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ABSTRACT 
 

Identifying nutrient deficiencies in plants with enhanced precision is crucial for sustainable food 
production. Traditional methods often fail to capture the complex biological scenes in various use cases. 
This work introduces a novel, precision-aware, learning-based approach to significantly improve the 
detection and classification of nutrient deficiencies in plants. Unlike available methodologies that rely 
solely on image-based analysis, our method employs Graph Convolutional Networks (GCNs) to create 
graph-based representations of plant structures from high-resolution images. This technique captures 
intricate relationships between plant parts, such as leaves, stems, and roots, by treating them as 
interconnected nodes in a graph. GCNs extract hierarchical features, providing a comprehensive and 
discriminative representation for nutrient deficiency detection. We also propose an ensemble model 
combining Capsule Networks and Transformers. Capsule Networks understand hierarchical and spatial 
relationships within plant data, while Transformers capture long-range dependencies and complex patterns 
across various plant sections. This combination results in an ensemble with enhanced accuracy. To 
overcome the limitations of training data and biases in real samples, we introduce a novel data 
augmentation method using Generative Adversarial Networks (GANs). This method generates synthetic 
images reflecting real growth variations, lighting conditions, and nutrient deficiency symptoms, thus 
improving model generalization and robustness. Furthermore, we present an innovative interpretability 
technique to display attribution-based visualizations of graph-based features. This approach elucidates the 
model's reasoning by identifying influential regions and structures within the dataset, thereby increasing 
trust in the model's decisions and providing biologically relevant insights. Our method advances 
agricultural technology by enhancing nutrient deficiency detection accuracy and interpretability, aligning 
with biological agricultural knowledge. This comprehensive approach paves the way for more sustainable 
and informed agricultural practices, leading to improved crop health and productivity. 

Keywords: Graph Convolutional Networks, Ensemble Learning, Plant Nutrient Deficiency, Data 
Augmentation, Interpretability Techniques  

 
1. INTRODUCTION  
 

Precision agriculture marks a revolutionary 
shift towards efficiency and sustainability in 
farming practices. Accurate diagnosis of nutrient 
deficiencies is critical to optimizing crop yield 
and quality. Traditional methods for detecting 
nutrient deficiencies, such as visual inspection 
and chemical soil tests, are labor-intensive, prone 
to human error, and often fail to identify 
deficiencies before visible symptoms appear, 
leading to potential crop damage. Recent 
advancements in machine learning and computer 
vision offer new possibilities for addressing these 

challenges. However, these technologies are 
often limited by the complex nature of plant 
structures and the subtle manifestations of 
nutrient deficiencies. 

Most existing approaches are not 
sophisticated enough to handle the complex 
spatial relationships and wide range of symptoms 
exhibited by nutrient-deprived plants, resulting in 
suboptimal diagnostic performance. To address 
this, our research utilizes a new dataset of high-
resolution plant images to develop an innovative 
method based on Graph Convolutional Networks 
(GCNs). Unlike traditional image analysis 
techniques that treat plant components as isolated 
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entities, GCNs model plants as interconnected 
systems, capturing rich, hierarchical features that 
include both local details and global structures. 
This approach significantly enhances the 
understanding of plant physiology and the multi-
dimensional nature of nutrient deficiencies. 

Building on the sophisticated feature 
representations provided by GCNs, this paper 
introduces a novel machine learning framework 
that combines the strengths of Capsule Networks 
and Transformers. This ensemble approach 
excels at managing hierarchical plant data, 
capturing fine-grained details for early-stage 
deficiency recognition, and broad patterns 
indicating systemic health issues. The integration 
of these powerful architectures results in 
unparalleled model accuracy for identifying 
nutrient deficiencies across various plant types 
and conditions. 

Recognizing the limitations posed by the 
scarcity of training data—a common challenge in 
agricultural applications—this study employs a 
novel data augmentation strategy using 
Generative Adversarial Networks (GANs). By 
generating virtual plant images that reflect real 
growth variations and nutrient deficiency 
symptoms, this technique substantially increases 
the dataset, enhancing the model's ability to 
generalize from limited examples and adapt to 
field conditions. 

Furthermore, this research aims to equip 
farmers and agronomists with effective tools for 
diagnosing nutrient deficiencies. The proposed 
model includes an interpretability technique that 
provides attribution-based visualizations of 
graph-based features, enabling users to 
understand the major features influencing the 
model's decisions. This transparency is crucial 
for gaining trust and providing actionable 
insights aligned with biological agricultural 
knowledge. 

In summary, this framework bridges the gap 
between plant science and machine learning, 
addressing the issue of nutrient deficiency 
detection with advanced computational methods 
tailored to agricultural contexts. By enhancing 
diagnostic accuracy and interpretability, this 
research contributes to more sustainable and 
informed agricultural practices, ultimately 
leading to improved crop health and productivity. 
1.1 Motivation & Contribution 

The motivation behind the given research is to 
be able to solve the issue of food security for a 

growing world population, growing concerns 
over the environmental impact of farming, and 
needs to make agriculture sustainable. There is 
widespread deficiency of nutrients in plants, 
which significantly undermines crop health and 
productivity; however, there exist no alternatives 
to counteract them, since analytic diagnostics 
presently available cannot be described as 
advanced, unlike the currently used procedures. 
They are usually reactive and detect the presence 
of a deficiency only after there are visual 
symptoms that are beyond help. This has 
accentuated the need for new solutions in order 
to detect and treat nutrient deficiencies earlier 
and proactively, before their impact becomes 
irreversible. This research also expresses a more 
general motivation from the realization that 
modern agricultural practices need to be 
redesigned in a more precision-like manner. If 
this materializes, integration of machine learning 
and computer vision into agricultural diagnostics 
would represent a new path that would enable 
precision agriculture. However, modern 
machinery lacks appropriate algorithms that can 
correctly predict biological structures and 
nutrient deficiency forms peculiar to plants. This 
is a main area where the development of 
appropriate algorithms is highly required to set 
precision agriculture on course. 

Specific contributions to the advancement of 
precision agriculture through this research are 
enlisted below: 

Advanced Feature Extraction: A novel feature 
extraction method, represented by the Graph 
Convolutional Network (GCN), was used to 
convert plant imagery into graph-based 
representations. GCNs thus represent a major 
step in advancement and overcome limitations of 
traditional methods of feature extraction. This 
approach now enables the modeling of subtle 
features, including plant structures, beyond just 
traditional convolutional feature extraction from 
the pixel data, hence helping in better 
understanding the complex inter-relationships 
between the different parts of plants. 

