
 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4972

TEXT STEGANOGRAPHY BASED ON UNICODE
CHARACTERS AS MARKER IN INDONESIAN EXCEL FILE

KUKUH ADI PRASETYO1, ROJALI2

1,2Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina

Nusantara University, Jakarta 11480, Indonesia

E-mail: 1kukuh.prasetyo@binus.ac.id, 2rojali@binus.edu

ABSTRACT

There are many applications to simplify office activities in Indonesia today. When the confidential
information file from the office application has been spread, employees will definitely be confused about
which one of the several users of the office application has downloaded the file. The message as a mark was
given to the confidential information file using steganography based on Unicode characters utilizing the Latin
letters that appeared most frequently in Indonesian (a, n, e, and i). The letters that appeared most frequently
were made to have a different Unicode but with the same Latin letter appearance to represent certain binary
(2-bit, 3-bit, or 4-bit binary). In using steganography, the results of Security Ratio, Size Increasing Ratio, and
Capacity were measured and Invisibility result was also seen. The message as a mark in the confidential
information file was successfully inserted and the best steganography algorithm in this research was
steganography based on Unicode character which used 4 letters to represent 3-bit binary producing 100% for
Security Ratio, no Size Increasing Ratio (0% for SIR), and 1954.76 bits for Capacity (increased compared to
steganography based on Unicode character which used 3 letters to represent 3-bit binary, 3 letters to represent
a 2-bit binary, and 4 letters to represent 2-bit binary)

Keywords: Steganography, Unicode, Character, Letter, Excel

1. INTRODUCTION

There are many applications to simplify office

activities in Indonesia today. Every application in
the office must have a lot of information. This
information can be public or confidential
information. Confidential information is protected
as far as possible so that it can only be seen by
people who have the right to receive or access it.

Based on a survey by Asosiasi Penyelenggara

Jasa Internet Indonesia in 2023 to 8,510
respondents, it was found that 66.82% of internet
users in Indonesia had never changed their
passwords [1]. In addition, based on a survey
conducted by YouGov as requested by Google to
more than 13,000 respondents in 11 Asian markets
in September 2021, it was found that 3 out of 5
respondents shared passwords with friends or
family [2].

So, it is very possible that unauthorized

employees can log into applications in the office
and download files in formats such as Excel,
Word, or PDF that contain confidential

information texts and then spread them. If
confidential information files have been spread,
employees will definitely be confused about
which user has downloaded the file. Therefore, it
is necessary to provide a message hidden in the
confidential information file as a mark. This
hiding can be done using steganography.
Encryption in Cryptography and information hiding
are important methods in information security [3].
Steganography has been around since ancient
times [4]. This is one of the data communications
that has the highest level of effectiveness [5].

The media used in steganography is called a

cover file, while the result file that has a message
inserted is called a stego file. Commonly used
cover files are images and audio but it is also
possible to use text. The use of cover files in the
form of text to hide messages is called text
steganography [6]. Text steganography is
considered the most difficult compared to
steganography such as image or audio media [7].

There were several examples of inserting

mark in a file. Martono and Irawan protected

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4973

ownership of digital data using marker by
inserting information into the digital data using
steganography with the End of File method [8].
This algorithm inserted the watermark marker at
the end of the digital file. The results showed that
the file quality was still the same, the file size
increased according to the inserted size, and the
insertion and extraction were successful.

Pratomo Djati Nugroho and Mahbubul

Wathoni saw that the world of photography
produced images that were widely spread on
social media which could be acknowledged by
unauthorized parties [9]. They inserted ownership
marker in the form of text (which had been
encrypted with the Advanced Encryption Standard
algorithm) in the image using steganography with
the LSB (Least Significant Bit) method so that the
marker bits were inserted at the end of the image
bits. Insertion and extraction of text messages in
images could be done well but there was an
increase with an average 616.85% for size.

Yulita Salim and Huzain Azis were worried

that the research data of lecturers at the Muslim
Indonesia University would be taken and
acknowledged by unauthorized people, so they put
a marker of ownership on the research data in pdf
form [10]. The marker used was an image with the
Digital Watermarking steganography algorithm.
The system could be used by Muslim Indonesia
University to provide mark of ownership.

Damian Victor Putra Rape Tupen, Wahyu

Eko Sridaryanto, and Lukman Hakim inserted
markers in images to make searching easier when
an image was searched based on these markers
[11]. This research was implemented on Android
and used steganography with the LSB (Least
Significant Bit) method. The average image
search time in the Android gallery was 8.17
seconds, search accuracy was 100%, and there
was an increase 0.2 to 0.6 KB for image size.

Ahmad Khuzaifi, Fauziah, and Iskandar Fitri

inserted message marker into an image so that the
image would not be acknowledged by
unauthorized people [12]. This research used
steganography with the LSB (Least Significant
Bit) method. Marker in the form of messages
could be extracted even though there was a change
675.1 KB (1186.5%) in file size.

There were several steganography methods

that could be performed on text but what was

interesting was the use of Unicode which
developed from year to year. Aliea Salman Saber
and Wid Akeel Awadh conducted research in
Excel files, unlike generally in Word, PDF, PPT,
and others [13]. The method used to hide messages
was to use Unicode from Arabic and Persian
numbers (0, 1, 2, 3, 7, 8, 9) which were similar
when seen with the human eye but different
Unicode. Invisibility was good because there was
no visible difference from the outside with 1 bit
per number in the Excel file (average 67.5%) for
Capacity.

Abdul Monem S. Rahma, Wesam S. Bhaya,

and Dhamyaa A. Al-Nasrawi carried out
steganography on text, where this type of
steganography was more difficult than images and
audio [14]. Secret messages were hidden in
Microsoft Word through the Unicode of certain
Latin letters (A, B, E, G, H, I, M, O, P, S, T, j, o)
which had similar characters to other languages
but with different Unicode. 2-bit binary "00" was
used when using Unicode from Latin letters, 2-bit
binary "01" was used for Unicode from another
language, 2-bit binary "10" was used for another
language, and 2-bit binary "11" was used for the
other language that had the same character
appearance. The average size increase was 11.1%,
capacity was 4177.6 bits (200% compared to the
number of selected letters), and invisibility was
good.

Salwa Shakir Baawi, Mohd Rosmadi

Mokhtar, and Rossilawati Sulaiman used the
Unicode Zero Width Non-Joiner (ZWNJ) and
Zero Width Joiner (ZWJ) to perform
steganography on text [7]. The words on the cover
text were divided into words with 2 letters. The
secret message was converted into binary bits
which are further divided into 2-bit binary for later
insertion. The inserted 2-bit binary depended on
ZWNJ Unicode placement in a 2-letter word.
Unicode ZWJ was inserted at the end when the
secret message had been completely inserted. The
average increase in size of the cover was 22.61%,
good perceptual transparency, and average
capacity was 5650.8 bits.

Salwa Shakir Baawi, Dhamyaa A. Nasrawi,

Lina Talib Abdulameer tried to improve previous
research related to Steganography in texts that
used Unicode from other languages [14]. The
choice of letter characters used was based on the
four letters most frequently used in English [15].
If previous research used letters from other

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4974

languages, this time what was used were custom
letters that had a different Unicode than the
original letters. 2-bit binary "00" was used for the
Unicode of the original letter, 2-bit binary "01"
was used for the Unicode of the first custom letter,
2-bit binary "10" was used for the second custom
letter, and 2-bit binary "11" was used for the third
custom letter which had the same appearance. The
cover file used was in TXT format from Chapter 1
of The Lost Girl by D. H. Lawrence. The results
obtained were 0% for Size Increasing Ratio (SIR),
Capacity increased to 26174 bits (200% compared
to the number of selected letters), Invisibility was
good.

