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ABSTRACT 

The study evaluates the efficacy of employing a deep-learning neural network, for classifying the samples 
from the Gas Chromatography-Mass Spectrometry(GC-MS) chromatogram dataset. By utilizing a deep 
learning neural network, this paper endeavours to classify chemical compositions, facilitating high-
throughput compound identification and assessment. The unstructured nature of the data, variability in 
compound identification parameters, and the need to consider experimental conditions pose additional 
challenges in accurate classification. To overcome these challenges, the research implements data 
preprocessing techniques such as linear interpolation to bridge gaps in chromatography profiles, thereby 
transforming the raw dataset into a structured and informative dataset. The objectives include streamlining 
the integration of GC-MS data into deep learning models, improving the detection and classification of 
odours, and providing a framework for real-time odour recognition systems. This study delves into the 
intricacies of GC-MS data analysis within the realm of olfactory classification, with particular attention to 
the fragrances of Jasminum Sambac, Rosa Damascena, and Human Urine, encompassing both pleasant and 
unpleasant scents. Through exploratory data analysis, crucial variables are identified, and a novel deep-
learning neural network is proposed for characterizing chemical compounds and their impact on odour 
classification. By pioneering the application of supervised deep learning directly on raw GC-MS datasets, 
this study achieves remarkable accuracy in classifying floral and human urine samples. Linear interpolation 
emerges as a key technique for seamless data integration and augmentation, offering valuable insights into 
the aromatic profiles of culturally and economically significant flowers. 

Keywords: Deep Learning, Interpolation, Neural Network, GC-MS, Feature Extraction, Feature 
Classification 

1.  INTRODUCTION 
 The rationale behind why flower samples 
are being compared to human urine is to analyse the 
chemical composition of pleasant and unpleasant 
smells. The two floral plants Jasminum Sambac and 
Rosa Damascena chemical composition were taken 
for the study of chemical compound characterization 
since these flowers have attained commercial 
significance in India. The choice of these flowers as 
the subject for chemical compound characterization 
carries several rationales: Jasminum Sambac and 
Rosa Damascena possess distinct and captivating 
aroma profiles characterized by a rich combination 
of volatile organic compounds (VOCs). 
Understanding the chemical composition of these 
aromas is essential for quality control, product 

development, and fragrance formulation. Analyzing 
the chemical composition of these extracts using 
advanced analytical techniques like GC-MS allows 
for the identification and quantification of individual 
aroma compounds, providing valuable insights into 
the complexity of their aromatic chemistry. In 
addition to qualitative identification, GC-MS can 
also provide quantitative information about the 
concentration of each compound present in the 
given extract. This quantitative data can elucidate 
the relative abundance of key aroma compounds and 
their contribution to the overall aromatic profile. 
 

This paper has several key objectives: 
i. Seamless Integration: We aim to seamlessly 

integrate GC-MS data with deep learning 
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models for efficient characterization of 
chemical compositions. 

ii. Connecting the Dots: We address the 
challenge of discrete data points in GC-MS 
profiles by employing linear interpolation, 
enabling a more holistic analysis. 

iii. Enhanced Odour Detection: Our approach 
aims to significantly improve the detection 
and classification performance of odours 
present in the samples. 

iv. Real-Time Odour Recognition: We envision a 
future where this framework can be 
leveraged to develop real-time or near-real-
time odour recognition systems. 

 

 This work represents a pioneering effort in 
applying supervised deep learning directly to raw 
GC-MS datasets for the classification of floral and 
human urine samples with exceptional accuracy. The 
use of linear interpolation plays a crucial role in data 
augmentation, significantly improving the 
performance of the deep learning model, especially 
when dealing with limited datasets. By unravelling 
the intricate relationship between chemical 
compounds and perceived odour, this research offers 
valuable insights into the aromatic profiles of these 
culturally and economically significant samples, 
paving the way for advancements in odour science 
and related fields. 

