
 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5052

CHAT-SQL: NATURAL LANGUAGE TEXT TO SQL
QUERIES BASED ON DEEP LEARNING TECHNIQUES

MAJHADI Khadija1, MACHKOUR Mustapha2

1,2Team of Engineering of Information System Agadir, Morocco
E-mail: 1khadija.majhadi@gmail.com, 2 m.machkour@uiz.ac.ma

ABSTRACT

The conversion of a text to a Structured Query Language (SQL) is a complex process that faces multiple challenges and
a variety of problems. This is because the extraction of information stored in these databases requires the use of queries
expressed in terms of a database query language, such as SQL. In addition, the Natural Language Interface to Database
(NLIDB) is one of the most traditional applications of the NLP field that enables end-users to easily fetch data from
databases. Recently, it has gained widespread attention, mainly because of the current success of Deep Learning
techniques. The dominant NLIDB systems use the sequence-to-sequence approach. It is based on Long Short-Term
Memory (LSTM) networks that include an encoder and a decoder method. In this article, we will tackle first the recent
encoder/decoder approaches and analyze their pros and cons. Then, we will conduct an introductory summary of our
suggested model for the NL to SQL problem. Namely, how this model can outperform the already existing solutions to
enable it to manage the complex Natural Language questions-to-SQL generation queries in different contexts and
cross-domain datasets. For this purpose, our work in this context will be focusing on facilitating access to the
information stored in a database, by constructing a model that takes as input the natural language questions
and translates them automatically to a structured language query. As a result, this model will offer a large
number of database users simple and unlimited access to data with no need to learn any Database Query
Language.

Keywords: Natural Language Processing (NLP), Machine Learning (ML), Deep Learning (DL), Natural

Language Interface to Database (NLIDB), Long Short-Term Memory (LSTM), Structured Query
Language (SQL).

1 INTRODUCTION

Natural Language Processing (NLP) is one of the
most challenging areas of research in Artificial
Intelligence (AI) that focuses on designing and
developing computer systems that can analyze,
understand, and synthesize natural human
languages [1]. It is used in Human-Computer
interaction for information retrieval, machine
translation, and linguistic analysis. Today, NLP is
present in many everyday applications and more
particularly in the area of information extraction
such as database querying.

Nowadays, databases represent an essential
source of information for all its users, experts or
non-experts. However, to get access to this
information, it is necessary to use a query language
like Structured Query language (SQL). In this
context, the end-users who do not know the
structure of a database or the syntax used to interact
with it will not be able to extract data from these
databases. One solution to this problem is to
provide an interface to query the database in
Natural Language that can take questions or queries

from users in natural language, transform it to a
formal language like SQL, then execute the
generated SQL query, and show the desired result
to the end-users [2]. Natural Language Interface to
SQL is an appealing area of research that appeared
in the late 1960s and early 1970s [3]. It is an
intermediate layer between the Relational Database
Management System (RDBMS) and the end-user
that overcomes the communication gap between
them. The NLIDB system is an intelligent and
flexible tool since it is simple to use, and allows the
users to use NL sentences to retrieve information
from a database without using any intermediate
language. Also in that context, we have Text-to-
SQL which is the task of generating SQL queries
from natural language questions

In the rest of this article, section 2 represents
the literature review. Section 3 describes the
challenges of natural language text to SQL
problem. Section 4 illustrates different approaches
and datasets that have been used for translating
natural language questions to corresponding SQL
queries. Section 5 shows the overview and the
simulation results of our proposed approach. Then,

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5053

an evaluation is presented for the approval of the
contribution. Finally, the conclusion provides a
summary of the work done and some perspectives
arising from this study.

