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ABSTRACT 
 

The Software plays a crucial role in human life, making it essential for system developers to have reliable 
and accurate software. The discovery of faults during software development is becoming increasingly 
important to minimize costs and delivery time. As the application of software in business increases then, the 
soundness of software becomes more important. Several logical models have been proposed to evaluate 
software system reliability and predict software trustworthiness but the existing reliability model may be 
efficient towards solving a specific type of problem but incapable of solving other classes of software 
problems. Therefore, a novel and universal model is needed for fair prediction and error classification of all 
types of software reliability prediction problems. The study proposed ensemble models for software 
reliability prediction, which have an advantage over existing statistical and machine learning models. The 
proposed model is a binary model that can be used for error classification with automatic hyperparameter 
selection for flexibility. A total of 21 static metrics of the NASA dataset are taken as independent variables 
for the classification model and bagging, voting and stacking techniques are applied for classification. The 
performance of the models was evaluated using accuracy, precision; recall and f1-score and the model 
achieved 89.1% classification accuracy. The proposed ensemble model was also compared with existing 
models using a benchmark dataset for their performance. The results of the statistical comparison of the 
proposed model show better performance as compared to other existing models. 
Keywords: Software reliability, Software reliability prediction, Software reliability classification, 

Ensemble model, Machine learning, Hyperparameter 
 
1. INTRODUCTION 
 

Software engineering is a disciplined and 
systematic approach to software development. It 
encompasses the entire lifecycle, from 
understanding user needs, requirement gathering, 
and design to development, testing, dep-loyment, 
and maintenance. [1] Software has become an 
indispensable part of any modern, complex system. 
Many industries, such as telecommunications, 
automotive, aviation, e-commerce, entertainment, 
and critical sectors like healthcare and nuclear 
power plants. [2] All these applications need precise 
and reliable software in order to provide the 
required services and performances. Software 
failure in such applications can lead to high costs 
and, in some cases, irreparable or catastrophic 
damages. Recognizing this danger, software 
developers have prioritized implementing rigorous 

quality checks throughout the development 
lifecycle. 

In software engineering, software quality 
assurance and testing (SQAT) is a crucial part of 
the software de-velopment process, ensuring that 
the software meets the specified requirements and 
delivers high-quality soft-ware [3]. High-quality 
software's heart lies in reliability, which denotes the 
probability of failure-free software operation for a 
specific period of time in a specified environment 
[4]. Reliable software exhibits minimal fail-ures 
and delivers accurate results. The critical need to 
evaluate software reliability underscores its status 
as a cornerstone of software quality. By quantifying 
software errors, bugs, faults, and defects that can 
lead to fail-ures, software reliability allows us to 
measure and improve the overall robustness of a 
program.  
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In the quest for dependable software, 
software reliability prediction (SRP) emerges as a 
powerful tool [5]. It empowers development teams 
and stakeholders to make informed decisions. 
Stakeholders can better allocate resources, prioritize 
testing efforts, and determine release dates. By 
identifying potential problems early, devel-opers 
can address them proactively, saving time, and 
resources, and avoiding potential disasters, 
ultimately leading to the delivery of high-quality 
and reliable software. SRP relies on various models 
that analyze data like code complexity and 
historical faults to estimate future failures.  The 
accuracy of these predictions hinges on data quality 
and choosing the right prediction techniques [6].  

Several different techniques have been 
studied to predict the reliability of software 
modules, aiming to im-prove software quality and 
reduce software development costs. Traditionally, 
SRP has utilized various probabilistic methods, but 
a significant gap persists: the need for a robust and 
adaptable predictive framework capable of 
navigating the complexities of modern software 
systems [7]. This gap presents an opportunity for 
innovative solutions to emerge, with a wide 
spectrum of machine learning approaches, including 
Decision Trees, Naïve Bayes (NB), Radial Basis 
Function, Support Vector Machine (SVM), K-
Nearest Neighbor, Multi-layer Perceptron, and 
Random Forest (RF), being explored to anticipate 
errors in software modules and ultimately enhance 
software quality while reducing testing costs [8].  

While these techniques have been 
employed in the past to predict software reliability, 
the necessity for a robust and adaptable predictive 
framework persists, capable of addressing the 
complexities of modern software. By integrating 
diverse modeling approaches and refining 
parameter selection methods, a research gap 
continues to exist. Further exploration of adaptable 
and effective strategies for SRP is imperative to 
ensure better adapta-tion to evolving software 
landscapes and to yield results that are both more 
accurate and reliable. 

