
 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5014

DEEP LEARNING BASED MALWARE DETECTION

T. SUSHMA1, SIRISHA NARKEDAMILLI2, MADHAVA RAO CHUNDURU3, VADDEMPUDI
SUJATHA LAKSHMI4, G. BALU NARASIMHA RAO5, PRABHAKAR KANDUKURI6

1Department of ECE, Prasad V Potluri Siddhartha Institute of Technology, Vijayawada, India

2Department of EEE, Aditya College of Engineering and Technology, Surampalem, India

3Department of CSA, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
4Department of Computer Applications, RVR&JC College of Engineering, Guntur, India

5Department of CSE, Vignan’s Foundation of Science, Technology & Research, Guntur, India

6Department of AI&ML, Chaitanya Bharathi Institute of Technology, Hyderabad, India

tsushmaece@gmail.com , sirisha.narkedamilli@acet.ac.in, cmadhavarao@kluniversity.in,

sujathavdmpudi@gmail.com, balunarasimharao@gmail.com , prabhakarcs@gmail.com

ABSTRACT

Malware detection is a critical aspect of cybersecurity, aiming to identify and mitigate malicious software
designed to harm or exploit any programmable device or network. Traditional methods of malware
detection, such as signature-based techniques, have limitations in dealing with the sophisticated and rapidly
evolving nature of modern malware. This paper explores the application of deep learning, a subset of
artificial intelligence, in enhancing malware detection capabilities. By leveraging deep learning models,
which can automatically learn and extract features from data, we can improve detection accuracy and adapt
to new, unseen malware. This research reviews various deep learning architectures and methodologies
employed in malware detection, evaluates their effectiveness, and discusses future directions and challenges
in the field.

Keywords: Malware detection, deep learning, cybersecurity.

1. INTRODUCTION

In the digital era, a significant number of
computing devices have been impacted by
malware. Malware, often known as malevolent
software, is specifically designed to fulfill the
harmful objectives of a malicious attacker.
Malicious software, or malware, has the ability to
infiltrate networks, cause harm to critical
infrastructure, compromise the security of
computers and smart devices, and unlawfully
obtain confidential information [1].

The concept of an information society
has developed due to the emergence of the
Internet of Things (IoT) and its various uses.
Nevertheless, the benefits of this industrial
progress are impeded by security concerns, as
hackers selectively target individual computers
and networks to illicitly obtain confidential data
for monetary purposes and disrupt operations [2].
These attackers employ harmful software, also

known as "malware," to exploit system
weaknesses and present significant risks.
Malware, also referred to as malicious software,
is a type of computer software specifically
designed to cause harm to an operating system
[3]. The frequency of malware attacks has greatly
risen due to the substantial changes in our daily
contacts caused by the advancements in mobile
technologies. Mobile devices connected to the
Internet provide many services such as online
learning, social networking, online banking,
online shopping, and web browsing. Mobile
devices have thus played a pivotal role and have
transformed into an essential component of
everyday life [4]. As of 2020, the global mobile
device user count stands at 4.78 billion [5]. While
mobile devices offer convenience to consumers,
they are susceptible to virus infiltration and
attacks due to their connection to online social
networks and services. Mobile malware has the
ability to masquerade as regular code and

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5015

thereafter modify any intended program in order
to corrupt and impede the functioning of the
system [5,6,7].

Google Play has implemented a
permission-based approach as a security
safeguard to prevent applications from accessing
private data. This permission prompts users to
install the program after considering the assets
that have been accessed. Prior to proceeding with
the installation, it is imperative that the users
explicitly acknowledge and agree to the terms of
the agreement. Regrettably, the Google Play
technique does not provide complete protection
for the customer since they often have a
propensity to approve the agreement without
thoroughly perusing the permission [5,8].
Another potential threat arises from the
exploitation of profitable Android applications, as
seen by the significant rise in the detection of
Android malware, which increased more than
tenfold from 2012 to 2018 [9]. In addition, a total
of more than 12,000 new instances of Android
malware were discovered per day during the year
2018. The newly discovered Android malware
samples exhibit greater sophistication compared
to those that emerged a few years ago,
particularly in their ability to evade antivirus
detection through coding and encryption.
Additionally, there has been a significant increase
in the spread of malware [10,11].

