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ABSTRACT 

 
Cancer of the lung develops from cells within the lung, most commonly in the cells that line the airways 
(epithelial cells). Tobacco use is a major contributor to this cancer, which ranks high among the world's 
most deadly diseases. Exposure to environmental contaminants or a hereditary predisposition can also cause 
lung cancer in nonsmokers. Since early-stage lung cancer is often asymptomatic, diagnosis is often delayed 
until the disease has progressed significantly, leaving patients with few treatment options. The Probabilistic 
Fuzzy Ranking Classification (PFRC) model is presented in this paper as a new method for identifying and 
categorizing lung cancer from medical imaging data. The model integrates probabilistic and fuzzy ranking 
techniques to address the inherent complexity and uncertainty in medical images. Simulation results 
demonstrate the PFRC model's efficacy in accurately classifying instances within a comprehensive dataset, 
showcasing its robust learning capabilities. The model's configuration includes Gaussian distribution 
likelihoods, uniform distribution priors, and triangular membership functions for fuzzy logic parameters. 
With a dataset of 800 instances for training and 200 for testing, the PFRC model employs 15 extracted 
features for a nuanced representation of input variables. Instances of classification, feature estimation, and 
classification metrics such as accuracy, precision, recall, and F1 Score collectively highlight the model's 
strengths and areas for refinement. This research contributes to the advancement of lung cancer detection 
methodologies, emphasizing the PFRC model's potential as a reliable tool for improving diagnostic 
accuracy in medical imaging. 
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1. INTRODUCTION  
 
              Lung cancer is the most common cancer-
related killer globally, but there have been great 
advances in our ability to understand, diagnose, and 
treat this disease in recent years [1]. Thanks to 
developments in medical science and technology, 
early detection methods have been enhanced, 
enabling the earlier and more treatable detection of 
lung cancer. More tailored and effective methods 
for treating specific subtypes of lung cancer have 
recently been made possible by targeted therapies 
and immunotherapies [2]. Additionally, the 
development of less invasive surgical techniques 
and innovative radiation therapies has enhanced 
treatment outcomes while minimizing the impact on 

patients' quality of life [3]. Despite these positive 
developments, challenges remain, such as the 
prevalence of smoking and exposure to 
environmental carcinogens, underscoring the 
importance of continued efforts in prevention and 
public health initiatives [4]. Collaborative research, 
increased awareness, and ongoing advancements in 
medical science hold the promise of further 
improving the prognosis and overall survival rates 
for individuals affected by lung cancer in the years 
to come [5]. 

              The subject of image processing is ever-
evolving and multidisciplinary, encompassing the 
study of how to improve the visual quality or 
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extract useful information from digital images [6]. 
In recent years, advancements in image processing 
techniques have significantly impacted various 
industries, ranging from healthcare and surveillance 
to entertainment and manufacturing [7]. One key 
area of focus is medical imaging, where 
sophisticated algorithms and machine learning 
models are employed to aid in the early detection 
and diagnosis of diseases, such as tumors in 
radiological scans [8]. Autonomous vehicles, object 
detection, and face recognition are just a few 
examples of the many computer vision applications 
that rely on image processing to convey meaning 
from visual data [9]. Additionally, in the realm of 
photography and entertainment, image processing 
algorithms contribute to the enhancement of image 
quality, noise reduction, and the creation of artistic 
effects [10]. As technology continues to evolve, the 
future of image processing holds promise for even 
more advanced applications, driven by the synergy 
of artificial intelligence, computer vision, and 
innovative imaging technologies [11]. Image 
processing with segmentation has become a pivotal 
aspect in the diagnosis and treatment of lung 
cancer. This sophisticated approach involves the 
division of medical images, such as computed 
tomography (CT) scans of the lungs, into 
meaningful and distinct regions [12], facilitating a 
more detailed analysis of specific structures. In the 
context of lung cancer, segmentation techniques 
play a crucial role in identifying and delineating 
tumors or suspicious nodules from surrounding 
healthy tissue [13]. Automated segmentation 
algorithms, often powered by artificial intelligence 
and deep learning, enable precise localization of 
abnormalities, aiding radiologists in the early 
detection and characterization of lung cancer [14]. 
With employing image processing with 
segmentation, clinicians can accurately measure 
tumor size, assess growth patterns, and monitor 
changes over time. This not only contributes to a 
more precise diagnosis but also assists in treatment 
planning, as the segmented images provide valuable 
insights into the spatial extent of the cancerous 
regions [15]. Moreover, this technology allows for a 
more personalized approach to treatment, 
facilitating targeted therapies and interventions. The 
integration of image processing and segmentation in 
lung cancer diagnostics exemplifies the ongoing 
synergy between medical imaging and 
computational advancements. These methods have 
the potential to improve patient outcomes and the 
response to this difficult disease by making lung 
cancer diagnoses more efficient and accurate as 
science and technology advance. 

              Lung cancer classification has undergone a 
transformative shift with the integration of deep 
learning techniques into medical imaging analysis. 
One area where deep learning and CNNs in 
particular, have shown great promise is the 
automated classification of lung nodules and lesions 
from CT scans and other radiological images. These 
advanced algorithms can learn intricate patterns and 
features within the images, enabling accurate 
differentiation between malignant and benign 
lesions. One of the key advantages of deep learning 
in lung cancer classification is its ability to handle 
large datasets and extract hierarchical 
representations, capturing subtle variations that 
might be challenging for traditional image analysis 
methods. The deep neural networks can discern 
complex patterns associated with tumor 
characteristics, aiding in the identification of 
specific cancer types and stages. This method helps 
to decrease human error and interpretation 
variability while simultaneously improving the 
speed and efficiency of diagnosis. Moreover, deep 
learning models have the potential for continual 
improvement through continuous training on 
diverse datasets, staying abreast of evolving 
medical knowledge and diagnostic criteria. As deep 
learning applications in lung cancer classification 
mature, they hold promise for facilitating more 
timely and accurate diagnoses, thus paving the way 
for improved patient outcomes and personalized 
treatment strategies. The ongoing integration of 
artificial intelligence in healthcare underscores the 
potential for transformative changes in how we 
approach and manage lung cancer and other 
complex medical conditions. 
              The paper makes several significant 
contributions to the field of lung cancer detection 
and classification: 

1. Novel Model Integration: The introduction 
of the Probabilistic Fuzzy Ranking 
Classification (PFRC) model represents a 
novel integration of probabilistic and fuzzy 
ranking techniques. This innovative 
combination allows the model to 
effectively handle the inherent 
uncertainties and complexities associated 
with medical imaging data, providing a 
more nuanced approach to lung cancer 
detection. 

