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ABSTRACT 

 
Malware detection is a critical aspect of cybersecurity, aiming to identify and mitigate malicious software 
designed to harm or exploit any programmable device or network. Traditional methods of malware 
detection, such as signature-based techniques, have limitations in dealing with the sophisticated and rapidly 
evolving nature of modern malware. This paper explores the application of deep learning, a subset of 
artificial intelligence, in enhancing malware detection capabilities. By leveraging deep learning models, 
which can automatically learn and extract features from data, we can improve detection accuracy and adapt 
to new, unseen malware. This research reviews various deep learning architectures and methodologies 
employed in malware detection, evaluates their effectiveness, and discusses future directions and challenges 
in the field. 
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1. INTRODUCTION 
  

In the digital era, a significant number of 
computing devices have been impacted by 
malware. Malware, often known as malevolent 
software, is specifically designed to fulfill the 
harmful objectives of a malicious attacker. 
Malicious software, or malware, has the ability to 
infiltrate networks, cause harm to critical 
infrastructure, compromise the security of 
computers and smart devices, and unlawfully 
obtain confidential information [1]. 

The concept of an information society 
has developed due to the emergence of the 
Internet of Things (IoT) and its various uses. 
Nevertheless, the benefits of this industrial 
progress are impeded by security concerns, as 
hackers selectively target individual computers 
and networks to illicitly obtain confidential data 
for monetary purposes and disrupt operations [2]. 
These attackers employ harmful software, also 

known as "malware," to exploit system 
weaknesses and present significant risks. 
Malware, also referred to as malicious software, 
is a type of computer software specifically 
designed to cause harm to an operating system 
[3]. The frequency of malware attacks has greatly 
risen due to the substantial changes in our daily 
contacts caused by the advancements in mobile 
technologies. Mobile devices connected to the 
Internet provide many services such as online 
learning, social networking, online banking, 
online shopping, and web browsing. Mobile 
devices have thus played a pivotal role and have 
transformed into an essential component of 
everyday life [4]. As of 2020, the global mobile 
device user count stands at 4.78 billion [5]. While 
mobile devices offer convenience to consumers, 
they are susceptible to virus infiltration and 
attacks due to their connection to online social 
networks and services. Mobile malware has the 
ability to masquerade as regular code and 
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thereafter modify any intended program in order 
to corrupt and impede the functioning of the 
system [5,6,7]. 

Google Play has implemented a 
permission-based approach as a security 
safeguard to prevent applications from accessing 
private data. This permission prompts users to 
install the program after considering the assets 
that have been accessed. Prior to proceeding with 
the installation, it is imperative that the users 
explicitly acknowledge and agree to the terms of 
the agreement. Regrettably, the Google Play 
technique does not provide complete protection 
for the customer since they often have a 
propensity to approve the agreement without 
thoroughly perusing the permission [5,8]. 
Another potential threat arises from the 
exploitation of profitable Android applications, as 
seen by the significant rise in the detection of 
Android malware, which increased more than 
tenfold from 2012 to 2018 [9]. In addition, a total 
of more than 12,000 new instances of Android 
malware were discovered per day during the year 
2018. The newly discovered Android malware 
samples exhibit greater sophistication compared 
to those that emerged a few years ago, 
particularly in their ability to evade antivirus 
detection through coding and encryption. 
Additionally, there has been a significant increase 
in the spread of malware [10,11]. 

The utilization of machine learning in 
malware detection studies is becoming 
increasingly popular due to its effectiveness in 
achieving a high level of accuracy in detecting 
malware [12]. Prior research has employed 
machine learning (ML) algorithms, which have 
the ability to make decisions based on learned 
patterns from data. Machine learning refers to the 
idea of reducing the need for human involvement 
in computer systems [13]. Machine learning 
utilizes computer learning algorithms and 
historical data to make predictions. Supervised 
and unsupervised learning approaches [14,15] are 
utilized to examine the characteristics and 
monitor the model. In both scenarios, the 
machine acquires the ability to differentiate 
between harmful and harmless actions. In 
supervised learning, the machine learning model 
is provided with both the input data and the 
desired outputs. It then learns to accurately 
classify malware patterns as "malware" and 
normal behaviors as "normal". The training phase 
is iterated until the model achieves perfect 
accuracy in predicting all samples [5]. Various 
machine learning algorithms, such as support 