The aim of this research is to insert mark in

confidential information file and find out the way
to insert it using text steganography. This research
also has scope which is that the text steganography
used is based on Unicode character. Then the
confidential information file used is in Excel
format and in Indonesian. The message as a mark
is inserted using the Latin letters that appear most
frequently in Indonesian. If in English the 4 letters
that appear most frequently are e, t, a, o, then in
Indonesian the 4 letters that appear most
frequently are a, n, e, i [16]. The letters that appear
most frequently are made to have different
Unicode but with the same Latin letter appearance
to represent certain binary. In this research there
is also improvement in terms of the binary
represented. If previously Salwa Shakir Baawi
[15] only used 2-bit binary (00, 01, 10, and 11)
then this research used 2-bit binary and then
upgraded it to 3-bit binary (000, 001, and so on)
and 4-bit binary (0000, 0001, and so on). Among
the different binary represented, the best
steganography algorithm is determined based on
the performance of the steganography
characteristics of each steganography algorithm.
The Improvement in terms of the binary
represented, the use of Latin letters that appear
most often in Indonesian, and the use of
Indonesian excel file in text steganography based
on Unicode character are novelty.

2. LITERATURE REVIEW

2.1 Characteristics of Steganography

There are several characteristics of
steganography that will be used in this research,
namely Capacity, Size Increasing Ratio, and
Security Ratio. Inserting a message which will make
the cover file change to a stego file is not an easy
task and there are characteristics that must be taken

into account such as increasing of the file size and
other characteristics [17].

Capacity is the main thing in text steganography

[18]. Capacity is determined by how much data can
be inserted and hidden in the cover file. The formula
for calculating Capacity can be seen in Equation 1
[18].

Capacity = represented bits x
 total number of selected cover characters

Size Increasing Ratio (SIR) is the ratio of the

increase in the size of the stego file compared to
the size of the cover file. The formula used can be
seen in Equation 2 [15].

SIR =
(Size of Stego File – Size of Cover File)

Size of Cover File
 x 100%

The homogeneity ratio between two texts,

namely between the cover file and the stego file,
can be measured by calculating Excess Visual
Characters. If Excess Visual Characters in the
stego file increases, it will reduce the
homogeneity ratio which will also result in a lack
of Security in the method [19]. Equation 3,
Equation 4, and Equation 5 are used to calculate
digitally the Security Ratio [19] [20].

Discount Value =
Original Character ∗ Excess Character

100

Amount After Discount = Original Character − Discount Value

Security Ratio =
Amount After Discount

Original Character
 x 100%

Excess Character needs to be paid attention
because it greatly influences the Security Ratio
results. If the Excess Character (Total Number of
Stego File Characters - Total Number of Cover File
Characters) is equal to 0, then the Security Ratio
result is 100%.

Apart from that, Invisibility will be seen.
Invisibility is seen from whether humans or
readers can or cannot differentiate between the
cover file and the stego file to detect the inserted
message [15].

2.2 ASCII

ASCII, which stands for American Standard
Code for Information Interchange, is an international
standard code for representing numbers, letters and
other symbols on computers. ASCII can also be
called numeric which represents commands or

(1)

(2)

(3)

(4)

(5)

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4975

characters on a computer [21]. ASCII is the same as
Unicode which encodes various numbers, letters and
symbols. ASCII uses 8 bits for coding. ASCII has
256 codes (0-255). Half are codes for text
manipulation while the other half are codes for
image or graphic manipulation.

2.3 Unicode
Unicode is a standard that is universally used to

represent non-ASCII characters [22]. Unicode
emerged because of ASCII's limitations in
representing letter characters and symbols from
various countries in the world. Unicode is capable
of representing much more characters through code.
The characters that can be represented by Unicode
exceed 1 million characters [23]. Unicode has code
point that is usually written in hexadecimal and
begin with “U+” [24].

2.4 Glyph

Figure 1: Glyph Examples in Microsoft Office

Glyphs can be interpreted as the physical
appearance/representation of a character. If
connected to Unicode then each Unicode has its
own glyph. So, the glyph for Unicode 0061 is
different from the glyph for Unicode 0062 which
can be seen in Figure 1.

3. PROPOSED METHOD

3.1 Data Collection

In this research, the Excel file that would be
inserted by message as a mark was an Excel file
about the secret election of officials at the XYZ
office. There were 34 files covering almost all
provinces in Indonesia which can be seen in Table
1. The files contained the location of provinces,
positions, current officials, proposed officials and
elected officials.

Table 1: Excel Data of Confidential Information

Experiment Cover File Name Province

1 Aceh.xlsx Aceh

Experiment Cover File Name Province

2 Sumatera Utara.xlsx
North
Sumatera

3 Sumatera Barat.xlsx
West
Sumatera

4 Riau.xlsx Riau

5 Kepulauan Riau.xlsx
Riau
islands

6 Jambi.xlsx Jambi

7 Sumatera Selatan.xlsx
South
Sumatera

8 Bangka Belitung.xlsx
Bangka
Belitung
Islands

9 Bengkulu.xlsx Bengkulu
10 Lampung.xlsx Lampung

11
Jakarta
Metropolitan.xlsx

Jakarta

12 Banten.xlsx Banten
13 Jawa Barat.xlsx West Jawa

14 Jawa Tengah.xlsx
Central
Jawa

15 D. I. Yogyakarta.xlsx
Special
Region of
Yogyakarta

16 Jawa Timur.xlsx East Jawa

17 Kalimantan Barat.xlsx
West
Kalimantan

18
Kalimantan
Tengah.xlsx

Central
Kalimantan

19
Kalimantan
Selatan.xlsx

South
Kalimantan

20 Kalimantan Timur.xlsx
East
Kalimantan

21 Kalimantan Utara.xlsx
North
Kalimantan

22 Bali.xlsx Bali

23
Nusa Tenggara
Barat.xlsx

West Nusa
Tenggara

24
Nusa Tenggara
Timur.xlsx

East Nusa
Tenggara

25 Sulawesi Utara.xlsx
North
Sulawesi

26 Sulawesi Tengah.xlsx
Central
Sulawesi

27
Sulawesi
Tenggara.xlsx

Southeast
Sulawesi

28 Sulawesi Barat.xlsx
West
Sulawesi

29 Sulawesi Selatan.xlsx
South
Sulawesi

30 Gorontalo.xlsx Gorontalo
31 Maluku.xlsx Maluku

32 Maluku Utara.xlsx
North
Maluku

33 Papua.xlsx Papua
34 Papua Barat.xlsx West Papua

3.2 Creation of Special Font File

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4976

Figure 2: Use of Microsoft VOLT

Using the Microsoft VOLT program, a special
letter file was created which the same glyph of a
previously selected Latin letter had many different
Unicode characters. As an illustration, the glyph
for the letter 'a' will have the Unicode characters
U+0061, U+0023, U+0024, and U+0025. Then
did the same thing for the glyphs for the letter 'n',
'e', and 'i' with different Unicode characters as
could be seen in Figure 2.

The Unicode characters used depended on the

number of binaries represented. In Table 2 you
could see the use of Unicode characters from 4
Latin letters to represent 2-bit binary. S was the
binary represented. The Unicode of the characters
used here all had 1 byte for the size.

Table 2: Use of Unicode characters on 4 Selected
Letters Representing 2-Bit Binary

Letter
Unicode

S=00 S=01 S=10 S=11
a U+0061 U+0023 U+0024 U+0025
n U+006E U+005f U+002A U+002B
e U+0065 U+007b U+003D U+007d
i U+0069 U+0040 U+005B U+005C

Then the use of Unicode characters from 4
Latin letters to represent 3-bit binary could be
seen in Table 3. The Unicode of the characters
used here all had 1 byte for the size.

