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ABSTRACT 

The purpose of the study is to examine various options to address the task of detecting the starting stage of 
geomagnetic storms, storm sudden commencement (SSC or SC), based on measurements of the Earth's 
magnetic field collected by INTERMAGNET observatories. These observatories are located in different 
regions of the world, allowing the full range of geomagnetic observations to be processed. Through a 
comprehensive analysis involving time series and machine learning techniques, including both statistical 
and neural network models, we developed models that integrate scalar and vector data to enhance detection 
accuracy. Discontinuities on the time scale in the measurements of individual observatories have been 
registered. In addition to the time series of magnetic field measurements, sudden commencement was 
detected using such scalar values as the change of the level of induction components and change of rhythm. 
Various methods of modeling and analyzing time series have been proposed, including statistical and 
machine-learning methods. To use vector and scalar indicators at the same time, the model was built with 
two streams of information. Various models were built using the data of both single and multiple 
laboratories. In the latter case, data from different sources were combined by the methods of hard voting 
and soft voting. A quantitative assessment of the results delivered by the models was carried out using 
accuracy, recall, and precision metrics. 
Keywords: Geomagnetic Storms, Sudden Commencement, Time Series, Machine Learning, Neural 

Networks. 
 
1. INTRODUCTION 
 

Today, all spheres of human life are subjected 
to digital transformation and the introduction of 
artificial intelligence. At the most recent Bosch 
Connected World 2024 conference in late February 
of this year, Elon Musk presented information 
describing the growth of AI research and utilization 
as a unique phenomenon, increasing tenfold every 6 
months. This concerns not only the economy and 
the social sphere but many problems in physics and 
technology. One prominent example of the 
digitalization of petabyte data and its successful 
analysis is the task of searching for the Higgs boson 
at the Large Hadron Collider using machine 
learning [1]. Another important problem in solar-
terrestrial physics is the detection and prediction of 
geomagnetic storms, particularly their sudden 
commencement (SC) or only a slight subsequent 
increase in the activity of the Earth's magnetic field 
called a sudden impulse (SI). The detection of SC 
will allow the prediction of magnetic storms, which 

majorly affect the communication and navigation of 
spaceships, and foresee the emergence of eddy 
currents and even the destruction of energy 
systems, which in turn can cause humanitarian 
catastrophes. 

Conceptually, SC represents an unexpected 
and multiple sharp increase in the northern (X) 
magnetic component registered at 
INTERMAGNET observatories' monitoring 
stations. In most cases, this phenomenon is a 
precursor of electromagnetic storms detected, for 
example, via the minimum disturbance storm time 
(Dst) index. Importantly, the emphasis here is 
placed more on changes in the rhythm of magnetic 
activity than on the amplitude of possible future 
magnetic storms. Final registers of SC incidents are 
formed through visual analysis of magnetograms 
obtained from five specific low-latitude observation 
stations. The identification of SC is a topical 
fundamental scientific problem in geophysics. 

Solar-terrestrial physics phenomena that can 
be utilized to detect and predict geomagnetic storms 
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have become objects of research around the world 
[2]. Analysis of recent research publications gives 
evidence of the increased interest in addressing this 
issue by various methods. 

A.W. Smith et al. [3] proposed making 
probabilistic forecasts of SC based on data on 
interplanetary shocks using machine learning. 
Utilizing four machine learning models (logistic 
regression, naive Bayesian and Gaussian processes, 
and random forest), researchers investigate the 
probability of interplanetary shocks observed in 
point L1 being associated with SC. The most 
powerful predictor was found to be the range of the 
interplanetary magnetic field. In an earlier study, 
M. Shinohara et al. [4] attempted to detect SC in 
real-time with a special automated system using 
magnetometer data. 

A research group from the Haystack 
Observatory of the Massachusetts Institute of 
Technology and the High-Altitude Observatory of 
the National Center for Atmospheric Research 
proposed the creation of the Transputer Integrated 
Diode Array Spectrometer (TIDAS) 3D system to 
present high-quality three-dimensional regional 
ionospheric information to solve the tasks of 
analyzing the Earth's geomagnetic conditions. Data 
for the implementation of this project were 
compiled from various types of ground and space 
ionospheric observations. These include 
measurements of total electron content (TEC) by 
the Global Navigation Satellite System (GNSS), 
satellite radio observations, and measurements by 
the Millstone Hill ionospheric radar at Haystack 
[5]. 

