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ABSTRACT 

Automobiles powered by electricity are an effective solution for the transportation sector's disastrous 
pollutant emissions. The performance of electric vehicles (EVs) is a determining factor in their massive and 
widespread acceptance among automotive consumers, despite the reality that their number of active users 
continues to rise. The EV industry has shown significant interest in lithium-ion batteries (LIBs) due to their 
cost-effectiveness, extended longevity, nominal voltage, and power density. State-of-charge (SOC) 
prediction accuracy is essential for effective battery management in EVs. However, non-linearities and 
complex dynamics inherent to LIBs pose challenges for traditional methods. This proposed work presents a 
novel deep-learning (DL) model for SOC prediction in EVs utilizing a Deep Belief Network (DBN) 
coupled with an Aquila optimization algorithm (AOA). The data utilized for training the proposed network 
is sourced from the SiCWell Dataset. The data is preprocessed through the implementation of Z-score 
normalization. The DBN utilizes battery data to extract and classify complex features, whereas the AOA is 
employed to optimize the hyperparameters of the DBN to increase the accuracy of predictions. The 
DBN+AOA is trained utilizing a SiCWell battery dataset in which the battery experienced a dynamic 
process. The performance of the DBN+AOA model is evaluated using the Mean Squared Error (MAE), 
Root Mean Squared Error (RMSE), and Mean Squared Error (MSE) metric values. Accurate results for 
SOC prediction are generated by the proposed method, with RMSE, MAE and MSE falling below 0.14%, 
0.013%, and 0.011%, respectively. The average values of RMSE, MAE, and MSE are 0.136, 0.0122 and 
0.0101. Experiments confirmed that the proposed DBN+AOA model has the best performance among the 
other current models in comparison. 
Keywords: EV, State-of-Charge, DBN, AOA, SiCWell, Lithium-Ion Batteries, Deep Learning. 

1. INTRODUCTION 

In recent times, there has been an increase 
in interest in EVs due to their notable capacity to 
decrease gasoline consumption and gas emissions. 
A new domain of scholarly investigation and 
industrial innovation has emerged as a result of the 
expanding market share of EVs and the rising 
demand to replace fossil fuels with electricity [1]. 
Although the initial EVs were constructed during 
the mid to late 19th century, they were unable to 
achieve commercial success until automobiles 
were propelled by internal combustion engines 
(ICE). As of now, approximately 25% of energy-
related greenhouse gas emissions are attributed to 
the transportation sector's dependence on ICE. 
This matter instigated a call for the substitution of 
ICE vehicles with vehicles that utilize 
sophisticated technology, such as EVs [2]. The 
growth of EVs has many benefits, including, 
reducing dependency on hydrocarbon and gas 
discharges; advancing carbon neutrality and 
minimizing their emissions; and starting an 

environmentally sustainable transportation 
revolution and offering a promising solution to the 
challenge of climate change. Because globalization 
is highly dependent on electricity sources, the 
development of electric vehicles is regarded as one 
of the most effective solutions [3]. 

In recent years, a variety of energy storage systems 
have gained widespread acceptance for 
transportation purposes. These systems include 
lead acid, LIB, nickel-cadmium (NiCd), sodium 
nickel chloride (NaNiCl), sodium sulphur (NaS) 
batteries, vanadium redox flow battery (VRFB) 
and zinc-bromine flow battery (ZBFB). The Li-ion 
battery is distinguished by its exceptional 
dependability, energy density, longevity, low 
discharge rate, and high efficiency. Furthermore, 
the decreasing cost of LIBs is facilitating their 
increased adoption in the EV sector, thereby 
driving the expansion of the Li-ion battery market 
[4]. LIBs presently hold a dominant position not 
only in the portable electronics battery market but 
also in the rapidly expanding automotive and 
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stationary energy storage industries. The rationale 
behind this is related to battery technology that 
came before LIBs (e.g., nickel-based or lead-acid 
batteries) and those that came after lithium, 
referred to as "post-lithium" technologies (e.g., 
sodium-ion batteries (SIBs)), have substantially 
reduced energy specificity and density than the 
most recent LIBs. LIBs are the most promising 
and developing technology for extending the 
driving range and energy density of EVs by a 
significant margin. The promotion of EVs and new 
energy automobiles by the government has served 
as an impetus for the exponential growth of battery 
components and automotive computer science, 
both of which are essential for intelligent mobility. 
China has declared that, by the global goal of 
carbon neutrality, the peak of emissions will be 
achieved prior to 2030. Fifty percent of newly 
produced automobiles in the United States will be 
free of emissions by the year 2030. By 2035, 
virtually all vehicles in Europe should be 
emission-free. For electric vehicle applications, the 
energy density of LIBs must approach 500 Wh 