Table 3: Use of Unicode characters on 4 Selected
Letters Representing 3-Bit Binary

Letter
Unicode

S=000 S=001 S=010 S=100
a U+0061 U+0023 U+0024 U+0025
n U+006E U+005F U+002A U+002B
e U+0065 U+007B U+003D U+007D
i U+0069 U+0028 U+0029 U+0022

Letter
Unicode

S=011 S=101 S=110 S=111
a U+0040 U+005B U+005C U+005D
n U+005E U+007C U+007E U+0026
e U+0060 U+003F U+0021 U+003B
i U+003A U+0027 U+003C U+003E

Meanwhile, the use of Unicode characters of
4 Latin letters to represent 4-bit binary could be
seen in Table 4. The Unicode of the characters
used here were not all worth 1 byte. This happened
because of the limited number of Unicode
characters worth 1 byte. The first 32 Unicode
characters (U+0061 to U+003E) were worth 1
byte. Meanwhile, the next 32 Unicode characters
(U+0192 to U+00BB) were not worth 1 byte.

Table 4: Use of Unicode characters on 4 Selected
Letters Representing 4-Bit Binary

Letter
Unicode

S=0000 S=0001 S=0010 S=0100
a U+0061 U+0023 U+0024 U+0025
n U+006E U+005F U+002A U+002B
e U+0065 U+007B U+003D U+007D
i U+0069 U+0028 U+0029 U+0022

Letter
Unicode

S=1000 S=1001 S=1010 S=1100
a U+0040 U+005B U+005C U+005D
n U+005E U+007C U+007E U+0026
e U+0060 U+003F U+0021 U+003B
i U+003A U+0027 U+003C U+003E

Letter
Unicode

S=0110 S=0101 S=0011 S=1101
a U+0192 U+02C6 U+0160 U+0152
n U+017E U+0178 U+00A1 U+00A2
e U+00A7 U+00A8 U+00A9 U+00AA
i U+00B0 U+00B1 U+00B4 U+00B5

Letter
Unicode

S=1011 S=1110 S=0111 S=1111
a U+017D U+02DC U+0161 U+0153
n U+00A3 U+00A4 U+00A5 U+00A6
e U+00AB U+00AC U+00AE U+00AF
i U+00B6 U+00B7 U+00B8 U+00BB

The use Unicode characters from 3 Latin
letters representing 2-bit, 3-bit, or 4-bit binary
used the same table as before but the letters used
were the top 3 letters, namely 'a', 'n', and 'e'. The
custom font file was installed after special font file
had been created where the same glyph of the
selected Latin fonts had many different Unicode
characters.

3.3 Message Insertion

Figure 3: Flowchart of Message Insertion Overview

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4977

In Figure 3, flowchart of message insertion
overview can be seen. The message as a mark is
inserted using the Latin letters that appear most
frequently in Indonesian (a, n, e, and i) to
represent 2-bit, 3-bit, and 4-bit binary. The
different binary representation gives different
insertion algorithms.

Algorithm 1: Representing 2-Bit Binary
Input: Excel file E and message M
Output: Stego file S
Steps:
1. Open file E
2. Perform scan of selected letters in file E
3. Count the number of letters in Step 2 to check

the maximum capacity (in bits) of insertion in
file E

4. Calculate the length of characters in message
M and write it in 2-digit format

5. Convert each digit into 8-bit binary so there are
16 bits

6. Convert M to binary (8-bit format) and add 16
bits (from Step 5) to the start of M

7. If the maximum insertion capacity is greater
than or equal to the total bits from Step 6 then
go to step 8, otherwise go directly to step 11

8. Divide M into blocks consisting of 2-bit binary
9. For each block of message M:

- If block = 00, then use the original Unicode
of the letter

- Otherwise, use another Unicode according
to the 2-bit binary represented by the other
Unicode in table 2

10. Give file S
11. Finish

Algorithm 2: Representing 3-Bit Binary
Input: Excel file E and message M
Output: Stego file S
Steps:
1. Open file E
2. Perform scan of selected letters in file E
3. Count the number of letters in Step 2 to check

the maximum capacity (in bits) of insertion in
file E

4. Calculate the length of characters in message
M and write it in 2-digit format

5. Convert each digit into 6-bit binary so there are
12 bits

6. Convert M to binary (8-bit format) and add 12
bits (from Step 5) to the start of M

7. For the total number of bits in Step 6:
- If the total bits modulo 3 = 0 then continue

to Step 8

- If the total bits modulo 3 = 1 then add 2 bits
with the value 0 at the end of M then continue
Step 8

- If the total bits modulo 3 = 2 then add 1 bit
with the value 0 at the end of M then continue
Step 8

8. If the maximum insertion capacity is greater
than or equal to the total bits from Step 7 then
go to step 9, otherwise go directly to step 12

9. Divide M into blocks consisting of 3-bit binary
10. For each block of message M:

- If block = 000, then use the original Unicode
of the letter

- Otherwise, use another Unicode according
to the 3-bit binary represented by the other
Unicode in table 3

11. Give file S
12. Finish

Algorithm 3: Representing 4-Bit Binary
Input: Excel file E and message M
Output: Stego file S
Steps:
1. Open file E
2. Perform scan of selected letters in file E
3. Count the number of letters in Step 2 to check

the maximum capacity (in bits) of insertion in
file E

4. Calculate the length of characters in message
M and write it in 2-digit format

5. Convert each digit into 8-bit binary so there are
16 bits

6. Convert M to binary (8-bit format) and add 16
bits (from Step 5) to the start of M

7. If the maximum insertion capacity is greater
than or equal to the total bits from Step 6 then
go to step 8, otherwise go directly to step 11

8. Divide M into blocks consisting of 4-bit binary
9. For each block of message M:

- If block = 0000, then use the original
Unicode of the letter

- Otherwise, use another Unicode according
to the 4-bit binary represented by the other
Unicode in table 4

10. Give file S
11. Finish

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4978

Figure 4: Example of a Cover File (Jawa Timur.xlsx) to
be Inserted

The letters colored red in Figure 4 depicted
examples of letters that had been selected, namely
those that appeared most frequently in Indonesian
(a, n, e, and i) which would be inserted with certain
binary messages.

For example, the cover file used here was an

excel file from East Java Province (Jawa
Timur.xlsx). The message inserted as a sign was
"Oleh SESditCK tanggal 29-02-2024 pukul
14:15:16 PM" using steganography based on
Unicode characters utilizing 4 letters to represent 3-
bit binary

Figure 5: Scan Result of Selected Letters

First, Scan was carried out for the number of
selected letters in the file with the results which
could be seen in Figure 5. The total number was 928
so the insertion capacity was 928 x 3 = 2784 bits.

Figure 6: Result of Marker Length

Then calculated the length of the characters in
the message and wrote it in 2-digit format and
converted each digit to binary with 6-bit format so
that there were 12 bits as in Figure 6.

Figure 7: Binary of Inserted Message

After that, converted the message into binary
form (8-bit format) and add the 12 bits at the
beginning of the message so that the actual
message inserted was "50Oleh SESditCK tanggal
29-02-2024 pukul 14:15:16 PM". Because the
total bits were 414 as in Figure 7 so 414 modulo 3
produced 0 then went straight to the next step.

Figure 8: Bit Blocks of Message

Because the insertion capacity (2784 bits) was
greater than or equal to the total bits of the entire
message (414 bits), The binary message was
divided into blocks which consisted of 3-bit
binary as in Figure 8.

In Table 5 it could be seen that for each block

of the message binary, if block = 000, then used
the original Unicode of the letter and if not then
used another Unicode according to the 3-bit

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4979

binary represented by the other Unicode in table
3. Finally, the stego file was saved with the name
“Jawa Timur Stego.xlsx”.

Table 5: Unicode Character Replacement Overview
Cover
File

i n i e a …

Unicode
before
Hiding

U+
0069

U+
006E

U+
0069

U+
0065

U+
 0061 …

Binary
Block

110 101 110 000 010 …

Unicode
after

Hiding

U+
003C

U+
007C

U+
003C

U+
0065

U+
 0024 …

3.4 Message Extraction

Figure 9: Flowchart of Message Extraction Overview

In Figure 9, flowchart of Message Extraction
Overview can be seen. Marker in the form of
messages is extracted from the stego file. The
message comes from a binary collection that is
extracted using the Latin letters that appear most
frequently in Indonesian (a, n, e, and i) to
represent 2-bit, 3-bit, and 4-bit binary. The
different binary representation gives different
extraction algorithms.