Researchers from France suggested increasing 
the prediction horizon of the geomagnetic activity 
index Kp by several days using a new experimental 
model, which is based on machine learning and 
uses images obtained with an Atmospheric Imaging 
Assembly device on board the Solar Dynamics 
Observatory spaceship [6]. 

C. Wang et al. [7] described a method of 
spectral whitening to predict non-repeating 
geomagnetic storms. The method is applied to 229 
events caused by coronal mass ejections (CME), 
including 166 events with Kp ≥ 5 and 63 events 
with Kp < 5 during the 23rd and 24th solar cycles. 
The study has analyzed a total of 166 geomagnetic 
storm events and 129 of them were found to be 
predicted accurately. 

Researchers at Cleveland State University [8] 
put forward the idea of employing a hybrid 
quantum-classical neural network (HQCNN), 
which uses quantum computing principles to 
simulate space weather phenomena. The proposed 

HQCNN offers 99.9% precise detection of cosmic 
weather phenomena and thus provides early 
warnings to mitigate the potential impact on space 
systems. The study further demonstrates the great 
potential of early detection of cosmic weather 
events. 

A team of experts [9] has developed a new 
computer program AI DAGGER, which analyzes 
data on solar winds (defined as the stream of 
charged particles emitted by the Sun) gathered by 
spacecraft and predicts the places on Earth where 
the upcoming solar storm will strike with a 30-
minute advance notice. Preliminary testing of the 
precision of the DAGGER model during two 
geomagnetic storms in August 2015 showed the 
first results to be satisfactory, as the model 
successfully predicted the two storms. 

R. Syiemlieh and E. Saikia [10] examined the 
effect of cosmic rays on the formation of structural 
clouds. As solar activity intensifies, coronal mass 
ejection increases, which leads to a rise in 
temperature in the Earth's atmosphere. This 
temperature shift relates to changes in cloud 
formation and the distribution of precipitation and, 
therefore, to climate change. This urges researchers 
to analyze ground-based cloud images for reliable 
processing of background information or patterns. 
Geometric study of cloud properties by means of 
multifractal analysis (MFA) is preferable over 
standard statistical tools in developing an improved 
platform to predict future geomagnetic storms. 

An article by A. Mourato et al. is devoted to 
the study of sunspots – magnetic disturbances in the 
photosphere, which are marked by their dark 
appearance on the solar disk and are directly 
connected with phenomena that contribute to these 
intense storms [11]. This study, combining 
observations of the Sun and computer vision, 
utilizes deep learning algorithms U-Net and Mask 
R-CNN for automatic detection of sunspots 
(semantic segmentation). 

Thus, the purpose of the study was to examine 
diverse methodologies for detecting the initial 
phase of geomagnetic storms, known as storm 
sudden commencement (SSC or SC), utilizing 
magnetic field measurements gathered by the global 
network of INTERMAGNET observatories. 

 
2 MATERIALS AND METHODS 
 
2.1 Input data 

The input data for our study were gathered 
from two open resources: the public database of the 
international system INTERMAGNET [12] and the 
database of SCs of geomagnetic storms provided by 
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the Ebre station (EBR; de l'Ebre, Spain). 
INTERMAGNET data consists of discrete, with a 
1-minute step, observations of three coordinates 
and magnitude of the geomagnetic field. The 
magnitude is commonly assessed by a separate 
device – a scalar magnetometer [13]. 

Data on SC were obtained from a source of 
the International Service of Geomagnetic Indices 

(ISGI) [14], which offers data for the period since 
1869. The data is presented in an archive of several 
text files, each containing observations over one 
year. Timestamps are entered into this roster of 
SC/SI events based on combined observations of 
five low-latitude observatories. Figure 1 presents a 
fragment of data for 2022.

  

 
Figure 1: Data on the sudden commencement of geomagnetic storms for 2022 

 
The structure of data in archival text files 

varies slightly from year to year. There are both 
common fields for all the years and different fields 
for different periods of observation. 

Common fields for all files are: 
• DATE – date, 
• TIME – time, 
• DOY – day of the year, 
• MDUR – mean duration of the event (in 

minutes), 
• MAMP – mean amplitude (in nT), 
• CODES – qualifying codes from a group of 

5 observatories (3 or 2 – the event can be 
unmistakably identified as SC, 1 – the event 

observed in this record can be an SC but requires 
confirmation by other observations, 0 – the event is 
not recognized as SC), 

• TYPES – type of event (SSC or SI). 
Data from after 1968 include the indication of 

observatories and those collected after 2004 – the 
duration and amplitude of the event for each 
observatory. 

