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ABSTRACT 
 

Atmospheric aerosols are one of the indispensable particles in understanding atmospheric dynamics and are 
essential for accurate environmental forecasting and policy development. The literature on AOD time series 
forecasting usually uses either statistical methods, which handle linear patterns but struggle with non-
linearities, or machine learning (ML) and deep learning (DL) methods, which capture non-linearities but can 
be limited in accurately processing the linear components present in the data. This study introduces a hybrid 
model that combines statistical methods and ML techniques to effectively address both the linear and non-
linear components present in AOD time series data. The primary goal of this work was to understand the 
potential of the hybrid SARIMA-LSTM (seasonal autoregressive integrated moving average—long short-
term memory) model to enhance the forecasting capacity of AOD time series data. The proposed model was 
compared to its baseline models, SARIMA and LSTM, by utilizing monthly data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite across the Delhi region of India from 2001 to 2019. 
The performance of these models was evaluated based on root mean square error (RMSE), coefficient of 
determination (R2), and mean absolute percentage error (MAPE) during both training and testing phases. The 
proposed model outperformed the baseline models in all three metrics. The findings of this study advocate 
hybrid modeling as a promising tool for improving the accuracy of time series prediction of AOD because it 
can handle both linear and non-linear aspects present in the data. 
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1. INTRODUCTION  
 

Atmospheric aerosols are multifaceted, tiny 
particles that have profound effects on the climate, 
air quality, and human health. These particles affect 
the climate through direct and indirect interactions. 
They directly affect the Earth’s radiation budget by 
scattering or absorbing the solar radiation, thereby 
resulting in cooling or warming effects [1]. 
Atmospheric aerosols have an indirect impact on the 
climate by modifying the dynamics of cloud 
formation, as they serve as cloud condensation nuclei 
(CCN). The substantial amount of CCN can lead to 
clouds with more droplets that are more reflective 
and last longer, potentially leading to a cooling 
effect. This is referred to as the Twomey effect [2]. 
The atmospheric aerosols can affect the size of cloud 
droplets as well, influencing precipitation patterns 
known as the Albrecht effect [3]. Being tiny in size, 
these particles can penetrate deep into the lungs, 
causing respiratory and cardiovascular health issues. 

The scattering and absorption of atmospheric 
aerosols also contribute to visibility issues, a 
particularly profound problem in urban cities with 
high pollution levels [4]. These impacts and the 
complex behavior of atmospheric aerosols highlight 
the need for continuous understanding, monitoring, 
and prediction of their patterns, thereby aiding in the 
development of effective mitigation strategies. 

AOD is the most widely used parameter to 
quantify the total aerosol concentration in a region. 
It is a dimensionless parameter with usual values 
between 0 and 1. Higher values of AOD indicate a 
higher aerosol concentration in the atmosphere, and 
vice versa. An increase in aerosol concentration can 
lead to a higher amount of scattering or absorption, 
thereby affecting the Earth’s radiation budget and 
climate [5]. AOD measurements are thus significant 
for assessing the various impacts of aerosols on 
climate and air quality, and are crucial for the 
development of plans for air quality management. 
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Understanding AOD dynamics can lead to more 
accurate climate estimates. However, the limited 
amount of observational AOD data still remains a 
major challenge[6]. AOD is measured using satellite 
remote sensing and ground-based instruments. 
While ground-based instruments provide data at 
specific locations, they have limited spatial coverage 
and can also suffer from maintenance and calibration 
issues. Satellite remote sensing provides greater 
spatial coverage, but it also faces challenges such as 
cloud cover and irregular terrain effects. As a result, 
predictive modeling has become useful. Predictive 
modeling can be primarily classified as global 
models and time series forecasting. Global models 
such as Chemistry Transport Models (CTM) and 
Deterministic Weather Prediction Models (DM) can 
predict the AOD, but their accuracy is restricted by 
the AOD's inherent variability and the complexity of 
atmospheric processes [7]. To develop the 
simulations for understanding the variations of 
aerosols, physical, chemical, and dynamic processes 
need to be considered. Under these circumstances, 
time series forecasting started gaining momentum as 
it used historical data to predict future AOD values. 

By considering the literature focusing on the time 
series forecasting of AOD, it can be classified 
primarily into two categories: statistical modeling 
and machine learning, and deep learning 
methodologies. The most widely used statistical 
models for AOD forecasting are ARIMA and its 
extended version, SARIMA, as they depend upon 
the concept of serial correlation, where previous data 
influences future values [8] . In 2013, B. Abish and 
K. Mohankumar, to overcome the difficulties of 
using complex deterministic models, developed a 
simple and efficient model for predicting the future 
values of AOD across the northern Indian region by 
utilizing the multiangle imaging spectroradiometer 
(MERRA) data from the years 2000 to 2010. This 
model showed promising results for accurately 
forecasting AOD data in the region but 
underestimated the high values of AOD that would 
have resulted from extreme events [9]. Developing 
on the work proposed by Abish and Mohankumar 
(2013), Soni et al., (2014) applied the ARIMA model 
to predict the MODIS-AOD across eight selected 
sites in the northern Indian and Himalayan regions. 
The model performed well in low-AOD sites and 
performed satisfactorily whenever there were high 
values of AOD. The ARIMA model was successful 
in simulating seasonality [10]. Following this, Soni 
et al., (2015) again utilized ARIMA for the modeling 
of MODIS-derived AOD time series data across 11 
coal mines across India, covering the period from 
March 2000 to December 2012. The study 

