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ABSTRACT 
 

The conversion of a text to a Structured Query Language (SQL) is a complex process that faces multiple challenges and 
a variety of problems. This is because the extraction of information stored in these databases requires the use of queries 
expressed in terms of a database query language, such as SQL. In addition, the Natural Language Interface to Database 
(NLIDB) is one of the most traditional applications of the NLP field that enables end-users to easily fetch data from 
databases. Recently, it has gained widespread attention, mainly because of the current success of Deep Learning 
techniques. The dominant NLIDB systems use the sequence-to-sequence approach. It is based on Long Short-Term 
Memory (LSTM) networks that include an encoder and a decoder method. In this article, we will tackle first the recent 
encoder/decoder approaches and analyze their pros and cons. Then, we will conduct an introductory summary of our 
suggested model for the NL to SQL problem. Namely, how this model can outperform the already existing solutions to 
enable it to manage the complex Natural Language questions-to-SQL generation queries in different contexts and 
cross-domain datasets. For this purpose, our work in this context will be focusing on facilitating access to the 
information stored in a database, by constructing a model that takes as input the natural language questions 
and translates them automatically to a structured language query. As a result, this model will offer a large 
number of database users simple and unlimited access to data with no need to learn any Database Query 
Language. 
 
Keywords: Natural Language Processing (NLP), Machine Learning (ML), Deep Learning (DL), Natural 

Language Interface to Database (NLIDB), Long Short-Term Memory (LSTM), Structured Query 
Language (SQL). 

 
 
1 INTRODUCTION 
 
Natural Language Processing (NLP) is one of the 
most challenging areas of research in Artificial 
Intelligence (AI) that focuses on designing and 
developing computer systems that can analyze, 
understand, and synthesize natural human 
languages [1]. It is used in Human-Computer 
interaction for information retrieval, machine 
translation, and linguistic analysis.  Today, NLP is 
present in many everyday applications and more 
particularly in the area of information extraction 
such as database querying.   

Nowadays, databases represent an essential 
source of information for all its users, experts or 
non-experts. However, to get access to this 
information, it is necessary to use a query language 
like Structured Query language (SQL). In this 
context, the end-users who do not know the 
structure of a database or the syntax used to interact 
with it will not be able to extract data from these 
databases.  One solution to this problem is to 
provide an interface to query the database in 
Natural Language that can take questions or queries 

from users in natural language, transform it to a 
formal language like SQL, then execute the 
generated SQL query, and show the desired result 
to the end-users [2].  Natural Language Interface to 
SQL is an appealing area of research that appeared 
in the late 1960s and early 1970s [3]. It is an 
intermediate layer between the Relational Database 
Management System (RDBMS) and the end-user 
that overcomes the communication gap between 
them. The NLIDB system is an intelligent and 
flexible tool since it is simple to use, and allows the 
users to use NL sentences to retrieve information 
from a database without using any intermediate 
language. Also in that context, we have Text-to-
SQL which is the task of generating SQL queries 
from natural language questions  

In the rest of this article, section 2 represents 
the literature review. Section 3 describes the 
challenges of natural language text to SQL 
problem.  Section 4 illustrates different approaches 
and datasets that have been used for translating 
natural language questions to corresponding SQL 
queries. Section 5 shows the overview and the 
simulation results of our proposed approach. Then, 
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an evaluation is presented for the approval of the 
contribution. Finally, the conclusion provides a 
summary of the work done and some perspectives 
arising from this study. 