2 RELATED WORKS

 Numerous research efforts have been dedicated
to the field of Natural Language Processing (NLP),
and one of its significant achievements is the
development of Natural Language Interface to
Database (NLIDB) systems. The success observed
in this domain is attributed to both the practical
benefits derived from NLIDB systems and the
effective functioning of NLP within single-database
domains. Generally, databases often operate within
sufficiently limited domains, enabling the
successful resolution of ambiguity issues in Natural
Language (NL).
The earliest research initiatives in this area date
back to the 1960s, with the creation of several
systems since that time. Notably, BASEBALL and
LUNAR, introduced in the late sixties, marked the
inception of operational NLIDB systems. The
BASEBALL system was specifically designed to
address inquiries related to baseball games, while
LUNAR focused on the chemical analysis of moon
rocks, utilizing an Augmented Transition Network.
However, these systems were non-reconfigurable,
tailored for specific domains, and lacked ease of
modification for interfacing with different
databases.
In the late 1970s, various research prototypes were
developed, including LIFER/LADDER (1978),
designed to provide information about US Navy
ships and acknowledged as one of the initial
effective NLIDB systems. Employing semantic
grammar techniques encompassing both syntactic
and semantic processing, LIFER/LADDER
represented a significant advancement. However,
systems reliant on semantic grammar faced
challenges when applied to different application
domains, requiring the development of a distinct
grammar for each domain where LADDER was
employed. Another noteworthy system from the
1980s is CHAT-80 (1980), recognized as one of the
most referenced Natural Language Processing
(NLP) systems of that era. Implemented in Prolog,
CHAT-80 involved the conversion of English
queries into Prolog expressions, which were then
assessed against the Prolog database. The code for
CHAT-80 was widely disseminated and served as
the basis for several experimental systems,
including MASQUE (Modular Answering System
for Queries). A modified version of MASQUE,
known as MASQUE/SQL, was developed. This

system translates the NL query into an intermediate
logic representation and subsequently translates the
logic query into SQL. However, it has some
shortcomings; in cases of SQL query failure, the
system does not pinpoint the specific part of the
query responsible for the failure. Additionally, it is
domain-dependent and requires configuration for
use in other knowledge domains.
 In recent times, several Natural Language
interface to database systems have been developed,
including the PRECISE system (2004) and NALIX
(Natural Language Interface for an XML Database)
(2006). The PRECISE system, originating from the
University of Washington, stands out as an
exemplary instance of approaches pertinent to the
design of NLDBIs that are independent of specific
databases. Through the integration of state-of-the-
art statistical parsers and a novel concept of
semantic tractability, PRECISE emerges as a highly
reconfigurable system, demonstrating impressive
performance in handling semantically tractable
queries. However, the system encounters challenges
in dealing with nested structures. On the other
hand, NALIX, developed at the University of
Michigan, represents the first generic interactive
natural language query interface to an XML
database (extensible markup language). NALIX
employs a three-phase process for transformation:
generating a Parse tree, validating the parse tree,
and translating the parse tree into an XQuery
expression. Consequently, NALIX can be
categorized as a syntax-based system. The system
utilizes Schema-Free XQuery as its database query
language, offering the advantage of not requiring an
exact mapping of a query to the database schema,
as it can automatically identify all relevant relations
based on specific keywords.
The previous models address the challenge as a
semantic parsing task in natural language
processing (NLP) for translating text to SQL,
utilizing illustrated datasets. Some of these models
incorporate linguistic techniques or heuristics to
improve the quality of generated queries or reduce
the output space.
Seq2sql [13] was one of the early works
introducing a sequence-to-sequence structure for
translating text to SQL using reinforcement
learning [4]. It achieved a 60% execution accuracy
on the WIKISQL dataset. SQLNet, another model,
employs a column attention mechanism to highlight
relevant parts of user questions concerning database
columns, using the WIKISQL dataset. This model
consists of several sub-modules, each responsible
for predicting a single token, not a sequence.