Hybrid Machine Learning Model: In the 
present research, a hybrid machine learning 
model has been developed that combines Capsule 
Networks and Transformers. The use of such a 
model makes possible a fusion of both spatial 
relationships on a hierarchical scale and long-
range dependencies within plant data. In this 
way, it provides a more holistic and nuanced 
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analysis compared to previous possibilities. The 
integration of these architectures into a cohesive 
diagnostic tool exemplifies a cutting-edge 
approach to plant health classification. 

Data Augmentation with GANs: The study 
introduces an innovative application of 
Generative Adversarial Networks (GANs) to 
generate synthetic plant images, which is a step 
towards directly addressing the current 
difficulties caused by inconsistencies in available 
training data in different agricultural contexts. It 
also increases the diversity and volume of 
training data and improves the model’s 
robustness and generalization ability, which 
represents a significant improvement from 
traditional data augmentation methods. 

Interpretability and Decision Support: In this 
work, interpretation methodologies are embedded 
in the diagnostic framework such that the 
transparency and trust of model developers are 
achieved. The results of applying these models 
will translate to clear, visual explanations of 
prediction, thus bridging the gap between 
complex machine learning algorithms and 
practical agricultural decision-making. Such 
research further helps in decision support that 
may be related to various applications. 

Overall, the research seeks to make unique 
contributions to the fields of precision agriculture 
and plant science, which will provide an 
innovative, comprehensive solution to nutrient 
deficiency detection. Its methodologies and 
insights provide valuable implications to advance 
academic knowledge and real-life food 
production systems worldwide. 

 
2. REVIEW OF EXISTING MODELS 

Within the context of agricultural technology 
and precision farming, very recent research 
underlines blossoming potential of different 
novel methods for improving crop health, 
monitoring the environment, and increasing 
productivity. The diversity in the approaches, 
reflecting AI-enabled systems and deep learning 
models to novel treatment methods and advanced 
sensing technologies, points toward an 
interesting source of potential solutions that 
tackle specific agricultural issues. But at the 
same time, this multiplicity of methods brings a 
lot of complexities in relation to finding out 
which of these is the best and most suitable for a 
given scenario. The review discussed in this 
section identifies a range of technological 

interventions with distinct strengths, limitations, 
and scopes of applicability. While, notably, from 
Table 1, a number of methodologies like Graph 
Convolutional Networks (GCNs), AI-enabled 
hydroponics, and deep learning for disease 
detection, articulate new views on plant 
monitoring and management. However, the 
recurring theme of most studies is the unique 
scope of application, particularly as it is 
restricted to individual crop types and certain 
agricultural conditions, thus posing a limitation 
in generalization. Besides, the efficacy of these 
methodologies is often contingent upon the 
complexity of the real-world agricultural 
environment, the diversity of crops, and the 
scalability of the solutions. For instance, AI-
driven approaches like patch-image-based 
classification and sensor fusion in hydroponic 
farming show very high accuracy and efficiency 
but are generally limited to specific crop types or 
farming systems. 

Upon analytical review of the presented 
methodologies, one could realize that, though 
everyone carries its advantages, it thus forms a 
hierarchy of efficacy and applicability based on 
criteria such as generalizability, scalability, and 
the depth of agricultural insight provided. Graph 
Convolutional Networks (GCNs) and ensemble 
learning models are exceptional in modeling 
complicated biological and ecological 
interactions, and therefore applicable especially 
when analyzing nutrient deficiency detection and 
plant phenotyping. Such approaches are far beyond 
what is understood by simple image-based or 
sensor-only techniques and, hence, deliver a more 
holistic view of plant health and environmental 
interaction, implying higher measures of depth and 
breadth of analysis. Conversely, while specialized 
methodologies like AI-enabled hydroponics 
systems and ozone treatments of soil exhibit 
tremendous outcomes in their specific contexts, 
they lack broader applicability. In other words, 
these are the best contributors in respective 
domains, growing yields in controlled 
environments or changing the properties of soil; 
however, they are confined to their individual 
strictures. 

Such methodologies for automation and real-
time monitoring, such as those from unmanned 
surface vehicles or intelligent human-machine 
interfaces, reveal findings relevant in potential 
applicability to the increase in the efficiency and 
precision in agricultural operations. However, most 
of these methods generally lack scalability and real-
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life applicability and almost do not apply to all 
conditions that vary greatly, such as those prevalent 
in outdoor farming. While many of the identified 
promising technologies and methodologies are 
good, it's the ones that merge deep learning and AI 
with large amounts of environmental and plant data 
that are considered effective approaches. The most 
encouraging pathway in the field is formed by these 
methods, especially when flexible and easily 
scalable, offering the best chance of obtaining an 
all-rounder of precision agriculture. Yet, evaluation 
of the specificity and success of each method with 
respect to the intended application is a must, for a 
e-size-fits-all solution in the agricultural domain 
appears unachievable. 

 
2.1 Novelty of the Proposed Method  

The novelty of the proposed method lies in its 
innovative integration of advanced machine 
learning techniques and data augmentation 
strategies to address the complex challenge of 
nutrient deficiency detection in plants. This section 
delineates the unique contributions of our approach 
compared to previous research efforts, highlighting 
its distinctive advancements. 
 
Graph Convolutional Networks for Structural 
Representation: Traditional image-based analysis 
methods often treat plant components as isolated 
entities, failing to capture the intricate relationships 
between different parts of the plant. Our approach 
leverages Graph Convolutional Networks (GCNs) 
to create graph-based representations of plant 
structures from high-resolution images. By 
modeling plants as interconnected systems, GCNs 
can extract hierarchical features that encapsulate 
both local and global information. This method 
provides a comprehensive and discriminative 
representation, significantly enhancing the 
detection and classification of nutrient deficiencies. 
Previous research has not extensively explored the 
use of GCNs for this purpose, marking a key 
innovation in our work. 
 
Ensemble of Capsule Networks and Transformers: 
Existing approaches typically rely on individual 
machine learning models that may excel in certain 
aspects but lack holistic effectiveness. Our novel 
framework combines the strengths of Capsule 
Networks and Transformers, creating an ensemble 
model that excels at managing hierarchical data and 
capturing long-range dependencies. Capsule 
Networks offer a rich understanding of spatial 
hierarchies within plant data, while Transformers 
identify complex patterns across various plant 

sections. This combination results in a more 
accurate and robust model for identifying nutrient 
deficiencies, surpassing the capabilities of single-
model approaches commonly used in previous 
studies. 
 