successfully demonstrated the effectiveness of 
ARIMA in achieving satisfactory predictions at all 
the selected coal mines [11]. Taneja et al., (2016) 
considered New Delhi and employed the ARIMA 
model by utilizing monthly average AOD data from 
Terra MODIS over a period of ten years (2004–
2014) to analyze future values of AOD. The results 
showed the feasibility of such a simple model for 
simulating future values of AOD, although the 
model encountered issues when dealing with 
extreme values [12]. Soni et al., (2016) analyzed 
AOD data from MODIS and AERONET over the 
Indo-Gangetic Plains (IGP) from 2001–2012 using 
the ARIMA model. They assessed the model's 
accuracy with statistical metrics and found a 
significant correlation between the two datasets, 
showing MODIS data could be derived from 
AERONET data by adding a specific value. They 
also predicted an increasing trend in AOD for 2013–
2017, demonstrating the model's effectiveness in 
forecasting [13]. Kumar et al., (2018) conducted a 
comprehensive analysis of AOD and applied 
ARIMA across the entire region of IGP and nine 
specific stations located in the upper, central, and 
lower IGP regions using the Terra MODIS 
Collection 6 enhanced Deep Blue (DB) AOD 
retrieval algorithm. The study showed that while the 
ARIMA model provided reliable predictions in 
general, the non-stationary behavior of aerosol 
loading and heterogeneity in aerosol properties 
limited its performance, which was witnessed in 
areas such as Lahore, Kolkata, Karachi, and Multan. 
The authors suggested the potential use of more 
advanced models like adaptive neuro-fuzzy 
inference systems and artificial neural networks to 
better handle the complexities of AOD behavior 
[14]. Li et al., (2019) conducted a comparative 
analysis of AOD in the U.S. (United States) and 
China from 2003 to 2015, and employed SARIMA 
to reveal high AOD values in the eastern regions and 
distinct seasonal peaks in the summer. The study 
highlighted that SARIMA effectively captures 
temporal variations and trends, providing reliable 
short-term predictions. However, it was also noted 
that the model's reliance on past data might limit its 
accuracy in predicting extreme events [15]. The 
study by Abuelgasim et al., (2021) on AOD 
variability over the United Arab Emirates (UAE) for 
the period of 2003 to 2018 highlighted the 
effectiveness of SARIMA modeling for AOD 
forecasting. SARIMA outperformed the Exponential 
Smoothing State Space Model (ETS-error, trend, 
and seasonal) model. The findings of this study 
confirmed SARIMA's reliability for monthly AOD 
forecasts, making it suitable for capturing seasonal 
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variations and trends in the UAE's AOD data [16]. 
Singh et al., (2022) employed ARIMA for the time 
series forecasting of monthly mean AOD and 
angstrom exponent (AE) obtained from MODIS 
across three different locations in the IGP, namely, 
Jaipur, Kanpur, and Ballia, from the period 2003 to 
2018. The performance of the ARIMA model was 
compared to three statistical models: average, naive, 
and drift methods. The ARIMA model outperformed 
all three models and emerged as the best-fit model to 
predict both AOD and AE in all three regions [17]. 
Dutta et al., (2022) applied the ARIMA model to 
predict future AOD levels across various Indian 
states. The results indicated a significant shift in 
aerosol pollution levels, with southern Indian states 
expected to become more vulnerable by 2023. This 
study emphasized the necessity of ARIMA for 
projecting future scenarios based on historical trends 
and seasonal patterns [18]. However, it is important 
to note that various studies have highlighted a key 
limitation of ARIMA and SARIMA models related 
to their inability to effectively deal with non-
linearity in the data.  

Recently, ML and DL models started gaining 
popularity due to their ability to deal with complex 
data. Nabavi et al., (2018) compared deterministic 
weather prediction models (DMs) and machine 
learning algorithms (MLAs) to address the gaps in 
forecasting the monthly mean AOD in West Asia. 
MLAs outperformed DMs in terms of prediction 
error and accuracy [19]. Eltahan and Moharm (2020) 
developed a simple and efficient long-short-term 
memory (LSTM) model to estimate and predict the 
temporal trend of AOD for air quality in five 
Egyptian cities [20]. Naumi et al., (2021) developed 
the Prophet model for forecasting aerosol optical 
depth (AOD) across major urban areas in India, such 
as Delhi, Mumbai, Kolkata, and Trivandrum. The 
Prophet model outperformed the traditional 
SARIMA model in terms of accuracy and efficiency, 
providing better forecasts with lower errors and 
faster execution times [21]. Daoud et al., (2021) 
tested the accuracy of predicting AOD in four areas 
within the global dust belt: the Eastern Libyan 
Desert, the Saudi Arabian Peninsula, the Indian 
Subcontinent, and China. To accomplish this, the 
authors used three models, namely LSTM, CNN-
LSTM (Convolutional Neural Networks-Long-Short 
Term Memory), and ConvLSTM (Convolutional 
Long-Short Term Memory), which use algorithms to 
detect patterns in data as well as a traditional Fast 
Fourier Transform (FFT) algorithm. The 
ConvLSTM algorithms performed the best, with 
RMSE within ±10% [22]. Zaheer et al., (2023) 
developed the SVR model by utilizing pre-

processing techniques like forward feature selection. 
(FFS) and the grey wolf optimizer optimization 
algorithm for the prediction of AOD across Pakistan 
using satellite data. The SVR-GWO model was 
compared to SVR and multiple linear regression 
(MLR) models and was able to achieve better 
performance [23]. Nevertheless, nonlinear models 
may not be able to cope with linear and nonlinear 
patterns equally effectively due to their inability to 
identify the underlying patterns.  