Figure 2 presents graphs of components X, Y, 
and Z of magnetic induction with a red dashed line 
indicating SSC, at the moment of which we can 
observe a fluctuation, especially noticeable in the 
X-component, followed by an increase in activity. 
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Figure 2: A fragment of magnetic field data from the Boulder observatory observations for the period from 

March 16, 2015 to March 20, 2015 with a mark indicating a SC of a geomagnetic storm 
 

2.2 Problem statement and SC detection 
methods 
Let L be one of the time scales for measuring 

the Earth's magnetic field induction (see Figure 2), 
divided into small equal windows or time intervals 
li, i=1, 2,…,n, li € L, in a way so that each window 
either does not have an SC event (lFalse) or has only 
one SC event (lTrue). The objective is to build a 
model to solve the task of binary classification, i.e., 
determining the type of the time window (lTrue/lFalse) 
of induction values or mapping f: L -> {lTrue/lFalse}. 

This task is addressed by machine learning 
methods, which allow calculating the probability of 
an element belonging to a specific mark. 

There are a variety of algorithms to model and 
analyze time series. Apart from classical statistical 
methods, such as autoregression, machine learning 
algorithms have been increasingly used in the past 
years. Due to the specifics of analyzing time series 
of values, it is most convenient to apply 
convolutional and recurrent neural networks. For 
example, J. et Chen et al. [15] used convolutional 
networks to predict solar flares from cosmic 
observation data and P. Wintoft and M. Wik [16] 
compared different recurrent network architectures 
to predict the Dst index. 

Another approach to this problem can be not 
to model the series themselves but to calculate their 

characteristics and generate new features and train 
models based on them. In the case of SCs of 
magnetic storms, these indicators can be parameters 
describing the variation and amplitude of values in 
the series over the considered period. In this study, 
we tested a combined approach, under which the 
model accepted as input both the interval of the 
time series and additional scalar characteristics. 

 
Data analysis 

Prior to solving the set problem, we examined 
the time series data by INTERMAGNET based on 
which the classification models were intended to be 
built. This process included statistical analysis 
methods. Since many prediction models appropriate 
for this task are intended for describing stationary 
series, the data at hand were tested with the 
augmented Dickey-Fuller test (ADF test) [17]. It 
was established that the series was not strictly 
stationary. In some cases, clear trends in data could 
even be observed visually on graphs. Figure 3 
presents a graph of mean hourly values of the full 
strength of the geomagnetic field according to data 
from the Borok observatory over the period from 
2005 to 2022. The figure clearly shows a gradual 
rise in the series values. Table 1 provides the results 
of the ADF test for the same time series. 
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Figure 3: Graph of mean hourly values of the total magnetic field according to data from the Borok observatory 

 
Table 1: ADF Test For The Time Series Of Mean 

Hourly Values Of The Full Strength Of The Total 
Magnetic Field According To Data From The Borok 

Observatory 
ADF-test 0.3996 

p-value 0.98 

 
Such a trend in data can be eliminated by 

subtracting adjacent values, i.e., by considering a 
derived series of differences in neighboring 
indicators. To assess the possibility of applying 

autoregression models, we calculated 
autocorrelation coefficients [18]. The analysis 
revealed a weak correlation, albeit with a clear 
diurnal cyclicity. A graph of autocorrelation 
functions is given in Figure 4. 

Furthermore, our data analysis discovered 
intervals with missing values, which need to be 
accounted for when building a model. The IAGA-
2002 text files downloaded from the Intermagnet 
website indicate these missing values with a value 
of the induction component equal to "99999.00". 
An example of this is shown in Figure 5. 

 
Figure 4: Autocorrelation Function Of The Time Series Of Differences In Mean Hourly Values Of The Total 

Magnetic Field According To Data From The Borok Observatory From 2005 To 2022 (Horizontal Axis Step – One 
Day) 
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Figure 5: A Fragment Of Data From The Honolulu Observatory, USA, With Missing Values 
 
Furthermore, In The Data Of Some 

Observatories, These Missing Values Coincide 
With Sscs, Which Reduces The Number Of Intact 

Samples That Could Be Used To Build Models. An 
Example Of Such A Coincidence Is Presented In 
Figure 6. 