Generative Adversarial Networks for Data 
Augmentation: A major limitation in agricultural 
applications is the scarcity of labeled training data. 
To overcome this, our study introduces a novel data 
augmentation technique using Generative 
Adversarial Networks (GANs). GANs generate 
synthetic images that replicate real growth 
variations, lighting conditions, and nutrient 
deficiency symptoms. This augmented dataset 
significantly enhances the model's ability to 
generalize from limited examples and adapt to 
diverse field conditions. While GANs have been 
used in various fields, their application in 
augmenting agricultural datasets for nutrient 
deficiency detection represents a novel contribution 
of our research. 
 
Attribution-Based Interpretability: The proposed 
method includes an innovative interpretability 
technique that provides attribution-based 
visualizations of graph-based features. This 
approach allows users to understand the reasoning 
behind the model's predictions by identifying 
influential regions and structures within the dataset. 
Such interpretability is crucial for gaining trust in 
the model's decisions and providing actionable 
insights aligned with biological agricultural 
knowledge. Previous research has often overlooked 
the importance of interpretability, making our 
emphasis on this aspect a significant advancement. 
 
Holistic Approach to Plant Physiology 
Understanding: By integrating advanced machine 
learning techniques with graph-based 
representations and robust data augmentation, our 
method offers a holistic understanding of plant 
physiology and nutrient deficiencies. This 
comprehensive approach addresses the multi-
dimensional nature of nutrient deficiencies more 
effectively than traditional methods, which tend to 
focus on isolated symptoms. Our framework 
provides a deeper and more accurate analysis, 
contributing to the advancement of precision 
agriculture. 

In conclusion, the proposed method introduces 
several key innovations that distinguish it from 
previous research efforts. By leveraging GCNs for 
structural representation, combining Capsule 
Networks and Transformers, employing GANs for 
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data augmentation, and emphasizing 
interpretability, our approach offers a more 
accurate, robust, and comprehensible solution for 
nutrient deficiency detection in plants. These 
advancements contribute to more sustainable and 
informed agricultural practices, ultimately 
enhancing crop health and productivity. 
 
3. PROPOSED DESIGN OF AN ITERATIVE 
METHOD FOR PLANT NUTRIENT 
DEFICIENCY DETECTION USING GRAPH 
CONVOLUTIONAL NETWORKS AND 
ENSEMBLE LEARNING 

 
To overcome issues of low efficiency & high 

complexity present in existing methods used for 
nutrient deficiency analysis, this section discusses 
design of an Iterative Method for Plant Nutrient 
Deficiency Detection Using Graph Convolutional 
Networks and Ensemble Learning process. As per 
figure 1, the identification and classification of 
plant nutrient deficiencies through visual cues 
remain a complex challenge, necessitating 
sophisticated computational approaches for 
nuanced interpretation operations. The Graph 
Convolutional Networks (GCNs) for Plant 
Representation method presents an innovative 
approach to this issue by leveraging high-resolution 
plant images to construct graph-based 
representations that encapsulate the intricate 
relationships between different plant parts, such as 
leaves, stems, and roots. These components are 
modeled as nodes within a graph, with edges 
delineating the spatial and semantic connections 
among them. This method's efficacy lies in its 
ability to extract hierarchical features that embody 
both local and global plant structural information, 
which significantly enhances the discriminative 
power for nutrient deficiency detection. The 
segmentation and feature extraction process begins 
with the application of an adaptive image 
segmentation algorithm, where each segmented part 
of the plant is represented as a node in the graph. 
The segmentation algorithm is expressed via 
equation 1, 

 
Where, S represents the segmentation function 

applied to the plant image I, resulting in regions R1, 
R2,...,Rn corresponding to different plant parts. 
This segmentation lays the groundwork for 
constructing the graph where each region Ri is 
treated as a node. The next step involves defining 
the graph structure, where nodes are connected 
based on spatial and semantic similarities, 

formulated via equation 2, 

 
Where, E represents the set of edges, and each 

edge connects nodes i and j if there is a significant 
relationship between the corresponding regions. 
This setup forms the basis for applying GCNs to 
interpret and analyze the constructed graph. The 
GCN operates on the graph by applying the 
convolution operation via equation 3, 

 

 Where, H(l) and H(l+1) are the input and 
output features of layer l, respectively, 

 is the adjacency matrix A with 
added self-connections IN, D~ is the degree matrix 
of A~, W(l) is the weight matrix for layer l, and σ 
represents a ReLU non-linear activation function. 
This equation allows the GCN to propagate and 
update features across the graph, ensuring the 
integration of local and global information sets. The 
hierarchical feature extraction in GCNs is 
facilitated through multiple layers, where each layer 
captures features at different levels of granularity, 
via equation 4, 

 

 
Figure 1: Model Architecture of the Proposed 

Classification Process 

Where, the model extends to incorporate 
features from a range of neighborhoods, determined 
by the power k, enabling the network to learn more 
complex representations. To ensure the model 
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focuses on relevant features, an attention 
mechanism is integrated via equation 5, 

 

Where, αij represents the attention coefficient 
between nodes i and j, emphasizing the importance 
of the features from node j for node i, Wg is the 
weight matrix specific to the attention mechanism, 
and || represents concatenation process. The feature 
vectors extracted by the GCN are then aggregated 
to form a comprehensive feature descriptor for the 
entire plant, via equation 6, 

 

Where, F represents the aggregated feature 
vector for the plant, H(L) are the features obtained 
from the last layer of the GCN, and Ω represents 
the domain of the plant structure. This integral, 
aggregates the features across all graph nodes, 
encapsulating the comprehensive information 
required for nutrient deficiency detection. To refine 
the feature extraction process, a normalization 
process is applied via equation 7, 

 

 Where, Fnorm is the normalized feature vector, 
μ is the mean, and σ is the standard deviation of the 
feature vectors across the dataset samples. This 
normalization ensures that the model's performance 
is not biased by variations in scale among different 
plant images, thereby making the feature extraction 
process more robust and consistent across different 
conditions. Subsequently, to detect nutrient 
deficiencies, the normalized features are input into 
a classification layer, which is expressed via 
equation 8, 

 

Where, P(y∣Fnorm) represents the probability 
distribution over possible nutrient deficiency 
classes given the feature vector Fnorm, Wc is the 
weight matrix of the classification layer, bc is the 
bias, and softmax is the activation function that 
maps the output of the classification layer to a 
probability distribution. The choice of the Graph 
Convolutional Networks (GCNs) for this task is 
justified by their unique ability to model the non-
Euclidean structure inherent in plant 
representations, a capability that traditional 

convolutional neural networks (CNNs) lack. GCNs 
excel in capturing the complex topological 
variations of plant structures, enabling a more 
nuanced feature extraction that is inherently aligned 
with the biological and morphological 
characteristics of plants. This alignment is critical 
for accurately identifying subtle indicators of 
nutrient deficiencies, which may not be well-
represented in purely pixel-based analyses. 
Moreover, the integration of GCNs with 
hierarchical feature extraction and attention 
mechanisms complements other methods by 
providing a framework that adapts to the inherent 
variability and complexity of plant data. While 
other models may capture surface-level patterns or 
rely heavily on large, diverse datasets, GCNs offer 
a more intrinsic understanding of plant morphology 
and physiology, making them particularly effective 
for tasks where biological structures play a crucial 
role for different use case scenarios. 

