
 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5628

OPTIMIZED ENSEMBLE LEARNING FOR SOFTWARE
DEFECT PREDIC-TION WITH HYPERPARAMETER TUNING

GETACHEW MEKURIA HABTEMARIAM1, SUDHIR KUMAR MOHAPATRA2.*
,

HUSSIEN WORKU SEID3

1Addis Ababa Science and Technology University Addis Ababa, Addis Ababa, Ethiopia
2,*Sri Sri University, Cuttack, Odisha, India

3Addis Ababa Science and Technology University Addis Ababa, Addis Ababa, Ethiopia

E-mail: 1getachewmekuria19@gmail.com, 2sudhir.mohapatra@srisriuniversity.edu.in,
3hussien.seid@aastu.edu.et

*Corresponding Author

ABSTRACT

The Software plays a crucial role in human life, making it essential for system developers to have reliable
and accurate software. The discovery of faults during software development is becoming increasingly
important to minimize costs and delivery time. As the application of software in business increases then, the
soundness of software becomes more important. Several logical models have been proposed to evaluate
software system reliability and predict software trustworthiness but the existing reliability model may be
efficient towards solving a specific type of problem but incapable of solving other classes of software
problems. Therefore, a novel and universal model is needed for fair prediction and error classification of all
types of software reliability prediction problems. The study proposed ensemble models for software
reliability prediction, which have an advantage over existing statistical and machine learning models. The
proposed model is a binary model that can be used for error classification with automatic hyperparameter
selection for flexibility. A total of 21 static metrics of the NASA dataset are taken as independent variables
for the classification model and bagging, voting and stacking techniques are applied for classification. The
performance of the models was evaluated using accuracy, precision; recall and f1-score and the model
achieved 89.1% classification accuracy. The proposed ensemble model was also compared with existing
models using a benchmark dataset for their performance. The results of the statistical comparison of the
proposed model show better performance as compared to other existing models.
Keywords: Software reliability, Software reliability prediction, Software reliability classification,

Ensemble model, Machine learning, Hyperparameter

1. INTRODUCTION

Software engineering is a disciplined and
systematic approach to software development. It
encompasses the entire lifecycle, from
understanding user needs, requirement gathering,
and design to development, testing, dep-loyment,
and maintenance. [1] Software has become an
indispensable part of any modern, complex system.
Many industries, such as telecommunications,
automotive, aviation, e-commerce, entertainment,
and critical sectors like healthcare and nuclear
power plants. [2] All these applications need precise
and reliable software in order to provide the
required services and performances. Software
failure in such applications can lead to high costs
and, in some cases, irreparable or catastrophic
damages. Recognizing this danger, software
developers have prioritized implementing rigorous

quality checks throughout the development
lifecycle.

In software engineering, software quality
assurance and testing (SQAT) is a crucial part of
the software de-velopment process, ensuring that
the software meets the specified requirements and
delivers high-quality soft-ware [3]. High-quality
software's heart lies in reliability, which denotes the
probability of failure-free software operation for a
specific period of time in a specified environment
[4]. Reliable software exhibits minimal fail-ures
and delivers accurate results. The critical need to
evaluate software reliability underscores its status
as a cornerstone of software quality. By quantifying
software errors, bugs, faults, and defects that can
lead to fail-ures, software reliability allows us to
measure and improve the overall robustness of a
program.

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5629

In the quest for dependable software,
software reliability prediction (SRP) emerges as a
powerful tool [5]. It empowers development teams
and stakeholders to make informed decisions.
Stakeholders can better allocate resources, prioritize
testing efforts, and determine release dates. By
identifying potential problems early, devel-opers
can address them proactively, saving time, and
resources, and avoiding potential disasters,
ultimately leading to the delivery of high-quality
and reliable software. SRP relies on various models
that analyze data like code complexity and
historical faults to estimate future failures. The
accuracy of these predictions hinges on data quality
and choosing the right prediction techniques [6].

Several different techniques have been
studied to predict the reliability of software
modules, aiming to im-prove software quality and
reduce software development costs. Traditionally,
SRP has utilized various probabilistic methods, but
a significant gap persists: the need for a robust and
adaptable predictive framework capable of
navigating the complexities of modern software
systems [7]. This gap presents an opportunity for
innovative solutions to emerge, with a wide
spectrum of machine learning approaches, including
Decision Trees, Naïve Bayes (NB), Radial Basis
Function, Support Vector Machine (SVM), K-
Nearest Neighbor, Multi-layer Perceptron, and
Random Forest (RF), being explored to anticipate
errors in software modules and ultimately enhance
software quality while reducing testing costs [8].

While these techniques have been
employed in the past to predict software reliability,
the necessity for a robust and adaptable predictive
framework persists, capable of addressing the
complexities of modern software. By integrating
diverse modeling approaches and refining
parameter selection methods, a research gap
continues to exist. Further exploration of adaptable
and effective strategies for SRP is imperative to
ensure better adapta-tion to evolving software
landscapes and to yield results that are both more
accurate and reliable.