The utilization of machine learning in
malware detection studies is becoming
increasingly popular due to its effectiveness in
achieving a high level of accuracy in detecting
malware [12]. Prior research has employed
machine learning (ML) algorithms, which have
the ability to make decisions based on learned
patterns from data. Machine learning refers to the
idea of reducing the need for human involvement
in computer systems [13]. Machine learning
utilizes computer learning algorithms and
historical data to make predictions. Supervised
and unsupervised learning approaches [14,15] are
utilized to examine the characteristics and
monitor the model. In both scenarios, the
machine acquires the ability to differentiate
between harmful and harmless actions. In
supervised learning, the machine learning model
is provided with both the input data and the
desired outputs. It then learns to accurately
classify malware patterns as "malware" and
normal behaviors as "normal". The training phase
is iterated until the model achieves perfect
accuracy in predicting all samples [5]. Various
machine learning algorithms, such as support

vector machines (SVM) [16,17,18], K-nearest
neighbor (KNN) [19,20], Bayesian estimates
[21,22], genetic algorithms [23], have been
employed to construct malware detection
systems. Unsupervised learning approaches
involve providing inputs without any
predetermined targets, allowing the machine
learning system to learn how to differentiate
between malware and benign samples.
Nevertheless, certain investigations integrated the
approaches of supervised and unsupervised
learning [24].

Malware detection is a crucial aspect of
security that is closely linked to the legal,
reputational, and economic interests of
companies. Utilizing deep learning as a technique
for developing and enhancing detection methods
is an effective approach to address many
challenges associated with malware detection.
However, in the realm of deep learning, there are
numerous complex factors that must be taken into
account when considering detection strategies.
Correlation-based feature selection, the dense
layer model, and the LSTM model are three
complex and symmetrical approaches that can
significantly impact performance.

Two distinct datasets will be utilized in
the ongoing research. One of the datasets
contains a substantial quantity of records,
whereas the other dataset comprises a significant
number of predictors (attributes). The process of
selecting the most optimal qualities will be
employed in various situations to determine the
most effective combination of features. The
correlation between the target property
"classification" will be utilized as the way for
selecting features. The training phase will involve
the utilization and comparison of Dense and
LSTM models. Multiple training scenarios will
be set up based on various feature selection
criteria, splitting criteria, and dataset topologies.
Our primary innovation lies in using the efficacy
of deep learning and feature selection techniques
in the domain of malware detection to construct a
resilient, high-performing, computationally
efficient malware detection system.

2. METHODOLOGY

This research employs both static and
dynamic analysis methods using deep learning
models. The dataset comprises a mix of known
malware samples and benign software, sourced
from public repositories like VirusTotal and
Malimg dataset. Multiple deep learning (DL)
methods are suggested and employed in this

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5016

work. To train the deep learning models using the
two chosen datasets, it is necessary to preprocess
these datasets. This preprocessing phase involves
encoding (numbering) the classification (target)
columns and handling any special characters or
missing values. Due to the distinct nature of the
two datasets, the preparation stages will vary.
Once the datasets have undergone preprocessing,
they are divided into separate training and test
sets. Feature selection is conducted prior to the
training process in certain training scenarios to
reduce data dimensionality and computational
time.

Subsequently, the DL models will be
constructed and trained using several training
scenarios, encompassing diverse splitting criteria,
distinct DL architectures, and the option of
feature selection. Figure 1 depicts the
recommended technique for both datasets.

The objective of feature selection is to
identify the most optimal characteristics relevant
to the topic being examined, with the purpose of
minimizing computational time. Our study
proposes a correlation-based technique to address
the issues of large dimensionality and long
processing time. This approach also aims to pick
the most effective combinations of features,
hence improving the performance of the training
and evaluation process.

Figure 1. Illustrates the methodology that is being

suggested

Next, a compilation of probable columns
to be dropped is generated. Various selection
scenarios can be generated as the correlation
spans from 0 to 1. The selection process is
determined by the desired number of columns.
We will extract the K necessary features and

discard the remaining ones. For the second
dataset, the identical method will be utilized, with
the exception of the selection phase. Columns
will be eliminated in the second dataset based on
specific correlation thresholds (T), given that
there are 214 columns in total. In the second
dataset, the number of selected features is
contingent upon the chosen threshold, unlike the
first dataset where the threshold is not specified.