2.  EXISTING STUDIES 
 Our previous research, directed towards 
identifying and quantifying volatile compounds 
through GC-MS analysis, has the potential to 
support the advancement of odour classification[1], 
which seeks to detect and categorize various odours. 
The accurate measurement of parts per million 
(PPM) of each chemical compound is crucial for the 
classification of odour. This study further highlights 
the importance of considering factors such as 
sensory evaluation and processing methodology 
differences when analysing the effects of different 
identification processes on the chemical compounds 
of Jasminum Sambac and Rosa Damascena[2].  
 According to Anne Bech Risum and Rasmus 
Bro, the use of deep learning to evaluate peaks[3], to 
automate the analysis of gas chromatographic data, 
specifically in identifying whether each resolved 
component represents a peak suitable for 
integration. The deep network is trained to classify 
four different classes, shows high accuracy in 
classifying peaks, with few misclassification. 
Misclassification can occur due to the variability in 
peak shape, the choice of appropriate classifiers. 
‘Training the model on more diverse data may 
further improve its performance’. Dmitriy D. 

Matyushin et.al., introduces the usage of deep 
learning ranking for small molecules identification 
using low-resolution electron ionization mass 
spectrometry by using a deep neural network[4] to 
reduce the probability of wrong answers in library 
search procedures. Paper contributes the deep 
learning ranking model outperforms other 
approaches, reducing the fraction of wrong answers 
(at rank-1) by 9-23% depending on the dataset used. 
The study tested the model using spectra from the 
Golm Metabolome Database, Human Metabolome 
Database, and FiehnLib, demonstrating its 
applicability for small molecule identification in 
metabolomics. ‘Filtering and selecting spectra for 
accurate library searches is an ongoing challenge 
that requires further improvements’. 
 According to Jesse Read and Fernando 
Perez-Cruz, traditional multi-label classification 
methods often do not explicitly model dependencies 
between labels, leading to limited predictive 
performance. The authors empirically evaluate their 
deep network and show that it outperforms several 
competitive methods from the literature in multi-
label classification. The study suggests that 
‘focusing on feature modelling’[5], rather than 
solely on modelling dependencies between output 
labels, can lead to significant improvements in 
multi-label classification. Vishakha Pareek and 
Santanu Chaudhury, proposes two deep learning-
based architectures for gas identification and 
quantification. These architectures automatically 
tune hyper-parameters for optimal performance [6, 
11]. The performance of traditional pattern 
recognition methods[7] for gas identification and 
quantification depends heavily on feature 
engineering and hyper-parameter selection, while 
the proposed deep learning-based methods 
overcome these limitations. 
 Mike Li et. al., introduces a deep learning 
model for alignment of peaks in GC-MS data[8], 
which is more adept at handling complex and fuzzy 
data sets. Testing the model on various GC-MS data 
sets of different complexities and analyzing the 
alignment results quantitatively. The model showed 
very good performance, with an AUC of 
approximately 1 for simple data sets and an AUC of 
approximately 0.85 for very complex data sets. 
Missing additional evaluation metrics such as 
precision, recall, or F1 score could provide a more 
comprehensive assessment of its alignment 
accuracy. According to Xiaqiong Fan et.al., a fully 
automated approach, using tensor-based 
modeling[9] and deep learning assistance, to convert 
gas chromatography-mass spectrometry (GC-MS) 
data into peak tables without user interactions, 
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addressing the issues of software uncertainty and 
reproducibility. The automated approach provides 
improvements over current analysis methods in 
terms of analysis time and reproducibility. The 
proposed automated approach still has room for 
improvement, especially when the data collinearity 
is broken, such as in the case of peak saturation.  
 Yan Huang et.al., proposed a multi-task 
deep neural network architecture for multi-label 
learning, which transforms multi-label learning into 
multiple binary-class classification tasks. The 
effectiveness of using deep neural networks[10] for 
multi-label learning and shows the potential for 
improving performance in tasks such as image 
annotation. The multi-label classifier of MT-DNN 
compares the outputs of different nodes 
corresponding to different labels to determine the 
labels for the instance. 

2.1 Limitations 
This analysis reveals several opportunities to 
enhance the application of deep learning in 
chromatography and mass spectrometry. 