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5054

PHOTON [5] is a robust cross-domain text-to-SQL
system comprising a powerful neural semantic
parser, a human-in-the-loop question corrector
suggesting possible corrections, an SQL query
executor, and a natural language response
generator. The Information-Extraction-to-SQL (IE-
SQL) [6] approach involves two models: a BERT-
based extraction model to identify slots in the input
sentence and a BERT-based linker mapping
columns to the table schema for generating
executable SQL queries. M-SQL [7], utilizing pre-
trained BERT, consists of an encoder for Chinese
word vector representation, column representation,
and eight sub-models predicting the select and
where clauses of the SQL statement.
RAT-SQL [8] relies on relation-aware schema
encoding and linking for text-to-SQL parsers,
incorporating a self-attention mechanism for
schema encoding, linking, and feature
representation. SQLNet adopts a sketch-filling
approach, focusing the model on essential parts of
the query. RYANSQL (Recursively Yielding
Annotation Network for SQL) [9] is a neural
network approach applying sketch-based slot
fillings for complex text-to-SQL in cross-domain
databases.
ATHENA++ [10] exemplifies natural language
querying for complex nested SQL queries,
combining linguistic patterns from NL queries with
deep domain reasoning, using ontologies to capture
domain schema semantics on the FIBEN
benchmark dataset. The system architecture
includes a Translation Index, Domain Ontology,
Ontology to Database Mapping, and Query
Translator.
ValueNet [11] is an end-to-end text-to-SQL system,
aiming to use all available information from the
base data as input for the neural network
architecture. This new architecture extracts values
from user questions and predicts possible value
candidates not explicitly mentioned in the question.
 Finally, an extensive prior study of various
approaches for the Text-To-SQL domain provided
us with an obvious roadmap for this research [21].
Therefore, a trial to find an efficient solution for
converting a text to SQL, while implementing a
model for language representation that will only
need the use of a human Natural Language to
access databases easily, saving time and effort.

3 CHALLENGES OF NATURAL

LANGUAGE TEXT TO SQL PROBLEM

 The process of translating an NLQ to SQL
involves addressing challenges related to both
understanding the input NL query and constructing

the correct SQL query, ensuring syntactic and
semantic accuracy, based on the underlying
database schema. Figure 1 provides an example of a
text-to-SQL transformation. The objective is to
generate an equivalent SQL query that maintains
the intended meaning. This SQL query should be
valid for the specified DB and, upon execution,
yield results aligned with the user's intent.

Figure 1:Example of Natural Language Text-To-SQL

3.1 Natural Language challenges
 Ambiguity is a fundamental characteristic of
natural language, inherently permitting the creation
of expressions open to multiple interpretations.
Various types of ambiguity exist, and the most
prevalent ones are outlined below:
Lexical ambiguity, also known as polysemy, occurs
when a single word possesses multiple meanings.
For instance, the word "Paris" could refer to a city
or an individual.
Syntactic ambiguity arises when a sentence can be
interpreted in multiple ways based on its syntactic
structure. For example, the question "Find all
France movie directors" could be parsed as either
"directors who have directed France movies" or
"directors from France who have directed any
movie."
Semantic ambiguity occurs when a sentence has
multiple interpretations at the semantic level.
Context-dependent ambiguity involves a term
having varying meanings depending on factors such
as the query context, the data domain, and the user's
objectives. Notably, terms like "top" and "best"
exemplify this phenomenon. Consider the query
context: for the question "Who was the best runner
of the marathon?" within the context of completing
the race faster (min operation), the answer should
reflect the speed.
Examining the domain, in a movie database, the
query "Return the top movie" might imply ranking
based on the number of collected ratings.
Conversely, in a football database, for the query
"Return the top scorer," the term "top" is associated
with the number of goals scored. Moreover,

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5055

depending on the user, the query "Return the top
product" would yield different results. For a
business analyst, it should return the most
profitable products, whereas for a consumer, it
should return the top-rated products.
In natural language, two sentences can convey the
same meaning while being phrased in entirely
different ways. For example, the sentences "How
many people live in Moroco?" and "What is the
population of Moroco?" have equivalent meanings
and can be translated into the same SQL query.
However, the second sentence may be more
straightforward for a system because it is likely that
a "population" attribute exists in the database
schema, allowing for a higher confidence in
inferring the user's intent. Paraphrasing also
involves synonymy, where multiple words, such as
"movies" and "films," share the same meaning.
Inference involves the recognition that a query may
lack essential information for a system to fully
comprehend it. The system must deduce the
missing details based on the provided context.
Elliptical queries are sentences where one or more
words are omitted, yet they remain understandable
within the sentence's context. Follow-up questions
are a common aspect of human conversations. After
asking a question and receiving an answer, a
follow-up question is posed with the assumption
that the context of the initial question is understood.
For instance, "Q: Which is the capital of Morocco?
A: Rabat. Q: What about Indounisia?" Without the
first question, the second one may seem
nonsensical, but within the query context, it
becomes evident that it is inquiring about the
capital city of Morocco.
User mistakes, such as spelling errors or syntactical
and grammatical errors, further complicate the
translation problem.