 

Figure 6: A Fragment Of Data (Date: 2022-08-19) From The San Juan Observatory, USA, Where A Gap In The 
Time Series Coincides With The SC Mark 

 
To study the relationship between the time 

series of magnetic field components and SC, a 
general sample of data with SCs indicated was 
compiled and joint graphs of series with marked 
SCs were built. 

The Intermagnet network combines a great 
number of observatories. However, data on SSCs 
published by the Ebre observatory (code EBR) 
typically use the observations of low-latitude 
laboratories. For this reason, the models were 
applied to data from one of these observatories – 
Kanoya, Japan (code KNY), collected from 2005 to 
2022. 
 
Application of machine learning methods  

In this study, the automatic detection of 
SCs of geomagnetic storms was achieved through 
various neural network architectures, including 
recurrent neural networks (RNN). This type of 

neural network is designed to process organized 
data. All input data sequentially pass through 
recurrent layers, which remember the previous state 
and transfer it with the next set of input data. By 
virtue of this internal memory, RNN are efficient in 
analyzing time series [19]. Regular recurrent 
networks often experience the vanishing gradient 
problem, so they are rarely used in their pure form. 
More popular is a modification of networks with 
long short-term memory (LSTM) [20]. In these 
networks, the state of the cell passed on to the next 
step is controlled by three gates: the input gate, 
which establishes what new information should be 
remembered, the forget gate, which deletes part of 
the information, and the output gate, which defines 
the next value of the state. 

Proceeding from LSTM network 
architecture, our task requires that the model is fed 
a sequence of values of the magnetic field 
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measurements time series. Based on the conducted 
data analysis, we decided to use a difference series 
of the X-component of the magnetic field vector 
with a one-step delay in time (one minute). From a 
physical point of view, this series can be interpreted 
as the rate of change in induction measured in 
nT/min. A sharp rise in this rate is what indicates 
possible storm commencement. A. Segarra and J.J. 
Curto [21] in their study established a threshold of 
3 nT/min, below which samples were excluded 
from classification. A similar approach was 
employed in this study. 

An additional challenge in training the 
binary classification model with respect to our 
objective is a high imbalance of data [22]. Magnetic 
storm SC events occur about several dozen times a 
year, and their detection requires examining series 
with one-minute resolution. Therefore, the 
following approach was utilized to prepare the data. 
For each SC mark, a 10-minute time "window" was 
taken, where the start of the SC was approximately 
in the middle of the interval with a possible random 
offset of 1-2 minutes. Next, the same number of 
"windows" which does not overlap with SC events 
but has a maximum rate of change in the field 
above the threshold were taken. The windows were 
checked for missing values to ensure that the 
selected samples did not get the time intervals with 
omissions. The first type of samples was assigned 
to the class True, the second type was classified as 
False, and during model training, they were 
randomly mixed. 

Apart from time series of magnetic field 
changes, SC detection can be achieved using scalar 
features calculated based on values in the series. 
For example, one study [14] used the following 
values: 

● change of level (CL) of induction 
components, calculated as a difference between the 
mean value in the series over the 10 minutes 
following the event and the mean value for the 
preceding 10 minutes; 

● change of rhythm (CR) – the 
difference between standard deviations in 60 
minutes before and after the event. 

In this study, to enhance the accuracy of 
the model, we introduced similar features, the only 
difference being that the interval for the mean and 
standard deviation started not from the SC point 
itself, but from the ends of the 10-minute time 
window used previously as input data for the LSTM 
layer of the model. 

To enable the combined use of vector and 
scalar parameters, the model was built as follows. 
First, the vector of values in the ten-minute window 
is fed into the recurrent layer, the outputs of which 
are joined by a fully connected network layer. The 
obtained value is then concatenated with the two 
scalar indicators, and the resulting vector of three 
values is forwarded to the final fully connected 
layer of the network. A diagram of the model is 
presented in Figure 7. The model was realized 
using the PyTorch library [23]. 

 
Figure 7:  Scheme of the applied model 

 
3. RESULTS 
 

To test the models in conditions close to 
reality, the test sample was not balanced. A 
continuous time series of 2022 magnetic field data 
was used. The test dataset was created by applying 
the sliding window view to the entire series. 
Samples with the maximum rate of induction 
change below the threshold value were attributed to 
the False class regardless of the model's reading. 

