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ABSTRACT 
 

Glaucoma is a serious eye condition that poses a significant threat to vision health, often resulting in 
permanent sight loss by damaging the optic nerves. Detecting glaucoma early is crucial for effective 
management, aiming to reduce intraocular pressure and inflammation. However, current detection methods 
are resource-intensive and prone to human error, failing to detect the disease in its early stages. Deep Learning 
(DL) offers promising avenues for automated diagnosis, yet concerns persist regarding model reliability. 
Addressing this, the Enhanced Deep Learning Approach for Glaucoma Diagnosis (EDAGD) is introduced. 
Leveraging SegNet and ResNet-50 architectures, EDAGD achieves exceptional segmentation accuracies of 
98.58% for the Optic Disc (OD) and 96.52% for the Optic Cup (OC) on the RIM-ONE dataset, while also 
demonstrating robust performance on the ACRIMA and REFUGE datasets. Furthermore, EDAGD utilizes 
cutting-edge visualization techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) and 
Grad-CAM++ to generate interpretable heatmaps, aiding in pinpointing critical regions for diagnosis. By 
accurately classifying segmented images, EDAGD achieves impressive performance metrics of 97.97% 
accuracy, 98.41% sensitivity, and 96.58% specificity. The potential impact of automated glaucoma diagnosis 
on healthcare systems includes reducing the burden on ophthalmologists, increasing accessibility to 
diagnostic tools in remote areas, and potentially lowering healthcare costs. By integrating advanced Deep 
Learning techniques with explainable AI methods, our approach not only improves the accuracy of glaucoma 
diagnosis but also builds trust among clinicians. This fosters seamless integration into clinical practice, 
ultimately advancing patient care by enabling timely and accurate diagnosis of glaucoma. 
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1. INTRODUCTION  
 

Glaucoma is a serious ocular condition that occurs 
as a result of an abnormality in the fluid equilibrium 
inside the eye, leading to an elevation in the 
intraocular pressure that affects the nerve cells. 
Elevating the Intraocular Pressure (IOP) results in 
detrimental effects on the optic nerve, leading to 
impaired vision. Glaucoma's delayed progression 
may result in ocular discomfort, and other symptoms 
may include sudden eye pain, halos around lights, 
impaired vision, and headache, especially with 
extreme IOP levels. Vision impairment may be 
effectively treated and cured with the use of 
medicinal and surgical interventions [1]. A variety of 
surgeries and medicinal interventions are effective in 
treating early-stage glaucoma. Current 
methodologies need a longer duration to get the most 

satisfactory outcomes. Early identification of 
glaucoma is crucial for avoiding blindness [2]. 

The global occurrence of glaucoma in individuals 
between 40 and 80 years of age is approximately 
3.54%. This translates to roughly one in every 200 
persons aged 40 might be affected by glaucoma, a 
number that escalates to one in eight by the age of 
80. Among the various factors contributing to the 
risk of glaucoma, elevated IOP stands out as a 
significant contributor to optic nerve and blood 
vessel damage [3]. If not treated, glaucoma can lead 
to total impairment of the optic nerves and 
irreversible vision loss. Given its insidious nature, 
glaucoma often progresses gradually, causing 
minimal or no symptoms, earning it the title "sneak 
thief of sight." This highlights the importance of 
regular eye examinations for timely identification 
and assistance to avert permanent visual impairment 
[4]. Glaucoma remains a major contributor to 
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irreversible vision impairment worldwide, second 
only to cataracts. It is responsible for about 12% of 
blindness cases each year. The number of people 
impacted by glaucoma, especially those aged 
between 40 and 80, is anticipated to reach 111.8 
million by the year 2040. Furthermore, statistics 
indicate that 2.4% of the general population and 
4.7% of individuals aged 70 and above face the risk 
of developing this condition [5].  

Glaucoma is defined by the deterioration of the 
Retinal Ganglion Cells (RGCs), which can be 
triggered by various underlying disorders. This 
degeneration of RGCs poses significant health risks 
resulting in severe vision impairment if not treated. 

(i) Alterations in the Optic Nerve Head (ONH) 
structure and the layer of nerve fibers. 

(ii) Concurrent limitations in visual field 
functionality. 

Glaucoma poses a significant threat to vision, 
often resulting in peripheral vision deterioration and 
potential blindness if left untreated. Despite the 
importance of prompt diagnosis and treatment, there 
is no known solution for glaucoma. Therefore, the 
development of automated methods for early 
glaucoma detection is essential for effective disease 
management [6]. Retinal fundus images are crucial 
for evaluating the condition of different eye parts, 
such as the optic nerve, retina, vitreous humor, 
macula, and blood vessels. Ophthalmologists utilize 
fundus cameras to capture these images, which are 
then employed in diagnosing eye diseases such as 
glaucoma. Glaucoma can cause changes in the 
morphology of the cup area, the focal segment of the 
ONH. These changes serve as early indicators of 
glaucoma progression, as the ONH transports optical 
data from the retina to the brain.  

The asymptomatic form of glaucoma is one of its 
problems in the early stages, leading to gradual optic 
nerve damage and eventual vision deterioration. 
Detecting glaucoma early is crucial to prevent 
irreversible visual impairment. Increased OC 
excavation, leading to changes in the cup-to-disc 
ratio (CDR), is a physiological indication of 
glaucoma progression. Ophthalmologists use CDR 
measurements to monitor glaucoma development 
[7]. 

Glaucoma presents in various forms, including 
angle-closure glaucoma, normal-tension glaucoma, 
primary congenital glaucoma, open-angle glaucoma, 
and others. Open-angle glaucoma is the most 
common form, characterized by gradual pressure rise 
due to partial drainage canal blockage. On the other 

hand, angle-closure glaucoma results from sudden 
drainage blockage, leading to exponential pressure 
increases. The damage caused by glaucoma is 
primarily due to elevated intraocular pressure 
resulting from blocked drainage canals. Without 
treatment, glaucoma can progress to complete 
blindness, underscoring the importance of early 
treatment. 

