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ABSTRACT 
 

In our contemporary world, environmental issues and the ever-present threat of plastic pollution endanger 
not only the health of our planet but also that of its inhabitants, underscoring the urgency of action. The need 
to closely monitor these destructive phenomena and develop effective detection systems is imperative to 
preserve our fragile ecosystem. Fortunately, the emergence of cutting-edge technologies has revolutionized 
our ability to monitor and detect environmental threats with unprecedented precision. The combined use of 
drones and artificial intelligence, particularly deep learning, yields promising results, leveraging drones' 
unique capabilities to cover vast areas and the power of deep learning to analyze collected data swiftly and 
accurately. Our study focuses on optimizing the utilization of drones and object detection algorithms through 
deep learning for effective detection and supervision of plastic litter. We will explore the performance of two 
major families of object detection models, namely single-pass and double-pass, using drone images captured 
at varying heights. The overarching objective is to identify the optimal performance-to-resource conditions, 
maximizing efficiency in our detection and supervision endeavors. This research is crucial in addressing the 
pressing environmental concerns posed by plastic pollution, offering innovative solutions to mitigate its 
impact and safeguard the health of our planet for future generations. 
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1. INTRODUCTION  

Environmental problems facing our planet 
are becoming increasingly numerous and 
concerning. Ecosystem degradation, biodiversity 
loss, climate change, and pollution are among the 
most urgent and complex challenges humanity faces 
today. Among these challenges, the rise of plastic 
pollution stands out as one of the most pressing and 
intricate issues of our time [1]. 

Plastic, valued for its convenience, 
hygiene, and affordability, has gradually become a 
dominant part of our daily lives, displacing 
traditional materials such as paper, glass, wood, and 
metal in many applications. According to projections 
from the Organization for Economic Co-operation 
and Development (OECD), plastic production is 
expected to increase from 460 million tons in 2019 

to 490 million tons in 2023. Estimates suggest it 
could reach up to 975 million tons by 2050 [2]. 
However, only 9% of the plastic produced is 
recycled [3]. The vast majority, 79%, ends up in 
landfills or disperses into the environment as litter. 
Over time, much of this litter unfortunately finds its 
way into our oceans, becoming an unwanted final 
repository. Plastics, which are resistant to 
degradation, break down into smaller microplastics. 
These micro fragments can lead to entanglement or 
ingestion by marine organisms, causing serious 
harm, even death. In addition to the environmental 
impact, the presence of microplastics in oceans also 
raises concerns about their potential to enter the food 
chain and impact human health. Studies have shown 
that microplastics can accumulate in seafood, raising 
questions about the long-term effects on human 
health. 
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The production figures for plastic are 
staggering, with millions of tons produced annually 
worldwide. However, the plastic recycling rate 
remains very low in comparison, exacerbating the 
magnitude of the problem. The consequences of this 
plastic pollution are severe and manifold: they affect 
the health of marine and terrestrial ecosystems, 
threaten biodiversity, pollute water resources, and 
have detrimental effects on human health [4]. 

In particular, plastic pollution poses a 
serious threat to marine life. Plastic litter fragments 
over time into microplastics, thus contaminating the 
oceans and waterways. Marine organisms ingest 
these microplastics, which can lead to severe health 
problems and even death. Moreover, toxic chemicals 
present in plastics can bioaccumulate in the food 
chain, eventually reaching humans who consume 
seafood [5]. 

In the face of this environmental crisis, the 
detection and monitoring of plastic pollution are 
crucial to implement effective prevention and 
cleanup strategies. Traditional techniques such as 
manual surveys and satellite tracking systems are 
often used, but they have limitations in terms of 
spatial coverage, cost, and resolution [6]. 

However, rapid advances in emerging 
technologies offer new perspectives in the fight 
against plastic pollution. The use of drones equipped 
with specialized sensors offers a promising solution 
to efficiently monitor areas affected by plastic 
pollution [7]. Drones can cover vast expanses of 
territory, including hard-to-reach areas, and provide 
detailed, real-time data on the extent and distribution 
of plastic litter [8]. 

Drones offer several advantages for 
environmental monitoring. Their agility and ability 
to fly at different altitudes enable them to collect 
precise data over large areas. Moreover, their flight 
autonomy and capacity to carry various payloads 
make them suitable for a range of surveillance 
missions [9]. 

Furthermore, advances in computer vision 
through deep learning have revolutionized the ability 
to analyze and interpret data collected by drones. 
Deep learning algorithms can be trained to 
automatically recognize plastic litter in images and 
videos, thereby facilitating the process of mapping 
and tracking plastic pollution with increased 
accuracy [10]. 

By combining the capabilities of drones 
with advances in deep learning, it is possible to 
create sophisticated and effective surveillance 

systems to combat plastic pollution. This integrated 
approach offers considerable potential to improve 
plastic litter management and protect our marine and 
terrestrial ecosystems [11]. By harnessing emerging 
technologies and collaborating globally, we can 
work together to preserve our environment for future 
generations [12]. 

Drones present a multitude of qualities that 
make them exceptionally well-suited for tackling the 
issue of plastic pollution, particularly in marine 
environments. Firstly, their aerial surveillance 
capabilities enable efficient monitoring of vast 
oceanic expanses and coastlines. Their versatility 
and ability to maneuver at various altitudes allow for 
coverage of remote and inaccessible areas, which are 
often difficult to reach using conventional methods 
[13]. Equipped with specialized sensors, drones can 
capture high-resolution imagery and data, providing 
comprehensive insights into the extent and 
distribution of plastic litter. Furthermore, their real-
time data transmission capabilities facilitate prompt 
response and intervention in areas identified as 
plastic pollution hotspots [14]. Additionally, drones 
offer cost-effective and environmentally friendly 
alternatives to manned aircraft or boats, reducing 
operational expenses and minimizing carbon 
emissions. In summary, leveraging drones in the 
fight against plastic pollution offers a flexible and 
effective approach to monitoring, identifying, and 
mitigating this global environmental challenge [15]. 

In this paper, we delve into the study of 
various deep learning models for object detection, 
with the specific aim of identifying plastic litter on 
beaches. Our ultimate goal is to develop an effective 
solution that can be deployed by drones to map and 
identify this waste, thereby contributing to the 
preservation of our coastal ecosystems. 

A major challenge in our work lies in 
determining which detection model is best suited to 
our use case, taking into account the specificities of 
plastic litter and beach environments. We evaluate 
different algorithms and deep learning architectures 
to find the one that offers the best performance in 
terms of precision and detection speed. The deep 
learning models under study include YOLOv6, 
YOLOv7, and YOLOv8, as well as Faster R-CNN 
with the backbones ResNet50, VGG16, and VGG19. 