Algorithm 4: Representing 2-Bit Binary
Input: Stego file S
Output: Message M and message length L
Steps:
1. Open file S
2. Extract L which is a 2-digit number (8 bits

each) in the first 8 selected letters (1 letter
represents 2-bit binary)

3. For each selected letter:
- If the Unicode of the selected letter = the

Unicode of the original letter then L = 00
- Otherwise, check the value of L in table 2

for the 2-bit binary represented by the other
Unicode

4. Divide L into blocks consisting of 8-bit binary
then convert it into ASCII values so that the
digit values can be read

5. Apart from the first 8 letters, scan the selected
letters again in the S file as much as ((8 x value
of the digit) / 2) letters

6. For each selected letter:
- If the Unicode of the selected letter = the

Unicode of the original letter then M = 00
- Otherwise, check the value of M in table 2

for the 2-bit binary represented by the other

Unicode
7. Divide M into blocks consisting of 8-bit binary

then convert to ASCII values so that the
message can be read

8. Give message M
9. Finish

Algorithm 5: Representing 3-Bit Binary
Input: Stego file S
Output: Message M and message length L
Steps:
1. Open file S
2. Extract L which is a 2-digit number (6 bits

each) in the first 4 selected letters (1 letter
represents 3-bit binary)

3. For each selected letter:
- If the Unicode of the selected letter = the

Unicode of the original letter then L = 000
- Otherwise, check the value of L in table 3

for the 3-bit binary represented by the other
Unicode

4. Divide L into blocks consisting of 6-bit binary
then convert it into ASCII values so that the
digit values can be read

5. Apart from the first 4 letters, scan the selected
letters again in the S file as much as ((8 x value
of the digit + y) / 3) letters, where the value of
y:
- If 8 x value of the digit modulo 3 = 0 then

y=0
- If 8 x value of the digit modulo 3 = 1 then

y=2
- If 8 x value of the digit modulo 3 = 2 then

y=1
6. For each selected letter:

- If the Unicode of the selected letter = the
Unicode of the original letter then M = 000

- Otherwise, check the value of M in table 3
for the 3-bit binary represented by the other
Unicode

7. From all the bits of the M value, remove y bit
at the end

8. Divide M into blocks consisting of 8-bit binary
then convert to ASCII values so that the
message can be read

9. Give message M
10. Finish

Algorithm 6: Representing 4-Bit Binary
Input: Stego file S
Output: Message M and message length L
Steps:
1. Open file S

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4980

2. Extract L which is a 2-digit number (8 bits
each) in the first 4 selected letters (1 letter
represents 4-bit binary)

3. For each selected letter:
- If the Unicode of the selected letter = the

Unicode of the original letter then L = 0000
- Otherwise, check the value of L in table 4

for the 4-bit binary represented by the other
Unicode

4. Divide L into blocks consisting of 8-bit binary
then convert it into ASCII values so that the
digit values can be read

5. Apart from the first 4 letters, scan the selected
letters again in the S file as much as ((8 x value
of the digit) / 4) letters

6. For each selected letter:
- If the Unicode of the selected letter = the

Unicode of the original letter then M = 0000
- Otherwise, check the value of M in table 4

for the 4-bit binary represented by the other
Unicode

7. Divide M into blocks consisting of 8-bit binary
then convert to ASCII values so that the
message can be read

8. Give message M
9. Finish

For example, the stego file used here was “Jawa
Timur Stego.xlsx” which previously had the
message "50Oleh SESditCK tanggal 29-02-2024
pukul 14:15:16 PM" inserted. Message as mark was
extracted using steganography based on Unicode
characters utilizing 4 letters to represent 3-bit binary.

Table 6: Binary Extraction of Message Length

Stego File
(SF)

i n i e

Unicode
hidden in

SF
U+003C U+007C U+003C U+0065

Binary
Block

110 101 110 000

Figure 10: Extract Result from Message Length

First of all, the length of the message which was
a 2-digit number (6 bits each) was extracted in the
first 4 selected letters (1 letter represented 3-bit
binary). In Table 6, it could be seen that for each

selected letter, if the Unicode of the selected letter
was the same as the Unicode of the original letter,
then the message binary was 000. If not, then
checked the message binary value in table 3 for the
3-bit binary represented by the other Unicode.

Then, divided the binary message into blocks

consisting of 6-bit binary then converted it into
ASCII values so that the digit values could be read
by humans as in Figure 10.

Figure 11: Additional Number of Letters to Scan

Apart from the first 4 letters, scanned the
selected letters again in the Stego file for ((8 x 50 +
2) / 3 = 134) letters as in Figure 11.

Table 7: Binary Extraction of Message

Stego File
(SF)

a e e a a …

Unicode
hidden in SF

U+
0024

U+
0060

U+
0021

U+
005C

U+
005C …

Binary Block 010 011 110 110 110 …

Figure 12: Bit Collection from the Length and Content of

the Extraction Message

In Table 7, it could be seen that for each selected
letter, if the Unicode of the selected letter was the
same as the Unicode of the original letter, then the
message binary was 000. If not, checked the message
binary value in table 3 for the 3-bit binary
represented by the other Unicode. After completing
the scanning, bit collection from the Length and
Content of the Extraction Message obtained which
could be seen in Figure 12. Later the 2 bits at the end
of the message are removed (because y=2).

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4981

Figure 13: Result of Message Extraction

After that, divided the message binary into
blocks which consist of 6-bit binary for the first 12
bits of the message (2-digit of message length) and
8-bit binary after that for the original message. After
that, converted it to ASCII values so that the message
could be read by humans as in Figure 13. Finally,
combined the result of ASCII values from these
blocks so that the message was obtained which was
100% the same as the inserted message, namely
"50Oleh SESditCK tanggal 29-02-2024 pukul
14:15:16 PM".

3.5 Steganography Performance Testing

The message inserted as a mark contained 3
main contents, namely user name, date, and time.
Steganography performance testing on 34 excel
files seen from the parameters Size Increasing
Ratio (SIR), Capacity, and Security Ratio. Each

file was used in text steganography based on
Unicode characters utilizing 3 or 4 letters to
represent 2-bit, 3-bit, or 4-bit binary.

3.6 Steganography Performance Evaluation

The evaluation carried out was comparing the
results of the average Size Increasing Ratio (SIR),
Capacity, and Security Ratio parameters. It was
seen which algorithm has the best results among
all.

4. RESULTS AND DISCUSSION

4.1 Result from Steganography Performance

Testing
In Table 8, it could be seen that there were

two message sizes inserted in this research namely
52 bytes and 99 bytes to see the parameters
Capacity, Size Increasing Ratio (SIR), and
Security Ratio. Previously, each message was
tested against 34 cover files which used text
steganography based on Unicode characters
utilizing 3 or 4 letters representing 2-bit, 3-bit, or
4-bit binary. The first message was a message with
size of 52 bytes containing “50Oleh SESditCK
tanggal 29-02-2024 pukul 14:15:16 PM”. The
number 50 in the message was useful during the
message extraction process and indicated that 50
characters had been inserted. The second message
was a message with size of 99 bytes containing
"97This official election file was downloaded by
Pras from the application on 02-29-2024 14:15:16
PM". The number 97 in the message was useful
during the message extraction process and
indicated that 97 characters had been inserted.