Henceforth, to bridge these gaps the
authors have introduced a novel approach
employing ensemble learning and a random
hyperparameter selection algorithm. Ensemble
learning aggregates predictions from multiple
models, thereby creating a more robust and
potentially more accurate forecast of software
reliability. Additionally, the random
hyperparameter selection algorithm defines a range
of possible values for each hyperparameter within

the models and then randomly selects a
combination. This randomness facilitates the
exploration of a broader range of possibilities and
helps to potentially avoid being trapped in local
optima within a single model configuration.
Through the fusion of ensemble learning with
random hyperparameter selection, the study
achieves more accurate and reliable SRPs.

This research study makes the following
contributions:
• Proposed a novel ensemble learning approach

with random hyperparameter selection: This
paper introduces a new method for software
reliability prediction that combines the
strengths of ensemble learning and random
hyperparameter selection. By leveraging
multiple models with a variety of
configurations, the study resulted in more
robust, accurate, and potentially generalizable
predictions compared to previous state-of-the-
art approaches.

• Implemented a prototype of the proposed
model: In a Python programming language and
conducted an empirical analysis to evaluate its
effectiveness and efficiency. Through rigorous
experimentation, the study demonstrated the
capability of accurately predicting software
reliability while considering various factors
and complexities inherent in modern software
systems.

• Potential for improved prediction accuracy:
The combination of ensemble learning and
random hyperparameter selection has the
potential to improve the accuracy of software
reliability predictions compared to existing
methods. This can lead to more informed
decision-making during the software
development process.
The subsequent sections of this study are

structured as follows. Section 2 encompasses an
extensive literature review. Section 3 concisely
outlines the materials and methods proposed
methodology. The exploration of experimental
results, along with a comparative analysis of
proposed approach against other methodologies, is
detailed in Section 4. Section 5 encapsulates the
conclusion and recommendation of the study.

2. LITERATURE REVIEW

The field of software reliability prediction
is continually evolving, with researchers exploring
innovative methodologies to improve the accuracy

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5630

and efficiency of forecasting software defects.
While there's no univer-sal solution, numerous
studies in the literature contribute to this ongoing
investigation [7, 8]. This review sets the stage for
further investigation by discussing the existing
methodologies and approaches, highlighting their
strengths and limitations. Subsequently, the
following section lists related works that
complement and extend the understanding of SRP
techniques, paving the way for proposed
improvements and novel approach.

Rath et al. [9] proposed a hybrid software
reliability prediction model that combines feature
selection with a Support Vector Classifier (SVM),
achieving successful validation on the standard
NASA Metrics Data Pro-gram datasets. They
achieved improved performance metrics compared
to the existing model. Wu et al. [10] proposed a
Hybrid Multi-layer Heterogeneous Particle Swarm
Optimization Algorithm (HMHPSO) to optimize a
GRU neural network for software reliability
prediction, addressing the limitations of low
accuracy and weak generalization in current
models.

Dong et al. [11] investigated ensemble
learning for software defect prediction,
demonstrating its superiority over seven individual
machine learning and deep learning algorithms on
four public datasets from NASA and PROMISE.
Their ensemble approach achieved a high AUC of
0.99, G-Mean of 0.96, and an average F1-score of
0.97, outperforming all single models and offering
a good balance between performance and runtime
for time-sensitive scenarios. Moeini et al. [12]
proposed a combination of machine learning and
approximation Bayesian inference to address
limitations in both parametric and non-parametric
software reliability prediction models. They
evaluated the effectiveness of their approach using
three real-world software failure datasets with
varying sizes.

Rath et al. [13] proposed a novel approach
for software reliability prediction using an Extreme
Learning Machine (ELM) combined with feature
selection. This approach addresses the limitations
of existing models in cross-system defect
prediction, where past data from one project is used
to predict defects in a new project. Their
experiments on NASA Metrics Data Program
datasets demonstrated that the proposed model
achieved superior prediction accuracy compared to
traditional ELM defect prediction models. Yadav et

al. [14] proposed software reliability prediction
utilizing a dense neural network implemented using
deep learning. The experiment was performed on
twelve datasets from different sources. Their results
are evaluated using four standard performance
metrics which are accuracy, precision, recall, and
f1-score. However, their study is limited to small
datasets and can be extended with large industrial
datasets to achieve better results.

Jabeen et al. [15] proposed an improved
software reliability prediction model by using a
high-precision er-ror iterative analysis method
based on residual errors. The residual error values
between actual and estimated values are used
iteratively to improve the fitting of historical failure
data. The artificial neural network was also used to
estimate signs, which are associated with residual
errors. Qiaoa et al. [16] proposed a deep learning-
based approach to predict the number of defects in
software modules. They compared the proposed
techniques with state-of-the-art approaches like
SVR, FSVR, and DTR on two well-known datasets.
Their approach per-formed better in reducing the
mean square error (varying between 3% and 13%)
and improving the squared correlation coefficient
(varying between 2% and 27%).