2 RELATED WORKS 

       Numerous research efforts have been dedicated 
to the field of Natural Language Processing (NLP), 
and one of its significant achievements is the 
development of Natural Language Interface to 
Database (NLIDB) systems. The success observed 
in this domain is attributed to both the practical 
benefits derived from NLIDB systems and the 
effective functioning of NLP within single-database 
domains. Generally, databases often operate within 
sufficiently limited domains, enabling the 
successful resolution of ambiguity issues in Natural 
Language (NL). 
The earliest research initiatives in this area date 
back to the 1960s, with the creation of several 
systems since that time. Notably, BASEBALL and 
LUNAR, introduced in the late sixties, marked the 
inception of operational NLIDB systems. The 
BASEBALL system was specifically designed to 
address inquiries related to baseball games, while 
LUNAR focused on the chemical analysis of moon 
rocks, utilizing an Augmented Transition Network. 
However, these systems were non-reconfigurable, 
tailored for specific domains, and lacked ease of 
modification for interfacing with different 
databases.  
In the late 1970s, various research prototypes were 
developed, including LIFER/LADDER (1978), 
designed to provide information about US Navy 
ships and acknowledged as one of the initial 
effective NLIDB systems. Employing semantic 
grammar techniques encompassing both syntactic 
and semantic processing, LIFER/LADDER 
represented a significant advancement. However, 
systems reliant on semantic grammar faced 
challenges when applied to different application 
domains, requiring the development of a distinct 
grammar for each domain where LADDER was 
employed. Another noteworthy system from the 
1980s is CHAT-80 (1980), recognized as one of the 
most referenced Natural Language Processing 
(NLP) systems of that era. Implemented in Prolog, 
CHAT-80 involved the conversion of English 
queries into Prolog expressions, which were then 
assessed against the Prolog database. The code for 
CHAT-80 was widely disseminated and served as 
the basis for several experimental systems, 
including MASQUE (Modular Answering System 
for Queries). A modified version of MASQUE, 
known as MASQUE/SQL, was developed. This 

system translates the NL query into an intermediate 
logic representation and subsequently translates the 
logic query into SQL. However, it has some 
shortcomings; in cases of SQL query failure, the 
system does not pinpoint the specific part of the 
query responsible for the failure. Additionally, it is 
domain-dependent and requires configuration for 
use in other knowledge domains.  
        In recent times, several Natural Language 
interface to database systems have been developed, 
including the PRECISE system (2004) and NALIX 
(Natural Language Interface for an XML Database) 
(2006). The PRECISE system, originating from the 
University of Washington, stands out as an 
exemplary instance of approaches pertinent to the 
design of NLDBIs that are independent of specific 
databases. Through the integration of state-of-the-
art statistical parsers and a novel concept of 
semantic tractability, PRECISE emerges as a highly 
reconfigurable system, demonstrating impressive 
performance in handling semantically tractable 
queries. However, the system encounters challenges 
in dealing with nested structures. On the other 
hand, NALIX, developed at the University of 
Michigan, represents the first generic interactive 
natural language query interface to an XML 
database (extensible markup language). NALIX 
employs a three-phase process for transformation: 
generating a Parse tree, validating the parse tree, 
and translating the parse tree into an XQuery 
expression. Consequently, NALIX can be 
categorized as a syntax-based system. The system 
utilizes Schema-Free XQuery as its database query 
language, offering the advantage of not requiring an 
exact mapping of a query to the database schema, 
as it can automatically identify all relevant relations 
based on specific keywords. 
The previous models address the challenge as a 
semantic parsing task in natural language 
processing (NLP) for translating text to SQL, 
utilizing illustrated datasets. Some of these models 
incorporate linguistic techniques or heuristics to 
improve the quality of generated queries or reduce 
the output space. 
Seq2sql [13] was one of the early works 
introducing a sequence-to-sequence structure for 
translating text to SQL using reinforcement 
learning [4]. It achieved a 60% execution accuracy 
on the WIKISQL dataset. SQLNet, another model, 
employs a column attention mechanism to highlight 
relevant parts of user questions concerning database 
columns, using the WIKISQL dataset. This model 
consists of several sub-modules, each responsible 
for predicting a single token, not a sequence. 
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PHOTON [5] is a robust cross-domain text-to-SQL 
system comprising a powerful neural semantic 
parser, a human-in-the-loop question corrector 
suggesting possible corrections, an SQL query 
executor, and a natural language response 
generator. The Information-Extraction-to-SQL (IE-
SQL) [6] approach involves two models: a BERT-
based extraction model to identify slots in the input 
sentence and a BERT-based linker mapping 
columns to the table schema for generating 
executable SQL queries. M-SQL [7], utilizing pre-
trained BERT, consists of an encoder for Chinese 
word vector representation, column representation, 
and eight sub-models predicting the select and 
where clauses of the SQL statement. 
RAT-SQL [8] relies on relation-aware schema 
encoding and linking for text-to-SQL parsers, 
incorporating a self-attention mechanism for 
schema encoding, linking, and feature 
representation. SQLNet adopts a sketch-filling 
approach, focusing the model on essential parts of 
the query. RYANSQL (Recursively Yielding 
Annotation Network for SQL) [9] is a neural 
network approach applying sketch-based slot 
fillings for complex text-to-SQL in cross-domain 
databases. 
ATHENA++ [10] exemplifies natural language 
querying for complex nested SQL queries, 
combining linguistic patterns from NL queries with 
deep domain reasoning, using ontologies to capture 
domain schema semantics on the FIBEN 
benchmark dataset. The system architecture 
includes a Translation Index, Domain Ontology, 
Ontology to Database Mapping, and Query 
Translator. 
ValueNet [11] is an end-to-end text-to-SQL system, 
aiming to use all available information from the 
base data as input for the neural network 
architecture. This new architecture extracts values 
from user questions and predicts possible value 
candidates not explicitly mentioned in the question. 
 Finally, an extensive prior study of various 
approaches for the Text-To-SQL domain provided 
us with an obvious roadmap for this research [21]. 
Therefore, a trial to find an efficient solution for 
converting a text to SQL, while implementing a 
model for language representation that will only 
need the use of a human Natural Language to 
access databases easily, saving time and effort. 
 