The objective is to enhance the visibility of the 
decision-making process employed by DL methods, 
thereby bolstering their reliability and facilitating 
informed decision-making by medical professionals. 

 

  
a. Anatomy of a 

Healthy OD 
b. Glaucoma-
affected OD 

 
Figure 1: Digital Fundus Images Focused on 

OD 
Figure 1 depicts the fundus image of the retina 

serving as a crucial ocular record, capturing details 
such as the OD, the OC, and the blood vessels, 
providing insight toward assessing the state of the 
retina. Ophthalmologists and medical professionals 
commonly utilize these images to monitor the 
development of ocular disorders, particularly 
glaucoma. Within a fundus image, the OD, also 
referred to as the ONH, denotes the location where 
nerve fibers and blood vessels penetrate the retina. 
Positioned within the OD is the OC, the brightest 
region at the retina's center. The region between the 
OD and OC is called the neuroretinal rim, with its 
width ratios varying based on the OD structure [8]. 
The primary indication of glaucoma is often the 
enlargement of the OC, termed cupping, typically 
resulting from elevated pressure of the eye that 
deteriorates the optic nerve and leads to the loss of 
nerve cells. This damage subsequently increases cup 
size, manifesting as cupping. 

Timely and accurate detection of glaucoma is 
essential to prevent irreversible vision loss. 
However, existing techniques often require 
prolonged durations to yield satisfactory outcomes, 
and manual detection, reliant on expert knowledge, 
poses challenges due to the scarcity of 
ophthalmologists in hospitals. Moreover, these 
methods are prone to human error and may fail to 
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identify the disease in its early stages. Hence, there 
is an urgent need to implement automatic techniques 
for detecting glaucoma with high efficiency and 
accuracy [9]. DL offers promising opportunities for 
automated diagnosis by processing large volumes of 
data and identifying patterns that human observers 
may overlook, thus providing a potential solution to 
the shortcomings of current detection methods [10]. 

The Discrete Wavelet Transform (DWT) is very 
efficient in detecting glaucoma. The Dynamic Time 
Warping (DTW) technique is constrained to a dyadic 
scale and lacks adaptability [11]. The drawbacks of 
dyadic DTW-based approaches include fixed time-
frequency coverage, variance shift, signal 
independence, and limited frequency resolution. In 
addition, the Empirical Wavelet Transform (EWT) 
approaches have been used to identify glaucoma in 
its early stages. However, these techniques have 
some disadvantages, such as a lack of mathematical 
theory, which results in increased processing 
complexity, as well as issues with mode mixing and 
boundary distortion [12].  

The Cup-to-Disc Ratio (CDR) is a measurement 
used to determine the vertical diameter of the OC and 
disc in the eye. It is often used in screening tests to 
identify glaucoma [9]. During the period of 
significant and gradual changes in color intensity 
between the OC and optic rim in the eye, there is a 
large concentration of blood vessels in the field of 
vision, making the process of splitting the OC and 
disc very challenging. Furthermore, the process of 
manually segmenting the OC and disc in the eye for 
identifying highly subjective areas is time-
consuming [13]. Therefore, these challenges are 
resolved by the use of automated techniques for 
segmenting OC and OD. Glaucoma detection in the 
eye involves the use of active contour-based 
algorithms and thresholding algorithms to segment 
the OC and OD [14]. The thresholding-based 
approaches provide advantages in glaucoma 
detection by producing binary pictures from single-
channel and multi-channel processed images. These 
techniques rely on the color intensity difference 
between the OC and OD [15]. Thresholding methods 
are often used for segmenting fundus images. 
However, segmenting low-contrast images has 
several obstacles to achieving high accuracy [16]. 
Contour-based approaches are used to detect the 
boundaries of the OD and OC using a given set of 
points. It minimizes an energy function. However, 
these segmentation strategies based on active 
contours are prone to being trapped in a local 
minimum, and the effectiveness of the detection 

process relies heavily on the initial configuration of 
the contour method. 

Recently, DL methods have been used to segment 
the OC and OD with reduced computational time 
[17]. In this research, we employ a highly efficient 
DL model, the EDAGD, across three distinct public 
datasets to assess the model's generalizability. These 
datasets include RIM-ONE, ACRIMA, and 
REFUGE. computational framework involves 
utilizing segmentation of the OC and OD with the 
SegNet model, and classification with ResNet-50 to 
analyze the images.  

Furthermore, the trustworthiness of the proposed 
EDAGD is enhanced by incorporating Grad-CAM 
and Grad-CAM++.which provide explanatory 
visualization for the model's outcomes. The 
generated heatmaps offer transparency by 
emphasizing the specific areas in the fundus image 
that impact the model's decision-making process. 
This transparency enables specialists within the 
field, such as eye surgeons, optometrists, and 
ophthalmologists to understand the rationale behind 
the predicted results. 

Experimental research designs have been widely 
used in the field of medical imaging and AI. For 
instance, studies by Li et al. (2024) in China [18] and 
Chun et al. (2023) in South Korea [19] have 
demonstrated the effectiveness of DL models in 
detecting diabetic retinopathy using retinal images. 
Similarly, in the automotive industry, experimental 
designs have been used to test DL algorithms for 
autonomous driving (Fang et al., 2024) [20]. These 
studies from diverse regions and industries highlight 
the robustness and versatility of experimental 
designs in validating AI models. 

Typically, DL classification models pose 
challenges in terms of explanation and 
comprehension, particularly for individuals outside 
the domain. New methods within explainable 
artificial intelligence (XAI) are striving to tackle this 
problem by offering perspectives into the decision-
making mechanisms of DL models. XAI enhances 
the clarity, comprehension, and justification of DL 
model results using visual or textual methods. For 
instance, activation maps visually interpret outcomes 
by highlighting the area of focus in input images 
which influences classification outcomes. Similarly, 
Grad-CAM generates coarse localization maps using 
output gradients to offer insight into model 
decisions. 