Manjula et al. [17] proposed a deep neural
network-based hybrid approach for software defect
prediction using software metrics. Their approach
employs a genetic algorithm (GA) for feature
optimization and a deep neural network (DNN) for
classification. The proposed approach was
implemented on benchmark datasets that were
obtained from the PROMISE repository. The
performance was compared with existing
classification schemes such as Naïve Bayes, SVM,
Decision Tree, and KNN in terms of classification
accuracy, sensitivity, specificity, precision, and
recall. The experimental analysis showed that their
approach improved performance.

Kim et al. [18] studied a prediction and
comparative analysis of the software reliability
models using the nonhomogeneous Poisson-process
model (NHPP) and deep learning. Their approach
relied on data rather than mathematical and
statistical assumptions. A software reliability
model based on recurrent neural networks (RNN),
long short-term memory (LSTM), and gated
recurrent units (GRU), which are the most basic
deep and recurrent neural networks that have been
applied to time-series data characteristics, was
used. It was constructed by including the hidden

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5631

layer of the neural network, and using two datasets,
it was observed that their model showed better
estimation and predictive power[19,20,21].

In general, the reviewed literature
underscores the diverse methodologies employed in
SRP, ranging from traditional machine learning to
advanced deep learning algorithms. While
significant progress has been made in enhancing
prediction accuracy and generalization across
diverse datasets, challenges persist in adapting
these models to the complexities of modern
software landscapes. The need for a robust and
adaptable predictive framework capable of
addressing evolving software environments remains
paramount. By integrating diverse modeling
approaches and refining parameter selection
methods, researchers continue to strive towards
more accurate and reliable SRP models. Moreover,
as software systems evolve in complexity and
dynamics, there is a growing demand for
methodologies that can dynamically adapt to
changing conditions and requirements. To address
these challenges and bridge existing gaps, this
study proposed a novel approach leveraging
ensemble learning and a random hyperparameter
selection algorithm, offering a promising avenue
for enhancing SRP models and addressing ongoing
challenges in the field. Through empirical
validation and comparative analysis, the study
contributes to the ongoing advancement of SRP
methodologies, paving the way for more reliable
and efficient software development practices.

Table 1: Tabular summary of related works.

Author
s

Proposed
Model
/Approach

Datasets
used

Key
Finding
s /
Results

Rath et
al [9]

Hybrid
software
reliability
prediction
model
combining
feature
selection with
SVM

NASA
Metrics
Data
Program
datasets

Improve
d
performa
nce
metrics
compare
d to
existing
models

Wu et al.
[10]

Hybrid Multi-
layer
Heterogeneou
s Particle
Swarm
Optimization
Algorithm
(HMHPSO)
to optimize
GRU neural
network for
reliability
prediction

5 public
datasets
from
NASA and
Bell Lab

Addressed
low accuracy
and weak
generalizatio
n in current
models

Dong et
al [11].

Investigated
ensemble
learning for
software
defect
prediction

4 public
datasets
from
NASA and
PROMISE

Ensemble
approach
outperformed
individual
machine
learning and
deep learning
algorithms

Moeini
et al [12]

Combination
of machine
learning and
approximatio
n Bayesian
inference for
software
reliability
prediction

3 real-
world
software
failure
datasets
with
varying
sizes

Effectiveness
evaluated
using real-
world
datasets

Rath et
al [13]

Novel
approach
using Extreme
Learning
Machine
(ELM)
combined
with feature
selection for
software
reliability
prediction

NASA
Metrics
Data
Program
datasets

Superior
prediction
accuracy
compared to
traditional
ELM defect
prediction
models

Yadav et
al. [14]

Software
reliability
prediction
using a dense
neural
network
implemented
with deep
learning

12 datasets
from
different
sources

Performance
was
evaluated
using
accuracy,
precision,
recall, and
F1-score.
Limited to
small
datasets,
suggests
extension for
better results

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5632

3. METHODOLOGY

This section outlines section of this study
presents the proposed hyperparameterized
ensemble model design, dataset characteristics, and
techniques, including data pre-processing, feature
selection, and proposed classification approach for
software reliability prediction.

3.1 The Model Design

The proposed model design encompasses
an ensemble learning approach specifically tailored

for software reliability prediction. This
methodology leverages multiple distinct models,
such as AdaBoost, Gradient Boosting, and Random
Forest, to enhance overall effectiveness and
generalization capacity while mitigating overfitting
risks. The classification model operates within the
realm of binary classification, aiming to categorize
errors present within the software. It analyzes a
spectrum of input factors linked to the software's
characteristics to discern the presence of flaws. By
amalgamating insights from diverse models,
ensemble techniques elevate classification accuracy
while mitigating biases and errors. Hyperparameter
selection for the models is accom-plished through a
random search technique, optimizing model
performance, are not inherently discovered during
training. Manual adjustment of hyperparameters
can be laborious and inefficient. To optimize model
performance, automatic hyperparameter search
techniques such as Grid Search, Random Search, or
Bayesian Optimization are employed to effectively
explore the hyperparameter space. These
methodologies are essential for enhancing
classification accuracy, scheduling maintenance,
and minimizing the impact of system malfunctions.