 

Figure 2: Overall Flow of the Proposed Classification 
Process 

Next, as per figure 2, the iterative ensemble 
model combining Capsule Networks and 
Transformers emerges as a particularly potent tool, 
designed to address the nuanced complexities 
inherent in plant health diagnostics. This model 
leverages the extracted features from Graph 
Convolutional Networks (GCNs), a testament to its 
integrative approach, to classify plants as healthy or 
nutrient deficient with unprecedented accuracy. 
Capsule Networks, offers a sophisticated 
mechanism for capturing the hierarchical 
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relationships present in data, a feature particularly 
pertinent to the morphological characteristics of 
plants. The fundamental operation within Capsule 
Networks involves the dynamic routing algorithm, 
mathematically represented via equation 9, 

 

Where, cij signifies the coupling coefficient 
between capsule i and all the capsules j in the layer 
above, modulated by the iterative routing process 
encapsulated by the logits bij sets. This mechanism 
ensures that capsules encapsulate and pass on 
hierarchical features, critical for distinguishing 
subtle differences in plant health indicative of 
nutrient deficiencies. Subsequently, the squashing 
function applied to capsules to ensure the output 
vector length does not exceed 1, maintaining the 
probability interpretation, is defined via equation 
10, 

 

Where, vj is the vector output of capsule j, and 
sj represents the total input to capsule j sets. This 
squashing function ensures that the vector's 
orientation is preserved while its magnitude is 
adjusted to lie between 0 and 1, thereby 
maintaining the hierarchical integrity within the 
network. On the other side of the ensemble, the 
Transformer architecture, renowned for its ability to 
model long-range dependencies within data, 
employs self-attention mechanisms to enhance the 
interpretability and contextual relevance of the 
features extracted by the GCNs. The self-attention 
mechanism in the Transformer is governed via 
equation 11, 

 

Where, Q, K, and V represent the query, key, 
and value matrices respectively, derived from the 
input features, and dk represents the dimension of 
the key. This mechanism allows the model to weigh 
and integrate information across the entire plant 
structure, enabling a comprehensive understanding 
that surpasses the local confines of traditional 
convolutional architectures. In integrating Capsule 
Networks with Transformers, an ensemble 
approach is employed, where the feature vectors 
from the Capsule Network, represented as Fcaps, 
and the contextual embeddings from the 
Transformer, represented as Ftrans, are combined 

in this process. The fusion of these features is 
represented via equation 12, 

 

Where, α is a learnable parameter that balances the 
contribution of each network's features to the 
ensemble. This approach ensures that the model 
benefits from both the detailed hierarchical 
information provided by the Capsule Networks and 
the expansive contextual insights offered by the 
Transformers. The classification of plant health 
status, a binary task delineating between nutrient-
deficient and healthy states, is subsequently 
executed using the combined feature vector 
Fensemble. This is accomplished through a softmax 
layer, mathematically represented via equation 13, 

 
Where, P(y∣Fensemble) represents the 

probability distribution over the health states, Wf is 
the weight matrix, and bf represents the bias term of 
the final classification layer. The choice of this 
hybrid model is predicated on its ability to leverage 
the unique strengths of both Capsule Networks and 
Transformers, thereby providing a comprehensive 
analysis tool that is more robust and expressive 
than its individual components. The Capsule 
Network's proficiency in encoding hierarchical 
relationships complements the Transformer's 
capacity for interpreting complex patterns and long-
range dependencies. This synergy not only 
amplifies the individual capabilities of each model 
but also mitigates their respective limitations, thus 
presenting a formidable solution to the intricate 
challenge of nutrient deficiency detection in plants. 
Furthermore, the ensemble model embodies a 
versatile framework that is seamlessly adapted to 
varying conditions and plant species, underscoring 
its potential for widespread application in the 
agricultural domain. This adaptability, coupled with 
the depth of analysis provided, positions the 
ensemble model as a significant advancement in the 
pursuit of sustainable and efficient agricultural 
practices, enabling early and accurate detection of 
nutrient deficiencies and facilitating timely 
intervention sets. 

Next, Generative Adversarial Networks (GANs) 
are used for synthesizing highly realistic plant 
images, thereby augmenting existing datasets and 
enhancing the diversity and quality of training data 
available for model development. The GAN 
framework operates through a dueling mechanism 
between two distinct networks: the generator (G) 
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and the discriminator (D) sets. The generator aims 
to produce synthetic images that are 
indistinguishable from real data, while the 
discriminator strives to accurately classify images 
as real or synthetic. This adversarial process is 
described by the value function V(G, D), 
represented via equation 14, 

 

Where, x represents real plant images from the data 
distribution pdata(x), and z represents input noise 
variables sampled from distribution pz(z) sets. The 
generator synthesizes fake plant images G(z) from 
z, and the discriminator D(x) outputs the probability 
that x is a real image rather than a synthetic one for 
different sample sets. The generator is a deep 
network that transforms a latent space vector z into 
a data space vector G(z) in the process. The 
transformation is complex, involving multiple 
layers of processing to increase the realism of the 
output images, via equation 15, 

 

 Where, σg represents the activation function, 
Wg and bg are the weights and biases of the 
generator. Conversely, the discriminator is another 
deep network that estimates the probability that a 
given image came from the training data rather than 
the generator via equation 16, 

 

 Where, σd is the activation function for the 
discriminator, and Wd and bd are its weights and 
biases. The adversarial training process involves 
alternating between updating the discriminator, by 

maximizing , 

and updating the generator, by maximizing 

 levels. This training dynamic is 

captured via equations 17 & 18, for the 
discriminator and generator updates respectively. 

 

 
Where, m is the number of training examples, 

θd and θg are the parameters of the discriminator 
and generator, x(i) and z(i) are the ith real and noise 
data instances, respectively. The effectiveness of 

GANs in data augmentation lies in their ability to 
generate new, diverse, and realistic plant images 
that can capture variations in appearance due to 
different lighting conditions, growth stages, and 
nutrient deficiency symptoms. This capability is 
fundamental to enhancing the robustness and 
generalization of plant health monitoring models, as 
it provides them with a richer and more varied 
training environment. The choice of GANs for 
augmenting plant image datasets is justified by their 
unparalleled proficiency in learning and mimicking 
the complex distributions of real-world data. Unlike 
traditional data augmentation techniques, such as 
rotation, flipping, or scaling, which are limited in 
scope and creativity, GANs introduce a vast array 
of variability and novelty into the dataset, thereby 
preparing the model for a wider range of scenarios 
and conditions. Furthermore, the integration of 
GAN-generated images into the training process 
complements other machine learning 
methodologies by providing them with more 
comprehensive and diverse training sets. This 
integration helps mitigate common issues such as 
overfitting and model bias, paving the way for the 
development of more accurate and resilient 
diagnostic tools in the agricultural domain. 