3.2 SQL challenges
 SQL syntax is characterized by its strict rules,
resulting in limited expressivity compared to
natural language. Certain queries are
straightforward to articulate in natural language but
may translate into complex SQL queries.
Additionally, while a sentence in natural language
may be comprehensible despite containing some
mistakes, SQL is less forgiving. An SQL query
derived from a natural language query must be both
syntactically and semantically correct to be
executable over the underlying data [15,17].
Database Structure: The user's conceptual model of
the data, including entities, their attributes, and
relationships described in the data, may not align
with the database schema, leading to various

challenges. The vocabulary gap represents
disparities between the terms employed by the user
and those utilized in the database [18].
Schema ambiguity arises when a portion of the
query may correspond to more than one element in
the database. Implicit join operations occur when
segments of a query are translated into joins across
multiple relations. Also, entity modeling presents
the challenge where a set of entities may be
modeled differently, such as distinct tables or rows
(or values) within a single table.

4 ANALYSIS

4.1 Existing datasets
To develop a neural text-to-SQL system, it's

crucial to take into account the datasets available
for training and evaluation. Additionally, the
evaluation methodology plays a significant role in
testing and comparing the system's performance to
other models. A text-to-SQL dataset, or benchmark,
encompasses a collection of natural language (NL)
and SQL query pairs defined over one or more
databases. Various datasets have been released for
either training or evaluating models that translate
natural language questions into corresponding SQL
queries. These datasets exhibit differences in terms
of the number and types of queries they include.
Here are some of the most commonly utilized ones:
WikiSQL: The most widely used and extensive
benchmark dataset, WikiSQL is a mono table
dataset comprising 26,531 tables and 80,654 pairs
associated with a given single table. It does not
support joins and nested queries, making it suitable
for evaluating simple models with only one column
in the SELECT clause and one table in the FROM
clause. Tables are extracted from HTML tables on
Wikipedia. Each SQL query is automatically
generated for a given table under the constraint that
it produces a non-empty result set. NL queries are
generated using templates and paraphrased through
Amazon Mechanical Turk.
ATIS: [14] Primarily used for semantic parsing,
ATIS focuses on flight booking and includes a
database of 25 tables and 5,410 query pairs. Most
questions can be answered with a single relational
query, but the dataset lacks grouping or ordering
queries.
GeoQuery: Comprising seven tables in the US
geography database, GeoQuery consists of 880
query pairs, including 256 nested SQL queries.
Unlike WikiSQL, all queries in ATIS and
GeoQuery are specific to a single domain, with
both benchmark databases featuring various

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5056

queries, including join and nested queries.
MAS (Microsoft Academic Search): Similar to
ATIS and GeoQuery, MAS focuses on social
academics. It comprises a database of 17 tables and
196 query pairs, featuring various SQL queries that
include join, grouping, and nested queries.
Spider [16] is a large-scale cross-domain NL2SQL
benchmark dataset with 200 databases spanning
138 different domains and 10,181 query pairs
distributed across training, development, and test
sets. Spider addresses perceived limitations in
existing benchmarks, offering a more diverse range
of queries, including join and nested queries.

We can classify these datasets into two types:
one that comprises queries with limited structures,
like the WikiSQL dataset, and SQL databases like
GEOQuery, MAS (academia), YELP, ATIS, and
Spider. These databases are publicly available and
contain real data accumulated over the years.
Recent studies often evaluate their models on the
Spider dataset, which is a compilation of various
databases such as restaurants, geography, and
academia. However, only 10% of the pairs in the
training set originate from the aforementioned
databases (approximately 1,659 queries). The
remaining queries (about 7,000) are from unknown
databases, defined by the creators of Spider,
diminishing its credibility as a dataset for the text-
to-SQL task. With just 10,181 question/SQL query
pairs in the development, training, and test sets
combined, Spider is insufficient for assessing the
integrity, reliability, and relevance of any model.
Despite Spider offering a diversified range of query
difficulties, including easy, medium, hard, and
extra hard, encompassing nested queries, the
presence of the GROUP BY command, as well as
keywords like UNION and EXCEPT, the limited
number of queries poses a challenge in accurately
evaluating a model. Additionally, the dataset is
unbalanced, with only 8.2% of samples containing
nested queries and a mere 3.8% including
HAVING/GROUP BY commands.