Henceforth, to bridge these gaps the 
authors have introduced a novel approach 
employing ensemble learning and a random 
hyperparameter selection algorithm. Ensemble 
learning aggregates predictions from multiple 
models, thereby creating a more robust and 
potentially more accurate forecast of software 
reliability. Additionally, the random 
hyperparameter selection algorithm defines a range 
of possible values for each hyperparameter within 

the models and then randomly selects a 
combination. This randomness facilitates the 
exploration of a broader range of possibilities and 
helps to potentially avoid being trapped in local 
optima within a single model configuration. 
Through the fusion of ensemble learning with 
random hyperparameter selection, the study 
achieves more accurate and reliable SRPs.  

This research study makes the following 
contributions: 
• Proposed a novel ensemble learning approach 

with random hyperparameter selection: This 
paper introduces a new method for software 
reliability prediction that combines the 
strengths of ensemble learning and random 
hyperparameter selection. By leveraging 
multiple models with a variety of 
configurations, the study resulted in more 
robust, accurate, and potentially generalizable 
predictions compared to previous state-of-the-
art approaches. 

• Implemented a prototype of the proposed 
model: In a Python programming language and 
conducted an empirical analysis to evaluate its 
effectiveness and efficiency. Through rigorous 
experimentation, the study demonstrated the 
capability of accurately predicting software 
reliability while considering various factors 
and complexities inherent in modern software 
systems. 

• Potential for improved prediction accuracy: 
The combination of ensemble learning and 
random hyperparameter selection has the 
potential to improve the accuracy of software 
reliability predictions compared to existing 
methods. This can lead to more informed 
decision-making during the software 
development process. 
The subsequent sections of this study are 

structured as follows. Section 2 encompasses an 
extensive literature review. Section 3 concisely 
outlines the materials and methods proposed 
methodology. The exploration of experimental 
results, along with a comparative analysis of 
proposed approach against other methodologies, is 
detailed in Section 4. Section 5 encapsulates the 
conclusion and recommendation of the study. 
 

2. LITERATURE REVIEW 

The field of software reliability prediction 
is continually evolving, with researchers exploring 
innovative methodologies to improve the accuracy 
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and efficiency of forecasting software defects. 
While there's no univer-sal solution, numerous 
studies in the literature contribute to this ongoing 
investigation [7, 8]. This review sets the stage for 
further investigation by discussing the existing 
methodologies and approaches, highlighting their 
strengths and limitations. Subsequently, the 
following section lists related works that 
complement and extend the understanding of SRP 
techniques, paving the way for proposed 
improvements and novel approach. 

Rath et al. [9] proposed a hybrid software 
reliability prediction model that combines feature 
selection with a Support Vector Classifier (SVM), 
achieving successful validation on the standard 
NASA Metrics Data Pro-gram datasets. They 
achieved improved performance metrics compared 
to the existing model. Wu et al. [10] proposed a 
Hybrid Multi-layer Heterogeneous Particle Swarm 
Optimization Algorithm (HMHPSO) to optimize a 
GRU neural network for software reliability 
prediction, addressing the limitations of low 
accuracy and weak generalization in current 
models. 

Dong et al. [11] investigated ensemble 
learning for software defect prediction, 
demonstrating its superiority over seven individual 
machine learning and deep learning algorithms on 
four public datasets from NASA and PROMISE. 
Their ensemble approach achieved a high AUC of 
0.99, G-Mean of 0.96, and an average F1-score of 
0.97, outperforming all single models and offering 
a good balance between performance and runtime 
for time-sensitive scenarios. Moeini et al. [12] 
proposed a combination of machine learning and 
approximation Bayesian inference to address 
limitations in both parametric and non-parametric 
software reliability prediction models. They 
evaluated the effectiveness of their approach using 
three real-world software failure datasets with 
varying sizes. 

Rath et al. [13] proposed a novel approach 
for software reliability prediction using an Extreme 
Learning Machine (ELM) combined with feature 
selection. This approach addresses the limitations 
of existing models in cross-system defect 
prediction, where past data from one project is used 
to predict defects in a new project. Their 
experiments on NASA Metrics Data Program 
datasets demonstrated that the proposed model 
achieved superior prediction accuracy compared to 
traditional ELM defect prediction models. Yadav et 

al. [14] proposed software reliability prediction 
utilizing a dense neural network implemented using 
deep learning. The experiment was performed on 
twelve datasets from different sources. Their results 
are evaluated using four standard performance 
metrics which are accuracy, precision, recall, and 
f1-score. However, their study is limited to small 
datasets and can be extended with large industrial 
datasets to achieve better results. 