Grad CAM++ represents a refined version of 
Grad-CAM, addressing certain limitations by 
adjusting weights for improved object detection and 
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explanation of several instances of objects within a 
picture. These parameters, are pivotal in producing 
visual explanations, the result is generated by 
combining positive partial derivatives from the 
feature maps using weights of the last convolutional 
layers about particular class scores. These heatmaps 
emphasize important image areas crucial for 
prediction. For instance, if the model places greater 
emphasis on the center of the OD and correlates it 
with a larger OC with higher glaucoma likelihood, it 
aids ophthalmologists in understanding model 
outputs, thereby enhancing system reliability and 
trustworthiness. As a result, automated glaucoma 
detection streamlines the process, ensuring 
consistent and reliable decisions while also saving 
time and effort. 

2. LITERATURE 
 
Table 1 provides a comprehensive 

overview of the methodologies, datasets, metrics 
(including Accuracy and AUC), and limitations 
discussed in the literature review on Glaucoma 
detection. 

 A technique employing transfer learning 
utilizing VGG-16 and the AlexNet was employed for 
the classification of glaucoma, utilizing ONH 
pictures collected from multiple public datasets. 
They built a binary set of images: In the first one, the 
dataset was expanded using many data augmentation 
methods, such as rotation, flipping, cropping, and 
random scaling.  while the other one involved 
constructing 3D topographical maps of the ONH 
were created using shading information extracted 
from 2D images (SHS method). Assessment of both 
datasets for the categorization of glaucoma revealed 
enhanced performance compared to standard 
Convolution Neural Network (CNN) classification 
methods [21]. 

A glaucoma diagnosis method was 
developed depending on two procedures, utilizing 
the RIM-ONE, ORIGA, and DRISHTI-GS datasets. 
The model incorporated three types of CNN 
architectures: ResNet-152, AlexNet, and ResNet-50, 
as the ensemble classifiers. A graph saliency region 
technique was employed to crop the OD. The 
model's performance was evaluated across three 
different methods: without a saliency map, using a 
feature map and a CNN model, and employing a 
feature map in combination with an ensembling 
approach. The ensemble approach yielded the most 
promising outcomes, an AUC of 94% and 88% 
accuracy [22]. 

Glaucoma Net was introduced to detect 
primary open-angle glaucoma (POAG) using images 
acquired from a variety of groups and places. Two 

CNNs make up the model, which aims to replicate 
the human-grade process. The first CNN 
concentrates on learning discriminative traits, 
whereas the second CNN combines them for grading 
purposes. By emulating the human-grade procedure 
and applying a collection of network designs, the 
system's diagnostic accuracy was greatly enhanced 
[23]. 

A technique using 3D CNN was suggested 
for the purpose of detecting glaucoma by analyzing 
fundus pictures obtained using the datasets RIM-
ONE and the DRISHTI-GS. The algorithm 
transformed 2D to detect fundus pictures into 3D 
structures for both the RGB and gray channels. The 
training was conducted across all four channels. The 
greatest results were obtained from the gray channel, 
which had 83.2% AUC, 85.54% sensitivity, 66.45 
Kappa, 80.95% specificity, and 83.23% accuracy 
[24]. 

A CNN model was created to identify 
glaucoma. It attained an F1 score of 96.2% when 
tested on 295 videos and 1811 fundus pictures [25]. 

A recent study evaluated the diagnostic 
precision, practicality, and comprehensibility of a 
vision transformer DL approach in identifying 
primary open-angle glaucoma. and recognizing 
significant regions in retinal images [26].  

A DL-based approach was devised to 
identify early-stage glaucoma by using the grey 
channels of the fundus images and employing the 
data augmentation methods. The ResNet-50 
architectural model has shown exceptional 
performance on many datasets such as DRISHTI-
GS, G1020, ORIGA, and RIM-ONE. Using the 
G1020 dataset, it achieves 98.48% detection 
accuracy, 99.30% sensitivity, 96.52% specificity, 
97% AUC, and 98% F1-score [27]. 

 The process of glaucoma screening was 
examined by using classification and segmentation 
techniques on several datasets of fundus pictures. 
The research used Xception, Inception ResNet V2, 
and ResNet152 V2 architectures for the purpose of 
comparison. Activation maps were produced via the 
Grad-CAM methodology to improve 
comprehensibility. The segmentation task used a U-
Net architecture that integrated Inception ResNet V2 
and Inception V3 models. The Xception model 
attained a remarkable accuracy of 97% when used in 
the REFUGE dataset for categorization [28]. 

A new CNN architecture was proposed for 
classifying fundus images. For instance, KR-NET 
was introduced as an approach for the DRiFT2 
database, achieving 96.4% accuracy, 95.0% 
sensitivity, and 98.5% specificity [29]. 



 Journal of Theoretical and Applied Information Technology 
15th July 2024. Vol.102. No. 13 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5350 

 

Recent research made significant progress 
in the identification and localization of the glaucoma 
using fundus imaging. A comparison study was done 
utilizing the Inception-v4, VGG-16, and ResNet-152 
architectures employing Grad-CAM for 
glaucomatous area localization. The ResNet-152-M 
model exhibited superior performance, achieving 
96% accuracy. Additionally, a web-based 
application (Medinoid) was developed to offer 
decision-making support, diagnostic confidence 

scores, and suspected areas for input fundus images 
[30]. 

DL models trained on fundus image 
datasets have garnered attention in glaucoma 
diagnosis research. Specifically, research using 
ResNet50 architectures sought to discover distinct 
regions that are associated with changes in ganglion 
cell complexes (GCC) thickness and areas of central 
focus. By incorporating GCC thickness information, 
these models have shown improved accuracy in 
glaucoma determination. The focus primarily lies on 

Table 1: Overview Of Literature Review 

 

Methodology Dataset 
Metrics (Accuracy 

(%), AUC (%) 
Limitations 

VGG-16, 
AlexNet [21] 

DRISONS-DB, 
HRF, RIMONE, 

Drishti-GS1 

Accuracy 94.3 
AUC 99.1 

Insufficient exploration of data preprocessing biases 
may hinder Glaucoma-Net's clinical applicability and 

diagnostic accuracy. 
Ensemble 
ResNet 

Framework [22] 

RIM-ONE, 
DRISHTI-GS, and 

ORIGA 

Accuracy 91.1, 
AUC 83.3 

Insufficient exploration of multi-frequency scale. 