Data Considerations: 

 Training Data Diversity: Studies highlight the 
need for broader training datasets to improve 
model performance in tasks like peak 
classification and alignment[3]. This will lead to 
more robust and generalizable models. 

 Feature Engineering Focus: Shifting focus 
towards feature modeling, beyond just output 
label dependencies, holds promise for significant 
improvements, especially in multi-label 
classification tasks[5]. 

Evaluation and Refinement: 

 Comprehensive Evaluation Metrics: While 
existing studies report metrics like AUC, 
incorporating additional metrics like precision, 
recall, and F1 score will provide a more holistic 
assessment of model accuracy[8]. 

 Complex Data Handling: Addressing 
challenges associated with complex or non-ideal 
data, such as peak saturation and data 
collinearity[9], is crucial to ensuring the 
effectiveness of deep learning methods in these 
scenarios. 

Automation and Reproducibility: 

 Enhanced Automation: While progress has 
been made towards automating tasks like peak 
table generation, further advancements are 
necessary to streamline workflows, improve 

reproducibility, and address software 
uncertainty[9]. 

 

 Overall, the gaps in the existing studies 
seem to revolve around the need for more diverse 
and comprehensive training data, improved 
evaluation metrics, better handling of complex or 
non-ideal data scenarios, exploration of feature 
modeling techniques, and further advancements in 
automation and reproducibility for various analytical 
tasks in the field of chromatography and mass 
spectrometry. 
 

2.2  Problem Statement 
 The research paper aims to address the 

challenges associated with classifying samples 
from Gas Chromatography-Mass Spectrometry 
(GC-MS) datasets, particularly focusing on 
Challenges include the limitations of the initial 
GC-MS datasets due to their size and structure, 
leading to biased classification results and 
difficulties in extracting meaningful 
information with the help of Deep Learning. 

 The study also highlights the importance of 
addressing imbalanced datasets and the impact 
of ensemble techniques and hyper-parameter 
tuning on model performance 

3. HARNESSING DEEP LEARNING FOR 
ENHANCED ODOUR IDENTIFICATION AND 
CLASSIFICATION 

3.1 Sample Preparation and GC-MS Analysis 

 The analysis begins with solvent extraction 
using hexane to isolate aromatic compounds from 
the sample. Following extraction, solid-phase 
extraction (SPE) further purifies and concentrates 
the extracted compounds[2, 12]. During SPE, the 
target molecules are retained on a solid phase while 
unwanted substances are washed away. Finally, the 
samples are prepared for GC-MS analysis. Helium 
serves as the carrier gas, and the injector and oven 
temperatures are carefully optimized to achieve 
optimal separation and detection of the compounds. 
The gas chromatograph (GC) separates the 
compounds based on their volatility and affinity for 
the stationary phase within the column. The mass 
spectrometer (MS) then identifies and quantifies the 
separated compounds by analyzing their mass-to-
charge ratio. 

3.2 Understanding Variability in GC-MS 
Compound Analysis 
 While Gas Chromatography - Mass 
Spectrometry (GC-MS) offers a wealth of 
information about a compound's identity and relative 
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abundance, the results are not absolute and can vary 
depending on several factors. One source of 
variability is a compound's retention time (R.Time), 
which reflects the time it takes to travel through the 
GC column. Changes in column temperature, 
pressure, or other experimental conditions can 
influence retention time. Consequently, the exact 
retention time for the same compound may differ 
across GC-MS runs or instruments.  

 Peak area and peak height are two other 
parameters susceptible to variation based on the 
sample and experimental conditions. Peak area 
signifies the total amount of a compound present, 
while peak height represents the signal intensity at 
the compound's elution time. Factors like the 
compound's concentration, detector sensitivity, and 
sample preparation method can affect these 
parameters. For example, a compound might exhibit 
varying peak areas and heights in samples with 
different concentrations or prepared using different 
methods.  
 In some cases, a compound may even 
exhibit different base peaks in different samples. 
The base peak is the most prominent in the 
compound's mass spectrum. Occasionally, it can 
vary depending on the sample matrix or the 
ionization conditions used in the mass spectrometer. 
These variations in GC-MS results emphasize the 
importance of considering the experimental context 
and sample conditions when interpreting data. 
Although GC-MS is a valuable tool for compound 
analysis, it's crucial to recognize that the obtained 
results are not always absolute and require 
interpretation in light of the specific analysis 
conditions. 