3 CHALLENGES OF NATURAL 

LANGUAGE TEXT TO SQL PROBLEM 

        The process of translating an NLQ to SQL 
involves addressing challenges related to both 
understanding the input NL query and constructing 

the correct SQL query, ensuring syntactic and 
semantic accuracy, based on the underlying 
database schema. Figure 1 provides an example of a 
text-to-SQL transformation. The objective is to 
generate an equivalent SQL query that maintains 
the intended meaning. This SQL query should be 
valid for the specified DB and, upon execution, 
yield results aligned with the user's intent. 

 
 

 

 
 
 

Figure 1:Example of Natural Language Text-To-SQL 

 
3.1 Natural Language challenges 
     Ambiguity is a fundamental characteristic of 
natural language, inherently permitting the creation 
of expressions open to multiple interpretations. 
Various types of ambiguity exist, and the most 
prevalent ones are outlined below: 
Lexical ambiguity, also known as polysemy, occurs 
when a single word possesses multiple meanings. 
For instance, the word "Paris" could refer to a city 
or an individual. 
Syntactic ambiguity arises when a sentence can be 
interpreted in multiple ways based on its syntactic 
structure. For example, the question "Find all 
France movie directors" could be parsed as either 
"directors who have directed France movies" or 
"directors from France who have directed any 
movie." 
Semantic ambiguity occurs when a sentence has 
multiple interpretations at the semantic level.  
Context-dependent ambiguity involves a term 
having varying meanings depending on factors such 
as the query context, the data domain, and the user's 
objectives. Notably, terms like "top" and "best" 
exemplify this phenomenon. Consider the query 
context: for the question "Who was the best runner 
of the marathon?" within the context of completing 
the race faster (min operation), the answer should 
reflect the speed.  
Examining the domain, in a movie database, the 
query "Return the top movie" might imply ranking 
based on the number of collected ratings. 
Conversely, in a football database, for the query 
"Return the top scorer," the term "top" is associated 
with the number of goals scored. Moreover, 
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depending on the user, the query "Return the top 
product" would yield different results. For a 
business analyst, it should return the most 
profitable products, whereas for a consumer, it 
should return the top-rated products. 
In natural language, two sentences can convey the 
same meaning while being phrased in entirely 
different ways. For example, the sentences "How 
many people live in Moroco?" and "What is the 
population of Moroco?" have equivalent meanings 
and can be translated into the same SQL query. 
However, the second sentence may be more 
straightforward for a system because it is likely that 
a "population" attribute exists in the database 
schema, allowing for a higher confidence in 
inferring the user's intent. Paraphrasing also 
involves synonymy, where multiple words, such as 
"movies" and "films," share the same meaning. 
Inference involves the recognition that a query may 
lack essential information for a system to fully 
comprehend it. The system must deduce the 
missing details based on the provided context. 
Elliptical queries are sentences where one or more 
words are omitted, yet they remain understandable 
within the sentence's context. Follow-up questions 
are a common aspect of human conversations. After 
asking a question and receiving an answer, a 
follow-up question is posed with the assumption 
that the context of the initial question is understood. 
For instance, "Q: Which is the capital of Morocco? 
A: Rabat. Q: What about Indounisia?" Without the 
first question, the second one may seem 
nonsensical, but within the query context, it 
becomes evident that it is inquiring about the 
capital city of Morocco. 
User mistakes, such as spelling errors or syntactical 
and grammatical errors, further complicate the 
translation problem. 