CNN [23] 
OHTS, 
LAG 

Accuracy 
OHTS- 0.930 
LAG- 0.969 

The model's sensitivity is compromised due to dataset 
imbalance, notably the scarcity of POAG images. 

3DCNN [24] 
RIM-ONE, 

DRISHTI-GS 
Accuracy 83.23, 

AUC 83.2, 
The study focuses on one database, limiting applicability 

across diseases and imaging modalities. 

CNN [25] DRISHTI-GS Accuracy 98 (OD), 97 
(OC) 

The study lacks comparison with existing methods, 
hindering the assessment of model effectiveness and 

performance. 

CNN [26] 
Customized from 5 

public datasets 
AUC 0.92 

Imbalanced datasets, limited data, and cropping may 
affect model performance and generalizability. 

ResNet-50 [27] 

RIM-ONE 
ORIGA 
G1020 

DRISHTI-GS1 

Accuracy 
96.15 
92.59 
98.48 
97.03 

AUC 
94.20 
93.00 
97.00 
96.00 

The constrained availability of high-resolution images 
may affect the model's performance and specificity. 

Xception [28] Refuge Accuracy 97 
Class imbalance and noisy images affected the accuracy 

of the classification. 

CNN [29] 

DRISHTI-GS1 
Refuge 

RIM-ONE 
Private 

ACRIMA 
 

Accuracy 
90.33 
88.16 
90.52 
88.78 
91.52 

AUC 
85.24 
80.41 
91.62 
91.57 
95.72 

Dependency on pre-trained models limits the flexibility 
and generalizability of glaucoma classification. 

ResNet-152 [30] Private Dataset Accuracy 93.5 
Deep learning models reliant on small datasets risk bias 

and may lack generalizability. 

ResNet50 [31] NTUH 
Accuracy 90.80 

AUC 91.20 

Deep learning models may require extensive training 
data for optimal performance across diverse glaucoma 

presentations. 

CNN [32] ORIGA 
Accuracy 93.5 

AUC 95.1 

Inadequate investigation of false positives and negatives, 
and lack of comparability with existing approaches, 

hinders a complete evaluation. 

CNN(CoG-NET) 
[33] 

Drishti, RIM-ONE, 
Refuge, ACRIMA 

 

Accuracy 95.3 
AUC 99 

Lack of comprehensive analysis of potential biases or 
confounding factors 
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the ONH for the detection of glaucoma, with high 
prediction accuracy achieved even with cropped 
macular images. Moreover, the ability of these 
models to pinpoint detailed GCC impairment 
regions underscores their significant contribution to 
glaucoma diagnosis, enabling early detection and 
timely treatment interventions [31]. 

A glaucoma screening method was 
proposed using XAI and CNN, utilizing three 
datasets: HRF, Drishti-GS, and ORIGA-Light. The 
XAI approach of CAM was used to produce 
heatmaps for the interpretation of fundus images. 
The CNN design exhibited outstanding results using 
the ORIGA-Light data [32]. 

An advanced CNN model called CoG-Net 
was proposed to predict glaucoma. The study used 
four publicly accessible datasets: REFUGE, Drishti-
GS, ACRIMA, and RIM-ONE. The use of activation 
maps as an explainable approach allowed for the 
identification of crucial areas in the fundus picture 
that are responsible for categorization. The CoG-Net 
model demonstrated superior performance, with an 
accuracy of 95.3% [33]. 

 
3. PROPOSED EDAGD MODEL 
 
3.1 Dataset Description 

To provide a comprehensive analysis, this 
study incorporated three distinct fundus image 
datasets: RIM-ONE [34], ACRIMA [35], and 
REFUGE [36]. Each dataset was divided into 
training, testing, and validation subsets in a 70:20:10 
ratio. Various augmentation techniques were applied 
to maintain class balance between the glaucoma and 
healthy image classes within each subset. The 
ACRIMA dataset consists of 3244 images in total, 
with 2270 images for training, 649 for testing, and 
325 for validation. The REFUGE dataset contains 
1386 images, with 970 for training, 278 for testing, 
and 138 for validation. The RIM-ONE dataset 
includes 4520 images, with 3164 for training, 904 
for testing, and 452 for validation and all these 
details are outlined in Table 2. This balanced 
distribution and comprehensive augmentation 
ensure robust training and evaluation across 
different datasets. 

Table 2: Dataset Overview: Training, Testing, and 
Validation Images 

Dataset Training  Testing  Validation 
RIM-ONE [34] 4520 1291 645 
ACRIMA [35] 3244 927 463 
REFUGE [36] 1386 396 198 

 

3.2 Overall Process View 
The proposed methodology, named 

EDAGD, utilizes segmentation and classification as 
its main components. The method integrates pre-
processing and feature extraction approaches that are 
often used in the study of medical images. In order 
to enhance the comprehensibility of the system, XAI 
methods are also included. The methodology's high-
level design is shown in Figure 2, while the 
suggested architecture is outlined in Algorithm 1. 

 
Algorithm 1 Pseudo-code for the Entire 
Procedure 

FUNCTION main(): 
   Dataset: acquire RIM-ONE; 
   Preprocessed_data: preprocess (Dataset,2); 
   Augmented_data: augment  

(preprocessed_data,8); 
   For Each Segmentation_process do 
      A௫: initialize_model (SegNet); 
      𝐴௬: train_model (A௫, augmented_data); 
   RETURN Segmented_images; 
   ForEach Classification_process do 
   𝐵௫: initialize model (ResNet50,  

Segmented_images); 
      𝐵௬: train_model (𝐵௫, augmented_data); 
      𝐵௭:interpret_XAI(𝐵௬ , 2); 
   RETURN class_prediction, Heatmap; 
End FUNCTION 

 
In this research, three distinct datasets were 

examined to enhance the applicability of the 
findings. Additionally, visualizations were created to 
provide clear explanations of the results. 