kg−1 to be comparable to vehicles powered by 
fossil fuels [3]. 

In addition to batteries, effective battery 
management is critical for EV batteries to function 
reliably and safely. By implementing charging and 
discharging cycling, batteries can preserve their 
best performance and increase their operational 
lifespans. Therefore, every electric vehicle is 
equipped with a battery management system 
(BMS), which executes a range of tasks such as (i) 
determining the state of the battery, (ii) balancing 
battery cells and controlling pack charge and 
discharging, (iii) managing thermal conditions, (iv) 
providing fault prognosis and health diagnosis, and 
(v) facilitating correspondence. BMS is of the 
utmost importance in EVs to guarantee optimal 
capacity utilization, safety, and extended battery 
life. BMS capabilities have expanded from battery 
protection and safety to facilitate higher battery 
output and more secure battery systems over the 
past decade [5]. The overview of the BMS is 
shown in Fig. 1. 

 

Figure 1. Overview of Battery Management System 

1.1. Problem Statement 

To ensure the safe operation of batteries 
in EVs, their state estimation is important. This 
involves determining the state of health (SOH) and 
SOC of batteries within an estimated range. SOH 
and SOC monitoring, which are highly correlated, 
are, in general, the most important factors and the 
foundation for enhancing dependability and 
guaranteeing safety [6]. This research investigates 
the SoC of a battery. The remaining functional 

percentage of a battery's capacity is referred to as 
its SoC. Therefore, a SoC of 100% signifies that 
the maximum capacity is available for utilization, 
whereas a SoC of 0% signifies that no further 
capacity is available for utilization. The SoC 
provides details related to the dependability, 
efficiency, and security of an electric vehicle, in 
addition to the usable capacity of the battery. 
Nevertheless, the SoC of a battery cannot be 
determined directly. To determine the SoC of a 
battery, several researchers have proposed their 
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efforts for SoC estimation. There are five distinct 
categories of SoC estimation methods: utilize 
lookup table-based, data-model fusion techniques, 
model-based estimation, ampere-hour integrals 
and data-driven approaches [25]. 

1.2. SOC Prediction 

Predicting the SOC is the key objective of 
this research. Importantly, the SOC of lithium 
batteries serves as an indicator of their energy. The 
range of EVs and the duration of battery life can 
be approximated with greater precision when the 
SOC is determined. However, indicative factors 
such as cell current, temperature and voltage can 
only be used to predict SOC, as it is not directly 
measurable. Additionally, ageing and operating 
conditions impact the precision of SOC forecasting 
[7]. SOC is typically expressed as a percentage 
and was described as the present available 
capability ratio of Qcurrent to the available 
capacity maximum Qnow, as illustrated in 
Equation (1).  

𝑆𝑂𝐶 = × 100    

     
 (1) 

As the core and basis of EV design, the SOC 
should be continuously predicted throughout the 
life of the battery to ensure its accuracy as the 
battery ages continuously [7]. Furthermore, the 
SOC is critical for vehicle design, as it provides 
reference information regarding the range of the 
battery. 

Presently, the research focus is presented on 
developing a Deep Learning (DL) model that can 
deliver precise predictions of SOC. DL methods 
efficiently automate the process of feature 
extraction with the least amount of domain 
expertise and computation required [8]. Difficult 
LIB state monitoring requires precise estimation of 
battery state; the DL method increases prediction 
precision and robustness. DL, which is also 
referred to as deep structured learning, is a 
category of machine learning that utilizes work-
specific algorithms and multiple layers to extract a 
greater number of features. The process for 
constructing a DL-based EV battery SOC 
prediction model was represented in Fig 2. 