 
3.2 SQL challenges 
      SQL syntax is characterized by its strict rules, 
resulting in limited expressivity compared to 
natural language. Certain queries are 
straightforward to articulate in natural language but 
may translate into complex SQL queries.  
Additionally, while a sentence in natural language 
may be comprehensible despite containing some 
mistakes, SQL is less forgiving. An SQL query 
derived from a natural language query must be both 
syntactically and semantically correct to be 
executable over the underlying data [15,17]. 
Database Structure: The user's conceptual model of 
the data, including entities, their attributes, and 
relationships described in the data, may not align 
with the database schema, leading to various 

challenges. The vocabulary gap represents 
disparities between the terms employed by the user 
and those utilized in the database [18].   
Schema ambiguity arises when a portion of the 
query may correspond to more than one element in 
the database. Implicit join operations occur when 
segments of a query are translated into joins across 
multiple relations. Also, entity modeling presents 
the challenge where a set of entities may be 
modeled differently, such as distinct tables or rows 
(or values) within a single table. 
 
4 ANALYSIS 

4.1 Existing datasets 
To develop a neural text-to-SQL system, it's 

crucial to take into account the datasets available 
for training and evaluation. Additionally, the 
evaluation methodology plays a significant role in 
testing and comparing the system's performance to 
other models. A text-to-SQL dataset, or benchmark, 
encompasses a collection of natural language (NL) 
and SQL query pairs defined over one or more 
databases. Various datasets have been released for 
either training or evaluating models that translate 
natural language questions into corresponding SQL 
queries. These datasets exhibit differences in terms 
of the number and types of queries they include. 
Here are some of the most commonly utilized ones: 
WikiSQL: The most widely used and extensive 
benchmark dataset, WikiSQL is a mono table 
dataset comprising 26,531 tables and 80,654 pairs 
associated with a given single table. It does not 
support joins and nested queries, making it suitable 
for evaluating simple models with only one column 
in the SELECT clause and one table in the FROM 
clause. Tables are extracted from HTML tables on 
Wikipedia. Each SQL query is automatically 
generated for a given table under the constraint that 
it produces a non-empty result set. NL queries are 
generated using templates and paraphrased through 
Amazon Mechanical Turk. 
ATIS: [14] Primarily used for semantic parsing, 
ATIS focuses on flight booking and includes a 
database of 25 tables and 5,410 query pairs. Most 
questions can be answered with a single relational 
query, but the dataset lacks grouping or ordering 
queries. 
GeoQuery: Comprising seven tables in the US 
geography database, GeoQuery consists of 880 
query pairs, including 256 nested SQL queries. 
Unlike WikiSQL, all queries in ATIS and 
GeoQuery are specific to a single domain, with 
both benchmark databases featuring various 
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queries, including join and nested queries. 
MAS (Microsoft Academic Search): Similar to 
ATIS and GeoQuery, MAS focuses on social 
academics. It comprises a database of 17 tables and 
196 query pairs, featuring various SQL queries that 
include join, grouping, and nested queries. 
Spider [16] is a large-scale cross-domain NL2SQL 
benchmark dataset with 200 databases spanning 
138 different domains and 10,181 query pairs 
distributed across training, development, and test 
sets. Spider addresses perceived limitations in 
existing benchmarks, offering a more diverse range 
of queries, including join and nested queries. 

We can classify these datasets into two types: 
one that comprises queries with limited structures, 
like the WikiSQL dataset, and SQL databases like 
GEOQuery, MAS (academia), YELP, ATIS, and 
Spider. These databases are publicly available and 
contain real data accumulated over the years. 
Recent studies often evaluate their models on the 
Spider dataset, which is a compilation of various 
databases such as restaurants, geography, and 
academia. However, only 10% of the pairs in the 
training set originate from the aforementioned 
databases (approximately 1,659 queries). The 
remaining queries (about 7,000) are from unknown 
databases, defined by the creators of Spider, 
diminishing its credibility as a dataset for the text-
to-SQL task. With just 10,181 question/SQL query 
pairs in the development, training, and test sets 
combined, Spider is insufficient for assessing the 
integrity, reliability, and relevance of any model. 
Despite Spider offering a diversified range of query 
difficulties, including easy, medium, hard, and 
extra hard, encompassing nested queries, the 
presence of the GROUP BY command, as well as 
keywords like UNION and EXCEPT, the limited 
number of queries poses a challenge in accurately 
evaluating a model. Additionally, the dataset is 
unbalanced, with only 8.2% of samples containing 
nested queries and a mere 3.8% including 
HAVING/GROUP BY commands. 