Figure 1: The flow chart of proposed model design

Jabeen et
al. [15]

Improved
reliability
prediction
model using
high-precision
error iterative
analysis
method based
on residual
errors

2 well-
known
datasets

Used residual
error values
iteratively to
improve the
fitting of
historical
failure data

Qiaoa et
al [16]

Deep learning
based
approach for
predicting
number of
defects in
software
modules

2 well-
known
datasets

Outperforme
d state-of-
the-art
approaches
like SVR,
FSVR, and
DTR in terms
of mean
square error
reduction and
squared
correlation
coefficient
improvement

Manjula
et al [17]

Deep neural
network-
based hybrid
approach for
software
defect
prediction
using genetic
algorithm and
DNN

Benchmar
k datasets
from the
PROMISE
repository

Improved
performance
compared to
existing
classification
schemes such
as Naïve
Bayes, SVM,
Decision
Tree, and
KNN

Kim et
al. [18]

Prediction and
comparative
analysis of
software
reliability
models using
NHPP and
deep learning

2 datasets Deep
learning
model
showed
better
estimation
and
predictive
power
compared to
NHPP model

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5633

3.2 Dataset
In our study of two proposed models, we

employed two openly available data sources. The
first model utilized the PROMISE Software
Engineering Repository’s CM1 NASA dataset,
which incorporates data from the NASA Metrics
Data Program and the C-based NASA spacecraft
instrument [22], detailed in Table 2.

Table 1: CM1 NASA Dataset information

Ti
tle

Lang
uage

Sour
ce
code

Mo
dule
s

Feat
ures

Defe
ctive

De
fec
t
Fr
ee

De
fec
t
Ra
te

C
M
1

C

NAS
A
Spac
ecraft
Instru
ment

498 22 49
44
9

9.8
3%

3.2.1 NASA Dataset

The NASA dataset is a labeled dataset
containing information about software modules,
focusing on their characteristics and defect
presence. Each entry represents a software module,
consisting of 22 columns or features. These features
offer a comprehensive overview of the software's
characteristics, enabling classification models in
predicting whether a module is likely to have
reported defects. The dataset consists of 21 static
metrics or columns, providing insights into various
aspects of software complexity and size. Column
22 (Label) contains Boolean values, indicating the
presence or absence of reported defects in the
software module. A value of True indicates the
presence of one or more reported defects (positive
class), while False indicates the absence of reported
defects (negative class) as illustrated in Table 3. As
a result, this dataset is used for classification tasks,
where the goal is to predict whether a software
module is likely to have defects based on its static
metrics. Machine learning models can be trained on
this dataset to classify modules as either defective
or defect-free, helping software developers identify
potential problem areas and prioritize testing and
debugging efforts.

Table 3: NASA dataset 22 columns or features

Categories of
metrics

Dataset Attribute
Information

4 McCabe 01 loc: McCabe's line

metrics count of code

02
v(g): McCabe
cyclomatic complexity

03
ev(g): McCabe essential
complexity

04
iv(g): McCabe design
complexity

12 Base and
derived Halstead
metrics

05
N: Halstead total
operators + operands

06 V: Halstead volume

07
L: Halstead program
length

08 D: Halstead difficulty
09 I: Halstead intelligence

10
E: Halstead effort to
write program

11 B: Delivered bugs

12
T: Halstead’s time
estimator

13
IOCode: Halstead’s line
count

14
IOComment: Halstead’
count of lines of
comments

15
IOBlank: Halstead’s
count of blank lines

16
IOCodeAndComment:
line of code and
comments

2 operators, 2
operands, a
branch-count and
a goal field
metrics

17
Uniq_Op: unique
operators

18
Uniq_Opnd: unique
operands

19
Total_Op: total
operators

20
Total_Opnd: total
operands

21
branchCount: of the
flow graph

22
D: module has defects or
not

3.3 Techniques

3.3.1 Dataset Preprocessing

The benchmarked NASA dataset has been
preprocessed to ensure its integrity for subsequent
analysis, addressing missing values, outliers, and
noise. As a result, no further preprocessing steps
are necessary before utilizing this dataset for
classification tasks. Visual inspection of individual
feature distributions is commonly performed using
boxplots to identify outliers, as demonstrated in

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5634

Figure 2. These outliers, however, are contextual or
conditional rather than genuine anomalies in the
dataset. Specifically, the outliers observed in the
"Lines of Code (LOC)" feature may reflect the
natural variability in software size across different
projects due to various contextual factors.
Understanding this data distribution is crucial for
accurate data analysis, as it provides insights into
data properties and trends for informed decision-
making and forecasting.