2. Flexible Framework: The PFRC model 
utilizes Gaussian distribution likelihoods, 
uniform distribution priors, and triangular 
membership functions for fuzzy logic 
parameters. This flexible framework 
enhances the model's adaptability and 
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allows it to cater to diverse characteristics 
within the medical imaging dataset, 
making it well-suited for a range of 
scenarios. 

3. Robust Learning Capabilities: The 
simulation results showcase the robust 
learning capabilities of the PFRC model. 
With a dataset comprising 800 instances 
for training and 200 for testing, the model 
demonstrates a commendable ability to 
accurately classify instances, indicating its 
potential for reliable performance in real-
world applications. 

4. Comprehensive Feature Representation: 
The PFRC model extracts 15 features for 
each instance, ensuring a comprehensive 
representation of input variables. This 
approach contributes to the model's ability 
to capture the intricacies of lung cancer 
characteristics, improving the overall 
accuracy of detection and classification. 

5. Quantitative Evaluation Metrics: The 
paper provides a detailed quantitative 
evaluation of the model's performance, 
including feature estimation metrics 
(RMSE, MSE, Mean Squared Value) and 
classification metrics (accuracy, precision, 
recall, F1 Score). These metrics offer a 
thorough assessment of the model's 
accuracy, precision-recall balance, and 
overall efficacy in lung cancer 
classification. 

6. Insights for Future Research: The findings 
and discussions in the paper offer valuable 
insights for future research directions. 
Identification of areas for potential 
improvement, such as instances with lower 
posterior probabilities, opens avenues for 
refining the PFRC model and advancing 
the state-of-the-art in lung cancer detection 
methodologies. 

               In summary, the paper's contributions lie 
in the development of an innovative PFRC model, 
its successful application to lung cancer detection, 
and the detailed quantitative evaluation that 
provides a foundation for further advancements in 
the field. 
2. LITERATURE SURVEY 
            To improve the precision and effectiveness 
of lung cancer diagnostics, researchers are utilizing 
a range of deep learning architectures, such as 
attention mechanisms, ensemble methods, and 
convolutional neural networks (CNNs). By 
combining a Deep Feature Fusion Model with 
Dung Beetle Optimization, Alamgeer and 

colleagues offer a fresh strategy for detecting lung 
cancer. Optimizing deep learning models for better 
lung cancer classification is a novel approach to 
improving model performance. The area of research 
into non-traditional ways to enhance the 
performance of automated detection systems is 
expanding, and this study adds to it. The ISANET 
system, developed by Xu et al., integrates 
Convolutional Neural Networks (CNNs) with 
attention mechanisms to detect and classify non-
small cell lung cancer [16]. The incorporation of 
attention mechanisms highlights an effort to 
enhance the model's ability to focus on critical 
features, potentially improving diagnostic accuracy. 
This study represents a contribution to the growing 
body of literature exploring advanced neural 
network architectures for lung cancer diagnostics. 
Dodia, Annappa, and Mahesh provide a 
comprehensive review of recent advancements in 
deep learning-based lung cancer detection [17]. 
This systematic review synthesizes existing 
literature, offering insights into the progress, 
challenges, and trends in the application of deep 
learning for lung cancer diagnostics. Review 
articles like these help researchers, practitioners, 
and policymakers keep up with the field's current 
status and find new research directions. 
              Naseer et al. focus on lung cancer 
detection by proposing a modified AlexNet 
architecture coupled with a Support Vector 
Machine [18]. This study contributes to the 
exploration of modifications to popular deep 
learning architectures to optimize their performance 
in the context of lung cancer diagnosis. The 
integration of Support Vector Machines suggests a 
hybrid approach, showcasing the interdisciplinary 
nature of research in this field. By combining deep 
learning methods with cloud computing resources, 
Kasinathan and Jayakumar show how to detect and 
classify lung tumor stages using a cloud-based 
approach [19]. This study reflects the increasing 
trend of leveraging cloud infrastructure to enhance 
the scalability and accessibility of deep learning 
models for medical image analysis, showcasing the 
potential for broader applications in healthcare. 
Quasar et al. investigate ensemble methods' 
potential for enhancing CT scan-based lung cancer 
detection and classification [20]. Ensemble 
methods involve combining multiple models to 
enhance overall performance. This study 
contributes to the ongoing exploration of 
sophisticated strategies to optimize the accuracy 
and reliability of automated lung cancer diagnostic 
systems, shedding light on the potential benefits of 
ensemble learning in medical imaging. Damayanti 
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and colleagues focus on lung cancer classification 
and introduce a methodology utilizing 
Convolutional Neural Networks (CNNs) and 
DenseNet architectures [21]. This research intends 
to improve the efficacy and precision of lung cancer 
categorization by making use of these deep learning 
models. The use of advanced architectures signifies 
the ongoing effort to explore the capabilities of 
deep learning in intricate medical image analysis 
tasks, particularly for precise disease classification. 
               An intelligent deep learning algorithm 
developed for the detection and classification of 
lung cancer is proposed by Reddy and Khanaa, who 
make a significant contribution to the field. The 
emphasis on intelligence suggests a focus on 
improving the decision-making capacity of the 
algorithm, potentially incorporating adaptive 
learning and optimization strategies [22]. This 
study aligns with the broader trend of tailoring deep 
learning approaches to meet the unique challenges 
posed by lung cancer diagnosis. Jara-Gavilanes and 
Robles-Bykbaev explore a classification approach 
for lung cancer detection that incorporates 
oversampling techniques [23] and Support Vector 
Machines (SVMs). The inclusion of oversampling 
indicates a commitment to addressing class 
imbalance, a common challenge in medical image 
datasets. This study underscores the significance of 
preprocessing techniques and the integration of 
traditional machine learning methods alongside 
deep learning for comprehensive lung cancer 
detection solutions. Saranya et al. present a study 
on lung cancer detection using SVM classification, 
showcasing a focused approach to leveraging 
traditional machine learning techniques [24]. The 
inclusion of this work in conference proceedings 
reflects the ongoing effort to disseminate research 
findings and foster collaboration in the broader 
scientific community, highlighting the 
interdisciplinary nature of advancements in lung 
cancer detection. 
              Nageswaran et al. contribute to the field by 
employing a holistic approach, combining machine 
learning and image processing for lung cancer 
classification and prediction [25]. This integrative 
methodology acknowledges the complementary 
strengths of both disciplines in extracting valuable 
information from medical images. The study aligns 
with the trend toward multidimensional analysis, 
reflecting the increasing recognition that a 
comprehensive approach can yield more robust 
diagnostic solutions. Machine learning-based lung 
cancer classification based on segmentation of lung 
nodules is the subject of a critical review by 
Shamas et al. This review consolidates knowledge 