3. RESULTS AND DISCUSSION

 This section presents and discusses the
findings of the experiments done to assess the
effectiveness of the autoencoder-based malware
detection approach. The current section is
dedicated to providing pertinent information on
the experimental setup. It is divided into three
sections to address the following aspects: the
configuration of the experiment setup, the
gathering of data, and the specifics of the training
process. To obtain additional details regarding the
experimental setting, go to table 1. The tests were
conducted on a machine equipped with an Intel
CoreTM i5-8300 processor, 16GB of RAM, and a
GeForce GTX 1060 MQ graphics card. The
computer operated on a 64-bit iteration of the
Windows 10 operating system. In our
programming, we employed Keras, Tensorflow
2.1, and Python 3.7. We categorized the datasets
according to their intended purpose. (1) Dataset-1
consists of 8,121 malicious programs and 2,000
benign programs. It is utilized for training and
evaluating AE-1 models. The AE-2 model is
trained, validated, and tested using Dataset-2,
which consists of 8121 dangerous applications
and 7015 safe ones. The AE-2 model is tested
using Dataset-3, which consists of 5,384
malicious applications and 5,000 safe programs,
to evaluate its ability to detect unfamiliar
malware. It is important to note that when we
divided Dataset-2 and Dataset-3, we intentionally
incorporated older software samples in Dataset-2
for the purpose of training, such as malware from
2016.

In Dataset-3, we included more recent
releases, such as those from 2017 and 2018.
Simulating the condition of identifying newly
published software samples will facilitate future
analysis of the model's performance. In order to
evaluate the autoencoder's ability to reconstruct
feature images, we utilize the AE-1 network. The
specific attributes of the AE-1 model are
presented in Table 2. During the training process,
we utilize the Adam optimization technique with
a total of 100 epochs and a learning rate of 1e-4.

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5017

The AE-1 network undergoes training using the
DTrain dataset and subsequently undergoes
testing using the DTest_mal and DTest_benign
datasets, which contain malicious and benign
software, respectively. In order for a test set to
have a low reconstruction error, the new input
must be similar to the input of the training
dataset. Conversely, if the new inputs deviate
from the inputs used in the dataset during
training, a noticeable reconstruction error will be
observed in this test set. The primary objective of
our experiment is to investigate the significant
disparity in error data produced by these two test
sets after AE-1. In practical terms, the significant
duplication features in the software dataset and
the distinct functional traits exhibited by malware
families in the malware dataset can result in
experimental outcomes showing substantial
fluctuations. This is because our hypothesis is
founded on the notion that malware is universally
similar, while benign software is not.
Consequently, we place less importance on the
exact errors exhibited by the two test sets and
instead focus more on the comparative disparities
between them.The responsibility of evaluating
the performance of the detection model lies with
the AE-2 network. We partitioned Dataset-2 into
two equal parts, allocating 80% for training and
20% for testing. During the training process, we
employed k-fold cross-validation with a value of
k equal to 6 in order to train and validate the
training set. Consequently, we allocated 5/6 of
the training set for training purposes and reserved
1/6 for validation. We conducted this procedure
on six occasions prior to calculating the average.
The test set is used for testing purposes during the
entire testing procedure. The duration of training
is quantified in units of minutes. The training of
AE-2 utilized the Adam optimization technique
with a learning rate of 0.0001 and 100 epochs.We
evaluate the effectiveness of this strategy by
analyzing the overall error distribution in both
malicious and benign reconstructions of malware
images. Figure 2 shows the error distributions of
the combined test sets. The Y-axis indicates the
normalized reconstructed error value generated
by each program following the encoder network.
The error value of each pixel point corresponding
to the malware feature image is aggregated and
subsequently divided by the total to achieve
image normalization. The line statistics graph
illustrates the general error trend of DTest_mal
with a blue line, whereas the overall error trend
of DTest_benign is represented by a yellow line.
The inherent unpredictability of the dataset plus

the redundancy of the software files result in a
non-zero error. Figure 5 illustrates a significant
disparity in the average error values between the
two datasets. The blue line indicates a consistent
and steady error trend for the malware dataset,
while the yellow line represents an erratic and
fluctuating error trend for the benign software test
set. This supports our perspective.

Based on this experiment, we can show
that the automatic encoder can identify complex
characteristics of both harmless and harmful
software and successfully reconstruct the pre-
processed malware data. Next, we proceed to
carry out the task of differentiating between
harmful and benign software.

Figure 2. Mistake in reconstruction for two sets

of data.

The evaluation of the autoencoder model
is conducted using many measures, such as
accuracy, precision, recall, F1-score, false
positive rate, and false negative rate. These
metrics offer a holistic perspective on the model's
capacity to accurately detect instances of malware
while minimizing both false positives and false
negatives. The results are compared with
conventional signature-based methods to
emphasize the possible enhancements provided
by the autoencoder methodology. Signature-
based approaches are intrinsically constrained by
their dependence on pre-established patterns,
rendering them vulnerable to evasion by
polymorphic and metamorphic malware. The
autoencoder's capacity to acquire knowledge
from the inherent characteristics of data without
pre-established patterns situates it as a more
flexible and adaptable solution.The ROC curves
depicted in Figure 3 illustrate the impact of the
model on the training set. It is evident that the
model demonstrates a consistently reliable
performance on the training set. The ROC curves
depicted in Figure 4 illustrate the model's
performance on the test set, specifically Dataset-
2. It is evident that our model surpasses the other

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5018

two in performance. In order to thoroughly
evaluate the ability of our model to detect
previously undiscovered malware, we utilize
Datasets-3 as the test set for AE-2. The ROC
curves are displayed in Figure 5, revealing that
our model exhibits commendable accuracy and a
certain degree of viability in detecting previously
undetected malware. However, it also exhibits
certain limitations as the software evolves over
time.