Another crucial dimension of our research 
involves determining the optimal drone flying 
height. By adjusting the flight altitude, we aim to 
optimize the resolution of captured images while 
ensuring adequate coverage of the target area. This 
requires a thorough analysis of trade-offs between 
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spatial resolution, field of view, and operational 
efficiency. Our work is part of a broader project 
aimed at combating plastic pollution on beaches. 
Our technology demonstration site is located in 
Saidia, Morocco. 

2. BACKGROUNDS 

2.1 Computer Vision Techniques 
Computer vision stands at the forefront of 

artificial intelligence, striving to equip machines 
with the ability to perceive and interpret visual cues 
from their surroundings. This interdisciplinary field 
aims to empower computer systems to not just see, 
but comprehend the visual data they encounter, 
ultimately enabling them to make informed 
decisions based on this information [16]. 

The scope of applications for computer 
vision is vast and continuously expanding, 
encompassing diverse domains such as object 
recognition, facial detection, image segmentation, 
optical character recognition, video surveillance, 
augmented reality, autonomous navigation, medical 
diagnostics, and virtual environments. Its impact 
extends across various sectors including healthcare, 
security, manufacturing, scientific research, 
transportation, and entertainment [17]. 

In healthcare, computer vision aids in 
medical imaging analysis, assisting doctors in 
diagnosing diseases and guiding surgical procedures 
with greater precision. In security, it enhances 
surveillance systems, enabling real-time monitoring 
and threat detection in public spaces and sensitive 
installations. Industries leverage computer vision for 
quality control, automating inspection processes to 
ensure product integrity and consistency [18]. 
Research endeavors benefit from its capabilities for 
data analysis and visualization, accelerating 
scientific discoveries and innovation [19]. 

Moreover, computer vision plays a pivotal 
role in the evolution of transportation, facilitating the 
development of autonomous vehicles equipped with 
vision-based perception systems for navigation and 
obstacle avoidance. It also enriches user experiences 
through immersive technologies like augmented and 
virtual reality, blurring the lines between the 
physical and digital realms [20]. 

As computer vision continues to advance, 
fueled by breakthroughs in deep learning and sensor 
technologies, its transformative potential across 
various domains becomes increasingly apparent 
[21]. By harnessing the power of visual intelligence, 
we pave the way for a future where machines 
seamlessly interact with and interpret the visual 

world, revolutionizing how we perceive, understand, 
and interact with technology. 

2.2 Deep Learning 
Drawing inspiration from the intricate 

workings of the human brain, deep learning 
empowers computers to autonomously acquire 
knowledge. Despite being a relatively recent 
advancement, its impact has been profound, 
particularly in tasks like visual content recognition, 
speech comprehension, and natural language 
processing [22]. 

However, deep learning faces challenges, 
notably its dependence on vast amounts of data for 
effective learning. Nevertheless, these hurdles 
haven't dampened the remarkable results this 
captivating field of machine learning has achieved. 
One of the most intriguing aspects of deep learning 
is its ability to discern complex patterns and 
structures within data, enabling it to perform tasks 
previously deemed exclusive to human capabilities. 
For instance, in healthcare, deep learning is 
employed to analyze medical images, assisting 
doctors in diagnosing diseases with heightened 
precision [23]. 

Furthermore, deep learning is evolving 
rapidly, with new architectures and emerging 
optimization techniques consistently enhancing its 
performance. Convolutional Neural Networks 
(CNNs) have revolutionized image processing, 
while transformers have significantly boosted 
models' capacity to understand and generate natural 
language. Moreover, deep learning holds immense 
potential across various domains such as 
autonomous driving, finance, security, and beyond 
[24]. Its impact is still unfolding, and we are likely 
only scratching the surface of its applications and 
implications for the future of technology and society. 

2.3 Object Detection 
Object detection stands as a pivotal pillar in 

the realm of computer vision, dedicated to 
pinpointing and categorizing objects within images 
or videos. Its utility spans across a spectrum of 
applications, encompassing realms like video 
surveillance, automatic license plate recognition, 
and advancements in medical imaging. The advent 
of deep learning has heralded a transformative era in 
object detection, supplanting traditional techniques 
with the prowess of deep neural networks. These 
neural architectures possess the ability to 
autonomously discern intricate features, thereby 
facilitating superior generalization and heightened 
performance across a myriad of contexts [25]. 
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Within the panorama of object detection 
methodologies, two primary paradigms hold sway 
(refer to Figure 1): single-shot models typified by 
exemplars such as YOLO, and two-shot models 
epitomized by Faster RCNN. Single-shot models 
boast rapidity as their hallmark trait, rendering them 
ideal for real-time applications like urban 
surveillance. Conversely, two-shot models, albeit 
more intricate, furnish a finer degree of precision, 
rendering them apt for tasks necessitating 
meticulous object identification. The swift evolution 
witnessed in object detection, propelled by the 
engine of deep learning, portends continual progress. 
Researchers perpetually tread uncharted territory, 
devising novel architectures geared towards 
bolstering accuracy, speed, and model adaptability. 
This innovative momentum charts a course towards 
increasingly sophisticated applications, spanning 
from the realms of autonomous driving to the early 
detection of ailments, thereby sculpting the 
trajectory of computer vision's future [26]. 

Moreover, the integration of object 
detection algorithms with emerging technologies 
such as edge computing and Internet of Things (IoT) 
devices opens up new avenues for real-time, context-
aware applications. This fusion enables the 
deployment of object detection models directly on 
devices, minimizing latency and enhancing privacy 
by processing data locally. Additionally, 
advancements in hardware acceleration, such as the 
utilization of specialized processing units like GPUs 
and TPUs, further catalyze the speed and efficiency 
of object detection systems, making them more 
accessible and scalable across various domains [27]. 

Furthermore, the incorporation of multi-
modal information, including depth data from 
LiDAR sensors or thermal imaging, enriches the 
perceptual capabilities of object detection models, 
enabling them to operate robustly in challenging 
environmental conditions such as low light or 
adverse weather. This multi-sensory approach not 
only enhances detection accuracy but also augments 
the resilience of these systems to real-world 
variability, thus broadening their applicability in 
domains ranging from autonomous vehicles to 
industrial automation [28]. 

In essence, the synergistic amalgamation of 
cutting-edge methodologies, technological 
advancements, and interdisciplinary collaborations 
propels object detection into a realm of unparalleled 
innovation and practical utility, promising 
transformative impacts across a multitude of sectors 
and heralding a future characterized by 
unprecedented advancements in computer vision. 