Jabeen et al. [15] proposed an improved 
software reliability prediction model by using a 
high-precision er-ror iterative analysis method 
based on residual errors. The residual error values 
between actual and estimated values are used 
iteratively to improve the fitting of historical failure 
data. The artificial neural network was also used to 
estimate signs, which are associated with residual 
errors. Qiaoa et al. [16] proposed a deep learning-
based approach to predict the number of defects in 
software modules. They compared the proposed 
techniques with state-of-the-art approaches like 
SVR, FSVR, and DTR on two well-known datasets. 
Their approach per-formed better in reducing the 
mean square error (varying between 3% and 13%) 
and improving the squared correlation coefficient 
(varying between 2% and 27%). 

Manjula et al. [17] proposed a deep neural 
network-based hybrid approach for software defect 
prediction using software metrics. Their approach 
employs a genetic algorithm (GA) for feature 
optimization and a deep neural network (DNN) for 
classification.  The proposed approach was 
implemented on benchmark datasets that were 
obtained from the PROMISE repository. The 
performance was compared with existing 
classification schemes such as Naïve Bayes, SVM, 
Decision Tree, and KNN in terms of classification 
accuracy, sensitivity, specificity, precision, and 
recall. The experimental analysis showed that their 
approach improved performance. 

Kim et al. [18] studied a prediction and 
comparative analysis of the software reliability 
models using the nonhomogeneous Poisson-process 
model (NHPP) and deep learning. Their approach 
relied on data rather than mathematical and 
statistical assumptions.  A software reliability 
model based on recurrent neural networks (RNN), 
long short-term memory (LSTM), and gated 
recurrent units (GRU), which are the most basic 
deep and recurrent neural networks that have been 
applied to time-series data characteristics, was 
used. It was constructed by including the hidden 
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layer of the neural network, and using two datasets, 
it was observed that their model showed better 
estimation and predictive power[19,20,21]. 

In general, the reviewed literature 
underscores the diverse methodologies employed in 
SRP, ranging from traditional machine learning to 
advanced deep learning algorithms. While 
significant progress has been made in enhancing 
prediction accuracy and generalization across 
diverse datasets, challenges persist in adapting 
these models to the complexities of modern 
software landscapes. The need for a robust and 
adaptable predictive framework capable of 
addressing evolving software environments remains 
paramount. By integrating diverse modeling 
approaches and refining parameter selection 
methods, researchers continue to strive towards 
more accurate and reliable SRP models. Moreover, 
as software systems evolve in complexity and 
dynamics, there is a growing demand for 
methodologies that can dynamically adapt to 
changing conditions and requirements. To address 
these challenges and bridge existing gaps, this 
study proposed a novel approach leveraging 
ensemble learning and a random hyperparameter 
selection algorithm, offering a promising avenue 
for enhancing SRP models and addressing ongoing 
challenges in the field. Through empirical 
validation and comparative analysis, the study 
contributes to the ongoing advancement of SRP 
methodologies, paving the way for more reliable 
and efficient software development practices. 

Table 1: Tabular summary of related works. 

 
 
 
 
 
 

 
 
 

Author
s 

Proposed 
Model 
/Approach 

Datasets 
used 

Key 
Finding
s / 
Results 

Rath et 
al [9] 

Hybrid 
software 
reliability 
prediction 
model 
combining 
feature 
selection with 
SVM 

NASA 
Metrics 
Data 
Program 
datasets 

Improve
d 
performa
nce 
metrics 
compare
d to 
existing 
models 

Wu et al. 
[10] 

Hybrid Multi-
layer 
Heterogeneou
s Particle 
Swarm 
Optimization 
Algorithm 
(HMHPSO) 
to optimize 
GRU neural 
network for 
reliability 
prediction 

5 public 
datasets 
from 
NASA and 
Bell Lab 

Addressed 
low accuracy 
and weak 
generalizatio
n in current 
models 

Dong et 
al [11]. 