The primary requirement of any time series 
forecasting scenario is the development of more 
efficient and accurate forecasting models. Previous 
studies on AOD time series forecasting have shown 
that both statistical and ML/DL models can 
successfully forecast AOD. However, these methods 
often struggle with the linearities and non-linearities 
present in AOD time series data. Statistical models, 
while simple and flexible, face issues when dealing 
with non-linearities. On the other hand, non-linear 
models may not efficiently capture linear trends. 
Motivated by the limitations observed in both 
approaches, our work aims to enhance the accuracy 
of AOD time series forecasting by combining the 
strengths of both linear and non-linear models into 
hybrid systems. 

Hybrid systems based on residual 
forecasting have shown promising results in various 
applications [24],[25],[26],[27],[28] . In these 
models, the residual, which is the difference between 
the predicted and actual values of the first model, 
serves as the input for the second model. In our 
study, we use the statistical model SARIMA as the 
first model and the DL model LSTM as the second. 
Such hybrid models, which use residuals, can correct 
biased forecasts that may occur due to overfitting, 
underfitting, or model mis-specification, thereby 
improving overall forecasting accuracy [29]. 

The Delhi region holds significant 
importance from an aerosol perspective due to its 
high levels of air pollution, particularly from 
anthropogenic sources. Delhi consistently ranks 
among the most polluted cities globally, with 
particulate matter (PM2.5 and PM10) and AOD 
levels frequently exceeding safe limits [30]. This 
pollution arises from various sources, including 
vehicular emissions, industrial activities, 
construction dust, and biomass burning [31]. The 
high aerosol concentrations in Delhi have severe 
public health implications, including respiratory and 
cardiovascular diseases, and are linked to increased 
mortality rates. Accurate forecasting of AOD in 
Delhi is significant for overcoming the health risks, 
informing policy decisions, and comprehending the 
broad-ranging environmental impacts of aerosols. 
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By knowing the underlying patterns and the 
futuristic patterns, it can aid in creating awareness 
about aerosol concentrations and public health. 

 
The main objective of this study is to 

develop and evaluate a hybrid SARIMA-LSTM 
model for improved time series forecasting of AOD 
across the Delhi region. The specific objectives are: 
 

1. To develop a hybrid model that is a 
combination of statistical and deep learning 
models based on residuals to improve the 
AOD prediction accuracy.  

2. To compare the performance of the hybrid 
SARIMA-LSTM model to its individual 
SARIMA and LSTM models through 
performance metrics.  

3. To validate the performance of the 
proposed hybrid model through additional 
analyses, including autocorrelation 
function (ACF) plots and residual density 
distribution of training residuals. 

 
Hence, in this paper, we aim to develop an 

accurate AOD time series prediction model with an 
efficient structure that adapts to real-world situations 
and gives better prediction capability. In order to 
deal with the real-world problem, which may contain 
linear and non-linear components, we are proposing 
the hybrid SARIMA-LSTM. 
 

To the best of our knowledge, hybrid 
systems that perform residuals modeling combining 
the SARIMA and LSTM were not proposed or 
assessed for AOD time series prediction across the 
Delhi region.  
 
The primary contributions of this study are: 
 

1. The development of a hybrid methodology 
that merges the DL and statistical linear 
approaches aimed at enhancing the 
accuracy of AOD time series prediction. 

 
2. A comprehensive evaluation of the hybrid 

model using the AOD dataset from the 
MODIS satellite for the Delhi region and a 
comparative analysis with its constituent 
models, SARIMA and LSTM, to verify the 
superiority of hybrid modeling via residual 
forecasting in improving AOD time series 
prediction accuracy. 

 
Section 2 details the study area, dataset, and 

mathematical background of the models used in this 

study. Section 3 describes the proposed 
methodology for development. Section 4 presents 
the results and discussions, focusing on the 
comparative analysis of model performances and 
their practical implications. Finally, Section 5 
concludes the study with a summary of findings, 
limitations, and potential directions for future 
research. 

 
2. MATERIALS AND METHODS 

2.1 Study Region 
 

In this study, Delhi (located from latitudes 
of 28⁰ 0.21’ to 28⁰ 0.53’ North and longitudes of 76⁰ 
0.20’ to 77⁰ 0.37’ East, with elevations ranging from 
213.3 to 305.4 meters above sea level) is considered 
as shown in figure 1. A densely populated national 
capital, it is currently ranked as the third most 
polluted city in the world, according to the IQAir 
2023 report [32]. Surrounded by the Himalayas to 
the north, the Thar Desert to the west, the Vindhyan 
Ranges to the south, and the Gangetic Plains to the 
east, Delhi's geographical location, high population 
and high urbanization level necessitates a focus on 
environmental and air quality studies.  

 
The primary sources for the alarming rise in 

air pollution in this region are anthropogenic and 
natural aerosol sources. Vehicular emissions, 
industrial discharges, and biomass burnings from the 
surrounding regions are the main factors in the 
anthropogenic aerosol formations [33]. Natural 
sources, such as dust from the Great Indian Desert 
and neighboring regions, contribute to these sources. 
These aerosol sources lead to high AOD levels and 
thereby influence not only local but also regional 
climatic patterns. Therefore, the understanding of 
these patterns and time series modeling of 
atmospheric aerosols in Delhi is significant. 