 
Fig. 1. The Two Primary Paradigms of Object Detection 

Techniques 

2.3.1 Regions with Convolutional Neural 
Networks (R-CNN) and its variants 
The evolution of object detection 

techniques has seen significant strides with the 
development of R-CNN, Fast R-CNN, and Faster R-
CNN. These models have progressively improved 
the accuracy and efficiency of identifying objects 
within images. At the heart of R-CNN lies the 
segmentation of images into regions of interest 
(RoI), followed by the application of convolutional 
neural networks (CNNs) to extract features from 
each region [29]. 

Fast R-CNN [30] introduced a pivotal 
advancement by integrating the region proposal 
process directly into the network architecture. 
Unlike its predecessor, Faster R-CNN [31] takes this 
integration further by introducing a dedicated 
network, the "Region Proposal Network" (RPN). 
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This specialized network streamlines and accelerates 
the generation of region proposals, leading to 
expedited and more precise object detection. 

These successive models represent a 
significant leap forward in object detection 
efficiency, thanks to innovations like computational 
resource optimization, dedicated network 
integration, and the refinement of region proposal 
techniques [32]. They showcase the continuous 
evolution and refinement in the field, pushing the 
boundaries of what is achievable in object detection 
tasks. 

2.3.2 You Only Look Once (YOLO) variants 
The YOLO architecture stands as a 

pioneering convolutional neural network model 
within the domain of real-time object detection [17]. 
Its distinguishing feature lies in its ability to conduct 
object detection in a single pass through the network, 
a departure from traditional methodologies that 
necessitate multiple steps. Introduced in 2016, the 
inaugural version, YOLOv1, showcased 
commendable efficiency; however, it encountered 
limitations in accuracy, particularly concerning 
smaller objects. Over time, subsequent iterations 
such as YOLOv2 (also known as YOLO9000), 
YOLOv3, and YOLOv4 emerged, each bringing 
substantial advancements in both precision and 
computational speed. 

YOLOv2 introduced the concept of multi-
scale detection and expanded the capacity to 
recognize a diverse array of object classes. 
YOLOv3, on the other hand, fine-tuned the 
architecture to achieve heightened precision [18]. 
The unveiling of YOLOv5 in 2021 marked a 
significant milestone in the evolution of the series. 
Following its release, subsequent versions including 
YOLO v6 [33] and v7 [34] (both launched in 2022), 
and the most recent iteration, v8 [35] introduced in 
2023, have continued to push the boundaries of 
performance within the YOLO framework. 

These successive releases have not only 
bolstered precision and processing speed but also 
signify a steadfast dedication to refining the 
architecture. Notably, the latest iterations have 
introduced groundbreaking enhancements, including 
the integration of a novel segmentation pipeline. 
This forward-looking approach extends the 
capabilities of YOLO beyond mere object detection, 
promising a future where the architecture becomes 
even more versatile and impactful. 

2.4 Drone Technology for the Environment 
Drones, or unmanned aerial vehicles, stand 

as a pivotal technological advancement in aviation 

and data collection. Their ingenious design boasts 
several distinctive qualities [36]: 

 Maneuverability: Drones are often equipped 
with advanced stabilization systems, enabling 
precise flight and adaptability to diverse 
environments. 

 Versatility: Their modular design and ability to 
be equipped with various sensors make them 
versatile, suitable for a multitude of tasks and 
environments. 

 Accessibility: With their compact size and 
relatively affordable cost, drones are accessible 
to a wide range of users, from researchers to 
governmental agencies to private enterprises. 

 Data Collection: Drones serve as efficient tools 
for data collection, offering unique aerial 
perspectives and the ability to cover vast areas 
quickly and accurately. 

Drones are widely utilized for 
environmental applications, providing innovative 
solutions to various ecological challenges. Here are 
some of their uses in this field [37]: 

 Wildlife Monitoring: Drones are employed to 
monitor animal populations, particularly in 
hard-to-reach habitats, providing valuable data 
for species conservation and management. 

 Fire Detection and Monitoring: Using thermal 
cameras and specialized sensors, drones can 
detect wildfires and monitor their progression 
effectively, assisting firefighting teams in 
making informed decisions. 

 Ecosystem Mapping and Monitoring: Drones 
are used to map and monitor terrestrial and 
marine ecosystems, providing valuable data on 
biodiversity, land use changes, and 
environmental impacts. 

 Pollution Monitoring: Drones equipped with 
special sensors can detect and monitor sources 
of pollution, such as chemical spills or industrial 
discharges, facilitating the management and 
prevention of environmental pollution. 

 Reforestation and Planting: Some drones are 
capable of dropping seeds or seed pods in 
deforested or degraded areas, contributing to 
reforestation efforts and ecosystem restoration. 

In summary, drones offer considerable 
potential to enhance environmental surveillance, 
management, and conservation, paving the way for 
new innovative and sustainable approaches to 
protecting our planet. 

2.5 REMEDIES Project 
The REMEDIES project [38], funded by 

Horizon Europe, is an innovation program dedicated 
to creating innovative solutions and technologies to 
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monitor, collect, prevent, and valorize 
(micro)plastics from our oceans. It adopts a 
collaborative and innovative approach focusing on 
several key aspects. REMEDIES project consists of 
3 technical Work Packages (WP1 Monitoring plastic 
litter, WP2 Collection of plastic litter, WP3 Circular 
solutions for prevention of plastic litter) and 4 
nontechnical (WP4 Sustainability assessment and 
optimization of implemented measures, WP5 
Scaling & Replication, WP6 Community 
engagement, dissemination & communication, WP7 
Project Management) work packages: 

 Plastic litter Monitoring (WP1): Led by the 
National Institute of Chemistry, this component 
aims to enhance monitoring protocols for 
marine debris by developing innovative 
technological tools to detect and monitor plastic 
litter on land and at sea. 

 Plastic litter Collection (WP2): Directed by 
Clera One, this WP focuses on collecting marine 
debris from identified plastic pollution sites, 
with the goal of cleaning up at least 85% of 
these sites using technologies that minimize 
plastic pollution in the sea. 

 Circular Solutions for Plastic litter 
Prevention (WP3): Under the guidance of 
Alchemia-nova Greece, this aspect aims to 
develop strategies for valorizing plastic litter, 
emphasizing circular solutions to reduce plastic 
leakage into the environment. 

 Sustainability Assessment and Optimization 
of Measures (WP4): Led by F6S, this WP 
evaluates the impacts of measures implemented 
in other WPs on the marine environment and 
establishes a digital platform to consolidate and 
communicate the results obtained. 