Table 8: Test Results for Capacity, Size Increasing Ratio (SIR), and Security Ratio

Experi
ment

Total
Number

of
Selected
Letters

in Cover
File

Capa
city

(bits)

Size of
Cover

File
(bytes)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Total
Number
of Cover

File
Charac

ters

Total
Number
of Stego

File
Charac

ters

Se
cu

rity
Ra
tio

(%)

Steganography utilized 3 letters (a, n, and e) to represent 2-bit binary
1 403 806 39490 52 39490 0 99 39490 0 2784 2784 100
2 845 1690 52372 52 52372 0 99 52372 0 5785 5785 100
3 449 898 39243 52 39243 0 99 39243 0 3018 3018 100
4 418 836 37426 52 37426 0 99 37426 0 2635 2635 100
5 425 850 38987 52 38987 0 99 38987 0 3182 3182 100
6 439 878 37451 52 37451 0 99 37451 0 2681 2681 100
7 464 928 39670 52 39670 0 99 39670 0 3109 3109 100
8 443 886 38302 52 38302 0 99 38302 0 2821 2821 100
9 413 826 37520 52 37520 0 99 37520 0 2729 2729 100

10 400 800 37503 52 37503 0 99 37503 0 2754 2754 100
11 502 1004 40321 52 40321 0 99 40321 0 3313 3313 100
12 439 878 37480 52 37480 0 99 37480 0 2773 2773 100
13 725 1450 49346 52 49346 0 99 49346 0 4862 4862 100
14 901 1802 54471 52 54471 0 99 54471 0 6087 6087 100

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4982

Experi
ment

Total
Number

of
Selected
Letters

in Cover
File

Capa
city

(bits)

Size of
Cover

File
(bytes)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Total
Number
of Cover

File
Charac

ters

Total
Number
of Stego

File
Charac

ters

Se
cu

rity
Ra
tio

(%)

15 458 916 39901 52 39901 0 99 39901 0 3280 3280 100
16 723 1446 47987 52 47987 0 99 47987 0 4932 4932 100
17 720 1440 47277 52 47277 0 99 47277 0 4518 4518 100
18 478 956 38253 52 38253 0 99 38253 0 2874 2874 100
19 462 924 37959 52 37959 0 99 37959 0 3042 3042 100
20 717 1434 51968 52 51968 0 99 51968 0 5132 5132 100
21 485 970 40696 52 40696 0 99 40696 0 3310 3310 100
22 447 894 38566 52 38566 0 99 38566 0 2974 2974 100
23 466 932 39798 52 39798 0 99 39798 0 3237 3237 100
24 967 1934 54186 52 54186 0 99 54186 0 6111 6111 100
25 478 956 38940 52 38940 0 99 38940 0 3162 3162 100
26 478 956 39713 52 39713 0 99 39713 0 3146 3146 100
27 475 950 39861 52 39861 0 99 39861 0 2997 2997 100
28 445 890 38354 52 38354 0 99 38354 0 2975 2975 100
29 643 1286 45958 52 45958 0 99 45958 0 4405 4405 100
30 459 918 37656 52 37656 0 99 37656 0 2823 2823 100
31 462 924 37818 52 37818 0 99 37818 0 2880 2880 100
32 409 818 37692 52 37692 0 99 37692 0 2880 2880 100
33 594 1188 44621 52 44621 0 99 44621 0 3899 3899 100
34 409 818 37552 52 37552 0 99 37552 0 2782 2782 100

Avera
ge

530.62 1061.
24

41598.
18

52 41598.
18

0 99 41598.
18

0 3526.24 3526.24 100

Steganography utilized 4 letters (a, n, e, and i) to represent 2-bit binary
1 494 988 39490 52 39490 0 99 39490 0 2784 2784 100
2 1052 2104 52372 52 52372 0 99 52372 0 5785 5785 100
3 533 1066 39243 52 39243 0 99 39243 0 3018 3018 100
4 525 1050 37426 52 37426 0 99 37426 0 2635 2635 100
5 545 1090 38987 52 38987 0 99 38987 0 3182 3182 100
6 533 1066 37451 52 37451 0 99 37451 0 2681 2681 100
7 553 1106 39670 52 39670 0 99 39670 0 3109 3109 100
8 539 1078 38302 52 38302 0 99 38302 0 2821 2821 100
9 512 1024 37520 52 37520 0 99 37520 0 2729 2729 100

10 504 1008 37503 52 37503 0 99 37503 0 2754 2754 100
11 624 1248 40321 52 40321 0 99 40321 0 3313 3313 100
12 531 1062 37480 52 37480 0 99 37480 0 2773 2773 100
13 913 1826 49346 52 49346 0 99 49346 0 4862 4862 100
14 1104 2208 54471 52 54471 0 99 54471 0 6087 6087 100
15 573 1146 39901 52 39901 0 99 39901 0 3280 3280 100
16 928 1856 47987 52 47987 0 99 47987 0 4932 4932 100
17 908 1816 47277 52 47277 0 99 47277 0 4518 4518 100
18 564 1128 38253 52 38253 0 99 38253 0 2874 2874 100
19 571 1142 37959 52 37959 0 99 37959 0 3042 3042 100
20 900 1800 51968 52 51968 0 99 51968 0 5132 5132 100
21 592 1184 40696 52 40696 0 99 40696 0 3310 3310 100
22 567 1134 38566 52 38566 0 99 38566 0 2974 2974 100
23 577 1154 39798 52 39798 0 99 39798 0 3237 3237 100
24 1179 2358 54186 52 54186 0 99 54186 0 6111 6111 100
25 572 1144 38940 52 38940 0 99 38940 0 3162 3162 100
26 558 1116 39713 52 39713 0 99 39713 0 3146 3146 100
27 557 1114 39861 52 39861 0 99 39861 0 2997 2997 100
28 542 1084 38354 52 38354 0 99 38354 0 2975 2975 100
29 771 1542 45958 52 45958 0 99 45958 0 4405 4405 100
30 540 1080 37656 52 37656 0 99 37656 0 2823 2823 100
31 559 1118 37818 52 37818 0 99 37818 0 2880 2880 100
32 502 1004 37692 52 37692 0 99 37692 0 2880 2880 100
33 735 1470 44621 52 44621 0 99 44621 0 3899 3899 100
34 497 994 37552 52 37552 0 99 37552 0 2782 2782 100

Avera
ge

651.59 1303.
18

41598.
18

52 41598.
18

0 99 41598.
18

0 3526.24 3526.24 100

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4983

Experi
ment

Total
Number

of
Selected
Letters

in Cover
File

Capa
city

(bits)

Size of
Cover

File
(bytes)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Total
Number
of Cover

File
Charac

ters

Total
Number
of Stego

File
Charac

ters

Se
cu

rity
Ra
tio

(%)

Steganography utilized 3 letters (a, n, and e) to represent 3-bit binary
1 403 1209 39490 52 39490 0 99 39490 0 2784 2784 100
2 845 2535 52372 52 52372 0 99 52372 0 5785 5785 100
3 449 1347 39243 52 39243 0 99 39243 0 3018 3018 100
4 418 1254 37426 52 37426 0 99 37426 0 2635 2635 100
5 425 1275 38987 52 38987 0 99 38987 0 3182 3182 100
6 439 1317 37451 52 37451 0 99 37451 0 2681 2681 100
7 464 1392 39670 52 39670 0 99 39670 0 3109 3109 100
8 443 1329 38302 52 38302 0 99 38302 0 2821 2821 100
9 413 1239 37520 52 37520 0 99 37520 0 2729 2729 100