 

Figure 2. Basic Workflow Of The Soc Battery Prediction Model 

The beginning phase consists of gathering real-
time data from the EV datasets. To ensure the 
accuracy of deep learning model training, the 
original data obtained from the dataset must 
undergo preprocessing before the extraction and 
classification procedures. Following this, a 
classification model for the predictive model is 
constructed using an appropriate DL model, taking 
into consideration the model's complexity and 
accuracy. After undergoing training, the DL model 
can be employed to forecast the SOC of the battery 
by utilizing newly acquired data. 

1.3. Research Objectives 

The research objectives for this work on SOC 
prediction using the DBN+AOA model can be 
outlined as follows: 

 To develop a new hybrid feature 
extraction and classification model for 
prediction of SOC. 

 To enhance the pre-processing technique 
of a model by using the normalisation 
technique. 

 To enhance the effectiveness of SOC 
prediction by implementing the DBN 
algorithm for feature extraction and 
classification. 

 The effectiveness and efficiency of the 
DBN model are enhanced through the 
tuning of hyperparameters utilizing the 
AOA in this study. 

 To assess the performance of the 
DBN+AOA model on SiCWell datasets.  



 Journal of Theoretical and Applied Information Technology 
31st July 2024. Vol.102. No. 14 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5426 

 

 To assess its performance utilising the 
parameters MAE, RMSE and MSE metric 
values. 

 To compare the performances of the 
DBN+AOA model with other reviewed 
approaches and to demonstrate the 
efficiency of the proposed model in 
enhancing SOC prediction. 

This paper continues as, after an extended review 
of various prediction methods in the extant 
literature, that the SOC prediction method based 
on the Deep Belief Network with Aquila 
optimization algorithm (DBN+AOA) is the most 
appropriate strategy when compared to model-
based and data-driven approaches. The SiCWell 
Dataset comprises data on lithium batteries used in 
battery EVs, specifically for modelling and 
diagnostics. The Z-score normalization is utilised 
for the processing of data collected from the 
Sicwell data set. Once the data collected from the 
datasets are pre-processed, the DBN model is 
applied for classification purposes. In addition, to 
tune the hyperparameters of DBN the Aquila 
optimization algorithm is used. In this paper, an 
enhanced SOC prediction model for LIBs is 
developed utilizing the DBN+AOA. 

The research contribution addresses a critical 
challenge in EV technology by proposing a SOC 
prediction model for Lithium-ion batteries. By 
proposing a novel deep-learning model utilizing a 
Deep Belief Network (DBN) optimized with an 
Aquila algorithm (AOA), the research offers a 
promising solution to enhance battery management 
systems in EVs. The efficiency of the proposed 
model is evaluated by using the performance 
metrices MSE, RMSE and MAE. For further 
validation, proposed model is compared with 
existing models using the performance metrices 
namely MSE, RMSE and MAE. Based on the 
comparison with existing approaches, the SOC 
prediction model contributes sustainable 
transportation through EVs. 

2. RELATED WORKS 

This related works section analyze and 
discusses the current research methodologies 
published recently based on EV’s battery SOC 
prediction and analysis. Using algorithms based on 
deep learning, reference [16] proposed a technique 
for estimating the real SOC of electric vehicle 
batteries by the driving cycle. The SOC of an EV 
battery was precisely estimated utilizing RDCs and 
deep learning techniques. RDC data for a real 

travel path were obtained directly by connecting an 
onboard diagnostics (OBD)-II adapter to their 
vehicle. The driving cycles containing the most 
similar patterns were identified by segmenting 
each cycles utilising Global Positioning System 
information of the traffic signals along the path 
and Dynamic Time Warping algorithm. Ultimately, 
it was confirmed that the Temporal Attention 
LSTM model predicts the SOC with the highest 
accuracy compared to the alternatives. 