vector machines (SVM) [16,17,18], K-nearest 
neighbor (KNN) [19,20], Bayesian estimates 
[21,22], genetic algorithms [23], have been 
employed to construct malware detection 
systems. Unsupervised learning approaches 
involve providing inputs without any 
predetermined targets, allowing the machine 
learning system to learn how to differentiate 
between malware and benign samples. 
Nevertheless, certain investigations integrated the 
approaches of supervised and unsupervised 
learning [24]. 

Malware detection is a crucial aspect of 
security that is closely linked to the legal, 
reputational, and economic interests of 
companies. Utilizing deep learning as a technique 
for developing and enhancing detection methods 
is an effective approach to address many 
challenges associated with malware detection. 
However, in the realm of deep learning, there are 
numerous complex factors that must be taken into 
account when considering detection strategies. 
Correlation-based feature selection, the dense 
layer model, and the LSTM model are three 
complex and symmetrical approaches that can 
significantly impact performance. 

Two distinct datasets will be utilized in 
the ongoing research. One of the datasets 
contains a substantial quantity of records, 
whereas the other dataset comprises a significant 
number of predictors (attributes). The process of 
selecting the most optimal qualities will be 
employed in various situations to determine the 
most effective combination of features. The 
correlation between the target property 
"classification" will be utilized as the way for 
selecting features. The training phase will involve 
the utilization and comparison of Dense and 
LSTM models. Multiple training scenarios will 
be set up based on various feature selection 
criteria, splitting criteria, and dataset topologies. 
Our primary innovation lies in using the efficacy 
of deep learning and feature selection techniques 
in the domain of malware detection to construct a 
resilient, high-performing, computationally 
efficient malware detection system. 
 
2. METHODOLOGY 

This research employs both static and 
dynamic analysis methods using deep learning 
models. The dataset comprises a mix of known 
malware samples and benign software, sourced 
from public repositories like VirusTotal and 
Malimg dataset. Multiple deep learning (DL) 
methods are suggested and employed in this 



 Journal of Theoretical and Applied Information Technology 
30th June 2024. Vol.102. No. 12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5016 

 

work. To train the deep learning models using the 
two chosen datasets, it is necessary to preprocess 
these datasets. This preprocessing phase involves 
encoding (numbering) the classification (target) 
columns and handling any special characters or 
missing values. Due to the distinct nature of the 
two datasets, the preparation stages will vary. 
Once the datasets have undergone preprocessing, 
they are divided into separate training and test 
sets. Feature selection is conducted prior to the 
training process in certain training scenarios to 
reduce data dimensionality and computational 
time. 

Subsequently, the DL models will be 
constructed and trained using several training 
scenarios, encompassing diverse splitting criteria, 
distinct DL architectures, and the option of 
feature selection. Figure 1 depicts the 
recommended technique for both datasets. 

The objective of feature selection is to 
identify the most optimal characteristics relevant 
to the topic being examined, with the purpose of 
minimizing computational time. Our study 
proposes a correlation-based technique to address 
the issues of large dimensionality and long 
processing time. This approach also aims to pick 
the most effective combinations of features, 
hence improving the performance of the training 
and evaluation process.  
 

 
Figure 1. Illustrates the methodology that is being 

suggested 

Next, a compilation of probable columns 
to be dropped is generated. Various selection 
scenarios can be generated as the correlation 
spans from 0 to 1. The selection process is 
determined by the desired number of columns. 
We will extract the K necessary features and 

discard the remaining ones. For the second 
dataset, the identical method will be utilized, with 
the exception of the selection phase. Columns 
will be eliminated in the second dataset based on 
specific correlation thresholds (T), given that 
there are 214 columns in total. In the second 
dataset, the number of selected features is 
contingent upon the chosen threshold, unlike the 
first dataset where the threshold is not specified. 
 