from existing studies, emphasizing the significance 
of segmentation in the context of lung cancer 
diagnostics [26]. By synthesizing current research 
findings, the paper contributes to the collective 
understanding of the challenges and opportunities 
in utilizing machine learning for lung cancer 
classification. Ren and co-authors present a hybrid 
framework for lung cancer classification, 
suggesting an integrative approach that combines 
different methodologies. The term "hybrid" 
indicates a synergy of diverse techniques, 
potentially including both traditional machine 
learning and deep learning components. This study 
adds to the evolving landscape of hybrid 
frameworks, which aim to leverage the strengths of 
multiple approaches to enhance the overall 
effectiveness of lung cancer detection and 
classification. Venkatesh et al. introduce a lung 
cancer detection system based on neural networks 
and optimization techniques, emphasizing the 
integration of both elements for improved 
performance [27]. This study reflects a commitment 
to optimizing the performance of neural networks 
through the application of advanced optimization 
strategies. The use of optimization methods fits in 
with the larger movement toward making deep 
learning models better at medical image analysis in 
terms of efficiency and generalizability. 
              Sunnetci and Alkan contribute to lung 
cancer detection by proposing a methodology based 
on probabilistic majority voting and optimization 
techniques [28]. The inclusion of probabilistic 
majority voting suggests a focus on ensemble-based 
decision-making, highlighting the importance of 
combining multiple models for improved accuracy. 
This study aligns with the ongoing exploration of 
ensemble methods and their application in the 
context of lung cancer classification. Shandilya and 
Nayak contribute to the field with an analysis of 
lung cancer using deep neural networks [29]. This 
study, presented in conference proceedings, likely 
provides insights into the specific challenges and 
innovations discussed at the Second IEPCCT 2021. 
Conference contributions such as these contribute 
to the dissemination of research findings, fostering 
collaboration and knowledge exchange within the 
academic community. In their study, Bangare et al. 
zero in on the use of Convolutional Neural 
Networks (CNNs) for computer-assisted detection 
and classification of lung cancer. The inclusion of 
computer-aided systems emphasizes the 
collaborative role of artificial intelligence in 
assisting medical professionals [30]. This work is in 
line with the larger movement towards using deep 
learning for medical imaging automated decision 
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support systems, specifically in the field of lung 
cancer diagnosis. Using deep learning techniques, 
Wahab Sait presents a model for detecting lung 
cancer. The model's narrow focus implies 
investigating deep learning techniques for accurate 
lung cancer diagnosis [31]. This study adds to the 
expanding body of literature on using deep learning 
models to improve the efficiency and accuracy of 
lung cancer detection; it was published in Applied 
Sciences. Abd Al-Ameer et al. integrate deep 
learning with image processing to aid in the 
detection of lung cancer. This interdisciplinary 
approach recognizes the complementary roles of 
image processing and deep learning in extracting 
meaningful information from medical images [32]. 
The study likely explores novel methodologies to 
optimize the synergy between these two domains, 
aiming for more accurate and robust lung cancer 
detection. 
              The Swin Transformer is a deep learning 
model that was used in a study by Chen et al. to 
identify and categorize lung cancer cells [33]. The 
inclusion of transformer architectures indicates an 
exploration of newer deep learning paradigms 
beyond traditional CNNs. This study adds to the 
evolving landscape of deep learning applications in 
medical image analysis, specifically for the 
characterization of lung cancer cells. Bishnoi, Goel, 
and Tayal contribute to lung cancer classification 
with a focus on automated systems using machine 
learning [34]. This work likely explores the 
development of comprehensive systems capable of 
autonomous decision-making in the context of lung 
cancer diagnosis. Automated system-based 
approaches are critical for streamlining the 
diagnostic process and reducing reliance on manual 
intervention. The DFCV framework was introduced 
by Alsadoon et al. to assess the efficacy of deep 
learning for lung cancer early detection and 
classification. If we want deep learning models to 
be reliable and applicable in clinical settings, we 
need to build evaluation frameworks. It is believed 
that this work helps to lay the groundwork for 
standardized methods of evaluating deep learning 
models for lung cancer detection [35]. Innovative 
approaches primarily utilizing deep learning, image 
processing, and machine learning techniques 
proliferate in the reviewed literature, reflecting the 
dynamic landscape of lung cancer detection and 
classification. There is a continuous effort to 
improve the efficiency, accuracy, and automation of 
lung cancer diagnostics, and these studies add to 
that effort [36].  For many research projects, deep 
learning—specifically CNNs and other advanced 
architectures such as DenseNet, AlexNet, and Swin 

Transformer—is crucial. The utilization of deep 
learning models underscores their efficacy in 
extracting intricate patterns and features from 
medical images, ultimately aiding in precise lung 
cancer detection and classification. 
              Several studies advocate for hybrid 
frameworks, combining deep learning with 
traditional machine learning techniques, 
optimization strategies, and ensemble methods. 
This holistic approach aims to capitalize on the 
strengths of different methodologies, addressing 
challenges such as class imbalance, improving 
generalization, and enhancing overall model 
performance. The integration of diverse 
methodologies, including image processing, 
optimization techniques, cloud computing, and 
ensemble learning, highlights the interdisciplinary 
nature of lung cancer detection research. 
Researchers are increasingly recognizing the need 
for comprehensive solutions that draw on the 
strengths of various domains to address the 
complexity of medical image analysis. Some 
studies focus on specific architectures (e.g., 
Attention Mechanisms, Swin Transformer) or 
techniques (e.g., oversampling, probabilistic 
majority voting) to address unique challenges 
associated with lung cancer detection. This targeted 
exploration reflects a nuanced understanding of the 
intricacies involved in diagnosing lung cancer from 
medical images. The inclusion of systematic 
reviews and the development of evaluation 
frameworks (e.g., DFCV) highlight a meta-
analytical approach and a commitment to 
establishing standardized practices. These 
contributions are essential for synthesizing existing 
knowledge and ensuring robust methodologies for 
the assessment of deep learning models in the 
context of lung cancer diagnostics. The 
incorporation of cloud-based approaches 
underscores the increasing importance of scalable 
and accessible solutions. Cloud computing not only 
facilitates the storage and processing of large 
medical image datasets but also allows for 
collaborative and remote access to advanced 
computational resources. 
 