4.2 Existing approaches
Syntactic parsing: Syntactic parsing represents a
category of solutions that relies on syntactic
linguistic techniques. In this class of solutions, a
predominant approach is the utilization of guided
(strict) grammar for user input. Models based on
strict grammar typically necessitate users to adhere
to a specific word order when entering a sentence
into the system; otherwise, the sentence may go
unrecognized and consequently not be translated.

Alternatively, there is the option of employing free
grammar, which enhances the models' flexibility to
various sentence structures but can impact the
quality of the outputs. These solutions are often
deemed less intelligent, requiring extensive hand-
engineering techniques to deduce the relevant parts
in the input sentence for accurate conversion to
SQL.
The syntactic parsing approaches have in general
some common steps. They start by defining the
grammatical categories of the input sentence to
identify the nature of each word. This means the
extraction of the part of speech as shown in the
example bellow:

Figure 2: Part of speech tagging

 In this example, the tokens within the sentence
"find the paragraphs that deal with management"
consist of a verb, an article (a determiner), a noun, a
pronoun, a verb, a preposition, and finally, a noun.
This breakdown is crucial for models that rely on
syntactic parsing, as these tags play a vital role in
constructing the syntax tree, facilitating the
identification of dependencies among words in the
question. The application of context-free grammar
allows for the creation of the syntax tree. It's worth
noting that these rules are not specifically tailored
to the Text-to-SQL task and can be employed for
other syntactic parsing purposes. Figure 3 illustrates
the established tree resulting from the part-of-
speech tagging step.

Figure 3: Syntax tree of the sentence in the example

The tree undergoes additional processing to be
transformed into an intermediate representation.
Various treatments may be applied in this step, such
as employing morphological analysis to gather
valuable information about each token or
transforming the tree into a transitional
representation to bring the initial question closer to
the target query. Numerous intermediate forms

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5057

have been utilized in the studies under examination,
with XML being a notable example.

Semantic parsing: Many models rely on deep
learning as a primary method for predicting the
correct elements in the target query. Often adopting
a free grammar style, these models are regarded as
end-to-end solutions that eliminate the need for
manual engineering. In the majority of cases, these
models only require an annotated dataset for
training. They can be directly trained on a corpus of
pairs (Question/Target Query) without the need for
interactivity or feedback messages from the system.
This is accomplished by employing a sequence-to-
sequence decoding approach to generate SQL
queries.
For translating a source sentence into a target
sentence, the sequence-to-sequence model
(Seq2Seq) [12] uses an approach that consists of an
encoder and a decoder, which is implemented by an
RNN or an LSTM [19]. The encoder takes a source
sentence (input data) and reads it via a fixed-size
context vector, while the decoder takes the context
vector C and generates a target sentence. Recurrent
neural networks (RNNs) use an input sequence of
vectors [x1x2 . . . xτ] of length τ as well as an
initially hidden state h0 and generate a sequence of
hidden states [h1,h2 . . . hτ]. The sequence of
output vectors [y1,y2 . . . yτ]. Specifically, ht at
time step t is calculated by:

 ht = f theta (xt, ht−1) (1)

Where f theta is a function with a parameter θ, that
is generally referred to as an RNN cell.
If an RNN cell is implemented as just a fully
connected layer with an activation function, it will
not efficiently accumulate information from
previous time steps in its hidden state of the RNN.
Such a basic RNN would not effectively handle
long sequences and face the notorious vanishing
and exploding gradient problem. To avoid and
namely solve the problem, it is suggested to
function the long short-term memory (LSTM),
gated recurrent units (GRUs), or residual networks
(ResNets). For Instance, an LSTM cell maintains an
additional cell state ct that saves information over
time and three gates so that it can regulate the flow
of information into the cell or out of it. That is to
say, ht and ct are computed using the gates from
ct−1, ht−1, and xt.
The general process in the Seq2seq approach is
made by breaking down the input sentence each
time into tokens that are used to generate the SQL
query. Each token concerns a part of the SQL
syntax: SELECT, AGGREGATION, From, where,

etc. The output token from the previous LSTM
layer is fed as the input token to the next layer
operation until the token <END> is generated as
shown in figure.4.