Figure 1: Box plot of the NASA datasets showing outliers

3.3.2 Feature Selection

In the context of feature selection,
heatmaps serve as a valuable tool for visualizing
the correlations among variables within a dataset.
These visualizations depict correlation coefficients
between pairs of variables, with varying colors
indicating the strength and direction of correlation.
In our study, we present the heatmap of features
from the NASA dataset in Figure 3.

Figure 2: Heatmap of the features of the NASA dataset

 Notably, the diagonal of the heatmap
represents the correlation of each variable with
itself, with a correlation value of 1 indicating a
perfect positive correlation. This signifies a
flawless linear relationship between the variable
and itself. Moreover, feature importance graphs

offer a succinct and intuitive means of
understanding intricate machine learning models.
They help in comprehending which features hold
the most influential in prediction-making, thereby
enhancing model interpretability and trust. Our
analysis of the NASA dataset, as depicted in Figure
4, highlights LOC (Lines of Code) as possessing
the highest F-score at 29.0, while the Halstead
Time Estimator (t) registers the lowest at 6.0,
underscoring their respective degrees of influence.

Figure 3: Features importance of NASA Dataset

3.3.3 Classification

In the context of classification problem,
the objective is to categorizing software modules
based on parameters like cyclomatic complexity,
significance complexity, blueprint complexity, and
line count, to determine whether they will likely
have one or more reported defects. To address this
classification task, we employed a range of models
including the Bagging Classifier, Random Forest
Classifier, Extra Trees Classifier, AdaBoost
Classifier, Gradient Boosting Classifier, Voting
Classifier, XGBoost Classifier, MLP Classifier, and
SVM Classifier, as outlined in Figure 5.

Figure 4: The proposed Ensemble Model for

classification

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5635

Figure 5 outlines our model selection process. We
utilized the NASA failure dataset, comprising 22
features with 21 independent variables and 1
dependent variable. Before training the models,
thorough preprocessing was conducted to handle
missing values, outliers, and noise effectively. With
a dataset containing 2109 data points, we adopted a
standard train-test split of 70:30 for model
evaluation.

Table 4: Classifiers along with their parameters and
model details

Classifiers
Model parameter
setting

BaggingClassifier

Base Estimator:
DecisionTree
Classifier.
Number of Estimators:
1500.
Random State: 42.

RandomForestClass
ifier

Number of Estimators:
1000.
Random State: 42.

ExtraTreesClassifie
r

Number of Estimators:
1000.
Maximum Features: 7.
Random State: 42.

AdaBoostClassifier
Number of Estimators:
30.

GradientBoostingCl
assifier

Number of Estimators:
100
Random State: 42.

VotingClassifier:

Estimators: 30.
LogisticRegression
with 'liblinear' solver.
DecisionTreeClassifie
r.
SVC with 'scale'
gamma.

XGBClassifier
(XGBoost):

Objective: Binary
Logistic.
Colsample by Tree:
0.3; Learning Rate:
0.1.
Max Depth: 5; Alpha:
10.
Number of Estimators:
50.

MLPClassifier
(Multi-layer
Perceptron):

Hidden Layer Sizes:
(22, 22, 22).
Activation Function:
ReLU.
Max Iterations: 1000

SVC (Support
Vector Classifier):

Gamma: ‘scale’

These classifiers are designed to address the
classification task using the provided dataset, each
employing different techniques and strategies to
capture the underlying patterns and relationships
within the data. We utilize 10-fold cross-validation
to evaluate the performance of the machine learning
models. This methodology involves dividing the
dataset into 10 subsets. The model undergoes
training and evaluation ten times, with each subset
serving as the validation set once while utilizing the
remaining subsets for training. Finally, the efficacy
of our proposed model was rigorously assessed
using a comprehensive set of software reliability
metrics. These metrics, including precision,
accuracy, recall, f1-score, support, performance
error measures, and a confusion matrix, provided a
holistic evaluation of the model's performance.
Through this thorough analysis, we gained valuable
insights into the effectiveness and robustness of our
approach in addressing the challenges of software
reliability. Moving forward, these findings serve as
a foundation for further refinement and
optimization, ultimately enhancing the reliability
and efficiency of software systems.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

The experimental setup for our study involved
the implementation of all models in Python,
utilizing both a local workstation and the cloud-
based Google Colab platform equipped with GPU
support. The local platform, a Windows laptop,
featured an Intel(R) Core(TM) i5-2410 M
processor, 6 GB of primary storage, and 1 TB of
secondary storage. The Colab platform provided
additional computational power through GPU
acceleration. The local platform utilized the Visual
Studio Code editor, while Jupiter Notebook was
exclusively utilized in the Colab environment. All
models were compiled and executed using Python 3
compilers. The implementation of the models
heavily relied on the Pandas, Keras, and Sci-kit
learn libraries, alongside TensorFlow and the
matplotlib library for data visualization in Python.
This setup ensured a robust and efficient
environment for conducting our machine learning
classification experiments.