3. PROPOSED PROBABILISTIC FUZZY 
RANKING CLASSIFICATION (PFRC) 
 
              The Proposed Probabilistic Fuzzy Ranking 
Classification (PFRC) for lung cancer represents a 
novel and sophisticated approach in the domain of 
medical image analysis. In this innovative 
framework, the integration of probabilistic and 
fuzzy ranking techniques offers a unique solution 
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for the complex task of lung cancer classification. 
The probabilistic element acknowledges and 
quantifies uncertainties inherent in medical 
imaging, providing a more nuanced understanding 
of the diagnostic process. Simultaneously, the 
incorporation of fuzzy ranking introduces a level of 
flexibility and adaptability, allowing the 
classification model to accommodate imprecise or 
ambiguous information within medical images. 
PFRC's distinctive feature lies in its ability to 
assign probabilities to different classes, offering a 
more nuanced and probabilistic insight into the 
likelihood of a specific region being cancerous. By 
leveraging fuzzy ranking, the model can handle the 
inherent variability and subjectivity in medical 
imaging interpretations, contributing to a more 
robust and adaptable classification system. The 
proposed framework holds promise in not only 
improving the accuracy of lung cancer diagnosis 
but also in providing clinicians with a deeper 
understanding of the uncertainty associated with 
each classification, thereby supporting more 
informed decision-making in patient care. As 
research in this area progresses, the PFRC 
framework represents a noteworthy advancement in 
the quest for more reliable and interpretable models 
for lung cancer classification. Figure 1 illustrated 
the flow of the propsoed PFRC model in the lung 
cancer detection. 

 

Figure 1: Flow of Proposed PFRC 

              The integration of probabilistic and fuzzy 
ranking elements in classification involves 
leveraging probability estimates and fuzzy logic to 
create a comprehensive and adaptable model. Let 
P(Ci∣X) represent the probability of class Ci given 
input features X. To estimate this probability, 
sophisticated probabilistic models like Bayesian 
methods or probabilistic neural networks can be 

employed. The uncertainty inherent in the data can 
be effectively captured by incorporating confidence 
intervals or probability distributions. On the fuzzy 
side, the introduction of fuzzy ranking handles 
imprecision and uncertainty in class boundaries. 
Utilizing fuzzy logic, the degree of membership of 
a data point to different classes can be modeled 
through fuzzy rules that express the relationships 
between input features and class membership. The 
integration of probabilistic and fuzzy ranking 
involves combining the probabilistic estimates 
P(Ci∣X) with fuzzy ranking scores. This 
comprehensive approach may include weighting the 
probabilistic scores based on fuzzy membership 
degrees or utilizing fuzzy logic operators to 
effectively merge information from both sources. 
Such an integrated model provides a more nuanced 
and flexible classification system, especially 
suitable for complex tasks such as lung cancer 
diagnosis in medical image analysis. 

3.1 Dataset 

              The Cancer Imaging Archive (TCIA) is a 
valuable resource that hosts a vast collection of 
medical imaging data related to cancer research. 
There are a number of different types of imaging 
modalities represented in the datasets accessible on 
TCIA, including CT, MRI, PET, and pathology 
images. Lung cancer datasets encompass a 
spectrum of attributes vital for understanding the 
disease, patient characteristics, and treatment 
outcomes. Patient demographics, including age, 
gender, and ethnicity, form the foundational 
information, offering insights into the diverse 
population affected by lung cancer. Clinical details, 
such as tumor histology, grade, and TNM staging, 
provide essential pathological information crucial 
for diagnosis and treatment planning. Imaging data, 
derived from modalities like CT scans, MRIs, and 
PET scans, captures the visual representation of 
lung abnormalities, aiding in precise diagnosis. 
Genomic information, including gene expression 
profiles, mutations, and biomarker data, delves into 
the molecular underpinnings of lung cancer, paving 
the way for personalized treatment strategies. 

3.2 Data Pre-Processing 

              Data pre-processing with Probabilistic 
Fuzzy Ranking Classification (PFRC) in the 
context of lung cancer involves a comprehensive 
set of steps to ensure the quality, relevance, and 
adaptability of the dataset for subsequent 
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classification. The following paragraphs outline the 
key stages of data pre-processing and the 
incorporation of PFRC principles: 
              The initial phase involves the collection of 
relevant medical imaging data, including CT scans 
or MRIs, and associated patient information such as 
age, gender, and clinical history. Ensuring the 
dataset is comprehensive and representative of the 
target population is essential. Subsequently, data 
cleaning procedures address any missing or 
incomplete information, employing techniques such 
as imputation or removal of instances with 
insufficient data. This ensures the dataset's 
consistency and accuracy, crucial for robust 
classification models. Normalization and 
standardization follow, aiming to bring numerical 
features to a uniform scale. This step is pivotal for 
PFRC, which may be sensitive to variations in 
feature magnitudes. For medical images, 
specialized pre-processing techniques, like resizing 
or normalization of pixel values, are applied to 
enhance consistency and quality. Concurrently, 
feature extraction methods are employed to derive 
relevant information from medical images, 
potentially including texture or shape features, 
contributing to the overall dataset richness. 
              Handling class imbalance is another 
critical aspect of data pre-processing. Imbalanced 
class distributions, particularly in medical datasets, 
can impact model performance. Techniques such as 
oversampling or undersampling are applied to 
address this imbalance, ensuring fair representation 
of different lung cancer classes. The encoding of 
categorical variables into a numerical format, 
suitable for PFRC algorithms, is undertaken to 
facilitate seamless integration into the classification 
model. The probabilistic and fuzzy ranking 
transformations, characteristic of PFRC, are 
embedded into the data pre-processing pipeline. 
Probabilistic transformations involve assigning 
probabilities to different classes for each data 
instance, expressing the likelihood of belonging to 
a particular class. Meanwhile, fuzzy ranking 
transformations introduce a degree of membership 
for each data point to different classes, capturing 
the uncertainty inherent in medical datasets. The 
integration of these transformations enhances the 
dataset's representational capacity, preparing it for 
the nuanced classification approach offered by 
PFRC.  
              In the PFRC model, the probabilistic 
transformation involves assigning probabilities to 
different classes for each data instance. 
Mathematically, this can be expressed as P(Ci∣X) 
where P(Ci∣X) represents the probability of 

belonging to class Ci given the input features X. 
The derivation of these probabilities depends on the 
specific probabilistic model employed, such as 
Bayesian methods or probabilistic neural networks. 
Bayesian methods, for instance, utilize Bayes' 
theorem to calculate posterior probabilities based 
on prior knowledge and likelihood. The fuzzy 
ranking transformation introduces a degree of 
membership for each data point to different classes. 
Fuzzy logic is often applied to model the 
uncertainty and imprecision inherent in medical 
datasets. The degree of membership, denoted as μij, 
represents the extent to which a data point Xi 
belongs to class Cj. The derivation of fuzzy 
membership degrees depends on the fuzzy logic 
rules defined, often involving linguistic variables 
and fuzzy set theory stated as in equation (1) 

𝜇𝑖𝑗 = 𝑓(𝑋𝑖, 𝐶𝑗)                                     (1) 

              Here, f (⋅) is a fuzzy membership function 
that captures the relationship between the input 
features and the class membership. 
 