3. RESULTS AND DISCUSSION 

 This section presents and discusses the 
findings of the experiments done to assess the 
effectiveness of the autoencoder-based malware 
detection approach. The current section is 
dedicated to providing pertinent information on 
the experimental setup. It is divided into three 
sections to address the following aspects: the 
configuration of the experiment setup, the 
gathering of data, and the specifics of the training 
process. To obtain additional details regarding the 
experimental setting, go to table 1. The tests were 
conducted on a machine equipped with an Intel 
CoreTM i5-8300 processor, 16GB of RAM, and a 
GeForce GTX 1060 MQ graphics card. The 
computer operated on a 64-bit iteration of the 
Windows 10 operating system. In our 
programming, we employed Keras, Tensorflow 
2.1, and Python 3.7. We categorized the datasets 
according to their intended purpose. (1) Dataset-1 
consists of 8,121 malicious programs and 2,000 
benign programs. It is utilized for training and 
evaluating AE-1 models. The AE-2 model is 
trained, validated, and tested using Dataset-2, 
which consists of 8121 dangerous applications 
and 7015 safe ones. The AE-2 model is tested 
using Dataset-3, which consists of 5,384 
malicious applications and 5,000 safe programs, 
to evaluate its ability to detect unfamiliar 
malware. It is important to note that when we 
divided Dataset-2 and Dataset-3, we intentionally 
incorporated older software samples in Dataset-2 
for the purpose of training, such as malware from 
2016.  

In Dataset-3, we included more recent 
releases, such as those from 2017 and 2018. 
Simulating the condition of identifying newly 
published software samples will facilitate future 
analysis of the model's performance. In order to 
evaluate the autoencoder's ability to reconstruct 
feature images, we utilize the AE-1 network. The 
specific attributes of the AE-1 model are 
presented in Table 2. During the training process, 
we utilize the Adam optimization technique with 
a total of 100 epochs and a learning rate of 1e-4. 
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The AE-1 network undergoes training using the 
DTrain dataset and subsequently undergoes 
testing using the DTest_mal and DTest_benign 
datasets, which contain malicious and benign 
software, respectively. In order for a test set to 
have a low reconstruction error, the new input 
must be similar to the input of the training 
dataset. Conversely, if the new inputs deviate 
from the inputs used in the dataset during 
training, a noticeable reconstruction error will be 
observed in this test set. The primary objective of 
our experiment is to investigate the significant 
disparity in error data produced by these two test 
sets after AE-1. In practical terms, the significant 
duplication features in the software dataset and 
the distinct functional traits exhibited by malware 
families in the malware dataset can result in 
experimental outcomes showing substantial 
fluctuations. This is because our hypothesis is 
founded on the notion that malware is universally 
similar, while benign software is not. 
Consequently, we place less importance on the 
exact errors exhibited by the two test sets and 
instead focus more on the comparative disparities 
between them.The responsibility of evaluating 
the performance of the detection model lies with 
the AE-2 network. We partitioned Dataset-2 into 
two equal parts, allocating 80% for training and 
20% for testing. During the training process, we 
employed k-fold cross-validation with a value of 
k equal to 6 in order to train and validate the 
training set. Consequently, we allocated 5/6 of 
the training set for training purposes and reserved 
1/6 for validation. We conducted this procedure 
on six occasions prior to calculating the average. 
The test set is used for testing purposes during the 
entire testing procedure. The duration of training 
is quantified in units of minutes. The training of 
AE-2 utilized the Adam optimization technique 
with a learning rate of 0.0001 and 100 epochs.We 
evaluate the effectiveness of this strategy by 
analyzing the overall error distribution in both 
malicious and benign reconstructions of malware 
images. Figure 2 shows the error distributions of 
the combined test sets. The Y-axis indicates the 
normalized reconstructed error value generated 
by each program following the encoder network. 
The error value of each pixel point corresponding 
to the malware feature image is aggregated and 
subsequently divided by the total to achieve 
image normalization. The line statistics graph 
illustrates the general error trend of DTest_mal 
with a blue line, whereas the overall error trend 
of DTest_benign is represented by a yellow line. 
The inherent unpredictability of the dataset plus 

the redundancy of the software files result in a 
non-zero error. Figure 5 illustrates a significant 
disparity in the average error values between the 
two datasets. The blue line indicates a consistent 
and steady error trend for the malware dataset, 
while the yellow line represents an erratic and 
fluctuating error trend for the benign software test 
set. This supports our perspective. 