 
2.2 Data Description 
 

The AOD data at 550 nm wavelength 
collected by the MODIS sensor on the Terra satellite 
developed by NASA is utilized in this study. The 
Terra satellite was launched in 1999 and is part of 
NASA's Earth Observing System (EOS). It orbits the 
Earth from pole to pole, crossing the equator in the 
morning at approximately 10.30 a.m. IST [34], [35]. 
MODIS captures data in 36 spectral bands ranging 
from visible to thermal infrared at varying spatial 
resolutions. This sensor plays a critical role in 
observing and measuring large-scale global 
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dynamics such as changes in the Earth’s cloud cover, 
radiation budget, and processes occurring in the  
oceans, on land, and in the lower atmosphere. 
MODIS data are widely used for studying Earth's 
surface and atmosphere, providing insights into 
environmental conditions and trends. 

 
In this study, the monthly mean area-

averaged AOD data at 550 nm over the Delhi region 
from 2001 to 2019 were collected from the Terra 
satellite via Giovanni. Giovanni is an online portal 
developed by NASA GES DISC, a data center that 
archives and distributes Earth science data available 
in http://disc.sci.gsfc.nasa.gov/giovanni. Version 6.1 
(MOD08_M3 V 6.1) is utilized in this study. The 
spatial resolution is 1⁰ x 1⁰, and the temporal 
resolution is monthly. The dataset is processed using 
the Dark Target (DT) algorithm. 

 
2.3 SARIMA 
 

SARIMA is one of the most widely used 
statistical models and is a derivative of 
ARIMA. This model effectively handles the 
seasonal variations, an aspect that the conventional 
ARIMA model does not adequately address[36] .The 
general representation of SARIMA is (p, d, q) (P, D, 
Q, s). The general representation of SARIMA is 
(p,d,q)(P,D,Q,s), where the first set of parameters 
(p,d,q) defines the non-seasonal components, and the 
second set (P,D,Q) together with s captures the 
seasonal elements of the model. Here p and P are the 

number of autoregressive terms in non-seasonal and 
seasonal terms, respectively. The terms d and D 
stand for the number of differences and seasonal 
differences, respectively, undergone to make the 
data stationary. The q and Q represent the number of 
non-seasonal and seasonal moving average terms, 
respectively. 
 

The simplified mathematical representation 
of SARIMA is given below in Error! Reference 
source not found. : 
 

𝜑(𝐿)𝜙(𝐿௦) ▽ௗ▽௦
஽= 𝜃(𝐿)𝛩(𝐿௦)𝜀௧ (1) 

 
 where  
 𝜑(𝐿) = 1 − ∑ 𝜑௜𝐿௜௣

௜ୀଵ  : the non-seasonal 
AR terms. 

 𝜙(𝐿௦) = 1 − ∑ 𝜙௜௦𝐿௜௦௣
௜ୀଵ  : the seasonal AR 

terms. 
 𝜃(𝐿) = 1 + ∑ 𝜃௜𝐿௜௤

௜ୀଵ  : non-seasonal MA 
terms. 

 𝛩(𝐿௦) = 1 + ∑ 𝛩௜𝐿௜௦௤
௜ୀଵ  : seasonal MA 

terms. 
From equation (1), it is clear that the SARIMA 

model captures the non-seasonal and seasonal 
patterns present in the data, thereby effectively 
modeling seasonal data. 
 
2.4 LSTM 
 

Figure 1. The representation of location of the study region. 
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LSTM is an advanced version of recurrent 
neural network (RNN) introduced by Hochreiter and 
Schmidhuber in order to mainly overcome the 
gradient vanishing and gradient exploding issues 
[37]. LSTMS are extensively used in time series 
applications as they have the ability to learn the long-
term dependencies existing in the time series due to 
presence of memory cell. The existence of non-
linear activation functions benefits in dealing with 

the non-linear behaviors of the data. 
 
 

 
 

Figure 2 depicts the structure of the LSTM 
unit. It has mainly three gates, which act as 
regulators. They decided on the flow of information. 
The three gates are the forget gate, the input gate, 
and the output gate. The gates are basically sigmoid 
functions where the output values lie between 0 and 
1. 

The initial layer of the LSTM cell is the 
forget gate, which is assigned the task of determining 
which information is to be kept or discarded from the 
cell state. The sigmoid function, by considering the 
hidden state (ℎ௧ିଵ) and current input (𝑥௧), results in 
either 0 or 1 to either discard or maintain the 
information. Any value closer to 0 implies to neglect 
more information, and a closer value to 1 indicates 
to store more information. The mathematical 
equation (2) describing the forget gate is given 
below:  
 

𝑓௧ = 𝜎൫𝑊௙ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯ (2) 

where W୤ and b୤  are the weight and bias parameters 
for the forget gate, respectively. 
The input gate layer is the next layer, determining 
the new information to be added to the cell state. It 
first applies a sigmoid function on ℎ௧ିଵ and  𝑥௧ to 
decide which parts of the new input are important, 
using the previous hidden state and the current input. 
Simultaneously, a tanh layer produces candidate 

values for updating the cell state as shown in 
equation (3) and (4): 

𝑖௧ = 𝜎(𝑊௜ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) (3) 

 
  𝐶௧

෩ = tanh(𝑊஼ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏஼)   (4) 

Here, W୧, Wେ, b୧, and bେ represent the 
weights and biases related to the input gate and the 
generation of candidate values. 

 
The cell state C୲ is updated by merging the 

old cell state C୲ିଵ , modulated by the forget gate, 
with the new candidate values, influenced by the 
input gate as given below in equation (5): 
 

𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶௧
෩  (5) 

 
This equation highlights the selective 

updating process, incorporating new, relevant 
information while discarding outdated data. 