10 400 1200 37503 52 37503 0 99 37503 0 2754 2754 100
11 502 1506 40321 52 40321 0 99 40321 0 3313 3313 100
12 439 1317 37480 52 37480 0 99 37480 0 2773 2773 100
13 725 2175 49346 52 49346 0 99 49346 0 4862 4862 100
14 901 2703 54471 52 54471 0 99 54471 0 6087 6087 100
15 458 1374 39901 52 39901 0 99 39901 0 3280 3280 100
16 723 2169 47987 52 47987 0 99 47987 0 4932 4932 100
17 720 2160 47277 52 47277 0 99 47277 0 4518 4518 100
18 478 1434 38253 52 38253 0 99 38253 0 2874 2874 100
19 462 1386 37959 52 37959 0 99 37959 0 3042 3042 100
20 717 2151 51968 52 51968 0 99 51968 0 5132 5132 100
21 485 1455 40696 52 40696 0 99 40696 0 3310 3310 100
22 447 1341 38566 52 38566 0 99 38566 0 2974 2974 100
23 466 1398 39798 52 39798 0 99 39798 0 3237 3237 100
24 967 2901 54186 52 54186 0 99 54186 0 6111 6111 100
25 478 1434 38940 52 38940 0 99 38940 0 3162 3162 100
26 478 1434 39713 52 39713 0 99 39713 0 3146 3146 100
27 475 1425 39861 52 39861 0 99 39861 0 2997 2997 100
28 445 1335 38354 52 38354 0 99 38354 0 2975 2975 100
29 643 1929 45958 52 45958 0 99 45958 0 4405 4405 100
30 459 1377 37656 52 37656 0 99 37656 0 2823 2823 100
31 462 1386 37818 52 37818 0 99 37818 0 2880 2880 100
32 409 1227 37692 52 37692 0 99 37692 0 2880 2880 100
33 594 1782 44621 52 44621 0 99 44621 0 3899 3899 100
34 409 1227 37552 52 37552 0 99 37552 0 2782 2782 100

Avera
ge

530.62 1591.
85

41598.
18

52 41598.
18

0 99 41598.
18

0 3526.24 3526.24 100

Steganography utilized 4 letters (a, n, e, and i) to represent 3-bit binary
1 494 1482 39490 52 39490 0 99 39490 0 2784 2784 100
2 1052 3156 52372 52 52372 0 99 52372 0 5785 5785 100
3 533 1599 39243 52 39243 0 99 39243 0 3018 3018 100
4 525 1575 37426 52 37426 0 99 37426 0 2635 2635 100
5 545 1635 38987 52 38987 0 99 38987 0 3182 3182 100
6 533 1599 37451 52 37451 0 99 37451 0 2681 2681 100
7 553 1659 39670 52 39670 0 99 39670 0 3109 3109 100
8 539 1617 38302 52 38302 0 99 38302 0 2821 2821 100
9 512 1536 37520 52 37520 0 99 37520 0 2729 2729 100

10 504 1512 37503 52 37503 0 99 37503 0 2754 2754 100
11 624 1872 40321 52 40321 0 99 40321 0 3313 3313 100
12 531 1593 37480 52 37480 0 99 37480 0 2773 2773 100
13 913 2739 49346 52 49346 0 99 49346 0 4862 4862 100
14 1104 3312 54471 52 54471 0 99 54471 0 6087 6087 100
15 573 1719 39901 52 39901 0 99 39901 0 3280 3280 100
16 928 2784 47987 52 47987 0 99 47987 0 4932 4932 100
17 908 2724 47277 52 47277 0 99 47277 0 4518 4518 100
18 564 1692 38253 52 38253 0 99 38253 0 2874 2874 100
19 571 1713 37959 52 37959 0 99 37959 0 3042 3042 100
20 900 2700 51968 52 51968 0 99 51968 0 5132 5132 100
21 592 1776 40696 52 40696 0 99 40696 0 3310 3310 100

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4984

Experi
ment

Total
Number

of
Selected
Letters

in Cover
File

Capa
city

(bits)

Size of
Cover

File
(bytes)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Total
Number
of Cover

File
Charac

ters

Total
Number
of Stego

File
Charac

ters

Se
cu

rity
Ra
tio

(%)

22 567 1701 38566 52 38566 0 99 38566 0 2974 2974 100
23 577 1731 39798 52 39798 0 99 39798 0 3237 3237 100
24 1179 3537 54186 52 54186 0 99 54186 0 6111 6111 100
25 572 1716 38940 52 38940 0 99 38940 0 3162 3162 100
26 558 1674 39713 52 39713 0 99 39713 0 3146 3146 100
27 557 1671 39861 52 39861 0 99 39861 0 2997 2997 100
28 542 1626 38354 52 38354 0 99 38354 0 2975 2975 100
29 771 2313 45958 52 45958 0 99 45958 0 4405 4405 100
30 540 1620 37656 52 37656 0 99 37656 0 2823 2823 100
31 559 1677 37818 52 37818 0 99 37818 0 2880 2880 100
32 502 1506 37692 52 37692 0 99 37692 0 2880 2880 100
33 735 2205 44621 52 44621 0 99 44621 0 3899 3899 100
34 497 1491 37552 52 37552 0 99 37552 0 2782 2782 100

Avera
ge

651.59 1954.
76

41598.
18

52 41598.
18

0 99 41598.
18

0 3526.24 3526.24 100

Steganography utilized 3 letters (a, n, and e) to represent 4-bit binary
1 403 1612 39490 52 39548 0.15 99 39607 0.30 2784 2784 100
2 845 3380 52372 52 52430 0.11 99 52489 0.22 5785 5785 100
3 449 1796 39243 52 39301 0.15 99 39360 0.30 3018 3018 100
4 418 1672 37426 52 37484 0.15 99 37543 0.31 2635 2635 100
5 425 1700 38987 52 39045 0.15 99 39104 0.30 3182 3182 100
6 439 1756 37451 52 37509 0.15 99 37568 0.31 2681 2681 100
7 464 1856 39670 52 39728 0.15 99 39787 0.29 3109 3109 100
8 443 1772 38302 52 38360 0.15 99 38419 0.31 2821 2821 100
9 413 1652 37520 52 37578 0.15 99 37637 0.31 2729 2729 100

10 400 1600 37503 52 37561 0.15 99 37620 0.31 2754 2754 100
11 502 2008 40321 52 40379 0.14 99 40438 0.29 3313 3313 100
12 439 1756 37480 52 37538 0.15 99 37597 0.31 2773 2773 100
13 725 2900 49346 52 49404 0.12 99 49463 0.24 4862 4862 100
14 901 3604 54471 52 54529 0.11 99 54588 0.21 6087 6087 100
15 458 1832 39901 52 39959 0.15 99 40018 0.29 3280 3280 100
16 723 2892 47987 52 48045 0.12 99 48104 0.24 4932 4932 100
17 720 2880 47277 52 47335 0.12 99 47394 0.25 4518 4518 100
18 478 1912 38253 52 38311 0.15 99 38370 0.31 2874 2874 100
19 462 1848 37959 52 38017 0.15 99 38076 0.31 3042 3042 100
20 717 2868 51968 52 52026 0.11 99 52085 0.23 5132 5132 100
21 485 1940 40696 52 40754 0.14 99 40813 0.29 3310 3310 100
22 447 1788 38566 52 38624 0.15 99 38683 0.30 2974 2974 100
23 466 1864 39798 52 39856 0.15 99 39915 0.29 3237 3237 100
24 967 3868 54186 52 54244 0.11 99 54303 0.22 6111 6111 100
25 478 1912 38940 52 38998 0.15 99 39057 0.30 3162 3162 100
26 478 1912 39713 52 39771 0.15 99 39830 0.29 3146 3146 100
27 475 1900 39861 52 39919 0.15 99 39978 0.29 2997 2997 100
28 445 1780 38354 52 38412 0.15 99 38471 0.31 2975 2975 100
29 643 2572 45958 52 46016 0.13 99 46075 0.25 4405 4405 100
30 459 1836 37656 52 37714 0.15 99 37773 0.31 2823 2823 100
31 462 1848 37818 52 37876 0.15 99 37935 0.31 2880 2880 100
32 409 1636 37692 52 37750 0.15 99 37809 0.31 2880 2880 100
33 594 2376 44621 52 44679 0.13 99 44738 0.26 3899 3899 100
34 409 1636 37552 52 37610 0.15 99 37669 0.31 2782 2782 100

Avera
ge

530.62 2122.
47

41598.
18

52 41656.
18

0.14 99 41715.
18

0.29 3526.24 3526.24 100

Steganography utilized 4 letters (a, n, e, and i) to represent 4-bit binary
1 494 1976 39490 52 39548 0.15 99 39607 0.30 2784 2784 100
2 1052 4208 52372 52 52430 0.11 99 52489 0.22 5785 5785 100
3 533 2132 39243 52 39301 0.15 99 39360 0.30 3018 3018 100
4 525 2100 37426 52 37484 0.15 99 37543 0.31 2635 2635 100
5 545 2180 38987 52 39045 0.15 99 39104 0.30 3182 3182 100
6 533 2132 37451 52 37509 0.15 99 37568 0.31 2681 2681 100