 Scaling Up and Replication (WP5): Under the 
direction of Impact Hub Athens, this component 
aims to extend the innovations developed in the 
REMEDIES project to other Mediterranean 
regions by establishing acceleration networks to 
facilitate their adoption. 

 Community Engagement, Outreach, and 
Communication (WP6): Led by the National 
Institute of Chemistry, this WP seeks to raise 
awareness and engage local communities in the 
fight against plastic pollution using 
participatory practices and communication 
activities. 

 Project Management (WP7): Also led by the 
National Institute of Chemistry, this WP ensures 
effective coordination and management of the 
REMEDIES project, ensuring that partners 
progress in accordance with established plans. 

By working on these various components, 
the partners of the REMEDIES project aim to 
develop innovative and sustainable solutions to 
reduce plastic pollution in the Mediterranean oceans, 
while mobilizing local communities and promoting 
a more circular blue economy. Our research 
endeavors fall within the scope of Work Package 1 
dedicated to monitoring efforts, ensuring 
comprehensive data collection and analysis for 
informed decision-making. 

3. RELATED WORKS  

Pan and colleagues [39] endeavored to 
detect waste in the Asahi River, Japan, using two 
object detection models, YOLOv5 and RetinaNet. 
Their study yielded highly precise results in waste 
recognition at the study site. By employing a large 
collection of PET (Positron Emission Tomography) 
images gathered from the internet as the training 
dataset and experimenting with the aforementioned 
object detection models with various parameters 
(Batch size, Epochs), the addition of a PET dataset 
for training, with a Ground Sampling Distance 
(GSD) similar to that of the test dataset, led to an 
improvement in recall value. However, without 
combining the original dataset collected at the study 
site, the authors encountered difficulties in detecting 
PET using only the supplementary dataset. They 
concluded that combining the original dataset with 
the supplementary dataset is a relatively better 
method for enhancing the recall value of PET 
detection. 

Iordache et  al. [40] deployed remotely 
piloted aircraft equipped with multispectral cameras 
over polluted areas to detect waste. Their approaches 
utilize classification algorithms based on random 
forests to distinguish four classes of soil types and 
five classes of waste. The results show that detecting 
different types of waste is indeed feasible in the 
proposed scenarios, with machine learning 
algorithms achieving accuracies exceeding 85% for 
all classes in test data. Furthermore, the study 
explored error sources, the effect of spatial 
resolution on extracted maps, and the applicability of 
the designed algorithm to detect floating waste. 

Gonçalves  et  al. [41] utilized 
images captured at very low altitudes, collected 
using a low-cost RGB camera mounted on a drone 
flying over a sandy beach to characterize the 
presence of macro debris. They developed an object-
oriented classification strategy to automatically 
identify marine macro debris based on drone 
orthomosaic images. Three automated object-
oriented machine learning techniques were 
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compared: Random Forest (RF), Support Vector 
Machine (SVM), and k-Nearest Neighbors (KNN). 
The detection results obtained were satisfactory for 
all three techniques, with average F-scores of 65%. 
Specifically, the average F-scores were 65% for 
KNN, 68% for SVM, and 72% for RF. A comparison 
with manual detection showed that the RF technique 
was the most accurate macro debris detector, 
providing the best overall detection quality (F-
scores) with the fewest false positives. Additionally, 
KNN is considered the simplest classifier with only 
one parameter, as the three generated abundance 
maps exhibited similar correlation with the manually 
produced abundance map. 

Jakovljevic et  al. [42] sought to determine 
the relevance of deep learning algorithms for the 
automatic extraction of floating plastics from drone 
orthophotos, testing the ability to differentiate 
between plastic types and exploring the relationship 
between spatial resolution and detectable plastic 
size. Their aim was to define a methodology for 
drone-based monitoring to map floating plastic. Two 
study areas and three datasets were used to train and 
validate the models. A semantic segmentation 
algorithm based on the U-Net architecture using 
ResUNet50 provided the highest accuracy in 
mapping different plastic materials (F1-score: 
Oriented Polystyrene (OPS): 0.86; Nylon: 0.88; 
polyethylene terephthalate (PET): 0.92; plastic 
(general): 0.78), demonstrating its ability to identify 
plastic types. Classification accuracy decreased with 
decreasing spatial resolution, with optimal 
performance achieved at a resolution of 4 mm for all 
plastic types. The model also provided reliable 
estimates of plastic surface area and volume, crucial 
information for cleanup campaigns. 

Taddia et  al. [43] investigated strategies for 
mapping anthropogenic marine debris on beaches 
using various ground resolutions and supported by 
elevation and multispectral data to create RGB 
orthomosaics. Operators with different levels of 
expertise and coastal environmental knowledge 
manually mapped debris along four to five transects 
using a range of photogrammetric tools. The initial 
study was repeated a year later, during which beach 
debris samples were collected and analyzed in the 
laboratory. Operators assigned three levels of 
confidence when identifying and describing debris. 
Preliminary validation of the results showed that 
items were identified with high confidence and were 
almost always correctly classified. The approach of 
assessing items in terms of surface area instead of 
simple counts significantly increased the percentage 
of mapped debris compared to those collected. The 

proposed methodology is a practical solution for 
mapping beach debris using RGB imagery and a 
spatial resolution of approximately 200 pixels/m for 
detecting macroplastics. This approach is feasible, 
fast, convenient, and sustainable for evaluating and 
monitoring potential sources of microplastics. 

4. ARCHITECTURE AND RESEARCH 
METHODOLOGY  

The architectural proposal presented herein 
signifies a groundbreaking advancement in 
environmental beach monitoring, aimed at 
substantially enhancing efficiency. At its core lies a 
strategy that seamlessly integrates cutting-edge 
interfaces, leveraging drone imagery and deploying 
sophisticated deep learning techniques for the 
detection of plastic litter, with a specific emphasis on 
combating this prevalent issue. This ambitious 
endeavor hinges on the crucial implementation of 
meticulously crafted deep learning algorithms, adept 
at discerning and identifying the characteristic 
indicators of plastic litter amidst the vast dataset 
captured by aerial drones. These drones, equipped 
with state-of-the-art high-resolution cameras, ensure 
precise visual data acquisition, capturing intricate 
details crucial for early plastic litter detection. 

Upon completion of the data collection 
phase, a meticulously designed pipeline will be 
activated, utilizing pre-trained object detection 
models to automate the identification of emerging 
signs of "Plastic Litter", as depicted in Figure 2. The 
culmination of this global initiative promises to 
revolutionize environmental monitoring, proactively 
mitigating the risks posed by plastic litter and 
refining beach management strategies. 

The proposed methodology consists of five 
crucial steps, as shown in Figure 3. The steps are 
presented in detail below. 