 
The final layer is the output gate, which 

determines the aspects of the cell state to be used in 
the output. It starts with a sigmoid function 
evaluating the inputs to generate a gating vector. The 
cell state is then processed through a tanh function to 
normalize its values: 

 
𝑜௧ = 𝜎(𝑊௢ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) (6) 

 
ℎ௧ = 𝑜௧ ∗ tanh(𝐶௧) (7) 

 
This results in the final output h୲ of the 

LSTM cell, which is ready for subsequent 
processing or as input for the next timestep in 
sequence-based tasks. 

 
By making use of gates and cell states, the 

LSTM cell can control the flow of information and 
what is to be remembered and discarded, thereby 
overcoming the vanishing gradient problem. 

 
2.5 Hybrid SARIMA-LSTM  
 
  The MODIS AOD data contains both linear 
and non-linear components. The SARIMA model 
can be of use to deal with the linear part of the data 
and LSTM can deal the non-linear component, The 
proposed hybrid SARIMA-LSTM can thus handle 
both the linear and non-linear components as it 
combines the strength of both SARIMA and LSTM. 

 

Figure 2: The structure of LSTM. 
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Suppose the MODIS AOD data at time t is 
represented as 𝐴௧ and it’s a combination of linear 
and non-linear components as given in equation (8): 

𝐴௧ =  𝐿௧ + 𝑁௧  (8) 

Here, 𝐿௧ and 𝑁௧ are the linear and non-
linear components, respectively. The SARIMA 
model is utilized to take care of the seasonality and 
trend parts of the MODIS AOD data and generate the 
SARIMA-based predicted linear component. The 
residual is obtained by differencing the actual 
MODIS data from the predicted linear component by 
SARIMA, as indicated in equation (9): 

 
𝑅௧ =  𝐴௧ −  𝐿෠௧  (9) 

The residual from SARIMA is fed as the 
input to LSTM for predicting the non-linear part and 
it predicts 𝑁෡௧. The final prediction is the combination 
of the predicted linear and non-linear components 
respectively as shown in equation (10): 
 

𝐴መ௧ =  𝐿෠௧ + 𝑁෡௧ (10) 

The proposed model has the potential to 
incorporate both the linear and non-linear dynamics 
of the data, thereby enhancing the prediction 
accuracy [38]. The workflow of the proposed model 
is depicted in figure 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 SYSTEM DESCRIPTION 

In this section, the various steps involved in the 
proposed framework are discussed. The proposed 
framework is illustrated in figure 4. 

The experimental set-up for the current study was 
performed on a platform operated on a 64-bit 
Windows 11 Home Single Language OS with an 
x64-based processor architecture. The experiments 
were performed in the Jupyter Notebook 
environment provided by Anaconda version 3. The 
system utilized was equipped with an AMD Ryzen 5 
5600 H processor with Radeon graphics, capable of 
operating at 3.30 GHz with 24 GB of RAM. 

3.1 Data Collection 
 
The monthly mean AOD data for a period 

of 19 years (Jan 2001 to Dec 2019) across Delhi 
derived from MODIS were accessible at the 
Giovanni online system at 
http://disc.sci.gsfc.nasa.gov/giovanni. The Giovanni 
online system was developed by the National 
Aeronautics and Space Administration's (NASA) 
Goddard Earth Sciences Data and Information 
Services Center (NASA GES DISC). The Giovanni 
platform serves as a web-based application 
providing Earth Science scientific data for the 
purpose of climate research and environmental 
monitoring applications.  
 
3.2 Data Pre-Processing 
 

Data pre-processing is a significant step as 
it aids in improving the accuracy and effectiveness 
of the models by cleaning and standardizing the data. 
There was no missing data present in the data. Prior  
 
to LSTM modeling, the data underwent min-max 
normalization as shown in the equation (11). This 
transformation results in the values lying between 0's 
and 1's, thereby maintaining the original distribution 
and making the data suitable for further analyses.  
 

𝑋௡௢௥௠ =
𝑋 − 𝑋௠௜௡

𝑋௠௔௫ − 𝑋௠௜௡

 (11) 

 
Here X is the original dataset, Xmax and Xmin 

are the maximum and minimum AOD values, and 
Xnorm is the final normalized output.   

 

3.3 Data Splitting 
 

In order to check the predictive potential of 
the models, the data was split into training and 
testing with a 0.894 ratio, so that the monthly mean 
AOD data from January 2001 to December 2017 
becomes the training data and the remaining data 
from January 2018 to December 2019 becomes the 

Figure 3. The workflow of hybrid  SARIMA-LSTM. 
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test data. During the training process, the models 
learn how to predict patterns, and their predictive 
capabilities are analyzed during the testing phase, 
depending on how they respond to the unseen data 
(test data).  
 
3.4 Model Development 
 

For SARIMA modeling, four steps are 
involved. The first step involves the identification of 
parameter values. We use seasonal differences in the 
data to identify the most suitable D values. Using 
ACF and partial autocorrelation function (PACF), 
the maximum parameter ranges for p and q are 
established.  In the parallel grid search procedure, 
the Akaike information criterion (AIC) is used as an 
error measure in conjunction with the specified 
parameter range to choose the optimal model. The 
best-achieved model parameters are then used for 
estimation purposes. For the p, P, q, and Q 
components, the ranges were fixed within 0 to 2, and 
for the differencing parameters d and D, the ranges 
were varied from 0 to 1. The seasonality component, 
S, was set to 12 to reflect the monthly seasonality. 

LSTM modeling use the grid search 
approach to determine the best hyperparameters. The 
grid search technique determines parameters such as 
batch size, maximum number of epochs, and 
optimizer type. The initial learning rate, activation 
function for state, and gate function are set to 0.001, 
hyperbolic tangent (tanh), and sigmoid, respectively. 
For AOD time series prediction, the best-identified 
model is used. Batch sizes range from 1 to 100. The 
maximum number of epochs varies between 10 and 
300. The optimizers are set to Adam or RMSprop. 
The loss function is mean square error (MSE). 