 
3.3 Image Pre-Processing 

The median filter and Contrast Limited 
Adaptive Histogram Equalization (CLAHE) were 
employed as the main pre-processing methods. 
CLAHE is renowned for enhancing contrast and 
picture quality [37], [38]. Meanwhile, the median 
filter technique was utilized to reduce noise and 
preserve edge features. Additionally, to tackle data 
imbalance, prevent overfitting, and augment the 
training dataset size, various augmentation 
techniques were employed [39], [40]. 

 
3.4 Process of Segmentation 

SegNet and U-Net are both composed of an 
encoder network and a matching decoder network. 
These networks are used to segment images by 
categorizing each pixel. The architecture of SegNet 
is shown in Figure 3, where the VGG16 network is 
utilized as the encoder with 13 convolutional layers. 
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Each layer in the encoder has a matching decoder 
layer. To reduce training time, some images are 
resized and fully connected layers are removed to 
maintain maps with high-resolution features. 
Following decoding, the result is supplied to a 
classifier to perform pixel-wise categorization. 
SegNet is classified as a CNN due to the absence of 
fully connected layers. 

Each layer in the encoder has a matching 
decoder layer. To reduce training time, some images 
are resized and fully connected layers are removed 
to maintain maps with high-resolution features. 
Following decoding, the result is supplied to a 
classifier to perform pixel-wise categorization. 
SegNet is classified as a CNN due to the absence of 
fully connected layers. The encoder produces 

transfer pool indices, which are used by the decoder 
to up-sample the input and create a sparse feature 
map. Employing convolution, the trainable filter 
bank is utilized to increase the feature map's density. 
In conclusion, the feature maps generated by the 
decoder are transmitted to a soft-max classifier to 
perform pixel-wise categorization.  

SegNet's efficient encoder network allows 
for excellent results with time and memory 
efficiency. The use of max-pooling and sub-
sampling in the encoder provides translation 
invariance and a larger spatial window for all pixels. 
However, this can result in lossy picture 
representation at the borders, which is not ideal for 
segmentation. To address this, boundary information 
is recorded prior to sub-sampling. Due to memory 

Figure 2: Methodology Outline for the Proposed EDAGD Approach 
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constraints, only the indices of the maximal features 
within each pooling window are saved for each 
encoder feature map. SegNet also has a trainable 
decoder, which sets it apart from Fully decoder, 
Convolutional Networks (FCNs).  

Once the max-pooling indices are 
generated from the encoders, the associated indices 
are utilized by the decoder network to up-sample the 
input feature maps. The image is shown in Figure 4. 
The values in the feature map are denoted by W, X, 
Y, and Z. This process involves enlarging the feature 
maps using the maximum pooling indices and then 
convolving them with a trainable decoder filter to 
produce a rich feature map. Unlike other networks 
that use R, G, and B channels, the SegNet decoder 
can generate multiple channels, enhancing its 
versatility. 

 

3.5 Process of Classification 
The primary objective of the classification 

procedure is to provide accurate results. Therefore, 
the pre-processed original images along with the 
segmented masks produced using the SegNet model 
were employed to provide input images for the 
process of classification. In the classification task, 
the ResNet50 model was used, which shown 
exceptional performance in prior research on 
detecting Glaucoma. The modified ResNet50 model 
replaces the top dense layers with three additional 
layers: global average pooling (GAP) to reduce 

parameters, a Softmax layer, and a 512-unit dense 
layer for a binary class classification (Glaucoma or 
Normal). It also includes a dropout layer with an 
average rate of 0.7 to address overfitting. In addition, 
the ResNet50 model's auxiliary classifier effectively 
resolved the issue of disappearing gradients. During 
the segmentation period, the SegNet model 
underwent fine-tuning to improve its efficiency. The 
model underwent training for 150 epochs, utilizing 
the Adam optimizer with a learning rate set at 0.001. 

Throughout the process of training the 
model, several hyperparameters had a substantial 
impact on determining its performance. The learning 
rate, responsible for controlling the magnitude of 
optimization steps, was meticulously calibrated to 
strike a satisfactory equilibrium between 
convergence speed and stability. Similarly, the batch 
size, which dictates the quantity of data points 
handled in each iteration, and the number of epochs, 
which indicates the overall number of iterations 
across the dataset, were modified to successfully 
train the model while efficiently managing 
computational resources. The selection of the loss 
function, which is pivotal in guiding the 
optimization process, was decided deliberately 
based on the problem's nature, whether it involves 
regression or classification. The model parameters 
were updated during training using both Stochastic 
Gradient Descent (SGD) and Adam optimizers. A 
comparative analysis was undertaken to assess the 
influence of different optimizers on the model's 
convergence and overall performance. This analysis 
yielded valuable information on the intricacies of the 
optimization process. 

The mathematical foundation behind the 
theoretical principles used may be described as 
follows. One hyperparameter that controls the size of 
the step made at each iteration towards minimizing a 
loss function throughout training is the learning rate. 
It affects the training process's convergence and 

Figure 3: The SegNet architecture used for OC and OD Segmentation 

Figure 4: SegNet Decoder. W, X, Y, Z are the values in 
the feature map 
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stability. Excessive learning rates might 
cause the optimization method to surpass the 
minimal value and prevent convergence. 
Conversely, if the learning rate is very low, the 
algorithm may experience prolonged convergence or 
get trapped in a poor solution. To calculate the 
amount of parameter updates, multiply the learning 
rate by the loss gradient with respect to the model 
parameters. The update rule for a parameter X at 
iteration i may be defined using the learning rate α 
as shown in equation (1), where ∇l(𝑋௜) represents 
the gradient of the loss function with respect to the 
parameter (𝑋௜). 