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4985

Experi
ment

Total
Number

of
Selected
Letters

in Cover
File

Capa
city

(bits)

Size of
Cover

File
(bytes)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Message
Size

(bytes)

Size of
Stego
File

(bytes)

Size
Increa

sing
Ratio
(%)

Total
Number
of Cover

File
Charac

ters

Total
Number
of Stego

File
Charac

ters

Se
cu

rity
Ra
tio

(%)

7 553 2212 39670 52 39728 0.15 99 39787 0.29 3109 3109 100
8 539 2156 38302 52 38360 0.15 99 38419 0.31 2821 2821 100
9 512 2048 37520 52 37578 0.15 99 37637 0.31 2729 2729 100

10 504 2016 37503 52 37561 0.15 99 37620 0.31 2754 2754 100
11 624 2496 40321 52 40379 0.14 99 40438 0.29 3313 3313 100
12 531 2124 37480 52 37538 0.15 99 37597 0.31 2773 2773 100
13 913 3652 49346 52 49404 0.12 99 49463 0.24 4862 4862 100
14 1104 4416 54471 52 54529 0.11 99 54588 0.21 6087 6087 100
15 573 2292 39901 52 39959 0.15 99 40018 0.29 3280 3280 100
16 928 3712 47987 52 48045 0.12 99 48104 0.24 4932 4932 100
17 908 3632 47277 52 47335 0.12 99 47394 0.25 4518 4518 100
18 564 2256 38253 52 38311 0.15 99 38370 0.31 2874 2874 100
19 571 2284 37959 52 38017 0.15 99 38076 0.31 3042 3042 100
20 900 3600 51968 52 52026 0.11 99 52085 0.23 5132 5132 100
21 592 2368 40696 52 40754 0.14 99 40813 0.29 3310 3310 100
22 567 2268 38566 52 38624 0.15 99 38683 0.30 2974 2974 100
23 577 2308 39798 52 39856 0.15 99 39915 0.29 3237 3237 100
24 1179 4716 54186 52 54244 0.11 99 54303 0.22 6111 6111 100
25 572 2288 38940 52 38998 0.15 99 39057 0.30 3162 3162 100
26 558 2232 39713 52 39771 0.15 99 39830 0.29 3146 3146 100
27 557 2228 39861 52 39919 0.15 99 39978 0.29 2997 2997 100
28 542 2168 38354 52 38412 0.15 99 38471 0.31 2975 2975 100
29 771 3084 45958 52 46016 0.13 99 46075 0.25 4405 4405 100
30 540 2160 37656 52 37714 0.15 99 37773 0.31 2823 2823 100
31 559 2236 37818 52 37876 0.15 99 37935 0.31 2880 2880 100
32 502 2008 37692 52 37750 0.15 99 37809 0.31 2880 2880 100
33 735 2940 44621 52 44679 0.13 99 44738 0.26 3899 3899 100
34 497 1988 37552 52 37610 0.15 99 37669 0.31 2782 2782 100

Avera
ge

651.59 2606.
35

41598.
18

52 41656.
18

0.14 99 41715.
18

0.29 3526.24 3526.24 100

Each message was tested against 34 cover files

using text steganography based on Unicode
characters utilizing 3 or 4 letters representing 2-bit,
3-bit, or 4-bit binary resulting in 100% message
similarity for the inserted message and the extracted
message. Apart from that, it also produced good
invisibility because there was no visible difference
between the appearance of the cover file and the
stego file (a file that had an inserted message) as
could be seen in Figure 14.

Figure 14: Example of Appearances from Cover File
(above) and Stego File (below)

4.2 Result from Steganography Performance
Evaluation
The evaluation that had been carried out was

comparing the results of the average parameters
from Capacity, Size Increasing Ratio (SIR), and
Security Ratio which could be seen in Table 9.

Table 9: Evaluation Results of Capacity, Size

Increasing Ratio (SIR), and Security Ratio

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4986

Letter
Represented

Binary
Capacity

(bits)

SIR for
52 Bytes
Message

(%)

SIR for
99 Bytes
Message

(%)

Security
Ratio
(%)

a, n, e
2-bit 1061.24 0 0 100
3-bit 1591.85 0 0 100
4-bit 2122.47 0.14 0.29 100

a, n, e,
i

2-bit 1303.18 0 0 100
3-bit 1954.76 0 0 100
4-bit 2606.35 0.14 0.29 100

If the Capacity was greater, the steganography
algorithm was better. If the Size Increasing Ratio
(SIR) is smaller, the steganography algorithm was
better. If the Security Ratio was greater, the
steganography algorithm was better too.

Figure 15: Chart of the Difference in Results for Each
Parameter

In figure 15, you could see the differences in
text steganography results in the excel file for each
parameter. The Security Ratio parameter had the
same results for all of them. The three best results
when viewed from the Capacity parameter were the
steganography Algorithm utilizing 4 letters to
represent 4-bit binary, the steganography Algorithm
utilizing 3 letters to represent 4-bit binary, and the
steganography Algorithm utilizing 4 letters to
represent 3-bit binary. However, if the Size
Increasing Ratio (SIR) parameter was seen, the only
one that had result of 0% from the best three was the
steganography Algorithm utilizing 4 letters to
represent 3-bit binary.

SIR from the steganography Algorithm utilizing

3 or 4 letters to represent 4-bit binary did not have a
value of 0% because there were letter characters
worth 1 byte which were replaced by Unicode from
other characters that were not worth 1 byte. This
occurred because of the limited number of Unicode
characters worth 1 byte according to Table 4. In
contrast to the steganography Algorithm utilizing 4
letters to represent 3-bit binary which had 0% for

SIR because it replaced letter characters with value
of 1 byte with Unicode from other characters which
also had value of 1 byte according to Table 3.

4.3 Result from Comparison of Proposed
Method with Similar Research
The proposed method here was the

steganography Algorithm based on Unicode
characters utilizing 4 letters to represent 3-bit binary.
In figure 16, result of the proposed method which
used 235 Bytes message with Sumatera Utara.xlsx as
cover file could be seen.

Figure 16: Result of the Proposed Method which used
235 Bytes Message

Comparison from proposed method with
previous research about Percentage of Capacity
Compared to The Number of Selected Letters, Size
Increasing Ratio (SIR), and Security Ratio which
could be seen in Table 10.

Table 10: Comparison of Proposed Method with
Previous Research

Method

Percentage of
Capacity Compared
to The Number of
Selected Letters

(%)

Size Increasing
Ratio for 235

Bytes Message
(%)

Security
Ratio
(%)

[14] 200% 18.4 100
[15] 200% 0 100

Proposed
Method

300% 0 100

The Security Ratio parameter had the same

results for all of them which was 100%. This
happened because there were no adding characters
but changing characters in [14], [15], and proposed
method. When viewed from the Size Increasing
Ratio parameter, [14] had Size Increasing Ratio not
equal to 0%. This was a weakness because it could

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4987

make other people suspected that a message had
been inserted. On the other hand, [15] and the
proposed method had Size Increasing Ratio equal to
0%. So, the two best results when viewed from the
Size Increasing Ratio parameter were [15] and the
proposed method. However, if the Percentage of
Capacity Compared to The Number of Selected
Letters parameter was seen, the one that had better
result from the best two was the proposed method.
This was a strength for the proposed method because
it could make the inserted message larger in size.
This was also a novelty compared to previous
research.