Based on this experiment, we can show 
that the automatic encoder can identify complex 
characteristics of both harmless and harmful 
software and successfully reconstruct the pre-
processed malware data. Next, we proceed to 
carry out the task of differentiating between 
harmful and benign software. 

 

 
Figure 2. Mistake in reconstruction for two sets 

of data. 
   

The evaluation of the autoencoder model 
is conducted using many measures, such as 
accuracy, precision, recall, F1-score, false 
positive rate, and false negative rate. These 
metrics offer a holistic perspective on the model's 
capacity to accurately detect instances of malware 
while minimizing both false positives and false 
negatives. The results are compared with 
conventional signature-based methods to 
emphasize the possible enhancements provided 
by the autoencoder methodology. Signature-
based approaches are intrinsically constrained by 
their dependence on pre-established patterns, 
rendering them vulnerable to evasion by 
polymorphic and metamorphic malware. The 
autoencoder's capacity to acquire knowledge 
from the inherent characteristics of data without 
pre-established patterns situates it as a more 
flexible and adaptable solution.The ROC curves 
depicted in Figure 3 illustrate the impact of the 
model on the training set. It is evident that the 
model demonstrates a consistently reliable 
performance on the training set. The ROC curves 
depicted in Figure 4 illustrate the model's 
performance on the test set, specifically Dataset-
2. It is evident that our model surpasses the other 
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two in performance. In order to thoroughly 
evaluate the ability of our model to detect 
previously undiscovered malware, we utilize 
Datasets-3 as the test set for AE-2. The ROC 
curves are displayed in Figure 5, revealing that 
our model exhibits commendable accuracy and a 
certain degree of viability in detecting previously 
undetected malware. However, it also exhibits 
certain limitations as the software evolves over 
time. 
 

 
Figure 3. The ROC curve of AE-2 on training set. 

 

 
Figure 4. The ROC curve of different models on 

the test set. 
 

 
Figure 5. The ROC curve of different models on 

the unseen software 
 

The results and discussion section 
illuminates the performance of the autoencoder-
based malware detection approaches, offering 
valuable insights into its strengths, limitations, 
and implications for the broader cybersecurity 
landscape. 
  
4. CONCLUSION 

 The findings of this study emphasize the 
capacity of autoencoders to enhance the skills of 
malware detection. Autoencoders provide a 
promising approach to improving the adaptability 
and effectiveness of cybersecurity defenses 
against emerging malware threats by adopting the 
dynamic and unsupervised learning paradigm. 
The study findings obtained from the evolving 
digital landscape contribute to the ongoing effort 
to develop new and robust solutions for 
protecting digital ecosystems. The testing results 
confirm the effectiveness of our proposed 
approach, which entails converting the bytecode 
of each software method into a grayscale image 
that graphically depicts the characteristics of a 
software sample. Our approach exhibits a notably 
higher level of accuracy in identifying malicious 
software compared to methods built using 
traditional machine learning algorithms. Our 
technique exhibits decreased training and 
detection durations when compared to competing 
malware detection systems that depend on deep 
learning models. The text outlines suggestions for 
future research approaches, including 
investigating ensemble methods that combine 
autoencoders with other deep learning 
architectures, including temporal factors to 
improve dynamic malware detection, and 
utilizing adversarial training to boost the 
robustness of models. These recommendations 



 Journal of Theoretical and Applied Information Technology 
30th June 2024. Vol.102. No. 12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5019 

 

are intended to provide guidance for future 
investigations in the continual pursuit of 
developing more efficient and adaptable malware 
detection systems. 
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