 
                  𝑋𝑖+1 = 𝑋𝑖 − 𝛼 ∙ ∇𝑙(𝑋𝑖)                     (1) 

 
SGD is a basic optimization approach that 

iteratively updates the parameters of the model by 
randomly selecting a limited sample of the training 
data. The update strategy for the SGD optimizer is 
defined by the gradient of the loss function with 
respect to the model parameters, as specified in 
equation (2). In this equation, Θ௜ represents the 
parameters of the model at iteration i, α denotes the 
learning rate which determines the magnitude of the 
optimization step, and ∇𝐾௜(Θ௜)  represents the loss 
function's gradient 𝐾௜ about the parameters of the 
model at time t. 
 
                  Θ௜ାଵ = Θ௜ − 𝛼 ∙ ∇𝐾௜(Θ௜)                            (2) 
 

The original output scores (logits) are 
transformed into a probability distribution 
throughout several classes using the SoftMax 
activation function. The definition of the variable is 
applicable to every class a in the output layer. It is 
calculated according to equation (3), where Y௔ 
represents the raw score (logit) connected with class 
a, and N represents the entire number of classes. 

           𝑆𝑜𝑓𝑡𝑚𝑎𝑥(Y௔) = 𝑒ଢ଼ೌ ෍ 𝑒ଢ଼ೌ

௡

௔ୀଵ

൘                     (3) 

The Global Average Pooling (GAP) layer is 
utilized in order to decrease the spatial dimensions. 
It substitutes the conventional fully connected layers 
in the last section of a CNN, while simultaneously 
decreasing the spatial dimensions (width and height) 
to a singular value for each feature map. This 
technique aids in decreasing the overall number of 
parameters inside the network, reduces the problem 
of overfitting, and improves the capacity to 
understand and comprehend the model. This 
calculates the average of each feature map over its 
entire spatial dimensions, as described in equation 
(4). The feature map 𝑓 has dimensions ℎ × 𝑤 × 𝑐, 

where  ℎ represents the height, 𝑤 represents the 
width, and 𝑐 represents the number of channels. 
𝑓௔,௕,௖  refers to the activation at position (𝑎, 𝑏) in 
channel 𝑐 of the feature map, and 
𝐺𝐴𝑃(𝑓)௖  represents the average value for channel 𝑐. 
 

    𝐺𝐴𝑃(𝑓)௖ = (1 ∕  ℎ × 𝑤) ෍ ෍ 𝑓௔,௕,௖               (4)

௪

௕ୀଵ

௛

௔ୀଵ

 

Dropout is a regularization method that 
mitigates the problem of overfitting. During training, 
a certain number of the neurons or units are 
randomly set to zero, which is referred to as 
"drop out". This technique helps the model acquire 
more resilient and generalized representations. This 
enhances the model's capacity to generalize to 
unfamiliar data by reducing its reliance on individual 
neurons. The dropout procedure is applied to each 
layer neuron separately during training. Equation (5) 
depicts this procedure, where P is the dropout rate 
and an is the input value (activation) to the dropout 
layer. The probability of a neuron being turned off 
during training is represented by the dropout rate. 

 
𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑎)

= ൜
𝑎 ∗ 1/(1 − 𝑃), with probability 1ି௉

0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃 
              (5) 

 
3.6 Explainable strategy 

A DL algorithm with medical 
interpretability was suggested to obtain a precise 
automatic diagnosis of the glaucoma while also 
improving transparency by identifying particular 
areas to aid in diagnosis [28]. Deep neural networks 
are often non-transparent, making their predictions 
unnoticeable to humans. Nevertheless, this problem 
may be reduced by including explainable and 
interpretable strategies in categorization models 
[29]. 

In order to improve the clarity and 
understandability of CNN-based models, both the 
Grad-CAM and the Grad-CAM++ were included. 
These methods produce rough localization maps by 
using gradients from the final convolutional layer to 
emphasize pivotal areas in the picture for the 
prediction concept. Figure 5 depicts the 
comprehensive procedure of Grad-CAM. Grad-
CAM enhances the Class Activation Mapping 
(CAM) method by integrating gradient weights, 
which allows for the visualization of significant 
areas indicated by CNN models [29]. CAM exposes 
the activation patterns in the feature mappings of the 
final convolutional layer, illustrating the specific 
areas of interest that CNN prioritizes throughout its 
analysis of the input. By integrating Grad-CAM with 
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smooth visualizations, it generates detailed visual 
representations that effectively distinguish between 
different classes. In addition, Grad-CAM tackles the 
problems associated with CAM, including the 
requirement for model re-training and the constraints 
imposed by the architecture. The Grad-CAM output 
may be superimposed into the input image. 

To produce the ultimate localization map 
for glaucomatous areas (𝐿ீ௥௔ௗି஼஺ெ

௖ ), Initially, 
gradients are calculated for the class score 'c' (𝑥௖) 
regarding the feature maps (𝐵௡) of the last 

convolutional layer (
డ௫೎

డ஻ೖ೗
೙ ). These feature maps have 

dimensions with width (w) and height (h), where n 
belongs to the set {1, 2, ..., n} and n represents the 
total number of feature maps. Subsequently, the 

computed gradients ( 
డ௫೎

డ஻ೖ೗
೙  ) are subjected to a global-

average pooling process across the width and height 
measurements (k and l). 
This pooling process produces the weights (𝑊௡

௖) for 
the class of glaucoma, as outlined in (6) [29]. 
 

𝑊௡
௖ =

1

𝑤 ∗ ℎ
෍ ෍ ቆ

𝜕𝑥௖

𝜕𝐵௞௟
௡ ቇ

௟௞

                           (6) 

The Rectified Linear Unit (ReLU) 
functions by selecting just the non-negative 
activations once it receives an input formed by 

combining the weights and pertinent feature maps 
linearly. Subsequently, the last localization map of 
the glaucoma-affected regions is derived using (7): 

(𝐿ீ௥௔ௗି஼஺ெ
௖ = 𝑅𝑒𝐿𝑈 ൬෍ 𝑊௡

௖

௡
𝐵௞௟

௡ ൰                      (7) 

 
4.  RESULT ANALYSIS 

4.1 Segmentation and Classification Results 
A learning rate of 1 × 10−4 was utilized 

along with 150 epochs and a batch size of 8 using the 
ADAM optimizer. For the RIM-ONE and ACRIMA 
datasets, a dropout rate of 0.7 was incorporated 
alongside 512 dense layers. Meanwhile, for the 
REFUGE dataset, a dropout rate of 0.8 was opted for 
with 1024 dense layers to achieve superior 
performance following numerous experiments 
involving hyperparameter tuning. 