Figure 4: Seq2seq General process

4.3 Evaluation
 The first existing NLIDB models that are based
on the use of shallow and end-to-end approaches
have shown very limited and low-quality results
and the majority of them fail when they are tested
with new datasets or new schemas that haven’t
been seen in the training and the development
collections. But, the most current NLIDB systems
that used Deep Learning techniques [20] to
translate Natural Language queries to SQL
achieved encouraging results on the challenging
Spider benchmark dataset-based encoder-decoder
architecture as shown in Table1.

Table 1: Execution accuracy of recently developed
systems on the challenging Spider benchmark dataset

based encoder-Decoder architecture.

Model

Dataset

Accuracy (%)

Dev

Test

RAT-SQL

Spider

62,7

57,2

Bertrand-DR

Spider

57,9

54,6

M-SQL

TableQA

91,86

92,1

3

Photon

Spider

63,2

IE-SQL

WikiSQL

94,2

Athena++

Spider

78,82

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5058

5. PROPOSED MODEL

5.1 Overview

 We suggest an approach based on two phases: The
first one consists of ensuring the pre-processing of
Natural Language input, while the second one is
devoted to the translation of this question into a
structured format, namely the SQL query. Our tool
allows users to easily access the data using natural
language as a means of communication. In this
study, we are interested in data collected from the
SPIDER database (introduced in section 3 part 1).
The pre-processing phase is triggered once a user
enters a question. The system exploits Deep
Learning techniques once the question is processed,
to translate this question into a SQL query.

 Figure 5: CHAT-SQL General process

Natural language understanding The NLU

unit's responsibility lies in converting user
utterances into a predetermined semantic
framework based on the system's conventions. This
involves tasks such as slot filling and intent
detection, where the aim is to render the input
understandable for the system. For instance, the
intent could range from a simple greeting like
"Hello" or "Hi" to an informative statement such as
"I like Indian food," where the user provides
additional details. The slots, which can vary widely
based on the context, might include entities like
actor names, prices, start times, or destination
cities.

This interplay between intents and slots
underscores the closed-domain nature of the
Chatbot. The process of slot filling and intent
detection is often framed as a sequence tagging
problem. Hence, the NLU component is commonly

built using an LSTM-based recurrent neural
network augmented with a Conditional Random
Field (CRF) layer. One prevalent model in this
domain employs a sequence-to-sequence
architecture leveraging bidirectional LSTM
networks to simultaneously fill slots and predict
intent. Conversely, an attention-based RNN
accomplishes the same task with a different
architectural approach.

Natural Language Generation (NLG) involves
the creation of text from a given meaning
representation, essentially serving as the inverse of
natural language understanding. NLG systems play
a crucial role in tasks like text summarization,
machine translation, and dialog systems. In NLG,
the system formulates a response in the form of a
semantic frame, which is then translated into a
natural language sentence understandable to the end
user.

NLG components can take the form of rule-
based or model-based systems, and sometimes a
hybrid of both. Rule-based NLG generates
predefined template sentences based on a given
semantic frame, but they are often limited in their
adaptability and lack generalization power. While
general-purpose rule-based generation systems
exist, they can be challenging to tailor to specific,
task-oriented applications due to their broad
applicability. In contrast, machine learning-based
NLG systems, which are more prevalent in modern
dialog systems, leverage various input sources such
as a content plan representing the intended
message, a knowledge base providing domain-
specific entities, a user model imposing constraints
on output utterances, dialog history to avoid
repetition, and referring expressions, among others.
These trainable NLG systems offer greater
flexibility and adaptability compared to rule-based
approaches. Our System CHAT-SQL provides
users with the ability to ask questions directly in the
chat interface with the system in writing or
verbally; as our system can interpret and translate
the audio voices into text and then respond to the
requests submitted. Once the question is valid, the
system provides the answers in the form of a
written or spoken SQL query as shown in figure 5.
It is important to mention that our system responds
to different types of simple or composed queries.