For convenient visualization and qualitative 
analysis of the results delivered by the model, the 

graph of the differenced series of the X-component 
of the magnetic field, which was used as input for 
the model, was supplemented with red vertical 
marks showing the points of SSC according to the 
Ebre laboratory (EBR). Green vertical lines were 
added to mark the predictions made by the model. 
If the model classified some 10-minute window as 
True (i.e., recognized it as SC), the respective mark 
was placed at the start of this time window. The 
resulting graph is provided in Figure 8. Figure 9 
shows enlarged fragments of this graph with 
correctly (a) and falsely (b) recognized SC 
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instances. The graph shows a large amount of false 
positive predictions, that is, marks where the model 

predicted a storm commencement, but the EBR 
observatory had no such observations.

 

 
Figure 8: Graph of differenced X-component of the magnetic field for 2022 with indications of SSC events and 

model predictions 
 

  
 
 

  

Figure 9: Enhanced fragments of the results graph: a – correctly detected SC event, b – falsely detected 
 
Quantitative assessment of prediction results 

can be performed by recall and precision metrics, 
which are most commonly used in classification 
with imbalance classes, as in our case. However, 
for our objective, a simple comparison of real and 
predicted timestamps to calculate metrics will not 
suffice. The graphs demonstrate that with accurate 
detection of SC, the predicted point in time is 
somewhat earlier than the factual. This occurs 

because the model was trained on "snippets" of 
values in the series (10-minute intervals) and the 
timestamp on the graph is placed at the start of this 
fragment. Thus, the metrics were calculated by a 
different approach: a fragment of the test sample 
was assigned to the True class if the time series 
window of this sample included at least a part of an 
SC event. The obtained metrics are given in Table 
2. It is important to note, however, that these 

a b 
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metrics are not precisely indicative. For instance, 
recall has to show the share of accurately 
established True classes. The model has missed 
only two SC events out of sixteen, while the 
precision metric has a much lower value. 

Table 2 – Metrics for model prediction results 
Metric accuracy recall precision 

Value 0.999 0.337 0.413 

 
It was hypothesized that the introduction of a 

new scalar indicator, the difference of standard 
deviations of the time series of induction rate 

changes averaged over a certain period after and 
before SC, would improve the effectiveness of SC 
detection. Indeed, after factual SC marks, the 
difference graph fluctuates more, since there is 
increased geomagnetic activity. Therefore, we 
hypothesized that a parameter similar to "change of 
rhythm" but applied to the derived series of 
differences would help reduce the number of type II 
errors. Nevertheless, the introduction of this new 
parameter into the model yielded no significant 
changes. The graph provided in Figure 10 still 
shows a significant number of false positive 
predictions. 

 
Figure 10:  Results of the model with an additional scalar feature 

 
Using data from several observatories 

The next logical step was to attempt to use 
observation data from several low-latitude 
observatories together, as it is done with manual 
selection of SC and SI events at the Ebre 
Observatory (EBR). 

One of the ideas was to alter the existing 
model so that it accepts as input a multidimensional 
time series compiled from data from different 
observatories. A similar experiment has been 
conducted for a two-dimensional series. Aside from 
the previously used data, measurements by the 
Alibag Observatory, India (ABG), were 
downloaded and processed in the same way, 
including the calculation of scalar indicators. 
Within the model, the "input size" parameter of the 
LSTM network was changed to make the size of 
one input sample (10, 2) – 10 time steps with 2 
values in each. To add new scalar features, the size 

of the fully connected layer was increased. A 
scheme of the realization of this idea is presented in 
Figure 11. 

However, a shortcoming of this approach was 
discovered in the process of implementation. 
Omissions in data from different laboratories often 
did not coincide, meaning that certain SC events 
had to be excluded from the training sample only 
because the necessary fragment was missing in the 
observations of one of the observatories. In the 
same way, some SC events became impossible to 
identify in model testing. The situation is only 
worsened by the use of time series from a larger 
number of observatories. In the data on all SC 
events provided by the Ebre Observatory (EBR), 
this problem is addressed by the use of a variable 
set of five low-latitude observatories. Yet this 
flexibility is difficult to achieve with a single model 
accepting whole data from several pre-selected 
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observatories. For this reason, this approach was 
rejected at this stage of research. 