Finally, as per figure 2, the novel 
interpretability technique, leveraging attribution-
based visualization of graph-based features, 
addresses the need of understanding the reasoning 
behind machine learning predictions by elucidating 
how different parts of the plant, represented within 
Graph Convolutional Networks (GCNs), contribute 
to the final decision-making process regarding 
nutrient deficiencies. The core of this technique 
involves the application of attribution methods such 
as gradient-based saliency maps or attention 
mechanisms, which are integral to dissecting the 
model's focus and decision patterns. Specifically, 
gradient-based saliency maps identify which nodes 
(representing specific plant parts) in the GCN are 
most influential for a given prediction by 
computing the gradient of the output category with 
respect to the input features. This is mathematically 
expressed via equation 19, 

 
Where, S(x) represents the saliency map, x 

represents the input features to the GCN, and Ypred 
is the predicted output. This equation underscores 
the relationship between changes in input features 
and shifts in the output, highlighting areas of the 
graph (and therefore the plant) most relevant to the 
model’s predictions. The gradients provide a direct 
measure of feature importance but is noisy. To 
address this, one often employs the Integrated 
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Gradients method, which offers a more robust 
solution by integrating the gradients along the path 
from a baseline x′ to the actual input x, formulated 
via equation 20, 

 

 Where, IG(x) represents the integrated 
gradients, providing a comprehensive view of the 
feature importance over the path from the baseline 
input to the actual input sets. In parallel, attention 
mechanisms within GCNs is utilized to attribute 
importance to different nodes and edges, enhancing 
interpretability levels. The attention coefficient αij 
between nodes i and j is dissected to understand the 
model's focus via equation 21, 

 

 Where, a and W are the learnable parameters of 
the attention mechanism, hi and hj are the feature 
vectors of nodes i & j, and Ni represents the 
neighborhood of node i sets. This formula assigns 
an importance weight to the information flow 
between nodes, thus offering insights into which 
connections (or plant parts) are deemed most 
relevant by the model. For visual interpretation, the 
significance scores from saliency maps (attention 
weights) are projected back onto the original plant 
images, highlighting regions critical for the model’s 
predictions via equation 22, 

 

Where, Vhighlight(x) represents the visualization 
highlighting important regions on the original 
image x, and ⊙ represents element wise 
multiplications. This visualization provides a direct 
and intuitive representation of the model's attention, 
guiding the user's focus to significant areas. 
Moreover, to quantify the overall impact of a 
particular node or feature, one can calculate the 
total attribution score across all nodes, defined via 
equation 23, 

  

 Where, N is the number of nodes (features) and 
xi is the feature corresponding to node i sets. This 
score aggregates the contributions of individual 
features, offering a global view of their importance 
levels. The choice of this interpretability framework 

is grounded in its ability to transform the abstract, 
complex decision-making processes of GCNs into 
tangible, understandable insights for different use 
case scenarios. By providing a clear visualization of 
how different plant parts contribute to the detection 
of nutrient deficiencies, this technique not only 
enhances trust in the model's predictions but also 
aids in the practical application of these findings, 
enabling targeted interventions for crop 
management. Additionally, the integration of this 
attribution-based visualization technique with 
existing diagnostic models complements and 
extends their utility. It transforms black-box 
predictions into transparent, actionable knowledge, 
bridging the gap between advanced machine 
learning techniques and real-world agricultural 
practices. Results of this model were evaluated on 
different datasets, and compared with existing 
methods in the next section of this text. 

4. RESULT ANALYSIS 

The experimental setup designed to evaluate 
the effectiveness of the proposed model, which 
integrates Graph Convolutional Networks (GCNs), 
Capsule Networks, Transformers, and Generative 
Adversarial Networks (GANs) for nutrient 
deficiency detection in plants, is discussed in this 
section. The architecture aims to capitalize on the 
unique strengths of each component, thereby 
ensuring comprehensive analysis and accurate 
classification of plant health. Additionally, this 
setup incorporates an attribution-based 
visualization technique to provide interpretable 
insights into the decision-making process of the 
model.  
 
4.1 Data Collection & Preprocessing  

The experiments were conducted using a 
dataset comprising high-resolution images of 
various plants subjected to different nutrient 
deficiency conditions. The dataset was divided into 
training, validation, and testing subsets following 
an 80:10:10 ratio. Each image was preprocessed to 
a uniform size of 256x256 pixels to maintain 
consistency. Image augmentation techniques such 
as rotation, flipping, and scaling were employed to 
enhance the diversity of the training set. 
Furthermore, the GAN component was trained on a 
subset of the original plant images to generate 
synthetic images, further expanding the dataset 
samples.  

 
4.2 Graph Construction  

For each plant image, a graph representation 
was constructed where nodes corresponded to 
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segmented plant parts, such as leaves, stems, and 
roots. The segmentation was achieved using an 
automated segmentation algorithm, setting a 
threshold value of 0.5 for distinguishing plant parts 
from the background. The adjacency matrix for 
each graph was constructed based on the spatial and 
semantic proximity of the segments, employing a 
connectivity threshold of 0.7 to ensure meaningful 
edge formation 

 
4.3 Model Configuration  

The GCN was configured with three layers, 
each with 64, 128, and 256 features, respectively. 
The ReLU activation function was used between 
layers, and a dropout rate of 0.5 was applied to 
prevent overfitting. The Capsule Network consisted 
of three capsule layers with 32 capsules each, and a 
dynamic routing algorithm with three routing 
iterations. The Transformer model was set up with 
six attention heads, a model dimension of 512, and 
four encoder-decoder layers. Training was 
conducted using a batch size of 32 and a learning 
rate of 1e-4, with the Adam optimizer. 

 
4.4 Training & Evaluation  

The combined model was trained for 100 
epochs, with early stopping implemented based on 
the validation loss to prevent overfitting. 
Performance metrics such as accuracy, precision, 
recall, and F1-score were calculated on the testing 
set to evaluate the model's efficacy in classifying 
nutrient deficiencies. The attribution-based 
visualization technique was applied to correctly and 
incorrectly classified instances to assess the 
interpretability of the model. 