Figure 3. The ROC curve of AE-2 on training set.

Figure 4. The ROC curve of different models on

the test set.

Figure 5. The ROC curve of different models on

the unseen software

The results and discussion section
illuminates the performance of the autoencoder-
based malware detection approaches, offering
valuable insights into its strengths, limitations,
and implications for the broader cybersecurity
landscape.

4. CONCLUSION

 The findings of this study emphasize the
capacity of autoencoders to enhance the skills of
malware detection. Autoencoders provide a
promising approach to improving the adaptability
and effectiveness of cybersecurity defenses
against emerging malware threats by adopting the
dynamic and unsupervised learning paradigm.
The study findings obtained from the evolving
digital landscape contribute to the ongoing effort
to develop new and robust solutions for
protecting digital ecosystems. The testing results
confirm the effectiveness of our proposed
approach, which entails converting the bytecode
of each software method into a grayscale image
that graphically depicts the characteristics of a
software sample. Our approach exhibits a notably
higher level of accuracy in identifying malicious
software compared to methods built using
traditional machine learning algorithms. Our
technique exhibits decreased training and
detection durations when compared to competing
malware detection systems that depend on deep
learning models. The text outlines suggestions for
future research approaches, including
investigating ensemble methods that combine
autoencoders with other deep learning
architectures, including temporal factors to
improve dynamic malware detection, and
utilizing adversarial training to boost the
robustness of models. These recommendations

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5019

are intended to provide guidance for future
investigations in the continual pursuit of
developing more efficient and adaptable malware
detection systems.

REFERENCES

[1]. Rathore, H.; Agarwal, S.; Sahay, S.; Sewak,
M. Malware detection using machine learning
and deep learning. In Proceedings of the
International Conference on Big Data
Analytics, Seattle, WA, USA, 10–13
December 2018; pp. 402–411. [Google
Scholar]

[2]. Nasif, A.; Othman, Z.; Sani, N.S. The deep
learning solutions on lossless compression
methods for alleviating data load on IoT
nodes in smart cities. Sensors 2021, 21, 4223.
[Google Scholar] [CrossRef] [PubMed]

[3]. Vinayakumar, R.; Alazab, M.; Soman, K.;
Poornachandran, P.; Venkatraman, S. Robust
intelligent malware detection using deep
learning. IEEE Access 2019, 7, 46717–46738.
[Google Scholar] [CrossRef]

[4]. Singh, A.; Kumar, R. A two-phase load
balancing algorithm for cloud environment.
Int. J. Softw. Sci. Comput. Intell. 2021, 13,
38–55. [Google Scholar] [CrossRef]

[5]. Mat, S.R.T.; Razak, M.A.; Kahar, M.; Arif, J.;
Firdaus, A. A Bayesian probability model for
Android malware detection. ICT Express
2022, 8, 424–431. [Google Scholar]
[CrossRef]

[6]. Yen, S.; Moh, M.; Moh, T.-S. Detecting
compromised social network accounts using
deep learning for behavior and text analyses.
Int. J. Cloud Appl. Comput. 2021, 11, 97–
109. [Google Scholar] [CrossRef]

[7]. Shabudin, S.; Sani, N.; Ariffin, K.; Aliff, M.
Feature selection for phishing website
classification. Int. J. Adv. Comput. Sci. Appl.
2020, 11, 587–595. [Google Scholar]
[CrossRef]

[8]. Liu, C.-H.; Zhang, Z.-J.; Wang, S.-D. An
android malware detection approach using
Bayesian inference. In Proceedings of the
2016 IEEE International Conference on
Computer and Information Technology (CIT),
Nadi, Fiji, 8–10 December 2016; pp. 476–
483. [Google Scholar]

[9]. GDATA Mobile Malware Report—No let-up
with Android malware. 2019. Available
online:
https://www.gdatasoftware.com/news/2019/0

7/35228-mobile-malware-report-no-let-up-
with-android-malware (accessed on 22
November 2022).