 
4.2 Existing approaches 
Syntactic parsing: Syntactic parsing represents a 
category of solutions that relies on syntactic 
linguistic techniques. In this class of solutions, a 
predominant approach is the utilization of guided 
(strict) grammar for user input. Models based on 
strict grammar typically necessitate users to adhere 
to a specific word order when entering a sentence 
into the system; otherwise, the sentence may go 
unrecognized and consequently not be translated. 

Alternatively, there is the option of employing free 
grammar, which enhances the models' flexibility to 
various sentence structures but can impact the 
quality of the outputs. These solutions are often 
deemed less intelligent, requiring extensive hand-
engineering techniques to deduce the relevant parts 
in the input sentence for accurate conversion to 
SQL. 
The syntactic parsing approaches have in general 
some common steps. They start by defining the 
grammatical categories of the input sentence to 
identify the nature of each word. This means the 
extraction of the part of speech as shown in the 
example bellow: 

Figure 2: Part of speech tagging 

      In this example, the tokens within the sentence 
"find the paragraphs that deal with management" 
consist of a verb, an article (a determiner), a noun, a 
pronoun, a verb, a preposition, and finally, a noun. 
This breakdown is crucial for models that rely on 
syntactic parsing, as these tags play a vital role in 
constructing the syntax tree, facilitating the 
identification of dependencies among words in the 
question. The application of context-free grammar 
allows for the creation of the syntax tree. It's worth 
noting that these rules are not specifically tailored 
to the Text-to-SQL task and can be employed for 
other syntactic parsing purposes. Figure 3 illustrates 
the established tree resulting from the part-of-
speech tagging step. 
 

Figure 3: Syntax tree of the sentence in the example 

The tree undergoes additional processing to be 
transformed into an intermediate representation. 
Various treatments may be applied in this step, such 
as employing morphological analysis to gather 
valuable information about each token or 
transforming the tree into a transitional 
representation to bring the initial question closer to 
the target query. Numerous intermediate forms 



 Journal of Theoretical and Applied Information Technology 
30th June 2024. Vol.102. No. 12 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5057 

 

have been utilized in the studies under examination, 
with XML being a notable example. 

Semantic parsing: Many models rely on deep 
learning as a primary method for predicting the 
correct elements in the target query. Often adopting 
a free grammar style, these models are regarded as 
end-to-end solutions that eliminate the need for 
manual engineering. In the majority of cases, these 
models only require an annotated dataset for 
training. They can be directly trained on a corpus of 
pairs (Question/Target Query) without the need for 
interactivity or feedback messages from the system. 
This is accomplished by employing a sequence-to-
sequence decoding approach to generate SQL 
queries. 
For translating a source sentence into a target 
sentence, the sequence-to-sequence model 
(Seq2Seq) [12] uses an approach that consists of an 
encoder and a decoder, which is implemented by an 
RNN or an LSTM [19]. The encoder takes a source 
sentence (input data) and reads it via a fixed-size 
context vector, while the decoder takes the context 
vector C and generates a target sentence.  Recurrent 
neural networks (RNNs) use an input sequence of 
vectors [x1x2 . . . xτ ] of length τ as well as an 
initially hidden state h0 and generate a sequence of 
hidden states [h1,h2 . . . hτ ]. The sequence of 
output vectors [y1,y2 . . . yτ ]. Specifically, ht at 
time step t is calculated by:   

                  ht = f theta (xt, ht−1)            (1)  
 

Where f theta is a function with a parameter θ, that 
is generally referred to as an RNN cell. 
If an RNN cell is implemented as just a fully 
connected layer with an activation function, it will 
not efficiently accumulate information from 
previous time steps in its hidden state of the RNN. 
Such a basic RNN would not effectively handle 
long sequences and face the notorious vanishing 
and exploding gradient problem. To avoid and 
namely solve the problem, it is suggested to 
function the long short-term memory (LSTM), 
gated recurrent units (GRUs), or residual networks 
(ResNets). For Instance, an LSTM cell maintains an 
additional cell state ct that saves information over 
time and three gates so that it can regulate the flow 
of information into the cell or out of it. That is to 
say, ht and ct are computed using the gates from 
ct−1, ht−1, and xt. 
The general process in the Seq2seq approach is 
made by breaking down the input sentence each 
time into tokens that are used to generate the SQL 
query. Each token concerns a part of the SQL 
syntax: SELECT, AGGREGATION, From, where, 

etc. The output token from the previous LSTM 
layer is fed as the input token to the next layer 
operation until the token <END> is generated as 
shown in figure.4. 