 

Fig. 2. Proposed Architecture 
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Fig. 3. Research Methodology 

4.1 Data Collection 
The initial phase of our proposed 

methodology involves gathering a comprehensive 
array of images within a beach area, encompassing 
plastic litter and areas free from any visible debris 
(Figure 4). These images will be captured by drones 
flying at two different altitudes: 2 meters and 4 
meters. 

 

Fig. 4. Collecting Images Featuring Plastic Litter and 
Areas Free from Debris from the Database 

The selected site for collecting images for 
training and testing purposes is the SIBE (Site of 
Biological and Ecological Interest) of the Moulouya 
River Mouth, located in eastern Morocco (Figure 5). 
This region is renowned for its ecological diversity, 
encompassing forest, steppe, and wetland 
ecosystems. The SIBE of the Moulouya River 
Mouth represents one of these wetland ecosystems 
in the eastern Mediterranean region, harboring 
exceptional floristic and faunistic biodiversity, 
including numerous endemic species. We have 
chosen this site for collecting and training our plastic 
litter detection models for several crucial reasons. 
Firstly, its exceptional biodiversity underscores the 
negative impact of plastic litter on fragile 
ecosystems, enhancing awareness of the urgency of 
waste management and biodiversity conservation. 
Secondly, the diversity of local ecosystems ensures 
a representative and robust image database for 
training our models. Lastly, by selecting this site in 
the eastern Mediterranean region, we broaden the 
geographical scope of our study, contributing to a 
more comprehensive understanding of plastic 
pollution in Mediterranean coastal ecosystems. This 
approach may lead to more targeted policy and 
environmental recommendations at regional and 
international levels. 

 
Fig. 5. Image Collection and Testing Site: Moulouya 

River Mouth, Saidia, Morocco 

We collected images of plastic litter in the 
study area using drones during multiple site visits at 
various times of the year. Two distinct datasets were 
formed, each containing 3000 images after applying 
data augmentation techniques. The first dataset was 
captured at a height of 4 meters by drone, while the 
second was taken at a height of 2 meters. This 
approach allows us to have a comprehensive and 
detailed representation of plastic litter in the area of 
interest from different perspectives. This diversity 
significantly enriches our dataset and enhances the 
quality of our analysis. Furthermore, it enables us to 
study the optimal flight conditions for image 
collection, thus refining our research methodology. 

Figure 6 illustrates the prototype of the 
plastic litter counting architecture we are 
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considering, for which we aim to find the appropriate 
deep learning model and optimal flight parameters. 
The test area measures 100m x 100m, and drones are 
required to navigate it in a maze-like pattern, 
detecting and counting the waste. During this phase, 
we are striving to identify the best parameters for 
effective detection. 

 

Fig. 6. Prototype Testing for Plastic Litter Detection and 
Counting Architecture on Beaches 

4.2 Preprocessing 
The second step in our methodology 

"image data processing" is a pivotal stage, essential 
for enhancing the quality and consistency of the 
dataset. Its primary goal is to refine the data by 
eliminating unwanted elements like noise and 
artifacts, which could potentially hinder the model's 
efficacy. This phase encompasses a range of 
operations, including intensity normalization, 
distortion correction, and image scaling. Through 
these processes, preprocessing ensures a 
standardized and clean input, thereby facilitating 
smoother convergence during the model's learning 
phase [44]. 

Moreover, a crucial aspect of preprocessing 
lies in image data augmentation. This involves 
applying diverse transformations to existing images, 
such as rotations, flips, zooms, and other geometric 
alterations with randomized parameters. The core 
aim of augmentation is to inject greater diversity into 
the dataset, enriching it with a broader spectrum of 
variations. By doing so, the model becomes adept at 
recognizing patterns amidst various real-world 
scenarios, thus bolstering its robustness and 
adaptability [45]. 

By synergizing these two steps, the overall 
preprocessing of image data culminates in the 
creation of an optimized training set. This optimized 
set not only maximizes the model's performance but 
also equips it with the resilience needed to navigate 
through varying conditions effectively. 

4.3 Backbone Choice 
In our endeavor to enhance Plastic Litter 

detection in drone-captured images of beaches 
designated for monitoring purposes, we are 
embarking on an investigation utilizing two distinct 
methodologies: single-pass models and double-pass 
models, representing the third phase of our study. 

Regarding single-pass models, we will 
delve into the efficacy of YOLOv6, YOLOv7, and 
YOLOv8 architectures, all leveraging the Darknet 
backbone. Conversely, for double-pass models, we 
will analyze the performance yielded by Faster R-
CNN, utilizing backbones such as ResNet50, 
VGG16, and VGG19. The selection of these 
convolutional neural network architectures as 
backbones is informed by previous research 
indicating their effectiveness in analogous scenarios 
[22]. 

Moreover, to ensure comprehensive 
evaluation, all models will be tested at varying drone 
heights of 2m and 4m above ground level. This 
height variation consideration is crucial as it can 
significantly impact detection accuracy, especially 
in the context of plastic litter on beaches. 

This comparative approach is designed to 
facilitate the identification and selection of the most 
suitable model tailored to our specific objective of 
Plastic Litter detection in maritime environments. 
Additionally, it aims to mitigate any potential biases 
and ensure robustness in our model selection 
process. 

ResNet50. a variant of the Residual 
Network architecture, stands as a pivotal milestone 
in the realm of deep learning, spearheaded by 
Microsoft Research in 2015. The essence of its 
innovation lies in its approach to addressing the 
inherent challenges posed by training extremely 
deep neural networks. At its core, ResNet50 
introduces the concept of residual learning, a 
paradigm shift in neural network design. This 
groundbreaking concept revolves around the 
integration of shortcut connections, also known as 
skip connections, which enable the flow of 
information to bypass certain layers during forward 
propagation [23]. By doing so, ResNet50 effectively 
mitigates the notorious vanishing gradient problem, 
a common hurdle encountered in training deep 
networks, thereby facilitating the training process 
with improved efficiency and accuracy. ResNet50 
has garnered widespread acclaim for its remarkable 
performance in various computer vision tasks, 
particularly in image recognition and object 
detection. Its ability to harness the advantages of 
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deep neural networks while overcoming traditional 
training obstacles has solidified its position as a 
cornerstone model in the field [46]. With its robust 
architecture and proven track record, ResNet50 
continues to serve as a beacon of innovation, driving 
advancements in deep learning research and 
application. 