 
For hybrid modeling, the same approaches 

are followed. The residual from SARIMA is fed as 
the input for LSTM modeling.  

 
 
3.5 Performance Metrics 
 

 
 
To validate the performance of the models 

under consideration, the accuracy of the models has 
to be evaluated with respect to accuracy. For this 
purpose, the most prevalent three evaluation 
metrics—RMSE, MAPE, and R2 which has been 
used extensively in the literature for AOD time 
series prediction are employed. These performance 
measures are determined as given in the equations 
(12), (13) and (14) as follows: 
 

𝑅𝑀𝑆𝐸 =  ඩ
1

𝑛
෍(𝑑௜ − 𝑑መ௜)ଶ

௡

௜ୀଵ

 (12) 

𝑀𝐴𝑃𝐸 = ൬
100%

𝑛
൰ ෍ ቤ

𝑑௜ − 𝑑መ௜

𝑑௜

ቤ  

௡

௜ୀଵ

 
(13) 

 

𝑅ଶ = 1 −
∑ ൫𝑑௜ − 𝑑መ௜൯

ଶ௡
௜ୀଵ

∑ ൫𝑑௜ − 𝑑̅൯
ଶ௡

௜ୀଵ

 
(14) 

 

 
where, n is the total number of observations, 𝑑௜ is the 
actual AOD data at ith sample, 𝑑መ௜ is the predicted 
AOD data and 𝑑̅ is the mean of the actual AOD data 
d. 
 
4. RESULTS AND DISCUSSION 

In this section, the data analysis and 
predictive capacities of the proposed model are 
compared to those of single models. 

Figure 4. The framework of the proposed methodology 
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Table 1 provides the descriptive statistics of 
the monthly mean MODIS AOD550nm considered in 
this study.  

 
 
 

Table 1: Descriptive Statistics of Monthly Mean MODIS 
AOD550nm Over Delhi (2001–2019). 

Statistic AOD Values 
Count 228 
Mean 0.775 
Standard Deviation 0.266 
Minimum 0.420 
25th Percentile (Q1) 0.585 
Median (50th Percentile) 0.716 
75th percentile (Q3) 0.902 
Maximum 1.856 

 
There was no missing data. The typical 

level of AOD across the Delhi region is 
approximately 0.775, which is the average AOD 
value. The standard deviation of 0.266 indicates a 
moderate variability in AOD values from month to 
month. The AOD values vary from a minimum of 
0.420 to 1.856, indicating variability due to 
seasonality and the presence of extreme events. The 
three-percentile values aid in understanding the 
spread of the AOD values and whether there is a 
presence of skewness. Since the median value is 
0.716, it implies that half of the observation values 
are below this value. The Q1 and Q3 values of 0.585 
and 0.902 indicate that the data is probably right-
skewed. 

Figure 5 illustrates the time series variation 
of monthly mean MODIS AOD550nm data over the 
Delhi region from January 2001 to December 2019. 
The most noticeable observation from this plot is the 
peak value of AOD observed during the alternate 
years during the month of July. A similar 
observation was reported by Taneja et. al. (2016) 
over the Delhi region, and the possible reason for this 
phenomenon is the presence of sizeable dynamics in 
the lower atmosphere. An increasing trend in AOD 
values over the years can be noted. Every year in the 
winter (December–January–February), there is a 
decrease, and this has been linked to the higher rate 
of fine-mode particles during winters [12] . 

In order to understand the underlying 
patterns, the ACF and PACF plots, as shown in 
figure 6, were considered. From figure 6 (a), it can 
be seen that there are some significant spikes at early 
lags, but the autocorrelations fall off quickly within 
the confidence interval (blue shaded region). Since 
the ACF is tailing off gradually, it is an indication of 
a potential autoregressive (AR) process. The lag 
repeats at every 12th position indicating the presence 

of seasonality. The PACF plot depicted in figure 6(b) 
shows no significant spikes outside the confidence 
interval, indicating higher lags aren’t required in the 
AR part of the model. 

To further understand whether there is a 
presence of trend and strong seasonality the 
decomposition of time series data is utilized. The 
monthly mean MODIS AOD550nm is decomposed 
into three components, the trend, seasonality and 
residual. There is an increasing trend with some 
periods of slight decline. There exists a clear, regular 
oscillations indicating the seasonal fluctuations 
present in the data. The periodicity is consistent and 
strong, indicating a significant presence of 
seasonality within the AOD data. The residual or 
random plot is the plot obtained after the removal of 
seasonal and trend components. The residuals do not 
seem to have any pattern and thus the seasonal and 
trend components have been removed.  

 
The monthly mean MODIS AOD550nm 

across the Delhi region from 2001 to 2019 thus 
exhibits an increasing trend with strong seasonality. 
It demonstrates non-stationary behavior, implying 
that it has complex and changing patterns. 
  
 
4.1 Comparison of the Proposed Model to 

SARIMA and LSTM Models 
 

To validate the performance of the proposed 
model (SARIMA-LSTM), it was compared to its 
baseline models, SARIMA and LSTM. Initially, a 
plot comparing the actual values versus the predicted 
values for both the training and testing phases was 
performed. The performances were quantitatively 
analyzed using the performance metrics RMSE, 
MAPE, and R2 during training and testing. 
Furthermore, the ACF of the residual obtained 
during the training process as well as the residual 
density distribution were also used to assess each of 
the model’s performance.  