3.3  Limitations of GC-MS Sample Analysis 

 The GC-MS report generated is specific to 
the analyzed samples: Indian Jasmine (Jasminum 
Sambac), Damask Rose (Rosa Damascena), and 
Human Urine (Figures 1, 2, and 3). Retention time 
(R.Time), peak area, peak height, and base peak 
values obtained for these samples are unique to 
them. While valuable for compound identification, 
these parameters can exhibit inconsistencies for the 
same compound across different samples or GC-MS 
runs. This variability arises because each GC-MS 
run can introduce slight variations in R.Time, peak 
area, peak height, and base peak for a specific 
compound. Factors like temperature, pressure, and 
other experimental conditions influence this 
variance. To address this inconsistency, our research 
employs a deep learning algorithm. This algorithm 
consolidates data from multiple GC-MS runs of the 

same sample and aims to rectify inconsistencies in 
the generated reports. By combining and analysing 
data from various sources, we strive to achieve 
consistent output and enhance the accuracy of 
chemical compound identification. 

3.4 Challenges of Applying Deep Learning to GC-
MS Data and Our Proposed Solutions 
 The initial GC-MS dataset for Jasmin 
Sambac, Rosa Damascena, and Human Urine 
presents limitations for deep learning applications 
due to their size and structure (Figures 1, 2, and 3). 
With limited set of records and the imbalanced 
nature of the data, where some classes have 
significantly fewer samples, can lead to biased 
classification results if left unaddressed. An 
additional challenge lies in the unstructured nature 
of the data. Lacking predefined patterns or 
organization makes it difficult to extract meaningful 
information. Simply combining these datasets 
without considering the inherent variability in 
compound identification parameters can introduce 
errors. Retention time, peak area, peak height, and 
base peak values are all sample-specific in GC-MS, 
influenced by factors like the sample matrix, 
experimental conditions, and instrument settings. 
Concatenating the dataset without accounting for 
these variations can lead to incorrect associations 
between compounds and samples. To overcome 
these challenges, we have implemented the 
following steps: 

3.4.1  feature engineering 
 We have enriched the merged dataset with 
additional features that group similar features within 
GC-MS chromatograms. This effectively increases 
the data available for analysis, potentially improving 
classification accuracy. 

3.4.2  data structuring 
 The unstructured data undergoes 
conversion to a structured format before processing. 
This may involve feature engineering and 
standardizing or normalizing features using 
TensorFlow.keras for data preprocessing, then 
shuffled to ensure the data is not skewed towards 
variables with larger scales. After Normalization, the 
dataset gets converted into a tensorflow framework. 
These steps aim to enhance the quality and usability 
of the GC-MS data, ultimately enabling more 
accurate and reliable compound identification using 
deep learning techniques. 

4.  EXPLORATORY DATA ANALYSIS (EDA) 
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 To deepen our comprehension of the GC-
MS dataset, we utilized Exploratory Data Analysis 
(EDA) techniques. EDA entails scrutinizing the 
characteristics of the data to discern patterns, trends, 
and potential anomalies. Throughout our analysis, 
we employed various statistical methods and 
visualization tools to evaluate the data's distribution, 
pinpoint outliers, and investigate interrelationships 
among variables. 

4.1  Statistical Analysis 
 We computed descriptive statistics 
including Mean, Median, Mean Absolute Deviation 
(MAD), Standard Deviation, Variance, and Trimmed 
Mean to grasp the distribution and variability of the 
data. These statistics indicated a relatively consistent 
data distribution, with deviations from the mean 
generally remaining under 10% for most variables. 