VGG. short for Visual Geometry Group, 
stands as a prominent ensemble of convolutional 
neural networks (CNNs) celebrated for their 
simplistic yet powerful design. Within this family, 
VGG16 and VGG19 emerge as notable figures, 
boasting 16 and 19 layers respectively. Originating 
from the laboratories of the University of Oxford, 
these models are characterized by a series of 
convolutional layers interlaced with densely 
connected layers. Their straightforward architecture 
belies their remarkable effectiveness, particularly 
evident in their prowess in image classification 
endeavors. Through their contributions, VGG16 and 
VGG19 have left an indelible mark on the landscape 
of deep learning within the realm of computer vision, 
cementing their legacy and enduring relevance. 
VGG16 and VGG19 are distinguished not only by 
their layer depths but also by their uniform kernel 
size of 3x3 throughout the entire network, 
contributing to their consistent performance across 
various datasets and tasks [47]. 

DarkNet. a pioneering neural network 
framework pioneered by Joseph Redmon, the 
mastermind behind the YOLO algorithm, is 
renowned for its agility and effectiveness in the 
realm of computer vision. Engineered to excel in 
real-time object detection tasks, this lean 
architecture strikes a remarkable equilibrium 
between swiftness and precision, making it a 
preferred choice for a wide array of applications. 
What sets DarkNet apart is its versatility, supporting 
computations on both CPU and GPU platforms 
without compromising performance. Its open-source 
nature and modular design have fostered widespread 
acceptance within the deep learning community, 
where it seamlessly integrates into various projects, 
adapting effortlessly to diverse requirements and 
scenarios. This adaptability and ease of integration 
have solidified DarkNet's position as a go-to 
framework, elevating the standards of efficiency and 
efficacy in computer vision applications [48]. 

4.4 Model Training 
In our quest to refine our object detection 

models, the training step takes precedence, 
representing the crucial fourth phase in our 
methodology. We engage in meticulous adjustment 
and fine-tuning of our models, leveraging the 

preprocessed and augmented dataset to enhance their 
performance. 

Our dataset is meticulously divided into 
training, validation, and testing subsets, with 
allocations of 70%, 20%, and 10%, respectively. 
This segmentation ensures robust training while 
facilitating effective evaluation of model 
performance. 

Our arsenal comprises a range of cutting-
edge models including YOLOv6, YOLOv7, and 
YOLOv8, alongside various iterations of Faster R-
CNN such as those based on ResNet50, VGG16, and 
VGG19 architectures. These models are built upon a 
solid foundational backbone, ensuring versatility 
and adaptability to our specific task. 

During the training process, we harness the 
power of labeled data, where objects of interest are 
meticulously outlined with bounding boxes and 
associated with class information using state-of-the-
art Open-Source Data Labeling software. This step 
ensures the model's ability to accurately identify and 
classify objects within images. 

Our training pipeline involves diverse data 
formats tailored to the requirements of each model 
architecture. For instance, Faster R-CNN models 
utilize TensorFlow record (TFRecord) files, while 
YOLO models rely on TXT annotations and YAML 
config files. This adaptability allows us to optimize 
the training process for each model, maximizing 
efficiency and effectiveness. 

Ultimately, the objective of this training 
phase is to refine models capable of achieving 
unparalleled accuracy and reliability in detecting 
plastic litter. This endeavor aims to equip 
stakeholders with powerful tools for effectively 
managing and mitigating the issue at hand. 

4.5 Performance Evaluation 
To assess the performance of our models, 

we proceed to the Performance Evaluation step by 
meticulously analyzing all gathered data. This 
evaluation, integral to our process, allocates 10% of 
the test set to measure the average accuracy and 
inference speed of each model. This testing phase is 
of paramount importance as it allows us to gauge the 
models' performance on unseen data, shedding light 
on their overall effectiveness in detecting plastic 
litter and their potential real-time utilization by 
drones. To ensure a comprehensive evaluation, we 
plan to employ multiple metrics to capture various 
dimensions of our models' performance. 
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5. RESULTS ANALYSIS AND DISCUSSION 

In the forthcoming section dedicated to the 
analysis and discussion of results, we will embark on 
elucidating the hardware specifications instrumental 
in our exploration of object detection utilizing a 
drone-mounted camera. This delineation will 
provide a foundational understanding of the 
technological underpinnings crucial for our study. 

Subsequently, we will introduce and 
explicate the array of evaluation metrics employed 
to meticulously gauge the accuracy and efficacy of 
the developed system. These metrics encompass a 
multifaceted approach to comprehensively evaluate 
the performance of our models. 

To further explore the object detection 
results, we will conduct a comparative analysis using 
two separate datasets obtained from actual plastic 
litter sites. These datasets will be examined at two 
different flying altitudes, 2m and 4m, to ensure a 
thorough evaluation of detection capabilities across 
different conditions. 

Concluding this section, we will present a 
thorough discourse on the outcomes attained through 
the proposed methodology. This discussion will not 
only highlight the successes but also critically 
analyze any limitations or challenges encountered 
during the course of our investigation. 

Moreover, it's imperative to note that 
multiple metrics will be employed to assess and 
validate the performance of our models 
comprehensively. These metrics will encompass 
traditional evaluation measures such as precision, 
recall, and F1-score, alongside domain-specific 
metrics tailored to the intricacies of plastic litter 
detection in maritime environments. Such a 
comprehensive evaluation framework will ensure a 
nuanced understanding of our models' capabilities 
and limitations. 

5.1 Hardware Specifications 
In our investigation, the hardware 

specifications played a pivotal role in ensuring the 
efficacy of our experimental setup. Our drone of 
choice was the Mavic Air model by DJI, which 
boasted a high-resolution camera crucial for 
capturing detailed images of the beach environment 
under scrutiny [49]. 

To train and test our object detection 
models, we leveraged a robust infrastructure 
centered around a DELL PowerEdge R740 server. 
This server was equipped with an Intel Xeon Silver 
4210 2.2G processor, providing substantial 
processing power essential for handling the 

complexities of deep learning algorithms [50]. 
Complementing the processor, the server boasted an 
impressive 80GB of RAM, facilitating efficient data 
processing and model training tasks. 

Furthermore, to expedite the computational 
workload associated with training our models, the 
server was augmented with two NVIDIA RTX 
A5000 GPUs. These GPUs, each endowed with 
24GB of graphics memory, significantly accelerated 
the training process by parallelizing computations 
and harnessing the power of advanced GPU 
architecture. 

The amalgamation of these hardware 
components ensured a robust and efficient 
experimental setup, capable of handling the 
computational demands inherent in training and 
testing sophisticated object detection models. 
Additionally, this hardware configuration enabled us 
to achieve optimal performance and accuracy in our 
Plastic Litter detection endeavors, ultimately 
contributing to the success of our study. 