 Interactivity hasn’t been adopted deeply in
the previously proposed systems; however, the
interactivity between the user and the system can
take different forms, including initial questions to
the user, feedback questions, error corrections, etc.
One of the solutions is asking a sequence of
questions to better understand the need and the

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5059

wanted query. This might be at different stages and
it can be mixed with other techniques. The system
can ask for example about the column's name to be
included in the ‘Select’ clause or maybe the tables
to include in the ‘From’ one. It is a new direction
present in the feedback messages showing the

corrections and suggestions to guide and limit
the space of outputs to predict the right and
correspond answer to their requests.

5.2 Evaluation

To evaluate the performance of our system in
translating a natural language question into a
structured query, namely a SQL query, we propose
to use two well-known measures: recall and
precision. We propose to evaluate whether the
generated SQL queries are an accurate
representation of the proposed question. Therefore,
we provided several test questions to the system
after the training. When a user enters a question, the
system can provide either correct answers, or
queries that provide incorrect answers due to a
mistranslation of the question into SQL, or the
system cannot fully ensure the translation of the
question into an SQL query. Our system considers
different types of queries even the most complex
ones. In this context, the two measures of recall and
precision can be defined as follows:

 The recall can be described as the number of
queries providing correct answers, related to the
number of generated SQL queries.

 The precision represents the number of
generated queries providing correct answers,
relative to the total number of suggested questions.

 In the same context, we adopted an additional
measure used to evaluate the effectiveness of the
system called Accuracy. The accuracy focuses on
the predictive capability of a model in the set of
experimental samples.

 Based on these measures, a set of test questions
formulated in natural language (350 questions) was
proposed. The generated queries are checked, and
then we find different types of answers are returned
when executing these queries. The results are given
in the following table:

.

Table 2: Execution accuracy of recently
developed systems on the challenging Spider benchmark
dataset based encoder-Decoder architecture

From the recall (87,8%) and precision
(82,8%) rates obtained, we can see that our system
has achieved satisfactory results. Thus, the
Accuracy rate obtained is about 89%, which
confirms the performance and efficiency of our
system.

6. CONCLUSION AND FUTUTRE WORK

This research paper explores a comprehensive
study of a generic natural language query interface
for a database, employing Deep Learning
techniques to handle lengthy and complex SQL
queries. Natural Language Interface to Databases
(NLIDB) represents a dynamic field in automatic
language processing, aiming to comprehend
requests articulated in natural languages commonly
used by non-technical users and generate
corresponding responses. Functioning as a human-
machine interface, our system facilitates user query
input through a dictionary or voice interaction. The
system promptly provides suitable answers,
accompanied by relevant error messages in case of
failure.

Experimental results indicate the system's
satisfactory performance, delivering reasonable and
accurate responses across various types of natural
language queries, including those in different
languages, queries involving joins, complex
structures, and lengthy queries. The achieved
accuracy rate stands at approximately 89%,
affirming the effectiveness and efficiency of our
system. An innovative aspect of our approach
involves enhancing human-computer interaction by
allowing the system to seek clarification when
faced with queries it cannot translate accurately.
Looking ahead, our future work aims to further
develop a mobile application, ensuring simplicity
for users of all types. With a single click, users can
receive direct answers to their queries on their
smartphones [22].

Total number of test questions 350

Number of queries providing correct
answers

290

Number of queries providing incorrect
answers

60

Number of queries generated by our
system

330

Precision 82,8%

Recall 87,8%

Accuracy 89%

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5060

REFERENCES:
[1] Author [1] GMay N. Ranjan, K. Mundada, K.

Phaltane, and S. Ahmad, “A Survey on
Techniques in NLP,” Int. J. Comput. Appl., vol.
134, no. 8, pp. 6–9, (2016).

[2] E. U. Reshma and P. C. Remya, “A review of
different approaches in natural language
interfaces to databases,” in Proceedings of the
International Conference on Intelligent
Sustainable Systems, ICISS 2017, (2018).

[3] K.Majhadi and M.Mustapha. The history and
recent advances of Natural Language Interfaces
for Databases Querying, E3S Web of
Conferences 229, 01039 (2021), The 3rd
International Conference of Computer Science
and Renewable Energies.

[4] Victor Zhong, CaimingXiong, Richard Socher,
Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement
Learning (2017).

[5] JichuanZeng, Xi Victoria Lin, CaimingXiong,
Richard Socher, Michael R. Lyu, Irwin King,
Steven C.H. Hoi. Photon: A Robust Cross-
Domain Text-to-SQL System. The 58th Annual
Meeting of the Association for Computational
Linguistics, 2020.