4.2  Data Visualization 
 To visually represent the data distribution 
and uncover patterns, we utilized a variety of 
visualization techniques  (Figure 4): 
 

 Bar Chart: We crafted bar charts to depict the 
distribution of features across the GC-MS 
dataset, aiding our understanding of the 
frequency of different values for each feature. 

 Histogram: Histograms were employed to 
compare the distributions of different features, 
providing insights into their shape and 
dispersion. 

 Density Plot: Density plots were generated to 
visualize the probability density of data, 
particularly for Peak_Area, Peak_Height, and 
Base_Peak. This facilitated the assessment of 
data symmetry and the identification of 
potential outliers. 

 Box Plot: Box plots were constructed to detect 
outliers in the data, especially for Peak_Area, 
Peak_Height, and Base_Peak during Feature 
Engineering. They ensured that values fell 
within the expected range (9.00 to 30.00 
minutes) based on peaks in the GC-MS 
Chromatogram. 

4.3  Correlation Analysis 

 We performed correlation analysis to 
explore potential relationships between variables. 
This analysis revealed that incorporating additional 
features bolstered the predictive capacity of the 
model, ultimately enhancing its accuracy. 
 
 
 
 

 

Figure 4 – Histogram of SampleName of Merged, Scaled  
& Interpolated Data, before Linear Interpolation 

 In summary, EDA played a pivotal role in 
comprehending the GC-MS dataset, enabling the 
identification of patterns, outlier detection, and 
exploration of variable relationships. This 
information proved crucial for data preprocessing 
and feature engineering, ultimately refining the 
performance of our deep learning models. 

4.4 Addressing Data Skewness and Unstructured 
Data Through Linear Interpolation 

 Our Exploratory Data Analysis (EDA) 
yielded valuable insights into the structure and 
distribution of variables. To tackle these challenges, 
we utilized linear interpolation to standardize the 
entire dataset for Multi-Class Classification. 
Processing raw data directly from unstructured 
datasets can prove inefficient and unreliable. Linear 
interpolation presents a more effective strategy for 
handling such datasets. This method entails 
computing intermediate values between existing 
data points using a linear relationship. In our case, 
we applied linear interpolation to three columns: 
Peak_Area, Peak_Height, and Base_Peak, based on 
the Retention_Time index. 

The linear interpolation equation(1) is as follows:
  

where: y = the linearly interpolated value  

x = the intermediate value  

x1 and x2 = the two adjacent data points  

y1 and y2 = the corresponding values of x1 and x2 

 By employing linear interpolation on these 
features, we effectively filled in missing values, 
transforming the unstructured and skewed data into 
a more organized and consistent format, enabling 
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more accurate classification using a deep learning 
neural network. Initially, we computed the Mean for 
Peak_Area, Peak_Height, and Base_Peak from a 
raw sample, resulting in values of 4.5, 4.5, and 93.3, 
respectively. However, following linear 
interpolation, an imbalance emerged in the dataset. 
To address this, we further scaled the dataset values 
between 9.00 Mins to 30 Mins based on Peaks in the 
GC-MS Chromatogram. This adjustment aimed to 
address gaps within the merged interpolated dataset. 
Expanding the original dataset from 66 records to 
1458 records through interpolation resulted in mean 
deviations of 4.7, 4.8, and 103.9, respectively. 
Despite linear interpolation, the data still exhibited 
bias, leading to Oversampling (5568 Records) of 
features to eliminate dataset deviations. Label 
Encoding was performed for non-numerical 
variables before Oversampling to simplify 
complexities. 

 Visualization of the dataset distribution 
revealed disparities in the 'Density_Plot' of 
Peak_Area, Peak_Height, and Base_m/z, indicating 
deviation from the expected pattern (Figure 5). 
Similar challenges were encountered during 
Downsampling. With more oversampling, values 
approached those of the raw dataset. Although there 
isn't a fixed rule, the general aim was to keep 
deviations at 5% or less. To address this issue, 2nd 
and 3rd oversampling was performed until no 
deviations in the oversampled data were observed. 
Following a third oversampling of the interpolated 
dataset (11136 Records), the mean was restored to 
4.7, 4.8, and 96.4, representing almost less than 10% 
deviation and closely resembling the original raw 
dataset. The density graph also exhibited striking 
similarities, with minimal deviations in the mean 
among the raw, interpolated, and oversampled 
datasets. The process of interpolation and 
oversampling played a pivotal role in preparing the 
dataset for deep learning mechanisms[13]. By 
addressing the challenges of data imbalance and 
deviation, we were able to achieve a more robust 
and representative dataset that yielded superior 
results in subsequent modelling and analysis phases. 