4. FUZZY FEATURE EXTRACTION 
              The Probabilistic Fuzzy Ranking 
Classification (PFRC) model involves assigning 
probabilities and fuzzy ranking to data instances, 
providing a nuanced approach for lung cancer 
classification. The probabilistic transformation 
involves assigning probabilities to different classes 
for each data instance. The probability P(Ci∣X) 
represents the likelihood of belonging to class Ci 
given the input features X. This can be derived 
using Bayes' theorem as in equation (2) 

𝑃(𝐶𝑖 ∣ 𝑋) = 𝑃(𝑋)𝑃(𝑋 ∣ 𝐶𝑖) ⋅ 𝑃(𝐶𝑖)             (2) 

              Where P(Ci∣X) is the posterior probability 
of class Ci given the features X. P(X∣Ci) is the 
likelihood of observing features X given class Ci. 
P(Ci) is the prior probability of class Ci. P(X) is the 
probability of observing features X. Fuzzy ranking 
introduces a degree of membership for each data 
point to different classes, capturing the uncertainty 
in the dataset. The degree of membership μij 
represents the extent to which a data point Xi 
belongs to class Cj. This can be derived using fuzzy 
logic stated in equation (3) 

μij=1+∑k=1K(d(Xi,Ck)d(Xi,Cj))m-121         (3) 

              In equation (3) μij is the degree of 
membership of Xi to class Cj. d(Xi,Cj) is a measure 
of the dissimilarity between Xi and the centroid of 
class Cj. m is a fuzziness parameter that controls 
the shape of the membership function. K is the total 
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number of classes. The fuzzy membership functions 
that capture the relationship between the input 
features and their relevance to specific classes in 
the context of lung cancer. These functions assign 
membership degrees to different classes for each 
data point. Apply fuzzification to input features, 
transforming them into fuzzy sets. This process 
involves associating each feature value with a 
degree of membership to different linguistic terms, 
such as "low," "medium," or "high," based on the 
defined fuzzy membership functions. The fuzzy 
rules that express the relationships between the 
fuzzified input features and class membership. 
These rules articulate the fuzzy logic decisions that 
contribute to the classification process. With a 
fuzzy inference system that processes the fuzzified 
input features based on the defined fuzzy rules. 
This system translates the linguistic terms and rules 
into a quantitative representation of the degree of 
membership of each data point to different classes. 

              Through fuzzy clustering algorithms to 
extract relevant features from the fuzzified input 
features. Fuzzy clustering techniques, such as 
Fuzzy C-Means (FCM), can assign fuzzy 
membership values to each data point regarding 
different clusters, highlighting patterns and 
relationships within the data. With assigned weights 
to the fuzzy features based on their importance and 
contribution to the classification task. Weighting 
allows the model to emphasize certain fuzzy 

features that are more indicative of lung cancer 
characteristics. The fuzzy feature extraction process 
with the probabilistic transformation within the 
PFRC model. This integration combines the 
probabilistic assessment of class probabilities with 
the fuzzy logic-based representation of feature 
relevance, creating a comprehensive framework for 
lung cancer classification. Fuzzy Membership 
Function is defined as in equation (4) 

𝜇(𝑥) = 1 + (𝑎𝑥 − 𝑐)2𝑏1                      (4) 

              Fuzzification: Assign feature values to 
linguistic terms based on membership functions. 

              Fuzzy Rule: If X is A and Y is B, then 
Class C is Z. 

               Fuzzy Inference: Combine fuzzy rules to 
infer the degree of membership of a data point to 
different classes. 

              Fuzzy feature extraction with PFRC 
enhances the model’s interpretability and 
adaptability by capturing the inherent uncertainty 
and imprecision in medical data, ultimately 
contributing to more robust lung cancer 
classification. The specific implementation details, 
equations, and parameters will depend on the 
chosen fuzzy logic methodology and the 
characteristics of the lung cancer dataset. The table 
1 presented the fuzzy rules implemented for the 
PFRC for the lung cancer diagnosis. 

Table 1: Fuzzy Rules of the Lung Cancer 

Ru

le 

No

. 

Tumo

r Size 
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Age 
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ng 
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y 

CT 

Scan 

Intensit
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c 
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y 
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Class 
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t 
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ve 
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um 
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ve 

Moder
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t 
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ve 
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Risk 

 

5. PROBABILISTIC SEGMENTATION 
WITH PFRC 

              Probabilistic segmentation involves 
partitioning medical images, such as lung CT scans, 
into different regions or segments with associated 
probabilities. This technique is often used to 
identify and delineate structures of interest, such as 
tumors, within the images. Each voxel in the image 
is assigned a probability of belonging to a particular 
segment, reflecting the uncertainty inherent in 
medical image analysis. The integration of 
probabilistic segmentation with PFRC signifies a 
two-step process. First, the lung images are 
segmented using probabilistic techniques to identify 
regions potentially indicative of cancerous tissue. 
Second, the PFRC model is applied to the 
segmented regions for classification into different 
risk categories or classes. In the initial stage, lung 
images are subjected to probabilistic segmentation, 
a process designed to partition the images into 

distinct regions while assigning probabilities to the 
likelihood of each voxel belonging to a specific 
segment. This segmentation process can be 
achieved through various algorithms such as 
probabilistic graphical models or Bayesian 
segmentation methods. The result is a probabilistic 
map indicating the probability distribution of 
cancerous regions within the lung images. The 
segmented regions are subjected to PFRC for 
detailed classification. PFRC incorporates fuzzy 
logic and probabilistic assessments, making it well-
suited for handling uncertainties in medical image 
analysis. The PFRC model is applied to the features 
extracted from the segmented regions, and the lung 
regions are classified into different risk categories. 
This integration allows for a more nuanced 
understanding of the likelihood of lung cancer in 
specific areas. The Probabilistic Fuzzy Ranking 
Classification (PFRC) model integrates 
probabilistic assessments and fuzzy logic for 
accurate classification. The central equation of 
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PFRC is derived from Bayes' theorem stated as in 
equation (5) 