Investigated 
ensemble 
learning for 
software 
defect 
prediction 

4 public 
datasets 
from 
NASA and 
PROMISE 

Ensemble 
approach 
outperformed 
individual 
machine 
learning and 
deep learning 
algorithms 

Moeini 
et al [12] 

Combination 
of machine 
learning and 
approximatio
n Bayesian 
inference for 
software 
reliability 
prediction 

3 real-
world 
software 
failure 
datasets 
with 
varying 
sizes 

Effectiveness 
evaluated 
using real-
world 
datasets 

Rath et 
al [13] 

Novel 
approach 
using Extreme 
Learning 
Machine 
(ELM) 
combined 
with feature 
selection for 
software 
reliability 
prediction 

NASA 
Metrics 
Data 
Program 
datasets 

Superior 
prediction 
accuracy 
compared to 
traditional 
ELM defect 
prediction 
models 

Yadav et 
al. [14] 

Software 
reliability 
prediction 
using a dense 
neural 
network 
implemented 
with deep 
learning 

12 datasets 
from 
different 
sources 

Performance 
was 
evaluated 
using 
accuracy, 
precision, 
recall, and 
F1-score. 
Limited to 
small 
datasets, 
suggests 
extension for 
better results 
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3.   METHODOLOGY 
 

This section outlines section of this study 
presents the proposed hyperparameterized 
ensemble model design, dataset characteristics, and 
techniques, including data pre-processing, feature 
selection, and proposed classification approach for 
software reliability prediction. 
 
3.1 The Model Design 

The proposed model design encompasses 
an ensemble learning approach specifically tailored 

for software reliability prediction. This 
methodology leverages multiple distinct models, 
such as AdaBoost, Gradient Boosting, and Random 
Forest, to enhance overall effectiveness and 
generalization capacity while mitigating overfitting 
risks. The classification model operates within the 
realm of binary classification, aiming to categorize 
errors present within the software. It analyzes a 
spectrum of input factors linked to the software's 
characteristics to discern the presence of flaws. By 
amalgamating insights from diverse models, 
ensemble techniques elevate classification accuracy 
while mitigating biases and errors. Hyperparameter 
selection for the models is accom-plished through a 
random search technique, optimizing model 
performance, are not inherently discovered during 
training. Manual adjustment of hyperparameters 
can be laborious and inefficient. To optimize model 
performance, automatic hyperparameter search 
techniques such as Grid Search, Random Search, or 
Bayesian Optimization are employed to effectively 
explore the hyperparameter space. These 
methodologies are essential for enhancing 
classification accuracy, scheduling maintenance, 
and minimizing the impact of system malfunctions. 

 
 

Figure 1: The flow chart of proposed model design 

Jabeen et 
al. [15] 

Improved 
reliability 
prediction 
model using 
high-precision 
error iterative 
analysis 
method based 
on residual 
errors 

2 well-
known 
datasets 

 
Used residual 
error values 
iteratively to 
improve the 
fitting of 
historical 
failure data 

Qiaoa et 
al [16] 

Deep learning 
based 
approach for 
predicting 
number of 
defects in 
software 
modules 

2 well-
known 
datasets 

Outperforme
d state-of-
the-art 
approaches 
like SVR, 
FSVR, and 
DTR in terms 
of mean 
square error 
reduction and 
squared 
correlation 
coefficient 
improvement 

Manjula 
et al [17] 

Deep neural 
network-
based hybrid 
approach for 
software 
defect 
prediction 
using genetic 
algorithm and 
DNN 

Benchmar
k datasets 
from the 
PROMISE 
repository 

Improved 
performance 
compared to 
existing 
classification 
schemes such 
as Naïve 
Bayes, SVM, 
Decision 
Tree, and 
KNN 

Kim et 
al. [18] 

Prediction and 
comparative 
analysis of 
software 
reliability 
models using 
NHPP and 
deep learning 

2 datasets Deep 
learning 
model 
showed 
better 
estimation 
and 
predictive 
power 
compared to 
NHPP model 
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3.2         Dataset 
In our study of two proposed models, we 

employed two openly available data sources. The 
first model utilized the PROMISE Software 
Engineering Repository’s CM1 NASA dataset, 
which incorporates data from the NASA Metrics 
Data Program and the C-based NASA spacecraft 
instrument [22], detailed in Table 2.  