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5636

4.2 Experimental Results

In our experimental results, the first proposed
model focuses on employing classification
techniques to identify software errors. Utilizing
Bagging, Voting, Stacking, and XGBoost methods
within the Python programming language, we
address software reliability classification tasks with
a CM1 dataset comprising 21 static features.
Effective model performance depends on the
training set's size and representativeness, enabling
accurate predictions for unseen data instances.
Concurrently, the validation set aids in refining the
model by analyzing its performance during training,
thereby facilitating performance evaluation and
modification. By assessing the model's
generalizability on the validation set, potential
issues like overfitting are identified, crucial for
ensuring robust functionality in real-world
scenarios. Figure 6 illustrates the training and
validation accuracy of our dataset, providing
insights into the model's performance.

Figure 5: Training and validation accuracy comparison
of the dataset

In the proposed classification approach,
nine distinct base classifiers are employed to
classify errors. Alongside, confusion matrices,
maximum, minimum, and mean values, along with
the final accuracy outputs, are printed, offering
clear insights into each model's classification
performance. Figures 7 and 8 visualize the accuracy
of each model, with Random Forest, Bagging, and
Extra Tree achieving the highest classification
accuracies during training. Conversely, XGBoost
attains the highest classification accuracy during
testing.

Figure 6: Training accuracy of the different proposed
classifiers

Figure 7: Testing Accuracy of the different proposed

classifiers

The following confusion matrix provides a
summary of prediction results on a classification
problem. The number of correct and incorrect
predictions is summarized with count values and
broken down by each class. This visual
representation, depicted in Figure 9, provides a
breakdown of prediction results and highlights how
our classification model encounters confusion
during its predictions. By analyzing the matrix, we
gain insights into the types of errors made by the
classifier, enabling us to refine and improve its
performance.

Figure 8: Confusion matrix visualization of different
machine learning models

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5637

In machine learning, evaluating model
performance is essential to understand how
effectively a model performs its designated task.
The following tables present the performance
evaluation of nine base classifiers, assessing
metrics such as accuracy, precision, recall, f-score,
and support. Notably, the XGBoost, Extra Trees,
and Voting classifiers demonstrate strong
performance, while the MLP classifier shows less
favorable results.

Table 5: Experimental results of Base Classifier Models
with various evaluation metrics

Base

Classifi

er

Accura

cy

Precisi

on

Reca

ll

F1-

scor

e

Suppo

rt

Bagging 0.8878 0.77 0.35 0.45 89

Random

Forest
0.8894 0.79 0.30 0.43 89

Extra

Trees
0.8909 0.81 0.34 0.43 89

AdaBoo

st
0.8672 0.65 0.18 0.27 89

Gradien

t

Boostin

g

0.8846 0.75 0.29 0.36 89

Voting 0.8894 0.79 0.17 0.26 89

XGBoo

st
0.8941 0.83 0.12 0.21 89

MLP 0.8372 0.55 00 00 89

SVM 0.8846 0.75 0.17 0.26 89

The evaluation results presented in Table 5 provide
a comprehensive assessment of various
classification models, including Bagging, Random
Forest, Extra Trees, AdaBoost, Gradient Boosting,
Voting, XGBoost, MLP, and SVM, are presented.
Each model's performance is assessed across
multiple metrics: Accuracy measures overall
correctness, with XGBoost achieving the highest
accuracy of 0.8941, indicating it correctly classified
approximately 89.41% of instances. Precision
evaluates the model's ability to avoid false
positives, with XGBoost exhibiting the highest
precision of 0.83. Recall assesses the model's
capability to capture all positive instances, where
Bagging achieved the highest recall of 0.35,

effectively capturing 35% of positive instances. The
F1-score, reflecting a balance between precision
and recall, shows XGBoost leading with a score of
0.21. Support: column indicates the number of
instances in the test dataset that belong to each
class. Overall, XGBoost emerges as the top
performer, among the evaluated models based on
accuracy, precision, recall, and F1-score, making it
a promising choice for the classification task at
hand.
Table 6: Accuracy comparison with existing model
[23]

S.
No.

Existing ML Model Author Dataset Accuracy

 NB Iqbal, A. NASA 82.65
 SVM-FS Mumtaz,

B.
NASA 81.79

 NB-FS Mumtaz,
B.

NASA 85.55

 RF-FS Mumtaz,
B.

NASA 85.20

 SVM-AdaBoost Alsaeedi,
A.