4.5  Oversampling with SMOTE in Deep 
Learning for Imbalanced Data 

 Deep learning models often struggle with 
imbalanced datasets, where one class has 

significantly fewer samples compared to 
others(NoCompound Vs Compounds). This can lead 
to the model prioritizing the majority class and 
performing poorly on the minority class. The 
Challenge of Imbalanced Data while training a deep 
learning model to classify between Compounds and 
NoCompounds in identifying Chemical 
Composition. Since the merged, scaled, interpolated 
dataset has significantly fewer counts of 
Compounds, the model might learn to perfectly 
identify NoCompounds but miss many Compound 
ones. This is because the model prioritizes the 
majority class (NoCompound) during training. 
SMOTE helps balance the dataset by creating 
synthetic samples for the minority class, Jasmine, 

Rose and Human Urine Compounds(Figure 6). In 
our case, we applied SMOTE to the columns: 
Retention_Time_Secs, Peak_Area, Peak_Height, 
Base_Peak, Compound_Name, based on the 
Sample_Name index. The SMOTE equation(2) can 
be represented as follows: 

Where: 
 Xresampled represents the resampled feature 

dataset. 
 Yresampled represents the resampled target 

dataset. 
 SMOTE is the Synthetic Minority Over-

sampling Technique algorithm applied to 
the dataset. 

 X is the original feature dataset, Y is the 
original target dataset. 

 random_state=42 ensures reproducibility 
by setting the random state to a specific 
value. 

5.  CLASSIFICATION WITH DEEP 
LEARNING – THE METHODOLOGY 

 Exploring complex datasets primarily 
involves employing techniques like multi-class and 
multi-label classification, often utilizing deep-
learning neural networks. These methodologies 
assist in recognizing patterns, thereby aiding in 
visualizing and interpreting intricate multivariate 
datasets.  
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Figure 6 – Histogram of SampleName, after Linear 
Interpolation, applying SMOTE 

 The main goal is to capture as much 
variance from the original data as possible, helping 
to identify significant patterns and potential causal 
factors. In GC-MS data analysis, deep-learning 
neural networks compare individual peaks based on 
various features such as retention times, 
chromatogram segments, peak profiles, and mass 
spectra. Using deep learning for classification tasks 
requires preprocessing of the data, which includes 
gathering components like mass spectra, peak 
profiles, and chromatogram segments. These 
components are then processed and normalized for 
input into the network.  

Our data preprocessing steps for classification tasks 
include: 

i. Gathering relevant components of the data, 
such as mass spectra, peak profiles, and 
chromatogram segments. 

ii. Processing the data through operations such 
as data scaling, interpolation, and applying 
SMOTE oversampling, especially in complex 
and unstructured datasets. The merged dataset 
is then normalized and shuffled to maintain 
data integrity. 

iii. Formatting the data for input into the deep 
learning network by converting it into a 
suitable format, such as tensors or matrices. 

iv. Dividing the data into training and testing sets 
to evaluate the performance of the 
classification model. The dataset is split into a 
ratio of 70:30:10 for training, testing, and 
validation, respectively. 

v. Utilizing appropriate optimization techniques, 
such as the Adam optimizer, to train the deep 
learning model. 

vi. Comparing differences between raw and 
processed data (Linear Interpolated, Encoded, 
and Oversampled).  

 

5.1  Testing Phase 

 The model utilizes the Keras library to train 
a neural network for a classification task (Figure 7). 
The system initializes a Sequential model, which 
represents a linear stack of layers, including a 
densely connected layer with 128 units and a ReLU 
activation function. The output layer contains 
several units equal to the unique classes in the target 
variable, employing the softmax activation function. 
Softmax transforms raw scores (logits) into 
probabilities, making it suitable for multi-class 
classification tasks.  