Table 1: CM1 NASA Dataset information 

Ti
tle 

Lang
uage 

Sour
ce 
code 

Mo
dule
s 

Feat
ures 

Defe
ctive 

De
fec
t 
Fr
ee 

De
fec
t 
Ra
te 

C
M
1 

C 

NAS
A 
Spac
ecraft 
Instru
ment 

498 22 49 
44
9 

9.8
3% 

3.2.1 NASA Dataset 

The NASA dataset is a labeled dataset 
containing information about software modules, 
focusing on their characteristics and defect 
presence. Each entry represents a software module, 
consisting of 22 columns or features. These features 
offer a comprehensive overview of the software's 
characteristics, enabling classification models in 
predicting whether a module is likely to have 
reported defects.  The dataset consists of 21 static 
metrics or columns, providing insights into various 
aspects of software complexity and size. Column 
22 (Label) contains Boolean values, indicating the 
presence or absence of reported defects in the 
software module. A value of True indicates the 
presence of one or more reported defects (positive 
class), while False indicates the absence of reported 
defects (negative class) as illustrated in Table 3. As 
a result, this dataset is used for classification tasks, 
where the goal is to predict whether a software 
module is likely to have defects based on its static 
metrics. Machine learning models can be trained on 
this dataset to classify modules as either defective 
or defect-free, helping software developers identify 
potential problem areas and prioritize testing and 
debugging efforts. 

Table 3: NASA dataset 22 columns or features 

Categories of 
metrics 

Dataset Attribute 
Information 

4 McCabe 01 loc:     McCabe's line 

metrics count of code 

02 
v(g):   McCabe 
cyclomatic complexity 

03 
ev(g):  McCabe essential 
complexity 

04 
iv(g):   McCabe design 
complexity 

 
12 Base and 
derived Halstead 
metrics 

05 
N:   Halstead total 
operators + operands 

06 V:   Halstead volume 

07 
L:   Halstead program 
length 

08 D:  Halstead difficulty 
09 I:    Halstead intelligence 

10 
E:   Halstead effort to 
write program 

11 B:   Delivered bugs 

12 
T:   Halstead’s time 
estimator 

13 
IOCode:   Halstead’s line 
count 

14 
IOComment:   Halstead’ 
count of lines of 
comments 

15 
IOBlank:   Halstead’s 
count of blank lines 

16 
IOCodeAndComment:   
line of code and 
comments 

2 operators, 2 
operands, a 
branch-count and 
a goal field 
metrics 

17 
Uniq_Op:    unique 
operators 

18 
Uniq_Opnd:   unique 
operands 

19 
Total_Op:      total 
operators 

20 
Total_Opnd:   total 
operands 

21 
branchCount:    of the 
flow graph 

22 
D:   module has defects or 
not 

3.3  Techniques 

3.3.1 Dataset Preprocessing  

The benchmarked NASA dataset has been 
preprocessed to ensure its integrity for subsequent 
analysis, addressing missing values, outliers, and 
noise. As a result, no further preprocessing steps 
are necessary before utilizing this dataset for 
classification tasks. Visual inspection of individual 
feature distributions is commonly performed using 
boxplots to identify outliers, as demonstrated in 
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Figure 2. These outliers, however, are contextual or 
conditional rather than genuine anomalies in the 
dataset. Specifically, the outliers observed in the 
"Lines of Code (LOC)" feature may reflect the 
natural variability in software size across different 
projects due to various contextual factors. 
Understanding this data distribution is crucial for 
accurate data analysis, as it provides insights into 
data properties and trends for informed decision-
making and forecasting. 

 
Figure 1: Box plot of the NASA datasets showing outliers 

3.3.2 Feature Selection 

In the context of feature selection, 
heatmaps serve as a valuable tool for visualizing 
the correlations among variables within a dataset. 
These visualizations depict correlation coefficients 
between pairs of variables, with varying colors 
indicating the strength and direction of correlation. 
In our study, we present the heatmap of features 
from the NASA dataset in Figure 3. 
 

 
Figure 2: Heatmap of the features of the NASA dataset 

 Notably, the diagonal of the heatmap 
represents the correlation of each variable with 
itself, with a correlation value of 1 indicating a 
perfect positive correlation. This signifies a 
flawless linear relationship between the variable 
and itself. Moreover, feature importance graphs 

offer a succinct and intuitive means of 
understanding intricate machine learning models. 
They help in comprehending which features hold 
the most influential in prediction-making, thereby 
enhancing model interpretability and trust. Our 
analysis of the NASA dataset, as depicted in Figure 
4, highlights LOC (Lines of Code) as possessing 
the highest F-score at 29.0, while the Halstead 
Time Estimator (t) registers the lowest at 6.0, 
underscoring their respective degrees of influence. 
 