To assess the efficacy of the fundus image 
segmentation process, various metrics were 
employed. These metrics include true positives (TP), 
false positives (FP), false negatives (FN), and true 
negatives (TN). Here's what each of these terms 
means: 
TP: These are the examples of occurrences when the 
model accurately predicts. Glaucoma images as 
Glaucoma. 

Figure 5: Summary of the Grad-CAM Procedure 
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FP: These are examples of occurrences when the 
model incorrectly predicts Normal images as 
Glaucoma. 
FN: These instances happen when Glaucoma images 
are wrongly predicted as Normal by the model. 
TN: These are cases where the model accurately 
predicts Normal images as Normal. 

SegNet was used for segmentation and 
ResNet50 for classifying using the RIM-ONE 
dataset. To illustrate the broad applicability of 
EDAGD approach, evaluated it on various datasets, 
including ACRIMA and REFUGE, as depicted in 
the Table 3. The experimental results indicate that 
EDAGD model that was trained using the RIM-ONE 
dataset worked as well as with the other datasets. 

 The EDAGD method, employing SegNet 
for segmentation and ResNet50 for classification, 
consistently yielded good results across all three 
datasets, showcasing its generalizability. Table 3 
displays the evaluation criteria obtained for ODS, 
OCS, and classification across the three datasets. 

Equations (8) through (12) represent the 
corresponding calculations. In these equations, 
sensitivity signifies the likelihood of correctly 
predicting glaucoma in individuals with the 
condition, while specificity indicates the probability 
of correctly predicting the absence of glaucoma in 
those with normal eyes. The Dice Coefficient (DC), 
also known as the F1-score, assesses the 
performance of segmentation by measuring the 
similarity between anticipated and actual 
segmentation. A number greater than 88% is 
regarded to indicate an excellent fit between the two. 
Divide the sum of the active pixel counts in both 
masks by the count of active pixels at the intersection 
of the two masks to obtain this coefficient. The 
Jaccard coefficient (JC), also known as Intersection-
Over-Union (IoU), quantifies the degree of 
overlapping among the target mask and predicted 
output. Higher values of the coefficient indicate a 
higher level of similarity between the images. There 
is a positive correlation between DC and JC. The 

Area Under the Curve (AUC) is a metric that 
quantifies the classifier's capacity to differentiate 
between classes. It serves as a concise representation 
of the Receiver Operating Characteristic (ROC) 
curve. Table 3 demonstrates that higher AUC values 
indicate a more advanced level of diagnostic 
prediction ability for the model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                   (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                               (10) 

 
𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝐶)

=
2 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
                      (11) 

 
𝐼𝑜𝑈 (𝑜𝑟)𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐽𝐶)

=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 (12) 

 
Figure 6 presents both accuracy and loss 

curves obtained while classifying the three distinct 
datasets, namely: a. RIM-ONE, b. ACRIMA, and c. 
REFUGE datasets. Typically, in well-calibrated 
models, the validation loss slightly exceeds the 
training loss, yet both curves closely align. Initially, 
both training and validation losses are substantial, 
then rapidly decrease. 

Among the datasets, the RIM-ONE dataset 
exhibits the lowest loss values, with corresponding 
training and validation losses of 0.0687 and 0.0732, 
respectively. Additionally, the accuracy curves for 
both training and validation exhibit similar trends 
across all datasets. 

Table 3. Segmentation and classification results on different datasets 

Dataset Type Acc (%) Sen (%) Spe (%) DC (%) JC (%) AUC (%) 

RIM-ONE ODS 98.59 98.62 98.25 98.67 98.32  

OCS 96.53 97.38 92.46 97.36 96.14  

Classification 97.96 98.42 96.59   98% 

ACRIMA ODS 98.31 98.56 95.51 98.24 98.34  
OCS 97.33 97.79 92.12 98.12 97.29  

Classification 96.25 96.67 92.34   97% 
REFUGE ODS 93.01 95.24 82.22 95.21 92.08  

OCS 93.34 95.31 85.12 95.32 92.26  
Classification 90.12 92.64 83.52   92% 
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Figure 6. Accuracy and Loss curves for the a. RIM-ONE, b. ACRIMA and c. REFUGE Datasets 
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The RIM-ONE dataset demonstrates the 
highest level of accuracy, achieving 98.16% and 
96.24% for training and validation accuracies, 
respectively. 

The accuracy and loss curves displayed in 
Figure 6 illustrate no signs of underfitting or 
overfitting issues, demonstrating the effectiveness of 
the EDAGD method in handling the training and 
testing of image data and surpassing the existing 
approaches as outlined in Table 4 and depicted in 
Figure 7. 

The proposed EDAGD model outperformed the 
other state of art works with 97.97% Accuracy, and 
the comparisons are clearly outlined in Table 4. 

 

Table 4: Comparison of the proposed EDAGD Model 
with existing approaches. 

Model Accuracy  
Ensemble ResNet Framework [8]  91.1% 
3DCNN [10] 83.23% 
ResNet-152 [16] 93.5% 
ResNet50 [17] 90.80% 
Proposed EDAGD Model 97.97% 

 
 The confusion matrix for the predictions 

over the three datasets is shown in Figure 9. The 
matrix is divided into four regions: the top left 
represents true positives (TP), the top right 
represents false positives (FP), the bottom left 
represents false negatives (FN), and the bottom right 
represents true negatives (TN). 

The algorithm accurately predicts 
glaucoma in images with the highest values across 
all datasets. Subsequently, the next greatest values 
are attributed to normal images that were accurately 
classified as normal. The lowest numbers reflect 
inaccurate forecasts for the corresponding classes. 