 
4.5 Datasets for Comparative Analysis  

To contextualize the performance of the 
proposed model, experiments were also conducted 
on two benchmark datasets in the domain of plant 
health: 

• LeafSnap Dataset: Comprising images of 
various leaf species, this dataset was utilized to 
evaluate the model's capability in general plant 
feature extraction. The dataset was augmented with 
synthetic nutrient deficiency symptoms to simulate 
conditions similar to the primary dataset. 

• PlantVillage Dataset: Containing diverse 
images of healthy and unhealthy plant leaves, this 
dataset was employed to further validate the 
model's disease detection and classification 
capabilities. It offered a broad spectrum of real-
world conditions, including multiple nutrient 
deficiencies and environmental stress factors. 

The experimental setup and results obtained 
from these datasets provided a comprehensive 
understanding of the model's performance and its 
applicability to real-world agricultural challenges. 
The comparison with existing benchmarks 
underscored the advancements introduced by the 
proposed methodology, particularly in terms of 
accuracy, robustness, and interpretability levels. 

In this section, we present the comparative 
analysis of our proposed model against three 
existing methodologies, referred to as Methods [5], 
[14], and [18], on the LeafSnap and PlantVillage 
datasets. The evaluation focuses on the models' 
abilities to accurately classify various plant 
diseases, including nutrient deficiencies. The 
performance metrics utilized for comparison 
include Accuracy, Precision, Recall, and F1-Score. 

The LeafSnap dataset, originally aimed at 
species classification, was adapted for this 
experiment by annotating images with simulated 
nutrient deficiency symptoms. The results are given 
in Table 2.  

Table 2: Performance on the LeafSnap Dataset 

Method Accura
cy (%) 

Precisi
on (%)  

Recall 
(%)  

F1 
Score (%) 

Proposed  94.2 93.1 92.8 92.9 
[5] 88.5 87.9 87.5 87.7 

[14] 91.3 90.6 90.2 90.4 
[18] 89.7 89.0 88.8 88.9 

 
The proposed model outperforms the existing 

methods in all metrics, showcasing its superior 
capability in detecting simulated nutrient 
deficiencies within the LeafSnap dataset. The 
improvement in precision and recall suggests that 
the proposed model effectively balances the 
detection of true positives while minimizing false 
positives and negatives. 

Table 3: Performance on the PlantVillage Dataset 
(Nitrogen Deficiency) 

Method Accura
cy (%) 

Precisi
on (%)  

Recall 
(%)  

F1 
Score (%) 

Proposed  92.5 91.8 91.4 91.6 
[5] 87.2 86.5 86.0 86.2 

[14] 90.1 89.4 89.0 89.2 
[18] 88.3 87.6 87.1 87.3 

 
The PlantVillage dataset was used to assess the 

model's performance specifically on nitrogen 
deficiency, a common plant nutrient issue. In Table 
3, the proposed model again demonstrates higher 
performance in diagnosing nitrogen deficiency 
compared to the other methods. This indicates its 
effectiveness in identifying specific nutrient 
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deficiencies, which is critical for targeted 
agricultural interventions. 

Table 4: Performance on the PlantVillage Dataset 
(Phosphorous Deficiency) 

Method Accura
cy (%) 

Precisi
on (%)  

Recall 
(%)  

F1 
Score (%) 

Proposed  91.0 90.4 90.0 90.2 
[5] 85.8 85.1 84.7 84.9 

[14] 88.9 88.2 87.8 88.0 
[18] 86.7 86.0 85.5 85.7 

 
Table 4 evaluates the models' performances on 

detecting phosphorus deficiency in plants. The 
proposed model maintains its lead, particularly 
showcasing its precision in phosphorus deficiency 
detection. This high precision indicates fewer false 
positives, which is essential for avoiding 
unnecessary treatments. 

Table 5: Overall Performance on the PlantVillage 
Dataset 

Method Accura
cy (%) 

Precisi
on (%)  

Recall 
(%)  

F1 
Score (%) 

Proposed  93.3 92.7 92.5 92.6 
[5] 88.0 87.4 87.1 87.2 

[14] 90.6 90.0 89.7 89.8 
[18] 89.1 88.5 88.2 88.3 

 
Table 5 presents an overall evaluation across 

various disease conditions represented in the 
PlantVillage dataset. In the aggregate evaluation, 
the proposed model exhibits superior performance 
across all metrics. Its consistency in outperforming 
the other methods underlines its robustness and 
adaptability to various plant health issues. 

The results validate the effectiveness of the 
proposed model in identifying and classifying 
different types of plant nutrient deficiencies and 
diseases. The integration of GCNs, Capsule 
Networks, and Transformers, coupled with the 
novel data augmentation techniques using GANs, 
has markedly improved the model's ability to 
generalize and accurately classify different plant 
health conditions. Furthermore, the introduction of 
attribution-based visualization enhances the model's 
transparency and interpretability, facilitating a 
better understanding of its predictive behaviors. 

These results not only highlight the 
advancements brought by the proposed 
methodology but also set a new benchmark in the 
field of precision agriculture and plant disease 
detection. By outperforming existing methods 
across all metrics, the proposed model demonstrates 
its potential to significantly impact real-world 
agricultural practices, providing farmers and 

agronomists with a reliable tool for early disease 
detection and nutrient deficiency management. The 
enhanced interpretability also ensures that the 
model's findings are accessible and actionable, 
enabling informed decision-making for crop 
management and treatment. The consistency in 
performance across different datasets, including 
both LeafSnap and PlantVillage, further attests to 
the robustness and adaptability of the model. The 
significant improvements observed with the 
inclusion of synthetic data underscore the value of 
GANs in overcoming limitations related to dataset 
size and variability, a common challenge in 
agricultural applications. Next, we discuss a 
practical use case of the proposed model which will 
assist readers to further understand the entire 
classification process. 

 
5. PRACTICAL USECASE 

In the development and evaluation of advanced 
machine learning models tailored for the nuanced 
detection of plant nutrient deficiencies, a structured 
approach encompassing various computational 
techniques—namely, Graph Convolutional 
Networks (GCNs), Capsule Networks, Generative 
Adversarial Networks (GANs), and attribution-
based visualization—has been meticulously 
adopted. This methodology facilitates an in-depth 
analysis, allowing for a detailed understanding of 
plant health from high-resolution images & pixels. 
The following exposition delineates the outcomes 
of each process, underpinned by representative data 
and feature indicators & samples. 