In this study, the SARIMA model with 
configuration (2,1,2) and (2,0,2,12) was used as an 
outcome of having the lowest AIC using the parallel 
grid search method. For the standalone LSTM 
model, using grid search, the best hyperparameters 
were chosen. The model employed an extensive 
architecture with a total of 10 LSTM layers. The 
maximum number of epochs was 100, with a batch 
size of 32. The optimizer chosen was the Adam 
method with a learning rate of 0.001. For the LSTM 
model designed to predict the residuals from the 
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SARIMA outputs, the epochs were run for 100 with 
a batch size of 12, incorporating 5 layers to 
sufficiently model the complexity of the residuals. 
The Adam optimizer was chosen for its efficiency in 
handling sparse gradients on noisy problems, with a 
learning rate of 0.001 to ensure gradual and steady 
learning. 

From figure 8, it can be observed that during 
both training and testing, the SARIMA model was 
able to effectively capture the seasonality and trend 
present in the data. The LSTM model was able to 
detect the pattern and follow the spiky nature of the 
data. However, the model is not consistent in 
predicting the peaks and troughs effectively. During 
both training and testing, the hybrid SARIMA-
LSTM model was able to get a good fit with the 
actual data. This shows its potential to achieve more 
accurate predictions of AOD time series data.  

From table 2, in the training phase, the hybrid 
SARIMA-LSTM model did better than the 
individual SARIMA and LSTM models, with an 
RMSE of 0.1508 compared to 0.1733 for SARIMA 
and 0.2162 for LSTM. In terms of MAPE, the hybrid 
model achieved a 13.5325% error rate, which is 
lower than SARIMA's 15.5007% and LSTM's 
20.5125%. This indicates that the hybrid model was 
able to predict the training data with approximately 
12.68% and 34.05% better accuracy than SARIMA 
and LSTM, respectively. The R2 value for the hybrid 
model stands at 0.6328, which is higher than the 
0.5798 of SARIMA and significantly higher than the 
0.3449 of LSTM. This represents a 9.14% 
improvement in the coefficient of determination 
over SARIMA and an 83.51% improvement over 
LSTM during training, suggesting that the hybrid 
model explains the variability of the response data 
more effectively. 

Table 2: Training and testing performances of 
Monthly Mean MODIS AOD550nm Over Delhi 

(2001–2019). 

The testing phase results were consistent 
with the training performance, with the hybrid 
SARIMA-LSTM model outperforming both 
SARIMA and LSTM models. The RMSE for the 
hybrid model during testing was 0.1471, which is 
lower than SARIMA's 0.1768 and LSTM's 0.2484, 
indicating 16.82% and 40.79% improvement, 
respectively. In terms of MAPE, the hybrid model 
had a lower error percentage of 13.0726% compared 
to SARIMA's 17.1807% and LSTM's 18.4296%. 
This represents a 23.91% and 29.07% improvement 
in predictive accuracy over SARIMA and LSTM, 
respectively, during the testing phase. 

The R2 value of 0.6867 for the hybrid 
model indicates that the model explains 
approximately 12.62% more variability of the test 
data than SARIMA's 0.6098 and a substantial 
177.88% improvement over LSTM's 0.2473. This 
suggests that the hybrid model not only predicts 
more accurately but also generalizes better to unseen 
data. These improvements validate the hybrid 
model’s robustness and its enhanced ability to 
generalize to new data, surpassing SARIMA's and 
LSTM's performance under varying conditions. 

As illustrated in table 2, the hybrid 
SARIMA-LSTM model performed better in the 
training phase than the SARIMA and LSTM models, 
as it had an RMSE of 0.1508 and 13.5325% MAPE. 
On the other hand, those for SARIMA and LSTM 
were 0.1733 and 15.5007% and 0.2162 and 
20.5125%, respectively. The MAPE values indicate 
that the hybrid model performed with approximately 
12.68% and 34.05% better accuracy in predicting the 
training data than SARIMA and LSTM. In addition, 
the corresponding R2 value for the hybrid model in 
the training phase was 0.6328, which is higher than 
the 0.5798 for SARIMA and significantly higher 
than 0.3449 for LSTM. These values reveal an 
approximately 9.14% and 83.51% improvement in 
the coefficient of determination by the hybrid model 
compared to SARIMA and LSTM. In other words, 
the hybrid model explains the variability of the 
response data in the training phase better than the 
individual models. 

Similarly, in the testing phase, the hybrid 
SARIMA-LSTM model outperformed the SARIMA 
and LSTM models as illustrated by the 
comparatively low RMSE of 0.1471 and MAPE of 
13.0726%. SARIMA and LSTM models RMSE 
were, respectively, recorded as 0.1768 and 0.2484; 
MAPE of 17.1807% and 18.4296%. Therefore, 
approximately 16.82% and 40.79% improvement in 

Model RMSE  MAPE (%) R2 

Training Performance 
SARIMA 0.1733 15.5007 0.5798 
LSTM 0.2162 20.5125 0.3449 
Proposed model 0.1508 13.5325 0.6328 

    Testing Performance 
SARIMA 0.1768 17.1807 0.6098 
LSTM 0.2484 18.4296 0.2473 
Proposed model 0.1471 13.0726 0.6867 
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the accuracy of prediction are realized for the hybrid 
model over SARIMA and LSTM. Furthermore, the 
R2 value of 0.6867 for the hybrid model shows that 
it explains about 12.62% more variability of the test 
data than SARIMA and a significant 177.88% 
improvement over LSTM. Therefore, the hybrid 
model not only predicts accurately but also 
generalizes better. Consequently, the hybrid model 
shows that it is more robust and generalizes better to 
new data. 