 
Figure 4: Seq2seq General process 

4.3 Evaluation 
   The first existing NLIDB models that are based 
on the use of shallow and end-to-end approaches 
have shown very limited and low-quality results 
and the majority of them fail when they are tested 
with new datasets or new schemas that haven’t 
been seen in the training and the development 
collections. But, the most current NLIDB systems 
that used Deep Learning techniques [20] to 
translate Natural Language queries to SQL 
achieved encouraging results on the challenging 
Spider benchmark dataset-based encoder-decoder 
architecture as shown in Table1. 

Table 1: Execution accuracy of recently developed 
systems on the challenging Spider benchmark dataset 

based encoder-Decoder architecture. 

 
 
 

 
 
Model 

 
 

Dataset 

 
Accuracy (%)  
 
Dev 

 
Test 

 
RAT-SQL  

 
Spider 

 
62,7 

 
57,2 

 
Bertrand-DR  

 
Spider 

 
57,9 

 
54,6 

 
M-SQL  

 
TableQA 

 
91,86 

 
92,1

3 

 
Photon  

 
Spider 

 
63,2 

 
IE-SQL  

 
WikiSQL 

 
94,2 

 
Athena++  

 
Spider 

 
78,82 
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5. PROPOSED MODEL 

5.1 Overview 
 
  We suggest an approach based on two phases: The 
first one consists of ensuring the pre-processing of 
Natural Language input, while the second one is 
devoted to the translation of this question into a 
structured format, namely the SQL query. Our tool 
allows users to easily access the data using natural 
language as a means of communication. In this 
study, we are interested in data collected from the 
SPIDER database (introduced in section 3 part 1). 
The pre-processing phase is triggered once a user 
enters a question. The system exploits Deep 
Learning techniques once the question is processed, 
to translate this question into a SQL query. 

 
  Figure 5: CHAT-SQL General process 

 
Natural language understanding The NLU 

unit's responsibility lies in converting user 
utterances into a predetermined semantic 
framework based on the system's conventions. This 
involves tasks such as slot filling and intent 
detection, where the aim is to render the input 
understandable for the system. For instance, the 
intent could range from a simple greeting like 
"Hello" or "Hi" to an informative statement such as 
"I like Indian food," where the user provides 
additional details. The slots, which can vary widely 
based on the context, might include entities like 
actor names, prices, start times, or destination 
cities. 

This interplay between intents and slots 
underscores the closed-domain nature of the 
Chatbot. The process of slot filling and intent 
detection is often framed as a sequence tagging 
problem. Hence, the NLU component is commonly 

built using an LSTM-based recurrent neural 
network augmented with a Conditional Random 
Field (CRF) layer. One prevalent model in this 
domain employs a sequence-to-sequence 
architecture leveraging bidirectional LSTM 
networks to simultaneously fill slots and predict 
intent. Conversely, an attention-based RNN 
accomplishes the same task with a different 
architectural approach. 

Natural Language Generation (NLG) involves 
the creation of text from a given meaning 
representation, essentially serving as the inverse of 
natural language understanding. NLG systems play 
a crucial role in tasks like text summarization, 
machine translation, and dialog systems. In NLG, 
the system formulates a response in the form of a 
semantic frame, which is then translated into a 
natural language sentence understandable to the end 
user. 