Figure 7 – The LinePlot depicts, loss & accuracy during  
training and testing phases of the neural network model 

 During model compilation, the 
optimization technique employed is the 'Adam 
optimizer', and the loss function is set to 'sparse 
categorical cross-entropy', which is well-suited for 
multi-class classification with integer-encoded 
labels (where the target variable 'Y' involves 
'Sample_Name', an integer-encoded label 
corresponding to Compound and NoCompounds, 
respectively). The training process updates the 
model's weights using a batch size of 32 to minimize 
the specified loss function, employing the specified 
optimizer, 'Adam', and evaluates the model's 
performance based on the specified metrics. 
Notably, validation with Merged Samples shows that 
the deep neural network achieves 100% accuracy 
(Figure 8). 

Figure 8 – Testing Phase, Confusion Matrix with       
Actual and Predicted Values 
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The Hamming loss metric assesses the accuracy of a 
multi-label classifier, particularly in situations where 
each sample can pertain to multiple classes or carry 
multiple labels. It quantifies the proportion of 
incorrectly predicted labels for a given sample. 
However, attaining a flawless Hamming loss in real-
world scenarios with complex and unstructured 
datasets can prove exceedingly challenging. In our 
scenario, the deep learning neural network yielded a 
hamming loss of '0' (Figure 9), indicating flawless 
performance where all predicted labels for each 
sample precisely align with the true labels. 
Similarly, achieving an Accuracy score, F1, and 
Recall score results of '1' signifies that the model 
accurately predicts the exact label combination. 

5.2  Validation Phase 
( Multi-Class and Multi-Label) 

 Moving to the validation phase, the model 
underwent application to the merged dataset, 
optimizing it by assessing preprocessed encoded 
data and determining the number of features 
employed in the raw dataset. The model's 
performance underwent evaluation through a cross-
validation process utilizing the tensorflow.keras 
library. 

Figure 9 – Testing Phase – Classification Report 

 The complete dataset underwent division 
into training (70%), testing (20%), and validation 
(10%) subsets for both X and Y, resulting in 3897, 
1115, and 556 samples, respectively. We can further 
adjust the model and its parameters, which are 
subsequently passed into the MultiOutputClassifier. 
The deep learning neural network model achieved 
100% accuracy in Multi-Class and Multi-Label 
classification of features such as Jasmine, Rose, 
Human_urine, and No_Compound data (Figure 10 
and 11). The evaluation metrics of Hamming Loss, 
F1-Score, Precision, and Recall play a crucial role in 
accurately assessing the performance of the multi-
class and multi-label classification model during the 
validation phase (Figure 12 and 13). 

 

 

 

 

 

 

 

 

Figure 10 - Validation Phase(Multi-Label),             
Confusion Matrix, Actual and Predicted Values 

 

Figure 11 - Validation Phase(Multi-Class),             
Confusion Matrix, Actual and Predicted Values 

 

 

 

 

 

Figure 12 – Validation Phase – Classification Report -   
Multi-Label Classification 

 

 

 

 

Figure 13 – Validation Phase – Classification Report -   
Multi-Class Classification 

6.  RESULTS 

 This research focuses on streamlining the 
integration of GC-MS data into deep learning 
models, improving odour detection and 
classification, and providing a framework for real-
time odour recognition systems. One crucial 
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consideration regarding imbalanced datasets is their 
relatively minor impact on ensemble techniques. 
Instead, focusing on fine-tuning hyper-parameters 
and adjusting class weights to penalize 
misclassification of the minority class can 
significantly improve performance. Employing such 
techniques during model training in classification 
algorithms often leads to enhanced model accuracy. 
In our study, we utilized samples of Jasmine, Rose, 
and Human Urine for gas chromatography testing, 
generating a report which was subsequently 
transformed into a structured dataset. Following this, 
we conducted thorough data preprocessing and 
exploratory data analysis, ultimately achieving an 
impressive 100% accuracy across deep learning 
classifier algorithms. It's noteworthy that while such 
high accuracy is typically attained in one 
classification, we achieved it in both classifications. 
This success was made possible through the 
strategic utilization of feature engineering, encoding 
techniques, and comprehensive exploratory data 
analysis. Additionally, the deep learning neural 
network's ability to select pertinent features and 
mitigate over-fitting rendered it less vulnerable to 
noise and outliers, contributing to the overall 
robustness of our approach. 