The above improvements of performance 
metrics emphasize the robustness of the hybrid 
model and its improved generalization capabilities 
across varying conditions. Indeed, it outperformed 
not only SARIMA and LSTM. 

Figure 9 depicts the ACF of residuals and 
their corresponding density distributions during the 
training process for SARIMA, LSTM, and 
SARIMA-LSTM models. These plots aids in further 
understanding and validating the performances of all 
the three models. A model is said to be a good fit if 
it has all of its autocorrelation coefficients within the 
confidence limits (the blue-shaded region in the ACF 
plots), which implies the residuals are white noise. 
Both the SARIMA and proposed models have 
autocorrelation coefficients within the confidence 
limits, thereby indicating the desirable property of 
handling time series prediction through the ability to 
capture temporal dependencies. The LSTM model's 
ACF plot shows stronger spikes outside the 
confidence interval. This suggests that the model's 
residuals still have some autocorrelation, which 
means that the LSTM might not be capturing all of 
the data's temporal dependencies. 

When considering the residual density 
distribution plots in figure 9, both the SARIMA and 
hybrid SARIMA-LSTM models exhibit a normal 
distribution with a slight deviation. The hybrid 
model's residuals are more closely aligned with the 
normal distribution, as seen by the tighter fit of the 
histogram to the Kernel density estimation (KDE) 
curve, indicating a more accurate and consistent 
prediction of the training data. The LSTM residuals 
exhibit a more pronounced deviation from normality 
with heavier tails, potentially due to their inability to 
learn the temporal patterns effectively. 

The proposed method of the hybrid 
SARIMA-LSTM model has a better overall 
performance as it can accommodate both linear and 
non-linear patterns of the time series data of AOD. 

The linear and seasonal patterns are effectively 
modeled by the SARIMA component and the 
residual containing the non-linear components is 
processed by the LSTM model. Finally, it combines 
both of these and gets a better and efficient model, 
compared to using SARIMA or LSTM alone. LSTM 
model when used alone fails in efficiently 
forecasting the AOD as it is unable to detect the 
underlying patterns and this might be attributed to 
the small amount of dataset available [39]. 

The significant improvement in RMSE, 
MAPE, and R² metrics during both training and 
testing phases implies the effectiveness of the 
proposed hybrid models. The higher R2 obtained by 
the proposed hybrid model indicates the greater 
predictive potential. The absence of autocorrelation 
coefficients during the training and testing phases 
indicates that the model has successfully captured 
the underlying pattern and is providing a good fit. 

5. CONCLUSION 

The main objective of this study was to 
develop a hybrid model based on residual that can 
enhance the prediction accuracy of AOD time series 
data in the Delhi region. This study has demonstrated 
that the hybrid model outperforms the individual 
SARIMA and LSTM models, which have 
traditionally been employed within the literature to 
predict AOD, often failed to detect the underlying 
patterns efficiently. The results obtained reveals that 
the proposed model was able to enhance the 
accuracy of forecasting the AOD time series data 
considered. The hybrid model was able to achieve 
the lowest RMSE, MAPE and highest R2 values, 
indicating the least error, highest accuracy, and best 
fit. The proposed hybrid model effectively captures 
both linear and non-linear patterns in AOD data, 
resulting in superior predictive capability. The 
individual SARIMA model, while better at linear 
dependencies, and the LSTM model, which handles 
non-linear patterns, both fall short when compared 
to the hybrid methodology. The stable performance 
of the hybrid model across training and testing 
phases highlights its strong capabilities and 
reliability for time series forecasting of AOD.  The 
ACF and residual plots also further validates the 
efficiency of the proposed model. Thus, by 
combining the strength of linear and non-linear 
models, the proposed method was able to enhance 
the prediction accuracy. This enhanced modeling 
ability is essential for effective environmental 
management and health risk assessment in urban 
areas like Delhi, where aerosol concentrations can 
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have a significant impact on air quality and public 
health. The hybrid SARIMA-LSTM approach 
improves prediction accuracy while also providing 
deeper insights into the dynamics of aerosol 
distributions, allowing for more informed decision-
making. 
 

The proposed model as well as the standalone 
models faced issues in dealing with the random 
extreme events present in the data. Future studies can 
focus on developing effective approaches to handle 
these extreme events. Future works can incorporate 
more features, such as meteorological variables, to 
further increase forecasting accuracy. The study can 
also be extended to different geographical locations 
to provide a more detailed understanding of aerosol 
behavior and its implications and assess the 
performance of the proposed model. 

 
This study advances the application of an 

effective and potent hybrid methodology for the 
efficient prediction of atmospheric aerosols, which 
can aid in a better understanding of climatic 
dynamics and decision-making policies for 
improving air quality and climate. 
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Figure 5. Monthly temporal variations in MODIS AOD550nm Over Delhi (Jan 2001- Dec 2019). 

Figure 6: The ACF and PACF analysis of monthly MODIS AOD550nm over Delhi from 2001 to 2019. 
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Figure 7: Decomposed time series analysis of monthly MODIS AOD550nm over Delhi from 2001 to 2019. 
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Figure. 8: The plot showing the actual, and predicted values of MODIS-AOD550nm during training (Jan 
2001- Dec 2017) and testing (Jan 2018-Dec 2019) processes over the Delhi region using 

(a) SARIMA, (b) LSTM, and (c) SARIMA-LSTM.  The grey dashed line indicates the 
Train-Test split. 
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Figure. 9: The residual plot obtained for (a) SARIMA, (b) LSTM, and (c) SARIMA-LSTM 
during training (Jan 2001-Dec 2017) processes over the 

Delhi region.  