NLG components can take the form of rule-
based or model-based systems, and sometimes a 
hybrid of both. Rule-based NLG generates 
predefined template sentences based on a given 
semantic frame, but they are often limited in their 
adaptability and lack generalization power. While 
general-purpose rule-based generation systems 
exist, they can be challenging to tailor to specific, 
task-oriented applications due to their broad 
applicability. In contrast, machine learning-based 
NLG systems, which are more prevalent in modern 
dialog systems, leverage various input sources such 
as a content plan representing the intended 
message, a knowledge base providing domain-
specific entities, a user model imposing constraints 
on output utterances, dialog history to avoid 
repetition, and referring expressions, among others. 
These trainable NLG systems offer greater 
flexibility and adaptability compared to rule-based 
approaches. Our System CHAT-SQL provides 
users with the ability to ask questions directly in the 
chat interface with the system in writing or 
verbally; as our system can interpret and translate 
the audio voices into text and then respond to the 
requests submitted. Once the question is valid, the 
system provides the answers in the form of a 
written or spoken SQL query as shown in figure 5. 
It is important to mention that our system responds 
to different types of simple or composed queries. 

     Interactivity hasn’t been adopted deeply in 
the previously proposed systems; however, the 
interactivity between the user and the system can 
take different forms, including initial questions to 
the user, feedback questions, error corrections, etc. 
One of the solutions is asking a sequence of 
questions to better understand the need and the 
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wanted query. This might be at different stages and 
it can be mixed with other techniques. The system 
can ask for example about the column's name to be 
included in the ‘Select’ clause or maybe the tables 
to include in the ‘From’ one. It is a new direction 
present in the feedback messages showing the  

corrections and suggestions to guide and limit 
the space of outputs to predict the right and 
correspond answer to their requests. 

 
5.2 Evaluation 

To evaluate the performance of our system in 
translating a natural language question into a 
structured query, namely a SQL query, we propose 
to use two well-known measures: recall and 
precision. We propose to evaluate whether the 
generated SQL queries are an accurate 
representation of the proposed question. Therefore, 
we provided several test questions to the system 
after the training. When a user enters a question, the 
system can provide either correct answers, or 
queries that provide incorrect answers due to a 
mistranslation of the question into SQL, or the 
system cannot fully ensure the translation of the 
question into an SQL query. Our system considers 
different types of queries even the most complex 
ones. In this context, the two measures of recall and 
precision can be defined as follows: 

 The recall can be described as the number of 
queries providing correct answers, related to the 
number of generated SQL queries.  

 The precision represents the number of 
generated queries providing correct answers, 
relative to the total number of suggested questions.  

 In the same context, we adopted an additional 
measure used to evaluate the effectiveness of the 
system called Accuracy. The accuracy focuses on 
the predictive capability of a model in the set of 
experimental samples.  

 Based on these measures, a set of test questions 
formulated in natural language (350 questions) was 
proposed. The generated queries are checked, and 
then we find different types of answers are returned 
when executing these queries. The results are given 
in the following table: 

 

. 

 

 

Table 2: Execution accuracy of recently 
developed systems on the challenging Spider benchmark 
dataset based encoder-Decoder architecture 

From the recall (87,8%) and precision 
(82,8%) rates obtained, we can see that our system 
has achieved satisfactory results. Thus, the 
Accuracy rate obtained is about 89%, which 
confirms the performance and efficiency of our 
system. 

6. CONCLUSION AND FUTUTRE WORK 

This research paper explores a comprehensive 
study of a generic natural language query interface 
for a database, employing Deep Learning 
techniques to handle lengthy and complex SQL 
queries. Natural Language Interface to Databases 
(NLIDB) represents a dynamic field in automatic 
language processing, aiming to comprehend 
requests articulated in natural languages commonly 
used by non-technical users and generate 
corresponding responses. Functioning as a human-
machine interface, our system facilitates user query 
input through a dictionary or voice interaction. The 
system promptly provides suitable answers, 
accompanied by relevant error messages in case of 
failure. 

Experimental results indicate the system's 
satisfactory performance, delivering reasonable and 
accurate responses across various types of natural 
language queries, including those in different 
languages, queries involving joins, complex 
structures, and lengthy queries. The achieved 
accuracy rate stands at approximately 89%, 
affirming the effectiveness and efficiency of our 
system. An innovative aspect of our approach 
involves enhancing human-computer interaction by 
allowing the system to seek clarification when 
faced with queries it cannot translate accurately. 
Looking ahead, our future work aims to further 
develop a mobile application, ensuring simplicity 
for users of all types. With a single click, users can 
receive direct answers to their queries on their 
smartphones [22].  

Total number of test questions 350 

Number of queries providing correct 
answers 

290 

Number of queries providing incorrect 
answers 

60 

Number of queries generated by our 
system 

330 

Precision 82,8% 

Recall 87,8% 

Accuracy 89% 
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