.333 63.757 

CO-CNN 95.628 95.722 
 

When comparing the FM values, CO-CNN also 
outperforms RF and SVM with an FM score of 
95.7219%. This high FM score indicates that CO-
CNN achieves a good balance between precision 
and recall, effectively minimizing false positives 
and false negatives. In contrast, RF and SVM 
exhibit lower FM scores of 52.0125% and 
63.7571%, respectively, indicating a less balanced 
performance in terms of precision and recall. 

Fig 9. depicts the trend of CA and FM across the 
three classification models. We can observe that 
CO-CNN consistently outperforms RF and SVM in 
both CA and FM metrics. This indicates that CO-
CNN achieves higher accuracy and a better balance 
between precision and recall compared to the other 
models. 
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Fig.9. CA and FM 

The results demonstrate that CO-CNN is 
the most effective model among the three 
evaluated, achieving superior performance in terms 
of both CA and FM. This suggests that CO-CNN is 
a promising approach for classification tasks, 
offering high accuracy and balanced precision-
recall trade-offs. These findings highlight the 
importance of utilizing advanced techniques like 
CO-CNN for achieving optimal classification 
performance in various domains. 

5.2. Evaluation of Classifiers using Classification 
Accuracy (CA) and F-Measure (FM) Analysis: 

The Fowlkes-Mallows Index (FMI) and 
Matthews Correlation Coefficient (MCC) are two 
important metrics used to evaluate the performance 
of classification models, particularly in binary 
classification tasks. FMI measures the similarity 
between clusters or classes, while MCC takes into 
account true positives, true negatives, false 
positives, and false negatives to assess the overall 
performance of a classifier. 

In the results of three classification models 
shown in Table 2, RF model achieved an FMI of 
52.016%, the SVM model achieved an FMI of 
63.763%, and the CO-CNN model achieved an 
impressive FMI of 95.722%. These FMI values 
indicate the degree of similarity between the 
predicted and actual classes, with higher values 
indicating better clustering or classification 
performance. 

Table 2: FMI and MCC 

Classification Algorithms FMI MCC 

RF 52.016 0.887 

SVM 63.763 28.669 

CO-CNN 95.722 91.254 
 

The MCC values for the RF, SVM, and 
CO-CNN models are 0.8874, 28.6694, and 
91.2543, respectively. The MCC ranges from -1 to 

1, where 1 indicates perfect classification, 0 
indicates random classification, and -1 indicates 
perfect disagreement between observed and 
predicted classifications. The high MCC values 
obtained by the CO-CNN model indicate its 
superior performance in accurately classifying 
instances and capturing the true underlying patterns 
in the data. 

 

Fig 10. FMI & MCC 

Fig. 10 illustrates the trends of FMI and 
MCC across the three models. The CO-CNN model 
exhibits a significant improvement over the RF and 
SVM models in both metrics, demonstrating its 
effectiveness in accurately clustering or classifying 
instances and achieving high correlation between 
observed and predicted classifications. 

The results highlight the superior 
performance of the CO-CNN model in terms of 
both FMI and MCC. These findings underscore the 
effectiveness of CO-CNN in accurately clustering 
or classifying instances and capturing the true 
underlying patterns in the data. The high FMI and 
MCC values obtained by the CO-CNN model 
validate its potential for various classification tasks, 
particularly in scenarios where clustering or 
classification accuracy is critical for decision-
making and analysis. 

6. CONCLUSION 

The analysis of various performance 
metrics across different classification models, in 
that Cassowary Optimization-based Convolutional 
Neural Network (CO-CNN), has provided valuable 
insights into their effectiveness in solving binary 
classification tasks. Through comprehensive 
evaluation using metrics such as True Positive Rate 
(TPR), True Negative Rate (TNR), False Positive 
Rate (FPR), False Negative Rate (FNR), 
Classification Accuracy, F-Measure, Matthews 
Correlation Coefficient (MCC), and Fowlkes-
Mallows Index (FMI), the superiority of the CO-
CNN model has been demonstrated. The CO-CNN 
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model consistently outperformed RF and SVM 
models across all metrics, showcasing its capability 
to accurately classify instances, achieve a balanced 
trade-off between precision and recall, and capture 
the true underlying patterns in the data. These 
findings underscore the potential of CO-CNN as a 
robust and efficient approach for solving binary 
classification tasks in various domains, offering 
promising opportunities for improving decision-
making and analysis processes. 
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