5. CONCLUSIONS

Conclusion obtained from this research include:

1. The way to insert a mark in an Indonesian Excel
file that had confidential information texts was
to give a message as a mark where the message
was first converted into binary and then inserted
using the Latin letters that appeared most
frequently in Indonesian (a, n, e, and i). These
letters were made to have different Unicode
characters but with the same Latin letter
appearance to represent certain binaries, for
example 2-bit binary, then upgraded to 3-bit
binary or 4-bit binary.

2. The message as a mark in the confidential
information file was successfully inserted and
the best Steganography Algorithm from the
experiments that had been carried out was the
Steganography Algorithm utilizing 4 letters to
represent 3-bit binary which has an average 0%
for Size Increasing Ratio (SIR), 100% for
Security Ratio, and 1954.76 bits for Capacity
(Capacity increased compared to steganography
based on Unicode characters utilizing 3 letters
to represent 3-bit binary, 3 letters to represent 2-
bit binary and 4 letters to represent 2-bit binary).

3. The proposed method was better than similar
research that had been carried out previously.
The proposed method was better than research
[14] in terms of Size Increasing Ratio and
Percentage of Capacity Compared to The
Number of Selected Letters and better than
research [15] in terms of Percentage of Capacity
Compared to The Number of Selected Letters.

REFERENCES:

[1] APJII. Survei APJII 66.8 Persen Warga RI

Ogah Ganti Password Akun 2023.
https://apjii.or.id/berita/d/survei-apjii-668-

persen-warga-ri-ogah-ganti-password-akun
(accessed June 27, 2023).

[2] Google Indonesia. Survei baru di Indonesia
mendapati hampir 2 dari 3 orang pernah
mengalami pelanggaran data pribadi atau
mengenal orang yang pernah
mengalaminya, tetapi 92% tetap kurang
menjaga keamanan sandi 2021.
https://indonesia.googleblog.com/2021/11/s
urvei-baru-di-indonesia-mendapati.html
(accessed June 27, 2023).

[3] Thabit R, Udzir NI, Yasin SM, Asmawi A,
Roslan NA, Din R. A Comparative Analysis
of Arabic Text Steganography. Applied
Sciences 2021;11:1–32.
https://doi.org/10.3390/app11156851.

[4] Baawi SS, Mokhtar MR, Sulaiman R. A
Comparative Study on The Advancement of
Text Steganography Techniques in Digital
Media. ARPN Journal of Engineering and
Applied Sciences 2018;13:1854–63.

[5] Khodher MAA, Khairi TWA. Review: A
Comparison Steganography Between Texts
and Images. 5th International Scientific
Conference of Al-Khwarizmi Society, vol.
1591, IOP Publishing Ltd; 2020.
https://doi.org/10.1088/1742-
6596/1591/1/012024.

[6] Begum F, Suthoju GR. Types of
Steganography for Secure Data
Maintenance. Annals of RSCB
2021;25:2144–59.

[7] Baawi SS, Mokhtar MR, Sulaiman R. New
Text Steganography Technique Based on A
Set of Two-Letter Words. J Theor Appl Inf
Technol 2017;95:6247–55.

[8] Martono, Irawan. Penggunaan Steganografi
dengan Metode End of File (EOF) pada
Digital Watermarking. Jurnal TICOM
2013;2:36–42.

[9] Nugroho PD, Wathoni M. Pengamanan Text
Dengan Teknik Steganografi Menggunakan
Metode Least Significant Bit (LSB). Jurnal
IPSIKOM 2015;3.

[10] Salim Y, Azis H. Sistem Penanda
Kepemilikan File Dokumen Menggunakan
Metode Digital Watermark Pada File
Penelitian Dosen Universitas Muslim
Indonesia. Jurnal ILKOM 2017;9:161–6.
https://doi.org/10.33096/ilkom.v9i2.125.16
1-166.

[11] Tupen DVPR, Sridaryanto WE, Hakim L.
Penerapan Least Significant Bit untuk
Penyisipian Penanda Pada Gambar. Jurnal

 Journal of Theoretical and Applied Information Technology
30th June 2024. Vol.102. No. 12

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4988

Infomedia 2020;5:10–6.
https://doi.org/10.30811/jim.v5i1.1577.

[12] Khuzaifi A, Fauziah, Fitri I. Teknik
Steganography untuk Menyisipkan Pesan
pada Sebuah Citra Menggunakan Metode
Least Significant Bit (LSB). Jurnal
Teknologi Informasi Dan Komunikasi
2022;6:417–23.
https://doi.org/10.35870/jtik.v6i3.461.

[13] Saber AS, Awadh WA. Steganography in
Ms Excel Document Using Unicode System
Characteristics. Journal of Basrah
Researches 2013;39:10–9.

[14] Rahma AMS, Bhaya WS, Al-Nasrawi DA.
Text Steganography Based On Unicode of
Characters in Multilingual. International
Journal of Engineering Research and
Applications (IJERA) 2013;3:1153–65.

[15] Baawi SS, Nasrawi DA, Abdulameer LT.
Improvement of “text steganography based
on unicode of characters in multilingual” by
custom font with special properties. IOP
Conf Ser Mater Sci Eng, vol. 870, Institute
of Physics Publishing; 2020, p. 1–10.
https://doi.org/10.1088/1757-
899X/870/1/012125.

[16] Shah A, Saidin AZ, Taha IF, Zeki AM,
Bhatti Z. Similarities and Dissimilarities
between Character Frequencies of Written
Text of Melayu, English, and Indonesian
Languages. International Conference on
Advanced Computer Science Applications
and Technologies, IEEE Computer Society;
2013, p. 192–4.
https://doi.org/10.1109/ACSAT.2013.45.

[17] Alshamsi A, Albaloushi S, Alkhoori M,
Almheiri H, Ababneh N. Enhancing Arabic
Text Steganography Based on Unicode
Features. International Journal of
Computing and Digital Systems
2022;11:685–93.
https://doi.org/10.12785/ijcds/110155.

[18] Thabit R, Udzir NI, Yasin SM, Asmawi A,
Gutub AAA. CSNTSteg: Color Spacing
Normalization Text Steganography Model
to Improve Capacity and Invisibility of
Hidden Data. IEEE Access 2022;10:65439–
58.
https://doi.org/10.1109/ACCESS.2022.318
2712.

[19] Al-Nofaie S, Gutub A, Al-Ghamdi M.
Enhancing Arabic Text Steganography for
Personal Usage Utilizing Pseudo-spaces.
Journal of King Saud University - Computer
and Information Sciences 2021;33:963–74.

https://doi.org/10.1016/j.jksuci.2019.06.010
.

[20] Alanazi N, Khan E, Gutub A. Inclusion of
Unicode Standard Seamless Characters to
Expand Arabic Text Steganography for
Secure Individual Uses. Journal of King
Saud University - Computer and
Information Sciences 2022;34:1343–56.
https://doi.org/10.1016/j.jksuci.2020.04.011
.

[21] Tommy, Siregar R, Lubis I, E AMarwan, H
AMahmud, Harahap M. A Simple
Compression Scheme Based on ASCII
Value Differencing. International
Conference on Mechanical, Electronics,
Computer, and Industrial Technology, vol.
1007, Institute of Physics Publishing; 2018.
https://doi.org/10.1088/1742-
6596/1007/1/012022.

[22] Zaynalov N, Narzullaev U, Muhamadiev A,
Qilichev D. About Using Unicode To Hide
Information In A Text Document. AIP Conf
Proc, vol. 2365, American Institute of
Physics Inc.; 2021.
https://doi.org/10.1063/5.0058952.

[23] Zaynalov NR, Narzullaev UKh,
Muhamadieva AN, Rahmatullaev IR,
Buranova RK. Combining Invisible Unicode
Characters to Hide Information in a Text
Document. International Journal on
Informatics Visualization 2020;4:148–53.

[24] Al-Shakarchy ND, Al-Shahad HF, Al-
Nasrawi DA. Cryptographic System Based
On Unicode. J Phys Conf Ser, vol. 1032,
Institute of Physics Publishing; 2018.
https://doi.org/10.1088/1742-
6596/1032/1/012049.