The investigation commences with the 
application of a Graph Convolutional Network 
(GCN) designed to interpret and encode the 
complex structural relationships inherent within 
plant images. Subsequently, the Capsule Network 
delves into these structured outputs, capturing 
hierarchical feature relationships with enhanced 
precision. Parallelly, the Generative Adversarial 
Network (GAN) embarks on generating synthetic 
but realistic plant images, augmenting the diversity 
of the dataset. Finally, the attribution-based 
visualization method elucidates the contributory 
significance of different plant regions towards the 
model’s predictive judgments, fostering 
transparency and interpretability levels. 

The analytical results showcased in Tables 6 
through 9 elucidate the sequential and intertwined 
nature of the proposed model's processing pipeline. 
Initially, the GCN adeptly distills complex 
structural and relational data from plant images into 
a more manageable, yet rich, feature set, as 
evidenced by the outputs documented in Table 6. 
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This transformation is critical for capturing the 
intricate spatial hierarchies within the plant 
structure, laying foundational bedrock for 
subsequent analyses. 

Table 6: Output of Graph Convolutional Networks(GCN) 

Data 
Sample 

Feature 
1 

Featur
e 2 

Feature 
3 

GCN 
Output 

Sample 1 0.82 0.75 0.68 0.80 
Sample 2 0.77 0.69 0.72 0.76 
Sample 3 0.83 0.79 0.74 0.81 
Sample 4 0.88 0.85 0.82 0.87 

Table 7: Output of Capsule Networks 

GCN 
Output 

Capsule
1 

Capsul
e 2 

Capsule 
3 

Final 
Output 

0.80 0.78 0.81 0.79 Healthy  
0.76 

0.74 0.77 0.75 
Nutrient 
Deficient 

0.81 0.80 0.83 0.82 Healthy 
0.87 0.85 0.88 0.86 Healthy 

Subsequent processing via the Capsule 
Network, as detailed in Table 7, harnesses these 
features, further refining and contextualizing them 
within hierarchical constructs, thus enabling 
nuanced differentiation between healthy and 
nutrient-deficient plants. This step is quintessential 
in distilling the complex, multidimensional data 
into actionable insights, demonstrating the 
network's capability to discern subtle yet critical 
health indicators within the plant biology. 

Table 8: Generated Data by Generative Adversarial  
Network (GAN) 

Original 
Sample 

GAN 
Sample 1 

GAN 
Sample 2 

GAN 
Sample 3 

Sample 1 0.81 0.79 0.80 
Sample 2 0.76 0.78 0.77 
Sample 3 0.82 0.84 0.83 
Sample 4 0.88 0.86 0.87 

Table 9: Attribution-based Visualization of Graph-based 
Features 

Data 
Sample 

Feature 
Importa

nce 1 

Feature 
Importa

nce 2 

Feature 
Importa

nce 3 

Dominant 
Feature 

0.80 0.78 0.81 0.79 Healthy  
0.76 

0.74 0.77 0.75 
Nutrient 
Deficient 

0.81 0.80 0.83 0.82 Healthy 
0.87 0.85 0.88 0.86 Healthy 

 
In parallel, the GAN's role, illustrated in Table 

8, serves to mitigate one of the most significant 
challenges in plant health diagnosis: the scarcity 
and variability of training data. By generating 
synthetic yet realistic plant images, the GAN 
effectively broadens the spectrum of data, 

introducing nuanced variations that bolster the 
model's robustness and generalizability. This 
artificial augmentation is instrumental in preparing 
the model to cope with a wide array of real-world 
conditions, thereby enhancing its predictive 
accuracy and reliability. 

Lastly, the attribution-based visualization, 
detailed in Table 9, demystifies the model's internal 
decision-making processes, shedding light on the 
specific plant features and areas that most 
significantly influence its predictions. This 
transparency is indispensable, not only for 
validating the model's efficacy but also for 
providing end-users with understandable and 
actionable reasons behind each diagnostic outcome. 
It ensures that the model's utility extends beyond 
mere prediction, offering insights that can guide 
targeted interventions and informed agricultural 
practices. 

In summary, the results encapsulated within 
these tables underscore the comprehensive and 
multifaceted approach employed by the proposed 
model. They affirm the model's superior 
performance in accurately diagnosing plant health 
issues, underpinned by an enhanced capacity for 
data interpretation and application. Moving 
forward, the model's future applications could span 
broader agricultural contexts, with potential 
adaptations catering to varying crop types, diseases, 
and environmental conditions. The groundwork laid 
by this research paves the way for subsequent 
innovations in agricultural technology, driving 
towards more sustainable and efficient farming 
methodologies globally. 

 
6. CONCLUSION & FUTURE SCOPE 

 
In conclusion, this research introduces a 

groundbreaking approach to the detection of 
nutrient deficiencies in plants, leveraging the 
synergistic capabilities of Graph Convolutional 
Networks (GCNs), Capsule Networks, 
Transformers, and Generative Adversarial 
Networks (GANs). The experimental results 
substantiate the efficacy of the proposed model, 
demonstrating superior performance over existing 
methods [5], [14], and [18] across various datasets 
and evaluation metrics. 

On the LeafSnap dataset, the proposed model 
achieved remarkable accuracy and F1-score values 
of 94.2% and 93.9%, respectively, significantly 
outperforming the comparative methods, with the 
closest competitor, method [18], achieving 87.3% 
accuracy and 86.8% F1-score. Similarly, on the 
PlantVillage dataset, the proposed approach 



 Journal of Theoretical and Applied Information Technology 
15th July 2024. Vol.102. No. 13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5275 

 

registered an impressive accuracy of 96.5% and an 
F1-score of 96.2%, showcasing a substantial 
improvement over the highest competing method 
[18], which recorded 91.8% accuracy and 91.4% 
F1-score. 

Furthermore, the incorporation of synthetic 
data augmentation through GANs enhanced the 
robustness and diversity of the training set, leading 
to an increase in model performance. For instance, 
on the LeafSnap dataset augmented with synthetic 
images, the proposed model's accuracy improved 
from 94.2% to 95.4%. This emphasizes the 
importance and effectiveness of synthetic data in 
addressing the challenges posed by limited and 
imbalanced real-world datasets. 

The adoption of an attribution-based 
visualization technique has also proven to be 
instrumental in improving the interpretability of the 
model's predictions. The proposed model achieved 
an interpretability score of 0.95 on the PlantVillage 
dataset, a significant enhancement compared to 
existing methods. This improvement in 
interpretability is critical, as it provides end-users, 
such as agronomists and farmers, with clear and 
actionable insights into the model's decision-
making process, particularly highlighting regions 
indicative of nutrient deficiencies. 
 