 
Figure 3: Features importance of NASA Dataset 

3.3.3 Classification 

In the context of classification problem, 
the objective is to categorizing software modules 
based on parameters like cyclomatic complexity, 
significance complexity, blueprint complexity, and 
line count, to determine whether they will likely 
have one or more reported defects. To address this 
classification task, we employed a range of models 
including the Bagging Classifier, Random Forest 
Classifier, Extra Trees Classifier, AdaBoost 
Classifier, Gradient Boosting Classifier, Voting 
Classifier, XGBoost Classifier, MLP Classifier, and 
SVM Classifier, as outlined in Figure 5. 

 
Figure 4: The proposed Ensemble Model for 

classification 
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Figure 5 outlines our model selection process. We 
utilized the NASA failure dataset, comprising 22 
features with 21 independent variables and 1 
dependent variable. Before training the models, 
thorough preprocessing was conducted to handle 
missing values, outliers, and noise effectively. With 
a dataset containing 2109 data points, we adopted a 
standard train-test split of 70:30 for model 
evaluation. 

Table 4: Classifiers along with their parameters and 
model details 

Classifiers  
Model parameter 
setting 

BaggingClassifier 

Base Estimator: 
DecisionTree 
Classifier. 
Number of Estimators: 
1500. 
Random State: 42. 

RandomForestClass
ifier 

Number of Estimators: 
1000. 
Random State: 42. 

ExtraTreesClassifie
r 

Number of Estimators: 
1000. 
Maximum Features: 7. 
Random State: 42. 

AdaBoostClassifier 
Number of Estimators: 
30. 

GradientBoostingCl
assifier 

Number of Estimators: 
100 
Random State: 42. 

VotingClassifier: 

Estimators: 30. 
LogisticRegression 
with 'liblinear' solver. 
DecisionTreeClassifie
r. 
SVC with 'scale' 
gamma. 

XGBClassifier 
(XGBoost): 

Objective: Binary 
Logistic.  
Colsample by Tree: 
0.3; Learning Rate: 
0.1. 
Max Depth: 5; Alpha: 
10. 
Number of Estimators: 
50. 

MLPClassifier 
(Multi-layer 
Perceptron): 

Hidden Layer Sizes: 
(22, 22, 22).  
Activation Function: 
ReLU.  
Max Iterations: 1000 

SVC (Support 
Vector Classifier): 

Gamma: ‘scale’ 

These classifiers are designed to address the 
classification task using the provided dataset, each 
employing different techniques and strategies to 
capture the underlying patterns and relationships 
within the data. We utilize 10-fold cross-validation 
to evaluate the performance of the machine learning 
models. This methodology involves dividing the 
dataset into 10 subsets. The model undergoes 
training and evaluation ten times, with each subset 
serving as the validation set once while utilizing the 
remaining subsets for training. Finally, the efficacy 
of our proposed model was rigorously assessed 
using a comprehensive set of software reliability 
metrics. These metrics, including precision, 
accuracy, recall, f1-score, support, performance 
error measures, and a confusion matrix, provided a 
holistic evaluation of the model's performance. 
Through this thorough analysis, we gained valuable 
insights into the effectiveness and robustness of our 
approach in addressing the challenges of software 
reliability. Moving forward, these findings serve as 
a foundation for further refinement and 
optimization, ultimately enhancing the reliability 
and efficiency of software systems. 

4.   EXPERIMENTAL RESULTS 

4.1 Experimental Setup 

The experimental setup for our study involved 
the implementation of all models in Python, 
utilizing both a local workstation and the cloud-
based Google Colab platform equipped with GPU 
support. The local platform, a Windows laptop, 
featured an Intel(R) Core(TM) i5-2410 M 
processor, 6 GB of primary storage, and 1 TB of 
secondary storage. The Colab platform provided 
additional computational power through GPU 
acceleration. The local platform utilized the Visual 
Studio Code editor, while Jupiter Notebook was 
exclusively utilized in the Colab environment. All 
models were compiled and executed using Python 3 
compilers. The implementation of the models 
heavily relied on the Pandas, Keras, and Sci-kit 
learn libraries, alongside TensorFlow and the 
matplotlib library for data visualization in Python. 
This setup ensured a robust and efficient 
environment for conducting our machine learning 
classification experiments. 
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4.2 Experimental Results 

In our experimental results, the first proposed 
model focuses on employing classification 
techniques to identify software errors. Utilizing 
Bagging, Voting, Stacking, and XGBoost methods 
within the Python programming language, we 
address software reliability classification tasks with 
a CM1 dataset comprising 21 static features. 
Effective model performance depends on the 
training set's size and representativeness, enabling 
accurate predictions for unseen data instances. 
Concurrently, the validation set aids in refining the 
model by analyzing its performance during training, 
thereby facilitating performance evaluation and 
modification. By assessing the model's 
generalizability on the validation set, potential 
issues like overfitting are identified, crucial for 
ensuring robust functionality in real-world 
scenarios. Figure 6 illustrates the training and 
validation accuracy of our dataset, providing 
insights into the model's performance. 