The next idea was to train models of one 
architecture independently on data from different 
observatories. 

 
 

Figure 11: Diagram of the model modified for application to the data of the two observatories and subsequent 
"ensembling" of each observatory's predictions 

 
Separate models were built in the same way as 

described above for data from the Kanoya 
Observatory (KNY). For this step, we took five 
observatories, each of which at some point was 
marked in the SC table of the Ebre Observatory 
(EBR) as deciding: 

● Alibag, India (ABG), 
● Guimar-Tenerife, Spain (GUI), 
● Honolulu, USA (HON), 
● Kanoya, Japan (KNY), 
● San Juan, USA (SJG). 

Thus, the results of SC/SI detection on the test 
sample were obtained from the data of each 
observatory. These results were combined by the 
method of hard voting, i.e., final marks from each 
model were used. The method was tested in two 
variants with different threshold values: the final 
prognosis is considered True if at least two or at 
least three models respond True. Initial results by 
observatories and final data after ensembling are 
provided in Table 3. The table also shows the sizes 
of test samples for different observatories, which 
differ due to omissions in raw data from some of 
them. 

Table 3: Results of ensembling of models trained on data from different observatories 

 HON SJG ABG KNY GUI 
Voti

ng (min 2) 
Voti

ng (min 3) 
Number of 

SC/SI in the test 
sample 

189 164 189 188 172 – – 

Accuracy 1.0 1.0 0.999 0.999 1.0 1.0 1.0 

Recall 0.246 0.163 0.417 0.337 0.353 0.367 0.221 

Precision 0.564 0.631 0.319 0.413 0.539 0.573 0.855 

 
The results indicate that false positive 

prognoses have become much fewer. However, 
some real SCs that were detected previously from 

data from some individual observatories are not 
detected. The graph in Figure 12 also demonstrates 
the reduced number of type II errors. 
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Figure 12: Graph of the predictions delivered by the model ensemble (the time series shown is from a single 

observatory – KNY) 
 

Next, we tested the soft voting method. 
The softmax function was applied to the model's 
output values, providing the probabilities of the 
sample belonging to the True class. The 
probabilities estimated by five models trained on 
different data were averages, after which individual 
samples were marked as True if they surpassed the 
50% threshold. Table 4 shows a comparison of 
metrics for the two described methods under the 
same model training process. The Precision metric 
increased with the second approach; however, the 
model does not recognize some real 
commencements of geomagnetic storms that were 
detected with the first approach. 

 
Table 4 – Comparison of metrics for two approaches to 

model ensembling 
 Hard voting Soft voting 

Recall 0.404 0.273 

Precision 0.545 0.753 

 
In addition to simple averaging of 

probabilities, we attempted weighted averaging. 
The weights assigned to the models were taken in a 
direct proportion to the metric that needed to be 
increased – recall. The weights were calculated 
using a sample for 2020-2021 and the test sample 
consisted of 2022 data. Table 5 shows a comparison 
of approaches to averaging the results of individual 
models. The addition of weights has indeed 
improved recall and the manual review of the 

events shows that the number of detected events has 
also increased. 

 
Table 5: Comparison of metrics for two methods of 

averaging probabilities 
 

 Simple 
averaging 

Weighted 
averaging 

Recall 0.247 0.300 

Precision 0.759 0.714 

 
4. DISCUSSION 
 

In this paper, we attempted to apply a new 
approach to detecting SC of geomagnetic storms 
based on a combination of two science-intensive 
methods – preliminary preparation of observation 
data from INTERMAGNET observatories and their 
deep intelligent analysis. Preliminary data 
processing needs to consider that these data are not 
strictly stationary and have gaps in the sequences of 
values. Intelligent analysis of the prepared data was 
conducted both for individual observatories and 
several ones participating in the establishment of 
SC by the EBR observatory [24]. The advantages of 
this approach relate to the fact that data bodies from 
several magnetic observatories from across the 
world are processed simultaneously, which prevents 
background errors of individual observatories in the 
training of detection models. 
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Existing studies on the detection of 
geomagnetic storms based on current information 
from various observations, which, among other 
methods, use neural networks to analyze the 
situation, either lean towards significant 
complication of the task or shift the focus of 
research from predicting geomagnetic storms and 
their SC to predicting other events in solar-
terrestrial physics, suggesting abandoning the 
imbalanced distribution of observations of the 
Earth's magnetic field. 