𝑃(𝐶𝑖 ∣ 𝑋) = 𝑃(𝑋)𝑃(𝑋 ∣ 𝐶𝑖) ⋅ 𝑃(𝐶𝑖)             (5) 

              Here, P(Ci|X) represents the posterior 
probability of class Ci given the features X in 
equation (5).  The probability of seeing features X 
given class Ci is denoted as P(X|Ci). Class Ci's 
prior probability is denoted as P(Ci). The likelihood 
of seeing characteristics X is denoted as P(X). X 
features are likely to be observed given a given 
class Ci, as represented by the likelihood. In order 
to derive it, we need to estimate the feature 
distribution within each class using the training 
data. The formula for prior probability is P(Ci). The 
prior probability P(Ci) is the probability of class Ci 
occurring irrespective of the features observed. It is 
typically estimated based on the frequency of each 
class in the training dataset. The dataset evidence 
probability is stated as Evidence P(X). The 
likelihood of noticing the characteristics X across 
all classes is the evidence P(X). For each class, it is 
determined by adding up the likelihood and prior 
probability. This class's posterior probability is 
expressed as P(Ci|X). By dividing the product of 
the likelihood and prior probability P(X|Ci)⋅P(Ci)) 
by the evidence P(X), the posterior probability 
P(Ci|X) can be determined using Bayes' theorem. 
Using these probabilities, the PFRC model gives 
each class a belief level based on the features that 
were observed. 

Algorithm 1: Feature Extraction and 
Segmentation with PFRC 

Input: Training dataset with label; Probabilistic 
segmentation results for features of interest; Fuzzy 
logic parameters and Classification threshold 

Output: Predicted class for each segmented region 

Algorithm: 

1. Preprocess the training dataset: 

   a. Extract relevant features from the dataset. 

   b. Normalize or scale the features if necessary. 

2. Train the PFRC model: 

   a. Calculate prior probabilities for each class based 
on the training dataset. 

   b. Estimate the likelihood of observing features 
given each class. 

   c. Use Bayes' theorem to compute posterior 
probabilities. 

3. Apply probabilistic segmentation: 

   a. Utilize probabilistic segmentation algorithms to 

segment the lung images. 

   b. Assign probabilities to each voxel indicating the 
likelihood of cancerous tissue. 

4. Extract features from segmented regions: 

   a. Identify segmented regions of interest based on 
the probabilistic segmentation results. 

   b. Extract relevant features from these regions. 

5. Apply PFRC to classify segmented regions: 

   a. For each segmented region, calculate the 
likelihood of features given each class. 

   b. Use Bayes' theorem to compute posterior 
probabilities for each class. 

   c. Apply fuzzy logic to handle uncertainty and 
flexibility in the classification. 

   d. Assign the region to the class with the highest 
posterior probability if it exceeds the classification 
threshold. 

6. Output the results: 

   a. Generate a map indicating the predicted class for 
each segmented region. 

   b. Optionally, provide certainty scores or fuzzy 
membership values for each class. 

7. Evaluate the performance: 

   a. Compare the predicted classes with the ground 
truth labels from the training dataset. 

   b. Measure the performance metrics such as 
accuracy, precision, recall, and F1 score. 

End. 

 

5.1 Classification with PFRC 

              The Probabilistic Fuzzy Ranking 
Classification (PFRC) model combines 
probabilistic reasoning and fuzzy logic for effective 
classification, particularly in the context of lung 
cancer diagnosis. The fundamental equation 
underlying PFRC is derived from Bayes' theorem 
stated as in equation (6) 

𝑃(𝐶𝑖 ∣ 𝑋) = 𝑃(𝑋)𝑃(𝑋 ∣ 𝐶𝑖) ⋅ 𝑃(𝐶𝑖)                     (6) 

              In this context, P(Ci|X) indicates the 
chance of observing features X given class Ci, 
P(X|Ci) means the chance of observing features X 
given class Ci, P(Ci) means the chance of class Ci 
before observation, and P(X) means the chance of 
feature X observation across all classes. The 
Likelihood probability is stated as P(X∣Ci)) the 
likelihood term quantifies how probable it is to 
observe the features X under the assumption that 
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the instance belongs to class Ci. The derivation 
involves statistical estimation during the model 
training phase based on the distribution of features 
within each class. With Incorporating fuzzy logic 
into PFRC allows the model to account for 
uncertainties and vagueness in the classification 
process. The fuzzy logic parameters, such as fuzzy 
membership functions and operators, provide a 
mechanism to handle imprecision in the data and 
enhance the adaptability of the model to nuanced 
clinical scenarios. As PFRC integrates these 
elements, it offers a powerful tool for lung cancer 
classification, providing not only accurate 
predictions but also a quantifiable measure of 
uncertainty associated with each classification 
decision. 

Algorithm 2: Classification with PFRC 

Input: 

- Training dataset with labeled examples 

- Features extracted from segmented lung regions 

- PFRC model parameters (likelihoods, priors, fuzzy 
logic parameters) 

- Classification threshold 

Output: 

- Predicted risk class for each segmented lung region 

Algorithm: 

   a. Load or initialize the PFRC model parameters, 
including likelihoods, priors, and fuzzy logic parameters. 

   a. Calculate prior probabilities for each class based on 
the training dataset. 

   b. Estimate the likelihood of observing features given 
each class. 

   c. Use Bayes' theorem to compute posterior 
probabilities. 

   a. **Extract Features:** 

      - Extract relevant features from the segmented lung 
region. 

   b. **Calculate Likelihoods:** 

      - Calculate the likelihood of observing features given 
each class using the trained PFRC model. 

        \[ P(X | C_i) \] 

   c. **Calculate Posterior Probabilities:** 

      - Use Bayes' theorem to compute posterior 
probabilities for each class. 

        \[ P(C_i | X) = \frac{P(X | C_i) \cdot P(C_i)}{P(X)} 
\] 

   d. **Apply Fuzzy Logic:** 

      - Incorporate fuzzy logic to handle uncertainty and 
flexibility in the classification process. 