NASA 79.0

 NB-PCA Cetiner, M. NASA 81
 SVM-PCA Cetiner, M. NASA 83
 RF-PCA Cetiner, M. NASA 83

Our Proposed Ensemble
Model

 Extra Trees NASA 89.09
 AdaBoost NASA 86.72
 Gradient Boosting NASA 88.46
 Voting NASA 88.94
 XGBoost NASA 89.41
 Random Forest NASA 88.94

The comparison Table 6 displays a significant

improvement in accuracy with the proposed models
compared to the existing machine-learning models.
In the existing models, the highest accuracy was
achieved by Naive Bayes with Feature Selection
(NB-FS) at 85.55%, closely followed by Random
Forest with Feature Selection (RF-FS) at 85.20%.
Meanwhile, the Support Vector Machine with
AdaBoost (SVM-AdaBoost) had the lowest
accuracy, reaching 79.0%.

On the other hand, the proposed models
demonstrate higher accuracy overall. Extra Trees
leads with an accuracy of 0.8909, with XGBoost
slightly ahead at 0.8941. Other models, like
Gradient Boosting, Voting, and Random Forest,
also maintain high accuracy, ranging from 0.8672
to 0.8894. This suggests that the proposed models,
especially those utilizing ensemble techniques such
as Extra Trees, XGBoost, and Gradient Boosting,
deliver superior performance in terms of accuracy.

These results highlight the effectiveness of
ensemble-based methods in achieving higher

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5638

accuracy compared to traditional machine learning
models. The substantial difference in accuracy
indicates that ensemble techniques, along with
sophisticated feature selection and boosting
methods, offer a robust approach for achieving
better predictive performance.

Comparing our results with current state-of-
the-art solutions in the literature, we observe that
our ensemble methods, particularly XGBoost,
demonstrate competitive performance in software
defect classification. Existing studies have shown
the efficacy of various machine learning models,
but our approach highlights the superior accuracy
and precision achievable through ensemble
techniques. For instance, traditional single
classifiers like SVM and MLP, while effective,
often fall short in recall and overall balance of
performance metrics compared to our ensemble
methods.

Critiquing our work against our initial goals,
we aimed to enhance the accuracy and robustness
of software reliability prediction models. Our
outcomes align with these goals, as evidenced by
the high performance metrics achieved by the
ensemble models. However, our analysis was
constrained by a limited dataset, which impacted
the recall and F1-score, particularly for models like
Bagging.

5. CONCLUSION AND FUTURE WORKS

 In this study, we employed ensemble learning
techniques alongside hyperparameter selection
algorithms to enhance model performance for
software reliability prediction. Our evaluation
encompassed various well-established classification
algorithms, including Bagging, Random Forest,
Extra Trees, AdaBoost, Gradient Boosting, Voting,
XGBoost, MLP, and SVM, each assessed across
multiple performance metrics on the CM1 dataset.
Notably, XGBoost emerged as the top performer,
achieving the highest accuracy of 89.41% and
precision of 83%. Bagging exhibited the highest
recall at 35%, while XGBoost led in F1-score with
21%. These findings underscore the effectiveness
of ensemble learning methodologies in enhancing
software reliability prediction accuracy. By
leveraging a diverse set of classification models
within the ensemble framework, we achieved
robust performance across different evaluation
metrics.

The comparison highlights the potential of
ensemble techniques, particularly XGBoost, in
accurately classifying software defects and
improving overall reliability prediction. Our study

contributes to advancing the understanding of
ensemble learning's efficacy in the context of
software reliability prediction. However, our
analysis was constrained by a limited dataset.
Moving forward, we aim to expand the dataset size
and explore various ensemble classifiers after
implementing data balancing techniques. Balancing
the dataset can enhance error measures and
potentially yield improved results. Additionally, we
plan to investigate alternative optimization
approaches on larger datasets to further refine our
models' performance. By addressing these
limitations and conducting future research in these
areas, we can enhance the robustness and
applicability of our findings in software bug
detection and contribute to advancing the field of
machine learning in software engineering.

Competing Interests: The author declares no
conflict of interest.

Funding Information: No funding is available

Data Availability Statement: The data is publicly
available at
https://github.com/sudhirkmohapatra/SRP-using-
Enseble-Learning

Research Involving Human and /or Animals: No
animal or human is involve in the experiment of
this research.

Informed Consent: NA

REFERENCES:

[1] Pressman, R.S. (2001) Software Engineering: A
Practitioner’s Approach, 5th ed., McGraw Hill
Publications, USA.

[2] Liu, M., Fang, S., Dong, H., & Xu, C. (2021).
Review of digital twin about concepts,
technologies, and industrial applications.
Journal of manufacturing systems, 58, 346-
361.

[3] Bhuiyan, S. A. R., Rahim, M. S., Chowdhury,
A. E., & Hasan, M. H. (2018). A survey of
software quality assurance and testing practices
and challenges in bangladesh. International
Journal of Computer Applications, 975, 8887.

[4] Standard glossary of software engineering
terminology (STD-729-1991). ANSI/IEEE,
1991

[5] Lyu, M. R., & Nikora, A. (1992, July).
CASRE-A computer-aided software reliability

 Journal of Theoretical and Applied Information Technology
31st July 2024. Vol.102. No. 14

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5639

estimation tool. In CASE’92 Proceedings (pp.
264-275).