A CNN-LSTM combined algorithm for predicting 
the SOC of LIB was proposed in [17]. Various 
discharge profiles' data were utilized to train the 
network, including the DST, US06, and FUDS 
profiles. The experimental findings indicated that 
the SOC network exhibited superior tracking 
performance in comparison to the LSTM and CNN 
networks due to the nonlinear associations 
between SOC and measurable variables. The 
network rapidly converged to the true SOC when 
the initial SOCs were unknown and produced 
accurate and seamless results, with maximum 
MAE and RMSE remaining below 1% and 2%. 
Furthermore, the network under consideration 
effectively acquired knowledge of the impact of 
ambient temperature and could estimate the SOC 
of a battery across different temperatures with a 
maximum MAE of less than 1.5% and a maximum 
RMSE of less than 2%. 

A hybrid deep learning approach was proposed in 
reference [18] as a means to ensure reliable and 
secure charging operations, thereby mitigating the 
risk of overcharging or discharging the battery. It 
was recommended to utilize Recursive Neural 
Networks (RNNs) to derive sufficient feature 
information regarding the battery. The research 
subsequently developed the bidirectional gated 
recurrent unit framework (GRU) to predict the 
state of the EVs. By receiving its input from the 
output of the RNNs, the model's performance was 
improved by GRU. Due to its considerably less 
complex architecture, the RNN-GRU exhibits a 
diminished processing capability. The results of 
the tests indicated that the method can monitor the 
mileage of an electric vehicle with precision. The 
algorithm provided a rapid convergence and a 
minimum error rate than the optimal method for 
estimating distances using conventional models. 

In [19], AOS-ELM, adaptive online sequence 
extreme learning machines model was suggested 
as a potential method for forecasting the charge 
level of battery cells across varying ambient 
temperatures. In contrast to alternative 
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methodologies, such as those based on extended 
Kalman filters (EKFs), the utilization of ELM-
based learning resulted in reduced RMSE and 
quicker computation times. Comparing AOS-ELM 
to incremental-ELM, online sequential ELM (OS-
ELM), bidirectional-ELM (B-ELM), and parallel-
chaos search-based incremental ELM revealed that 
AOS-ELM generated a minimum RMSE and a 
reasonable training time. Furthermore, it was not 
necessary to identify the static capacity of the cells 
and the parameters of the battery through 
successive experiments to calculate the SOC of 
individual cells and the battery stack. 

A novel DL approach, referred to as "GRU-RNN," 
was utilized in [20] to estimate the SOC of LIBs. 
This approach was founded on newly developed 
advanced deep learning techniques. An additional 
high-rate pulse discharge condition dataset and 
two publicly available data sets comprising vehicle 
drive cycles were utilized to evaluate the GRU-
RNN's performance in estimating SOC under 
extreme conditions, mixed charge and discharge 
conditions, and complex and variable discharge 
conditions, respectively. The study also 
demonstrated that despite the limited quantity of 
data, the model maintains a high level of 
estimation accuracy. Furthermore, the comparison 
results between the RNN and the proposed method 
indicated that the proposed model outperforms the 
RNN in terms of accuracy and circumvents the 
issue of long-term dependencies. MAXIMUMS: 
7.59%, 7.04%, and 2.22%; the MAEs of the 
experimental outcomes are 0.86%, 1.75%, and 
1.05%. This statement was supported by the 
precision and durability of the suggested approach. 

To derive SOC estimation for LIBs in EVs, a 
Robust Adaptive Online Long Short-Term 
Memory (RoLSTM) model was introduced in [21]. 
Optimization involved the implementation of the 
Robust and Adaptive online gradient learning 
method (RoAdam). Each network parameter can 
be learned by the method's self-learning algorithm. 
The proposed algorithm was applicable for 
estimating SOC at different ambient temperatures. 
Moreover, the overall model's quantity of LSTM 
units was diminished. Experimental outcomes 
demonstrated that RoLSTM outperformed neural 
network modelling and the Kalman filter method 
when it comes to estimating the SOC of Li-Ion 
batteries using real-world databases. Maximum 
estimation error and RMSE have reduced 
substantially for both battery varieties under 
investigation. 