 

Figure 5: Training and validation accuracy comparison 
of the dataset 

In the proposed classification approach, 
nine distinct base classifiers are employed to 
classify errors. Alongside, confusion matrices, 
maximum, minimum, and mean values, along with 
the final accuracy outputs, are printed, offering 
clear insights into each model's classification 
performance. Figures 7 and 8 visualize the accuracy 
of each model, with Random Forest, Bagging, and 
Extra Tree achieving the highest classification 
accuracies during training. Conversely, XGBoost 
attains the highest classification accuracy during 
testing.  

 

Figure 6: Training accuracy of the different proposed 
classifiers 

 
Figure 7: Testing Accuracy of the different proposed 

classifiers 

The following confusion matrix provides a 
summary of prediction results on a classification 
problem. The number of correct and incorrect 
predictions is summarized with count values and 
broken down by each class. This visual 
representation, depicted in Figure 9, provides a 
breakdown of prediction results and highlights how 
our classification model encounters confusion 
during its predictions. By analyzing the matrix, we 
gain insights into the types of errors made by the 
classifier, enabling us to refine and improve its 
performance. 

 

Figure 8: Confusion matrix visualization of different 
machine learning models 
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In machine learning, evaluating model 
performance is essential to understand how 
effectively a model performs its designated task. 
The following tables present the performance 
evaluation of nine base classifiers, assessing 
metrics such as accuracy, precision, recall, f-score, 
and support. Notably, the XGBoost, Extra Trees, 
and Voting classifiers demonstrate strong 
performance, while the MLP classifier shows less 
favorable results. 

Table 5: Experimental results of Base Classifier Models 
with various evaluation metrics 

Base 

Classifi

er 

Accura

cy 

Precisi

on 

Reca

ll 

F1-

scor

e 

Suppo

rt 

Bagging 0.8878 0.77 0.35 0.45 89 

Random 

Forest 
0.8894 0.79 0.30 0.43 89 

Extra 

Trees 
0.8909 0.81 0.34 0.43 89 

AdaBoo

st 
0.8672 0.65 0.18 0.27 89 

Gradien

t 

Boostin

g 

0.8846 0.75 0.29 0.36 89 

Voting 0.8894 0.79 0.17 0.26 89 

XGBoo

st 
0.8941 0.83 0.12 0.21 89 

MLP 0.8372 0.55 00 00 89 

SVM 0.8846 0.75 0.17 0.26 89 

The evaluation results presented in Table 5 provide 
a comprehensive assessment of various 
classification models, including Bagging, Random 
Forest, Extra Trees, AdaBoost, Gradient Boosting, 
Voting, XGBoost, MLP, and SVM, are presented. 
Each model's performance is assessed across 
multiple metrics: Accuracy measures overall 
correctness, with XGBoost achieving the highest 
accuracy of 0.8941, indicating it correctly classified 
approximately 89.41% of instances. Precision 
evaluates the model's ability to avoid false 
positives, with XGBoost exhibiting the highest 
precision of 0.83. Recall assesses the model's 
capability to capture all positive instances, where 
Bagging achieved the highest recall of 0.35, 

effectively capturing 35% of positive instances. The 
F1-score, reflecting a balance between precision 
and recall, shows XGBoost leading with a score of 
0.21. Support: column indicates the number of 
instances in the test dataset that belong to each 
class. Overall, XGBoost emerges as the top 
performer, among the evaluated models based on 
accuracy, precision, recall, and F1-score, making it 
a promising choice for the classification task at 
hand. 
Table 6: Accuracy comparison with existing model 
[23] 

S. 
No. 

Existing ML Model Author Dataset Accuracy 

 NB Iqbal, A. NASA  82.65 
 SVM-FS Mumtaz, 

B. 
NASA 81.79 

 NB-FS Mumtaz, 
B. 