5.2 Model Evaluation Metrics 
When evaluating the effectiveness of object 

detection algorithms, a range of metrics is available, 
each shedding light on different aspects of model 
performance. 

5.2.1 Precision, Recall and F1 score 
Precision, recall, and F1 score are 

fundamental metrics for evaluating object detection 
algorithms. Precision measures the proportion of 
correctly identified instances out of all instances 
labeled as a particular class, including false 
positives. Recall, on the other hand, assesses the 
ability of the model to detect all actual occurrences 
of the target class. F1 score, which is the harmonic 
mean of precision and recall, provides a balanced 
assessment of the algorithm's performance. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
∗

 
 (1) 

5.2.2 Average Precision (AP) 
Average Precision offers a comprehensive 

overview of the detector's performance across all 
classes, including the specific class of interest. By 
constructing precision-recall curves and averaging 
precision values at various recall levels, AP captures 
the overall effectiveness of the detector. However, it 
may lack granularity when evaluating individual 
classes [51].  

The formula for AP is: 

𝐴𝑃 =  ∑ [𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘)  −  𝑅𝑒𝑐𝑎𝑙𝑙𝑠(𝑘 + 1) ∗
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑘)]  (2) 
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Where Recalls(n)=0, Precisions(n)=1, and 
n=Number of thresholds 

5.2.3 Mean Average Precision (mAP) 
Mean Average Precision is a sophisticated 

metric that considers precision and recall for each 
class, providing a detailed perspective on model 
performance. Calculated at different confidence 
thresholds, mAP offers insights into the robustness 
of the model. Despite its complexity, mAP enhances 
evaluation by offering detailed insights into overall 
model effectiveness. The formula for mAP is: 

𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑖 

5.2.4 Intersection over Union (IoU)  
Intersection over Union measures the 

overlap between a detected object and its ground 
truth, ensuring accurate object localization. Despite 
its complexity, IoU provides detailed insights into 
the model's ability to precisely align detected objects 
with their actual references. IoU complements 
metrics like AP and mAP by offering specific 
information on object localization accuracy. 

𝐼𝑜𝑈 =  
(   ) 

(   )
   

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑚𝑖𝑛(𝑥2, 𝑥4) −
𝑚𝑎𝑥(𝑥1, 𝑥3)) ∗ (𝑚𝑖𝑛(𝑦2, 𝑦4) − 𝑚𝑎𝑥(𝑦1, 𝑦3)) 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 =  (𝑥2 − 𝑥1)  ∗  (𝑦2 − 𝑦1)  +
 (𝑥4 − 𝑥3)  ∗  (𝑦4 − 𝑦3)  −

 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

5.2.5 Inference Time  
Inference time refers to the duration it takes 

for a deep learning model to analyze an input image 
and generate predictions. Influenced by factors like 
model architecture and computational resources, 
optimizing inference time is crucial for real-time 
applications while maintaining sufficient accuracy. 
Efficient inference time ensures timely responses, 
particularly in applications requiring swift decision-
making processes. Inference time, a critical metric in 
deep learning model performance evaluation, is 
heavily contingent upon the underlying hardware 
infrastructure utilized during computation. 
Influenced by factors like model architecture and 
computational resources, optimizing inference time 
is crucial for real-time applications while 
maintaining sufficient accuracy. Efficient inference 
time ensures timely responses, particularly in 
applications requiring swift decision-making 
processes. 

5.3 Findings and Discussion 
This study aims to assess the performance 

of two families of object detection models in 
identifying plastic waste, with the intention of 
integrating this drone-based surveillance capability 
into a comprehensive monitoring platform. 
Additionally, we seek to determine the optimal flight 
altitude of our drone to enhance detection 
performance and reduce errors during waste 
counting operations. We conducted an assessment of 
two-stage Faster-RCNN models, each utilizing 
different backbone networks whose selection was 
justified in a previous study, along with various 
versions of the one-stage YOLO model (v6, v7, and 
v8). These models were trained using two distinct 
datasets consisting of images captured at two 
different altitudes directly by a drone at a work and 
test site located in the northeast of Morocco. We 
trained each model for 100 epochs to ensure 
convergence. The models underwent training and 
evaluation using various metrics, including mAP at 
IoU thresholds of 0.5 and 0.95, recall, precision, and 
F1 score. Additionally, we measured the inference 
time (milliseconds per image) using two Nvidia 
RTX A5000 GPUs. The F1 score, a metric that 
combines precision and recall in object detection 
models, provides a valuable balance between 
avoiding false detections and effectively capturing 
real objects. mAP@0.5 is chosen as it provides a 
balanced assessment of object detection models 
across various object sizes and levels of detection 
confidence. In disciplines such as medicine, 
precision holds paramount importance. The metric 
mAP@0.95 stands out for its ability to deliver 
dependable outcomes, effectively minimizing 
instances of false positives. 

Table 1 and Figure 7 comprehensively 
illustrate the outcomes yielded by various models 
throughout both the complete testing phase and the 
training process, respectively. An initial observation 
reveals that all models successfully identify plastic 
litter with precision, and notably, YOLO models 
require less training time. Regardless of the dataset 
used, YOLO models consistently achieve 
convergence significantly earlier compared to Faster 
RCNN models. The latter typically require nearly 
forty epochs to converge. 

The initial observation is that for all the 
models studied, the results obtained using the dataset 
of images collected at a 2-meter drone flight height 
are significantly better than those achieved with the 
dataset collected at 4 meters. Additionally, 
processing times are also slightly shorter. Even 
during the training phase, all the models studied 
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require fewer epochs to converge when the images 
are taken from closer distances. Therefore, in our 
scenario, it is preferable to minimize the flight height 
while ensuring that the drone battery autonomy is 
sufficient to cover the entire study area. 