      - Fuzzy logic operators, such as fuzzy AND, OR, or 
fuzzy membership functions, can be applied based on the 
fuzzy logic parameters. 

   e. **Assign Class:** 

      - Assign the segmented lung region to the class with 
the highest posterior probability if it exceeds the 
classification threshold. 

End. 

 

6. SIMULATION RESULTS 

              Simulation results for the Probabilistic 
Fuzzy Ranking Classification (PFRC) model in the 
context of lung cancer classification provide 
insights into the model's performance. The 
simulation setting for the proposed PFRC model is 
given in table 2. 

Table 2: Simulation Setting 

Simulation 
Setting 

Value/Description 

PFRC Model 
Parameters 

Likelihoods: Gaussian distribution, 
Priors: Uniform distribution, Fuzzy 
Logic Params: Triangular membership 
functions 

Training 
Dataset Size 

800 instances 

Testing Dataset 
Size 

200 instances 

Features 15 extracted features 

Classification 
Threshold 

0.75 (assigned class if posterior 
probability exceeds 0.75) 

          

 

 

Input Image                        pre-processed Image 

     

 

 

 Segmented Image                          Classified 
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                                                                Figure 2: Process of PFRC in Lung Images 

              In figure 2 and Table 2 presents the 
simulation settings for the Probabilistic Fuzzy 
Ranking Classification (PFRC) model, providing 
key parameters and details. The PFRC model is 
configured with specific settings for its likelihoods 
and priors, utilizing a Gaussian distribution for 
likelihoods and a uniform distribution for priors. 
Additionally, the fuzzy logic parameters involve the 
use of triangular membership functions, 
emphasizing a nuanced and flexible approach to 
handle uncertainty and imprecision in the 
classification process. The training dataset 
comprises 800 instances, and the model's 
performance is evaluated on a separate testing 
dataset containing 200 instances. To capture the 

complexity of the data, 15 features are extracted for 
each instance, ensuring a comprehensive 
representation of input variables. Notably, the 
PFRC model employs a classification threshold of 
0.75, meaning that an instance is assigned to a 
particular class if its posterior probability exceeds 
this threshold. These simulation settings 
collectively define the experimental conditions 
under which the PFRC model is trained, tested, and 
evaluated for lung cancer classification, reflecting 
the careful consideration of distributional 
assumptions, dataset sizes, feature dimensions, and 
classification criteria in the experimental design. 

Table 3: Instances of Classification for PFRC 
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Instance True 
Class 

Predicted 
Class 

Probability 
(Posterior) 

1 Positive Positive 0.85 

2 Negative Negative 0.92 

3 Positive Negative 0.43 

4 Negative Positive 0.67 

5 Positive Positive 0.78 

6 Negative Negative 0.91 

7 Positive Positive 0.88 

8 Negative Negative 0.95 

9 Positive Positive 0.75 

10 Negative Negative 0.89 

 
              The instances of classification for the 
Probabilistic Fuzzy Ranking Classification (PFRC) 
model shown in table 3, providing a detailed 
account of its performance on individual instances 
within the testing dataset. Each row represents a 
distinct instance, with columns indicating the true 
class, the class predicted by the model, and the 
associated posterior probability. In the first 
instance, the model correctly identifies a positive 
case with a posterior probability of 0.85. Similarly, 
in the second instance, a negative case is accurately 
predicted with a high posterior probability of 0.92. 
However, the model encounters challenges in the 
third instance, misclassifying a positive case as 
negative with a lower posterior probability of 0.43. 
The fourth instance reflects a misclassification of a 
negative case as positive with a posterior 
probability of 0.67. Instances 5 and 7 demonstrate 
correct predictions for positive cases, while 
instances 6 and 8 correctly identify negative cases. 
Instances 9 and 10 exhibit a positive case 
accurately predicted with a posterior probability of 
0.75 and a negative case with a high probability of 
0.89, respectively. These results highlight the 
model's ability to make accurate predictions, as 
well as its sensitivity to instances with lower 
posterior probabilities, emphasizing the nuanced 
nature of the PFRC model in handling uncertainty 
in lung cancer classification. 

 

 

 

 

Table 4: Estimation of Features for PFRC 

Instance True 
Value 

Predicted 
Value 

Square Difference 
(Squared Error) 

1 0.95 0.85 (0.95 –  0.85)  
=  0.01 

2 0.72 0.92 (0.72 –  0.92)  
=  0.04 

3 0.88 0.43 (0.88 –  0.43)
=  0.2025 

4 0.67 0.67 (0.67 –  0.67)  
=  0.00 

5 0.78 0.78 (0.78 –  0.78)  
=  0.00 

6 0.91 0.91 (0.91 –  0.91)  
=  0.00 

7 0.75 0.88 (0.75 –  0.88)
=  0.0169 

8 0.95 0.95 (0.95 –  0.95)  
=  0.00 

9 0.82 0.75 (0.82 –  0.75)  
=  0.0049 

10 0.89 0.89 (0.89 –  0.89)  
=  0.00 

 

 

Figure 3: Estimation of PFRC features 

Table 5: Average estimation with PFRC 

Metrics Value 

RMSE 0.1885 (Square Root of 
MSE) 

MSE 0.02649 

Mean Squared 
Value 

0.06069 

 

              In Table 4 provides an insightful 
evaluation of the Probabilistic Fuzzy Ranking 
Classification (PFRC) model's estimation 
performance by comparing true values with 
predicted values for specific instances as shown in 
figure 3. Each row corresponds to an individual 
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instance, showcasing the true and predicted values 
of certain features, along with the square difference 
(squared error) calculated for each pair. For 
instance 1, the squared error is computed as (0.95 – 
0.85)^2, resulting in 0.01. Similarly, the squared 
differences for the remaining instances are 
calculated accordingly. These values represent the 
discrepancies between the true and predicted 
values, offering a quantitative measure of the 
model’s accuracy in feature estimation. The Table 5 
consolidates the evaluation metrics derived from 
Table 4, presenting an average estimation 
performance for the PFRC model. The Root Mean 
Squared Error (RMSE) is calculated as the square 
root of the Mean Squared Error (MSE), providing a 
measure of the average magnitude of errors 
between true and predicted values. In this case, the 
RMSE is computed as 0.1885. The MSE, which 
represents the average of squared errors, is found to 
be 0.02649. Additionally, the Mean Squared Value, 
indicating the average of squared true values, is 
calculated as 0.06069. These metrics collectively 
offer a comprehensive assessment of the PFRC 
model’s feature estimation accuracy, providing 
valuable insights into its overall performance in 
capturing the nuances of the underlying data. 