[10]. Qiu, J.; Zhang, J.; Luo, W.; Pan, L.;
Nepal, S.; Xiang, Y. A survey of android
malware detection with deep neural models.
ACM Comput. Surv. 2020, 53, 1–36. [Google
Scholar] [CrossRef]

[11]. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.
An effective memory analysis for malware
detection and classification. Comput. Mater.
Contin. 2021, 67, 2301–2320. [Google
Scholar] [CrossRef]

[12]. Mat, S.R.T.; Razak, M.A.; Kahar, M.;
Arif, J.; Mohamad, S.; Firdaus, A. Towards a
systematic description of the field using
bibliometric analysis: Malware evolution.
Scientometrics 2021, 126, 2013–2055.
[Google Scholar] [CrossRef]

[13]. Bassel, A.; Abdulkareem, A.; Alyasseri,
Z.; Sani, N.; Mohammed, H.J. Automatic
Malignant and Benign Skin Cancer
Classification Using a Hybrid Deep Learning
Approach. Diagnostics 2022, 12, 2472.
[Google Scholar] [CrossRef]

[14]. Jerlin, M.A.; Marimuthu, K. A new
malware detection system using machine
learning techniques for API call sequences. J.
Appl. Secur. Res. 2018, 13, 45–62. [Google
Scholar] [CrossRef]

[15]. Abdallah, A.; Ishak, M.K.; Sani, N.S.;
Khan, I.; Albogamy, F.R.; Amano, H.;
Mostafa, S.M. An Optimal Framework for
SDN Based on Deep Neural Network.
Comput. Mater. Contin. 2022, 73, 1125–1140.
[Google Scholar] [CrossRef]

[16]. Han, H.; Lim, S.; Suh, K.; Park, S.; Cho,
S.; Park, M. Enhanced android malware
detection: An svm-based machine learning
approach. In Proceedings of the 2020 IEEE
International Conference on Big Data and
Smart Computing (BigComp), Busan,
Republic of Korea, 19–22 February 2020; pp.
75–81. [Google Scholar]

[17]. Singh, P.; Borgohain, S.; Kumar, J.
Performance Enhancement of SVM-based
ML Malware Detection Model Using Data
Preprocessing. In Proceedings of the 2022
2nd International Conference on Emerging
Frontiers in Electrical and Electronic
Technologies (ICEFEET), Patna, India, 24–25
June 2022; pp. 1–4. [Google Scholar]

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5020

[18]. Droos, A.; Al-Mahadeen, A.; Al-Harasis,
T.; Al-Attar, R.; Ababneh, M. Android
Malware Detection Using Machine Learning.
In Proceedings of the 2022 13th International
Conference on Information and
Communication Systems (ICICS), Irbid,
Jordan, 21–23 June 2022; pp. 36–41. [Google
Scholar]

[19]. Baldini, G.; Geneiatakis, D. A
performance evaluation on distance measures
in KNN for mobile malware detection. In
Proceedings of the 2019 6th international
conference on control, decision and
information technologies (CoDIT), Paris,
France, 23–26 April 2019; pp. 193–198.
[Google Scholar]

[20]. Assegie, T.A. An optimized KNN model
for signature-based malware detection.
Tsehay Admassu Assegie. Int. J. Comput.
Eng. Res. Trends (IJCERT) 2021, 8, 2349–
7084. [Google Scholar]

[21]. Castillo-Zúñiga, I.; Luna-Rosas, F.;
Rodríguez-Martínez, L.; Muñoz-Arteaga, J.;
López-Veyna, J.; Rodríguez-Díaz, M.A.
Internet data analysis methodology for
cyberterrorism vocabulary detection,
combining techniques of big data analytics,
NLP and semantic web. Int. J. Semant. Web
Inf. Syst. 2020, 16, 69–86. [Google Scholar]
[CrossRef]

[22]. Yilmaz, A.B.; Taspinar, Y.; Koklu, M.
Classification of Malicious Android
Applications Using Naive Bayes and Support
Vector Machine Algorithms. Int. J. Intell.
Syst. Appl. Eng. 2022, 10, 269–274. [Google
Scholar]

[23]. Yildiz, O.; Doğru, I.A. Permission-based
android malware detection system using
feature selection with genetic algorithm. Int.
J. Softw. Eng. Knowl. Eng. 2019, 29, 245–
262. [Google Scholar] [CrossRef]

[24]. Arora, A.; Peddoju, S.; Chouhan, V.;
Chaudhary, A. Hybrid Android malware
detection by combining supervised and
unsupervised learning. In Proceedings of the
24th Annual International Conference on
Mobile Computing and Networking, New
Delhi, India, 29 October–2 November 2018;
pp. 798–800. [Google Scholar