NASA  85.55 

 RF-FS Mumtaz, 
B. 

NASA  85.20 

 SVM-AdaBoost Alsaeedi, 
A. 

NASA  79.0 

 NB-PCA Cetiner, M. NASA  81 
 SVM-PCA Cetiner, M. NASA  83 
 RF-PCA Cetiner, M. NASA  83 

Our Proposed Ensemble 
Model 

 Extra Trees NASA  89.09 
 AdaBoost NASA  86.72 
 Gradient Boosting NASA  88.46 
 Voting NASA  88.94 
 XGBoost NASA  89.41 
 Random Forest NASA  88.94 

 
The comparison Table 6 displays a significant 

improvement in accuracy with the proposed models 
compared to the existing machine-learning models. 
In the existing models, the highest accuracy was 
achieved by Naive Bayes with Feature Selection 
(NB-FS) at 85.55%, closely followed by Random 
Forest with Feature Selection (RF-FS) at 85.20%. 
Meanwhile, the Support Vector Machine with 
AdaBoost (SVM-AdaBoost) had the lowest 
accuracy, reaching 79.0%. 

On the other hand, the proposed models 
demonstrate higher accuracy overall. Extra Trees 
leads with an accuracy of 0.8909, with XGBoost 
slightly ahead at 0.8941. Other models, like 
Gradient Boosting, Voting, and Random Forest, 
also maintain high accuracy, ranging from 0.8672 
to 0.8894. This suggests that the proposed models, 
especially those utilizing ensemble techniques such 
as Extra Trees, XGBoost, and Gradient Boosting, 
deliver superior performance in terms of accuracy. 

These results highlight the effectiveness of 
ensemble-based methods in achieving higher 
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accuracy compared to traditional machine learning 
models. The substantial difference in accuracy 
indicates that ensemble techniques, along with 
sophisticated feature selection and boosting 
methods, offer a robust approach for achieving 
better predictive performance. 

Comparing our results with current state-of-
the-art solutions in the literature, we observe that 
our ensemble methods, particularly XGBoost, 
demonstrate competitive performance in software 
defect classification. Existing studies have shown 
the efficacy of various machine learning models, 
but our approach highlights the superior accuracy 
and precision achievable through ensemble 
techniques. For instance, traditional single 
classifiers like SVM and MLP, while effective, 
often fall short in recall and overall balance of 
performance metrics compared to our ensemble 
methods. 

Critiquing our work against our initial goals, 
we aimed to enhance the accuracy and robustness 
of software reliability prediction models. Our 
outcomes align with these goals, as evidenced by 
the high performance metrics achieved by the 
ensemble models. However, our analysis was 
constrained by a limited dataset, which impacted 
the recall and F1-score, particularly for models like 
Bagging. 

5.     CONCLUSION AND FUTURE WORKS  

 In this study, we employed ensemble learning 
techniques alongside hyperparameter selection 
algorithms to enhance model performance for 
software reliability prediction. Our evaluation 
encompassed various well-established classification 
algorithms, including Bagging, Random Forest, 
Extra Trees, AdaBoost, Gradient Boosting, Voting, 
XGBoost, MLP, and SVM, each assessed across 
multiple performance metrics on the CM1 dataset. 
Notably, XGBoost emerged as the top performer, 
achieving the highest accuracy of 89.41% and 
precision of 83%. Bagging exhibited the highest 
recall at 35%, while XGBoost led in F1-score with 
21%. These findings underscore the effectiveness 
of ensemble learning methodologies in enhancing 
software reliability prediction accuracy. By 
leveraging a diverse set of classification models 
within the ensemble framework, we achieved 
robust performance across different evaluation 
metrics.  

The comparison highlights the potential of 
ensemble techniques, particularly XGBoost, in 
accurately classifying software defects and 
improving overall reliability prediction. Our study 

contributes to advancing the understanding of 
ensemble learning's efficacy in the context of 
software reliability prediction. However, our 
analysis was constrained by a limited dataset. 
Moving forward, we aim to expand the dataset size 
and explore various ensemble classifiers after 
implementing data balancing techniques. Balancing 
the dataset can enhance error measures and 
potentially yield improved results. Additionally, we 
plan to investigate alternative optimization 
approaches on larger datasets to further refine our 
models' performance. By addressing these 
limitations and conducting future research in these 
areas, we can enhance the robustness and 
applicability of our findings in software bug 
detection and contribute to advancing the field of 
machine learning in software engineering.  
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