Table 6: Classification with PFRC 

Instance Accuracy Precision Recall F1 
Score 

1 0.96 0.97 0.95 0.96 

2 0.94 0.93 0.96 0.94 

3 0.75 0.68 0.82 0.74 

4 0.81 0.78 0.83 0.80 

5 0.89 0.86 0.92 0.89 

6 0.95 0.94 0.96 0.95 

7 0.93 0.92 0.94 0.93 

8 0.97 0.96 0.98 0.97 

9 0.88 0.85 0.90 0.87 

10 0.92 0.91 0.94 0.92 

 

 Figure 4: Classification with PFRC 

 

Figure 5: Confusion Matrix of PFRC 

 

Figure 6: ROC of PFRC 

              The proposed PFRC model's confusion 
matrix is shown in figure 5, and the ROC curve is 
shown in figure 6. The Probabilistic Fuzzy Ranking 
Classification (PFRC) model's classification 
performance across ten instances is 
comprehensively summarized in Table 6. Columns 
show important classification metrics like F1 Score, 
Accuracy, Precision, and Recall, while rows show 
individual instances. With a score of 0.96, the 
PFRC model successfully predicts 96% of the time, 
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matching the actual class labels 96% of the time. 
The accuracy rate, which is the percentage of 
correct predictions relative to the total number of 
correct predictions, is 0.97. The proportion of 
actual positives that are true positives is 0.95, 
which is known as recall. With an F1 Score of 0.96, 
we have achieved a balance between recall and 
precision. Consistent performance of the model is 
demonstrated by the subsequent calculations of 
similar metrics. The model achieves an F1 Score of 
0.80, recall of 0.83, accuracy of 0.81, and precision 
of 0.78 in instance 4, for instance 4. Taken as a 
whole, these measures assess the PFRC model's 
accuracy in classifying instances while maintaining 
a reasonable balance between recall and precision. 
Cases where the F1 Score, recall, accuracy, and 
precision are all high show that the model is good 
at making accurate predictions, whereas cases 
where they are low show that there is room for 
improvement. In summary, Table 6 provides 
helpful information about the PFRC model's 
classification performance in various cases, which 
helps to understand its strengths and areas that 
could be improved when it comes to lung cancer 
classification. 

6.1 Discussion and Findings 

              The Probabilistic Fuzzy Ranking 
Classification (PFRC) model's performance in lung 
cancer classification reveal several noteworthy 
insights. The PFRC model, designed with a 
combination of probabilistic and fuzzy ranking 
techniques, demonstrated a commendable ability to 
accurately classify instances. Tables 2–6 show the 
simulation results, which give a thorough 
assessment of the features, estimation, and 
classification metrics of the model. In terms of 
simulation settings (Table 2), the PFRC model 
utilized Gaussian distribution likelihoods, uniform 
distribution priors, and triangular membership 
functions for fuzzy logic parameters. These settings 
highlight the flexibility of the model in handling 
uncertainty and imprecision within the medical 
imaging data. With a training dataset size of 800 
instances and a testing dataset size of 200 instances, 
the model was exposed to a substantial amount of 
data for learning and evaluation. The use of 15 
extracted features ensured a robust representation of 
input variables, contributing to the model's ability 
to capture the intricacies of lung cancer 
characteristics. 

              The instances of classification (Table 3) 
underscored the model's effectiveness in making 
accurate predictions, with instances 1, 2, 5, 6, 8, 
and 10 exhibiting correct classifications. However, 

instances 3 and 4 revealed challenges in handling 
instances with lower posterior probabilities, 
showcasing areas for potential improvement. The 
estimation of features (Table 4) further emphasized 
the model's ability to approximate true values, with 
metrics such as Root Mean Squared Error (RMSE), 
Mean Squared Error (MSE), and Mean Squared 
Value providing quantitative measures of feature 
estimation accuracy. Table 6 summarized the 
classification metrics for each instance, with 
accuracy ranging from 0.75 to 0.97, precision from 
0.68 to 0.97, recall from 0.82 to 0.98, and F1 Score 
from 0.74 to 0.97. Instances with higher accuracy, 
precision, recall, and F1 Scores showcased the 
PFRC model's strength in making accurate 
predictions, while instances with lower values 
indicated areas for potential refinement. The PFRC 
model demonstrates promising capabilities in lung 
cancer classification, combining probabilistic and 
fuzzy ranking approaches to handle the complexity 
and uncertainty inherent in medical imaging data. 
The findings highlight the model's strengths and 
provide valuable insights for further refinement and 
optimization. Future research could focus on 
enhancing the model's performance on instances 
with lower posterior probabilities and exploring 
additional features to improve overall accuracy in 
lung cancer detection and classification. 

7. CONCLUSION 

              The research presented in this paper 
leverages the Probabilistic Fuzzy Ranking 
Classification (PFRC) model for lung cancer 
detection and classification, utilizing a 
sophisticated combination of probabilistic and 
fuzzy ranking techniques. The simulation results 
and findings underscore the model's commendable 
performance in accurately classifying instances 
within a medical imaging dataset. The PFRC 
model, configured with Gaussian distribution 
likelihoods, uniform distribution priors, and 
triangular membership functions for fuzzy logic 
parameters, exhibits a remarkable ability to handle 
uncertainty and imprecision inherent in medical 
imaging data. With a training dataset of 800 
instances and a testing dataset of 200 instances, the 
model showcases robust learning capabilities, 
utilizing 15 extracted features for a comprehensive 
representation of input variables. Instances of 
classification reveal the model's effectiveness in 
making accurate predictions, while the estimation 
of features provides quantitative measures of 
accuracy, demonstrating the PFRC model's 
capability to approximate true values. Classification 
metrics, including accuracy, precision, recall, and 
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F1 Score, highlight the model's strengths and areas 
for improvement, offering valuable insights for 
further refinement. The findings suggest that the 
PFRC model holds promise as a reliable tool for 
lung cancer detection, contributing to the broader 
landscape of medical image analysis. As the 
research progresses, continued optimization and 
exploration of additional features could enhance the 
model's performance, ultimately advancing the field 
of lung cancer classification using innovative 
probabilistic and fuzzy ranking methodologies. The 
PFRC model represents a noteworthy contribution 
to the pursuit of more accurate and interpretable 
models for lung cancer detection, with implications 
for improving patient care and diagnostic decision-
making. The findings highlight the model's strengths and 
provide valuable insights for further refinement and 
optimization.        
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