A complication of the task can be seen, for 
example, in research by the Haystack Observatory 
of the Massachusetts Institute of Technology and 
the High-Altitude Observatory of the National 
Center for Atmospheric Research on the creation of 
the TIDAS 3D system of three-dimensional 
regional ionospheric information by processing 
several types of ground- and space-based 
ionospheric observations [5]. This task requires 
continuous measurements by the GNSS, satellite 
radio observations, and measurements by the 
Millstone Hill ionospheric radar. 

A shift of focus from predicting 
geomagnetic storms is found in studies conducted 
at Maryland University [25], which analyze 
interplanetary shock waves – disturbances normally 
observed in connection with the solar wind. Impacts 
of these waves can cause many space weather 
effects in the Earth's magnetopause, internal 
magnetosphere, ionosphere, thermosphere, and the 
Earth's magnetic field. The study indicates that the 
impact angle is a highly influential parameter that 
affects the geomagnetic situation and geomagnetic 
storms. 

A change of research focus can also be 
observed in a paper from the National Space 
Science Center of the Chinese Academy of 
Sciences [26], where the main attention is directed 
toward the study of solar flares which, as the 
authors argue, are critical to understanding solar 
activity and its impact on space weather in general 
and magnetic storms in particular. However, the 
paper does not describe the method of this influence 
despite the application of neural network models 
and a decision tree. 

Another interesting article by an 
international team of authors [27] in the sphere of 
solar-terrestrial physics is devoted to the dynamics 
of heliospheric structures that determine space 
weather. The emphasis is placed on ICMEs, which 
result from massive plasma and magnetic flux 
ejections from the solar corona. These ejections 
give rise to the largest geomagnetic storms and 
phenomena associated with solar energy particles, 

threatening to endanger life and technology on 
Earth and in space. Yet once again, the paper does 
not touch on an algorithm of transition from 
research into the dynamics of heliospheric 
structures to magnetic storms. 

Thus, drawbacks are present both in 
attempts to majorly complicate the task to cover 
many space weather phenomena and in the shift of 
research focus to other events and phenomena of 
space weather. The first approach is highly 
expensive in obtaining data. Furthermore, there is 
no evidence that these data will be sufficient to 
build a decent 3D model in a reasonable time and 
that this model will provide real-time diagnostics 
and produce predictions. Under the second 
approach to predict solar flares and heliospheric 
structure dynamics, which changes the focus of 
research but uses old methods of analysis, no 
qualitative changes are likely. The imbalance of 
data is still there, and the complexity of modeled 
functions is not reduced. 

Several research groups utilize neural 
networks to diagnose various characteristics of 
geomagnetic storms. However, there are either 
individual random publications or, as in the works 
of University College London or the Paris Institute 
of Astrophysics, studies prioritizing correct 
calculation of geomagnetic indices rather than the 
detection of SC of geomagnetic storms virtually in 
real-time. 

The approach to detecting the SC of 
geomagnetic storms proposed in our study is free of 
these disadvantages. The presented model was 
tested using datasets accumulated by 
INTERMAGNET magnetic observatories. In 
addition, today's neural networks are more 
successful with unbalanced data and allow more 
accurate characterization of approximations of 
complex multidimensional functions in solar-
terrestrial physics. 
 
5. CONCLUSIONS 
 

The article has explored various options 
for solving the problem of detecting the SC of 
geomagnetic storms based on measurements of the 
Earth's magnetic field by INTERMAGNET 
observatories.  

By integrating scalar and vector data from 
multiple INTERMAGNET observatory sources, our 
models demonstrate improved accuracy, precision, 
and recall over existing methods. This represents a 
notable advancement in the real-time monitoring 
and prediction of geomagnetic storms; 
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The application of combined data using 
hard and soft voting mechanisms is a novel 
approach that significantly enhances the robustness 
of SC detection models. This technique, not widely 
used in previous studies, offers a new pathway for 
handling the inherent variability and non-
stationarity of geomagnetic data; 

The findings from this study have 
immediate applications in improving early warning 
systems for geomagnetic storms, potentially 
mitigating their impact on global communication 
and navigation technologies; 

Future research should focus on refining 
these models further, exploring their integration 
into operational platforms, and expanding their 
capabilities to predict other related geomagnetic 
phenomena. 
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