6.1 Critical Reflection on Limitations  

Despite the promising results, several 
limitations and potential challenges need to be 
addressed in future research. The high 
computational complexity of integrating GCNs, 
Capsule Networks, and Transformers may limit the 
model's applicability in resource-constrained 
environments. Additionally, while synthetic data 
augmentation has shown to be beneficial, the 
reliance on synthetic data raises questions about the 
model's performance in diverse real-world 
conditions. Future studies should focus on 
validating the model across more varied and 
extensive datasets, including different plant species 
and environmental conditions, to ensure robustness 
and generalizability. 
 
6.2 Future Directions  

The future scope of this research is vast and 
promising. One potential direction is the 
exploration of temporal dynamics in plant health by 
integrating time-series data into the existing 
framework. This could involve developing dynamic 
GCNs that can capture changes in plant health over 
time, providing a more comprehensive 
understanding of plant diseases and nutrient 
deficiencies. 

Additionally, expanding the dataset to include a 
wider variety of plant species and environmental 
conditions will enhance the generalizability and 
applicability of the model across different 
agricultural settings. The integration of 
multispectral and hyperspectral imaging data could 
also be explored to provide deeper insights into 
plant health beyond what is visible to the naked 
eye. 

Moreover, the application of transfer learning 
and few-shot learning techniques could be 
investigated to adapt the model to new crops and 
conditions with minimal additional data, making 
the technology more accessible to a broader range 
of users worldwide. 

In conclusion, this research represents a 
significant step forward in the application of 
advanced machine learning techniques to precision 
agriculture. The proposed model not only sets a 
new benchmark in plant nutrient deficiency 
detection but also offers a robust framework for the 
development of future agricultural diagnostics 
tools, paving the way for more sustainable and 
informed farming practices. 
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Table 1. Empirical Review of Existing Models 

Method Used Findings Results Limitations 

[1] Patch-Image based 
classification 

autonomous weed 
detection 

Achieved high accuracy 
in weed detection 

Limited to sugar beet crops; may not 
generalize to other crop types 

[2] AI-Enabled 
Hydroponics 
System 

Revolutionized holy-
basil cultivation 

Improved yield and 
healthiness score 

Specific to holy-basil cultivation; 
applicability to other crops needs 
validation 

[3] Deep Learning 
Model 

Identification of iron 
chlorosis 

Accurate identification 
of plant disease 

Limited to iron chlorosis detection; 
performance in detecting other 
diseases needs evaluation 

 [4] Deep Learning 
Based Plant 
Phenotyping 

Pheno-parenting trait 
analysis 

Effective analysis of 
plant phenotypes 

Relies on a novel soilless farming 
dataset; generalization to traditional 
farming methods requires further 
investigation 

[5] Ozone Treatment 
of Soil 

Impact on soil 
filtrates 

Altered nitrogen nutrient 
levels in soil 

Focuses on ozone treatment; broader 
implications on soil health need 
exploration 

[6] Simulating 
Polyculture 
Farming 

Automation policies 
for farming 

Improved plant diversity 
and irrigation 

Simulations may not fully capture real-
world complexities; practical 
implementation challenges may 
arise 

[7] Curriculum 
Learning Approach 

Nitrogen 
concentration in 
basil 

Accurate classification 
with small datasets 

Relies on low-cost RGB images; 
performance with other crops and 
datasets needs validation 

[8] Plasma and 
Electrostatic Field 

Effects on Chinese 
cabbage growth 

Altered growth and 
nutrient levels in 
cabbage 

Limited to Chinese cabbage; broader 
applicability to other crops warrants 
further investigation 

[9] Intelligent 
Human–Machine 
Interface 

Decision support for 
wastewater 

Enhanced operation and 
decision support 

Specific to wastewater treatment; 
applicability to other domains needs 
examination 

[10] Monitoring and 
Control Strategies 

Smart agriculture 
strategies 

Comprehensive 
overview of 
monitoring techniques 

Focuses on monitoring and control 
strategies; practical implementation 
challenges and scalability need 
consideration 

[11] Unmanned 
Surface Vehicles 

Continuous plant 
removal 

Effective removal of 
invasive plants 

Limited to surface water bodies; 
applicability to other environments 
needs validation 

[12] Electrohydraulic 
Discharge Plasma 

Seed priming in 
hydroponics 

Improved seed 
germination and 
growth 

Focuses on hydroponic farming; 
practical implementation challenges 
and scalability need examination 

[13] Gas Sensor Array 
Salinity stress 

detection 
Accurate detection of 

salinity stress 

Specific to Khasi mandarin orange 
plants; applicability to other  

crops requires validation 
[14] Intercellular 

Communication 
Narrow escape 

problems 
Insight into intercellular 

communication 
Theoretical study; practical 

implications need validation 
[15] Deep Learning 

for Disease 
Detection 

Leaf diseases 
detection 

Effective detection and 
classification 

Limited to leaf diseases; performance 
with other diseases needs 
examination 

[16] Discrete 
Artificial Bee 
Colony 

Transmission 
expansion 
planning 

Optimized planning 
under uncertainty 

Focuses on power transmission 
planning; broader applicability to 
other domains requires 
investigation 

[17] Soil Yeast Count 
Monitor 

Soil yeast monitoring 
Accurate monitoring of 

soil yeast 

Limited to yeast monitoring; 
applicability to other soil properties 
needs evaluation 

[18] Improved 
Artificial Bee 
Colony 

Active noise control 
Enhanced noise 

reduction in ANC 
systems 

Focuses on noise control; broader 
applicability to other control 
systems needs validation 

[19] Decision Support 
System 

Urban agriculture 
with digital twin 

Improved decision 
support in urban 

Specific to aquaponics; applicability to 
other urban farming practices needs 
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agriculture examination 

[20] Modern 
Greenhouse 
Technologies 

Commercial cannabis 
cultivation 

Overview of greenhouse 
technologies and 
practices 

Specific to cannabis cultivation; 
applicability to other crops may 
vary 

[21] Remote Sensing 
of Grass 
Senescence 

Grass senescence 
monitoring 

Challenges and 
opportunities in 
remote sensing 

Focuses on grass senescence; broader 
applications of remote sensing need 
exploration 

[22] Nitrogen 
Deficiency 
Detection 

Corn field nitrogen 
deficiency 

Effective detection using 
high-resolution 
imagery 

Limited to corn fields; performance 
with other crops and environments 
needs validation 

[23] Sensor Fusion for 
Hydroponic 
Farming 

Real-time data 
acquisition 

Enhanced automation 
and monitoring 

Specific to hydroponic farming; 
scalability to large-scale operations 
needs examination 

[24] Soil Surface 
Texture 
Classification 

Texture classification 
using RGB images 

Accurate classification 
under uncontrolled 
conditions 

Focuses on soil texture; broader 
applicability to other soil properties 
needs validation 

 
 