7.  CONCLUSION 

 Our research addresses all the limitations or 
drawbacks mentioned above, demonstrating 
potential for structure optimization and dataset 
expansion, and showcasing promising results for 
classifying odour samples based on their chemical 
profiles. In this study, we addressed two key 
limitations identified in existing research on using 
deep learning for chromatographic data analysis: 
limited diversity in training data and incomplete 
evaluation metrics. By employing multi-class and 
multi-label classification techniques utilizing deep 
learning neural networks, we were able to achieve 
100% accuracy in our experiments. 
 One of the major challenges in previous 
studies was the lack of diverse training data, which 
could limit the generalizability and performance of 
deep learning models in real-world scenarios. To 
overcome this limitation, we curated a 
comprehensive dataset encompassing a wide range 
of chromatographic data, including various sample 
types, experimental conditions, and instrument 
configurations. This diverse training data allowed 
our deep learning models to learn and generalize 
effectively, capturing the inherent complexities and 
variations present in chromatographic analysis. 
 Furthermore, existing research often relied 
on a limited set of evaluation metrics, such as area 

under the curve (AUC), which may not provide a 
complete picture of the model's performance. In our 
study, we employed a comprehensive set of 
evaluation metrics, including precision, recall, F1-
score, and overall accuracy, to thoroughly assess the 
performance of our deep learning models. This 
approach ensured a rigorous evaluation of the 
models' capabilities, enabling us to identify and 
address potential weaknesses or biases. By 
leveraging the power of multi-class and multi-label 
classification techniques, our deep learning neural 
networks were able to accurately classify and label 
chromatographic data with unprecedented precision. 
The multi-class approach allowed us to distinguish 
between different types of peaks, compounds, or 
analytes, while the multi-label classification enabled 
the simultaneous assignment of multiple labels to a 
single instance, capturing the inherent complexity of 
chromatographic data. 
 The 100% accuracy achieved in our 
experiments demonstrates the significant potential 
of deep learning techniques in chromatographic data 
analysis. Our approach not only addresses the 
limitations of limited training data diversity and 
incomplete evaluation metrics but also paves the 
way for more accurate, reliable, and automated 
analysis of chromatographic data. Future research 
should focus on further exploring the capabilities of 
deep learning in this domain, integrating advanced 
techniques such as transfer learning, attention 
mechanisms, and ensemble models. Additionally, 
collaboration with domain experts and the 
development of interpretable models will be crucial 
for fostering trust and understanding in the 
application of deep learning to chromatographic data 
analysis. Overall, this study represents a significant 
step forward in leveraging the power of deep 
learning for chromatographic data analysis, 
addressing key limitations and demonstrating the 
potential for highly accurate and comprehensive 
analytical solutions. 
 The future scope entails leveraging deep 
learning techniques to perform chemical compound 
classification on samples within GCMS datasets. 
This involves utilizing advanced neural network 
architectures to analyze the complex spectral data 
generated by Gas Chromatography-Mass 
Spectrometry (GCMS). Deep learning models can 
be trained to recognize patterns in these spectra, 
allowing for the identification and classification of 
different chemical compounds present in the 
samples. Therefore, while the future scope holds 
promise for advancements in chemical compound 
classification using GCMS data, it's essential to 
recognize and overcome the existing limitations to 
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ensure the success and effectiveness of such 
endeavors. 
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Figure 1, 2, 3 - GC-MS Report – Jasmine, Rose and Human Urine Data 
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Figure 5 – Visualization of Data, Density Plot –  After Third Oversampling 