Table 1: Performance Results of Implemented Models on 
the Test Set 
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Faster-
RCNN 
(RS50) 

4m ~71.91 87,81 88,14 87,97 88.06 87.34 75.91 

2m ~70.95 93,93 94,06 93,99 93.55 93.32 79.59 

Faster-
RCNN 
(VGG19) 

4m ~97.92 85,83 86,08 85,95 85.74 85.76 75.77 

2m ~96.14 92,65 92,94 92,79 92.77 92.75 78.54 

Faster-
RCNN 
(VGG16) 

4m ~87.77 86,73 86,91 86,82 86.31 86.19 75.63 

2m ~87.16 92,22 91,73 91,97 91.32 91.22 78.42 

YOLOv6 

4m ~2.49 79,61 79,83 79,72 79.26 79.12 73.92 

2m ~2.32 88,14 88,32 88,23 88.17 88.02 76.39 

YOLOv7 

4m ~3.54 81,41 81,56 81,48 81.23 81.29 74.17 

2m ~3.51 89,14 89,92 89,53 89.33 89.28 76.57 

YOLOv8 

4m ~1.46 83,61 83,78 83,69 83.76 83.53 74.56 

2m ~1.35 90,51 91,01 90,76 90.65 90.44 76.81 

Among the various models evaluated, 
Faster-RCNN emerged as the top performer 
regardless of flight altitude, delivering exceptional 
results. Specifically, the Faster-RCNN model 
utilizing ResNet50 (RS50) backbones demonstrated 
outstanding performance at a drone flight altitude of 
2 meters, achieving an F1 score of 93.99% and a 
mean average precision (mAP) of 93.32% at an 
intersection over union (IoU) threshold of 0.5, along 
with a mAP of 79.59% at an IoU of 0.95. At a flight 
altitude of 4 meters, performance remained high 
with an F1 score of 87.97% and a mAP of 87.34% at 
an IoU of 0.5, and a mAP of 75.91% at an IoU of 
0.95. These findings unquestionably underscore the 
effectiveness and dependability of models 
configured in this manner. Additionally, this specific 
model touts the swiftest inference time among 

Faster-RCNN variants, averaging between 70.95 and 
71.91 milliseconds per image, contingent upon flight 
altitude. While YOLO models have demonstrated 
slightly lower performance compared to Faster-
RCNN models, YOLOv8 achieves notable results, 
with a mAP@0.5 of 90.44% and a mAP@0.95 of 
76.81% for dataset 2m, and a mAP@0.5 of 83.53% 
and a mAP@0.95 of 74.56% for dataset 4m. 
However, where YOLO models truly excel is in 
inference time. Specifically, YOLOv8 averages only 
1.35 milliseconds per image for a flight height of 2 
meters. 

It is noteworthy that YOLO v6, v7, and v8 
are not sequential versions, meaning that one is not 
necessarily newer than the other. Instead, they 
represent results from distinct research endeavors. 
This positions YOLO, especially YOLOv8, as an 
optimal choice for real-time applications, such as 
drone data collection, where fast processing speed is 
crucial. While the Fast-RCNN model (RS50) also 
yielded satisfactory results, its higher processing 
speed compared to YOLO models makes it the 
preferred choice in an architecture where the drone 
sends images to a ground station responsible for 
Plastic Litter object recognition. 

 

Fig. 7. Progression of mAP@0.5 Over Epochs for 
Examined Models (Validation Dataset) in both Flight 

Altitude Scenarios 
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The decision between YOLO and Faster 
RCNN models for detecting plastic litter hinges on 
the desired balance between precision and 
processing speed. For tasks prioritizing high 
accuracy, Faster RCNN models, especially the one 
utilizing Resnet50 as its backbone, would be the 
favored choice. Conversely, for real-time 
applications demanding swift processing speeds, 
YOLO models, particularly YOLOv8, emerge as the 
preferred option (refer to Figure 6). 

 

Fig. 8. Examples of Plastic Litter Detection Using 
YOLOv8 

6. CONCLUSION 

The advancement of technology has 
spurred a revolution in environmental monitoring, 
fundamentally transforming our capacity to 
safeguard and oversee our planet with unparalleled 
precision and efficiency. Integrating drones and AI, 
particularly through deep learning techniques, 
presents a formidable toolkit, empowering real-time 
data collection and analysis, thereby revolutionizing 
environmental monitoring practices as never seen 
before. Moreover, deep learning has revolutionized 
object detection, a cornerstone of computer vision, 
thereby enabling its application in the detection and 
monitoring of plastic litter, thus bolstering our 
ability to combat environmental pollution more 
effectively.  

This research contributes a comparative 
study of deep learning object detection models, 
examining their potential for detecting 'plastic litter' 
using drones. Additionally, the study endeavors to 
explore optimal drone flight behaviors to enhance 
the efficacy of environmental surveillance efforts. 
The research endeavors to assess and compare 
various methodologies to ascertain the most 
efficacious approach for early and precise detection, 
thus laying the foundation for pioneering solutions 
in environmental monitoring. In our investigation, 

we delved into two distinct categories of object 
detection models: the single-pass YOLO models 
(versions v6, v7, and v8), and the two-stage Faster 
R-CNN models, utilizing three backbone variants: 
ResNet50, VGG16, and VGG19. Our findings reveal 
encouraging outcomes for the detection and 
monitoring of plastic litter, suggesting its potential 
as a valuable asset within this domain. Selecting the 
most suitable model for drone images requires 
striking a balance between accuracy and processing 
speed. For optimal precision, leveraging the faster 
RCNN model with ResNet50 as its backbone is 
recommended. On the other hand, for real-time 
applications where speed is crucial, the YOLO 
model, particularly YOLOv8, stands out as the 
preferred option. It boasts a mAP@0.5 surpassing 
90.44% and a mAP@0.95 exceeding 76.81%, with 
an impressive inference time of approximately 1.35 
milliseconds per image. 

In our scenario, optimizing model 
performance and reducing processing times involves 
minimizing the drone's flight height. This strategy 
consistently yields superior results compared to 
higher altitudes across all studied models, with 
shorter convergence epochs observed during 
training. Thus, it is crucial to minimize the flight 
height while considering the importance of ensuring 
sufficient drone battery autonomy to cover the entire 
study area. 

This study illuminates not just the 
capabilities of deep learning models in detecting 
plastic litter early on with drones, but also 
emphasizes the pivotal role of integrating innovative 
technology in propelling forward environmental 
surveillance. Through the evaluation and 
comparison of diverse deep learning methodologies, 
this research enriches the expanding realm of 
knowledge aimed at refining the precision and 
effectiveness of disease detection within precision 
environmental monitoring systems. 

As future work, extending the scope of this 
research to include plastic litter counting is 
paramount. Additionally, further investigation could 
focus on fine-tuning deep learning models 
specifically for detecting and monitoring plastic 
litter in diverse environmental conditions, 
potentially incorporating multi-sensor data fusion 
techniques to enhance detection accuracy. 
Additionally, exploring the integration of unmanned 
aerial vehicles (UAVs) equipped with advanced 
sensors beyond visual imagery, such as 
hyperspectral or LiDAR, could provide 
complementary insights for comprehensive 
environmental monitoring and management 
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strategies. Lastly, efforts to develop automated 
decision-making frameworks leveraging machine 
learning algorithms to prioritize and allocate 
resources for environmental cleanup and mitigation 
efforts could significantly contribute to addressing 
plastic pollution challenges on a broader scale. 
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