[6] IE-SQL: Text-to-SQL as Information
Extraction. (2020) Association for Computing
Machinery.

[7] X. Zhang, F. Yin, G. Ma, B. Ge and W. Xiao,
"M-SQL: Multi-Task Representation Learning
for Single-Table Text2sql Generation," in IEEE
Access, vol. 8, pp. 43156-43167, (2020), doi:
10.1109/ACCESS.2020.2977613.

[8] Bailin Wang, Richard Shin, Xiaodong Liu,
OleksandrPolozov, Matthew Richardson. RAT-
SQL: Relation-Aware Schema Encoding and
Linking for Text-to-SQL Parsers. Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7567–
7578, July 5 - 10, (2020).

[9] DongHyun Choi, MyeongCheol Shin,
EungGyun Kim, Dong Ryeol Shin. RYANSQL:
Recursively Applying Sketch-based Slot
Fillings for Complex Text-to-SQL in Cross-
Domain Databases. (2020) Computation and
Language (cs.CL).

[10] JaydeepSen, Chuan Lei, Abdul Quamar, Fatma
Ozcan2, VasilisEfthymiou, AyushiDalmia,
Greg Stager, Ashish Mittal, DiptikalyanSaha,
and KarthikSankaranarayanan. ATHENA++:
natural language querying for complex nested
SQL queries. (2020) proceedings of the VLDB
Endowment, Vol. 13, No. 11, ISSN 2150-8097.

[11] Ursin Brunner, Kurt Stockinger. ValueNet: A
Neural Text-to-SQL Architecture Incorporating
Values. (2020) proceedings of the VLDB
Endowment.

[12] K. Ahkouk, M. Machkour, K. Majhadi, R.
Mama, SEQ2SEQ VS SKETCH FILLING
STRUCTURE FOR NATURAL LANGUAGE
TO SQL TRANSLATION. 5th International
Conference on Smart City Applications, 7–8
October 2020.

[13] V. Zhong, C. Xiong, and R. Socher. Seq2sql:
Generating structured queries from natural
language using reinforcement learning. CoRR,
abs/1709.00103, 2017.

[14] P. J. Price. Evaluation of spoken language
systems: the ATIS domain. In DARPA Speech
and Natural Language Workshop, pages 91–95,
1990.

[15] J. M. Zelle and R. J. Mooney. Learning to parse

database queries using inductive logic
programming. In AAAI, pages 1050–1055,
1996.

[16] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D.
Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z.
Zhang, and D. R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
EMNLP, pages 3911–3921, 2018.

[17] Hyeonji Kim, Byeong-Hoon So, Wook-Shin
Han, Hongrae Lee. Natural language to SQL:
Where are we today? Proceedings of the VLDB
Endowment, Vol. 13, No. 10 ISSN 2150-8097.

[18] Karam.A, Mustapha.M, Mourad.E, Brahim.E,
Jilali.A, « Comparative study of existing
approaches on the Task of Natural Language to
Database Language », ICCSRE, p 1-6. (2019).

[19] X. Zhang, M. H. Chen and Y. Qin, "NLP-QA
Framework Based on LSTM-RNN, 2nd
International Conference on Data Science and
Business Analytics (ICDSBA), 2018, pp. 307-
311, doi: 10.1109/ICDSBA.2018.00065.

[20] Abbas, S., Khan, M.U., Lee, S.U.-J., Abbas, A.,
Bashir, A.K.: A review of nlidb with deep
learning: findings, challenges and open issues.
IEEE Access. 10, 14927–14945 (2022).

[21] Deng, N., Chen, Y., Zhang, Y.: Recent
advances in text-to-SQL: a survey of what we
have and what we expect. In: Proceedings of the
29th International Conference on
Computational Linguistics, pp. 2166–2187.
International Committee on Computational

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5061

Linguistics, Gyeongju, Republic of Korea
(2022).

[22] P. Parikh et al., "Auto-Query - A simple natural
language to SQL query generator for an e-
learning platform," IEEE Global Engineering
Education Conference (EDUCON), Tunis,
Tunisia, 2022, pp. 936-940, doi:
10.1109/EDUCON52537.2022.9766617,
(2022).