[6] Ucar, A.; Karakose, M.; Kırımça, N. Artificial
Intelligence for Predictive Maintenance
Applications: Key Components,
Trustworthiness, and Future Trends. Appl. Sci.
2024, 14, 898.
https://doi.org/10.3390/app14020898

[7] Balaram, A., & Vasundra, S. (2022). A Review
on Machine Learning Techniques to Predict the
Reliability in Software Products. In
Proceedings of the 2nd International
Conference on Recent Trends in Machine
Learning, IoT, Smart Cities and Applications:
ICMISC 2021 (pp. 309-317). Springer
Singapore.

[8] Habtemariam, G. M., Mohapatra, S. K., Seid,
H. W., & Mishra, D. B. (2022). A Systematic
Literature Review of Predicting Software
Reliability Using Machine Learning
Techniques. Optimization of Automated
Software Testing Using Meta-Heuristic
Techniques, 77-90.

[9] Rath S. K., M. Sahu, S. P. Das and S. K.
Mohapatra, "Hybrid Software Reliability
Prediction Model Using Feature Selection and
Support Vector Classifier," 2022 International
Conference on Emerging Smart Computing
and Informatics (ESCI), Pune, India, 2022, pp.
1-4, doi: 10.1109/ESCI53509.2022.9758339

[10] R Wu, M., Lin, J., Shi, S., Ren, L., Wang, Z.
(2020). Hybrid Optimization-Based GRU
Neural Network for Software Reliability
Prediction. https://doi.org/10.1007/978-981-15-
7984-4_27

[11] Dong, X., Liang, Y., Miyamoto, S., &
Yamaguchi, S. (2023). Ensemble learning
based software defect prediction. Journal of
Engineering Research, 11(4), 377–391.
https://doi.org/10.1016/j.jer.2023.10.038

[12] Moeini, A., oveisi, shahrzad, farsi,
mohammad ali, & Mirzaei, S. (2022). Software
reliability prediction: A machine learning and
approximation bayesian inference approach.
SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4264288

[13] Rath, S.K., Sahu, M., Das, S.P., Pradhan, J.
(2022). An Improved Software Reliability
Prediction Model by Using Feature Selection
and Extreme Learning Machine.
https://doi.org/10.1007/978-3-031-11713-8_23

[14] S. Yadav and Balkishan, “Software reliability
prediction by using Deep Learning
Technique,” International Journal of Advanced

Computer Science and Applications, vol. 13,
no. 3, 2022. doi:10.14569/ijacsa.2022.0130381

[15] G. Jabeen, P. Luo, and W. Afzal, “An
improved software reliability prediction model
by using high precision error iterative analysis
method,” Software Testing, Verification and
Reliability, vol. 29, no. 6–7, Sep. 2019.
doi:10.1002/stvr.1710

[16] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep
Learning based software defect prediction,”
Neurocomputing, vol. 385, pp. 100–110, Apr.
2020. doi:10.1016/j.neucom.2019.11.067

[17] C. Manjula and L. Florence, “Deep neural
network based hybrid approach for software
defect prediction using software metrics,”
Cluster Computing, vol. 22, no. S4, pp. 9847–
9863, Jan. 2018. doi:10.1007/s10586-018-
1696-z

[18] Y. S. Kim, K. Y. Song, and I. H. Chang,
“Prediction and comparative analysis of
software reliability models based on NHPP and
deep learning,” Applied Sciences, vol. 13, no.
11, p. 6730, May 2023.
doi:10.3390/app13116730

[19] Habtemariam, G.M., Mohapatra, S.K., Seid,
H.W. (2022). Prediction of Software
Reliability Using Particle Swarm Optimization.
In: Panda, M., et al. Innovations in Intelligent
Computing and Communication. ICIICC 2022.
Communications in Computer and Information
Science, vol 1737. Springer, Cham.
https://doi.org/10.1007/978-3-031-23233-6_11

[20] Mohapatra, S.K., Mishra, A.K. & Prasad, S.
Intelligent Local Search for Test Case
Minimization. J. Inst. Eng. India Ser. B 101,
585–595 (2020).
https://doi.org/10.1007/s40031-020-00480-7

[21] Deneke, Aliazar, Beakal Gizachew Assefa, and
Sudhir Kumar Mohapatra. "Test suite
minimization using particle swarm
optimization." Materials Today: Proceedings
60 (2022): 229-233.

[22] Promise Software Engineering Repository.
Available online:
http://promise.site.uottawa.ca/SERepository/da
tasets-page.htm (accessed on 20 October
2021).

[23] Khalid, A., Badshah, G., Ayub, N., Shiraz, M.,
& Ghouse, M. (2023). Software Defect
Prediction Analysis Using Machine Learning
Techniques. Sustainability, 15(6), 5517.