Therefore, the technique exhibits excellent 
performance on all three datasets. 

Additionally, the ROC curve illustrates 
how well the classification model performs across 
various classification thresholds, providing insight 
into the balance between sensitivity and specificity. 
In Figure 8, the ROC curves for all three datasets are 
located in close proximity to the top-left corner, 
indicating better classifier performance with higher 

accuracy. Particularly, the classifiers for the RIM-
ONE and ACRIMA datasets exhibit superior 
performance compared to the other datasets. 

 
4.2. Explainable Strategy Results 

In this research EDAGD model was 
implemented, which encompasses the segmentation, 
the classification, and the explainability aspects of 
glaucoma diagnosis. Within this framework, 
segmentation masks and the explainability of visual 
representations were encompassed. Applying the 
Grad-CAM and Grad-CAM++ methodologies, 
heatmaps were generated highlighting significant 
areas in the input images that influenced the 
predictions. In particular, the cupping region is 
located in the central region of the OD highly 
correlates with the cases of glaucoma. A high cup-
to-disc ratio often raises suspicion and the likelihood 
of glaucoma in patients. Conversely, for healthy eyes 
without visible cupping issues or signs of glaucoma, 
there are no glaucomatous areas to highlight and 
visualize. On the other hand, if the eyes are healthy 
and do not show any indicators of glaucoma such as 
obvious cupping or glaucomatous regions, there is 
no need to emphasize or visualize any glaucomatous 
areas. 

In glaucomatous eyes, the optic nerve, 
particularly the ONH, is prominently highlighted, 
indicating its significance in classification. The 
importance of regions is denoted by varying shades, 

Figure 7: Performance Comparison of the proposed 
EDAGD model with existing approaches in terms of 

Accuracy. 

Figure 8: ROC Curve for three datasets 
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with red being the most important and blue the least. 
Figure 10 depicts a comparison between the 
visualizations of explainability achieved via the use 
of Grad-CAM and Grad-CAM++. 

Grad-CAM++ enhances its visual 
representations of CNN model predictions compared 
to Grad-CAM. It enhances the ability to identify the 
location of objects, clarifies the presence of many 
instances of objects in a single picture, and enables 
more effective information distillation via 
explanation, as compared to Grad-CAM. 

 
Category Original 

picture 
Grad CAM Grad CAM++ 

 

Normal 

 
Glaucoma 

 
Glaucoma 

  
 
Figure 10: Collection of Input Images Paired with 

Heatmaps 

5. DISCUSSIONS 

In this work EDAGD framework was 
developed for identifying glaucoma that 
incorporates explainability, aiming to improve the 
reliability of the model. By combining segmentation 
and classification algorithms, the study demonstrates 
enhanced performance in identifying glaucoma 
using fundus pictures compared to using these 
techniques individually. The SegNet model, which 
utilizes DL algorithms, is employed for the 
segmentation procedure, effectively detecting 
glaucoma eye problems. This supplementary 
assessment could potentially improve clinical 
decision-making and automate the diagnostic 
process, reducing time-consuming elements and 
minimizing human error. 

The algorithm developed in this research 
addresses the significance of treating different types 
of noise present in pictures. Through rigorous 
training, the algorithm provides accurate predictions 
by efficiently eliminating irrelevant data. The use of 
a median filter approach reduces noise in pictures 
while preserving their borders and intricate features. 
This technique, particularly effective in eliminating 
salt-and-pepper noise, replaces outlier pixel values 
generated by noise with more representative values 
from the surrounding area. As a result, the model 
receives a more refined and accurate input for 

Figure 9: Confusion Matrix Comparison Across Diverse Datasets 
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analysis, facilitating the extraction of relevant and 
consistent characteristics. 

While the research focuses specifically on 
the identification of glaucoma, it does not extend to 
defining the progression of the disease. However, the 
EDAGD model outperforms previous research in 
terms of categorization and explainability 
approaches, achieving an accuracy of 97.97% on the 
RIM-ONE dataset and utilizing three separate 
fundus imaging datasets to showcase the 
applicability of the EDAGD approach across 
different scenarios. This surpasses previous studies 
with accuracies of 91.1% [22], 83.23% [24], 93.5% 
[30], and 90.80% [31].  

 
6. CONCLUSION 

This research presents a new and advanced 
EDAGD framework based on DL. The framework 
includes approaches for segmenting, classifying, and 
explaining glaucoma diseases using various datasets 
of fundus images. The goal is to effectively diagnose 
glaucoma disorders. The primary objective was to 
leverage explainable techniques to elucidate the 
rationale behind predictions made by the underlying 
classification model. Meticulously examining three 
distinct datasets, namely the RIM-ONE, the 
ACRIMA, and the REFUGE, ensured the robustness 
and generalizability of the framework. 

Through a thorough and detailed 
comparison and examination of various CNN 
models, SegNet and ResNet-50 architectures were 
utilized, and the EDAGD framework achieved 
remarkable segmentation accuracies of 98.58% for 
the OD and 96.52% for the OC on the RIM-ONE 
dataset and maintained robust performance on the 
ACRIMA and REFUGE datasets. Additionally, 
EDAGD employs advanced visualization techniques 
such as Gradient-weighted Class Activation 
Mapping (Grad-CAM) and Grad-CAM++ to 
produce interpretable heatmaps, which help identify 
critical regions for diagnosis. The framework's 
classification of segmented images demonstrates 
impressive performance metrics, achieving 97.97% 
accuracy, 98.41% sensitivity, and 96.58% 
specificity. 

 The experimental results demonstrate that 
the proposed EDAGD model surpasses current 
approaches such as Ensemble ResNet Framework 
[22], 3DCNN [24], ResNet-152 [30], and ResNet50 
[31] with an accuracy of 97.97%.  

While the research focuses specifically on 
the identification of glaucoma, it does not extend to 
defining the progression of the disease. Future 
expansions of the study could involve incorporating 
advanced DL methods such as contrastive learning 

and vision transformers to improve glaucoma 
classification as well as the progression of the 
disease. 
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