In [22], the battery SOC estimation was performed 
using a CNN-GRU-LSTM approach that 
combined a GRU-LSTM and an RNN with 
explainable artificial intelligence (EAI). By 
training the model with a dataset of LG 18650HG2 
LIBs, a dynamic process was simulated on the 
batteries. Additionally, during the training process, 
the method was provided with data that was 
captured at temperatures of 10°C, 25°C, -50.0°C, 
and 0°C. In contrast to other existing networks, the 
proposed method generated more consistent, 
precise, and dependable estimations of the SOC by 
encapsulating the temporal relationships within the 
network weights. For operating temperature varied 
from -10°C to 25°C, in which the hybrid model 
produced an MAE of 0.41% to 1.13%. 

Dual cascaded filtering stages, namely a fading 
Kalman filtering (FKF) and a recursive least 
square (RLS) filtering, were utilized to develop 
and experimentally validate an SoC estimation 
technique for the LiFePO4 battery [23]. The 
computational expense of the suggested 
methodology was effectively reduced through the 
integration of cascaded linear filter stages and the 
simplified circuit models. Through the 
implementation of fading factor optimization, the 
FKF demonstrated a SoC estimations error of 
merely 2% in UDDS experiments and 3% in actual 
vehicle driving cycles trials. In contrast, a 
conventional Kalman filter introduced estimation 
errors of over 9% and 14%, respectively. The 
proposed method offered the simplified and 
practicability required for real-time 
implementation while precisely estimating SoC 
through its simplified model. 

To enhance the precision and promptness of fault 
identification, [24] introduced an innovative 
extreme learning machine optimized by a genetic 
algorithm-based method (GA-ELM). This machine 
was capable of estimating the present system 
status. Additionally, the modified feature 
parameters were unprecedentedly incorporated as 
state input parameters of the ELM algorithm. By 
assessing the degree of volatility in the voltage 
data, the voltage defects were classified into four 
distinct levels. In conclusion, by comparing 
multiple approaches and validating measured data, 
the efficacy and accuracy of the proposed method 
were further demonstrated. Predicting battery 
faults using the voltage signal, the method 
exhibited considerable performance. 

A methodology for forecasting SoC and output 
voltage was presented in [25]. It employed a 
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hybrid architecture consisting of long short-term 
memory (LSTM) and vector autoregressive 
moving average (VARMA). The aforementioned 
method successfully captured both the 
characteristics (linear & nonlinear) of the battery 
voltage and the SoC of the battery. For data at 25 
and 0 degrees Celsius, the model produced RMSEs 
of 0.161 and 0.193, respectively. One cycle in 
advance of the forecast produced the smallest 
error. The number of cycles that needed to be 
predicted led to an escalation in the error. The 
experimental findings indicated that alterations in 
the pace of the electric motorcycle result in a 
corresponding change in the SoC of its battery. 

A model for representing battery data based on 
RNNs was constructed to obtain the proper vector 
representation. Following this, [26] introduced a 
model based on multi-channel extended CNNs that 
was supplied with the thoroughly trained battery 
vector. A comprehensive simulation was 
performed using real-world datasets, and the 
approach was evaluated in comparison to several 
methods. By utilizing a dependable vector 
representation and extracting adequate features, 
the suggested approach has the potential to 
enhance the performance of SOC prediction.  The 
prediction performance of the proposed method 
was 4.3% and 11.3% better than that of RNN and 
the Ah counting method, respectively. 

In reference [27], a bidirectional encoder-decoder 
long short-term memory and stacked bidirectional 
LSTM architecture were combined. By 
simultaneously training the encoder and decoder 
elements, the implementation of an encoder-
decoder architecture aided in the reduction of 
training time. In contrast to the stacked 
bidirectional LSTM architecture and the isolated 
encoder-decoder architecture, the experimental 
findings indicated that the proposed work 
outperformed both. The implemented algorithm 
demonstrated its practicality by yielding an MAE 
of merely 0.62% when estimating the SOC at 
different temperatures. At 25°C, the HWFET 
condition exhibited the smallest Mean Absolute 
Error of 0.62%, confirming the proposed 
architecture's excellent functionality. 

The HWFET condition exhibited the smallest 
MAE of 0.62% at 25°C, confirming that the 
proposed architecture implemented in [28] was 
functional. Following the weighing of distinct 
inputs based on their contribution to the output by 
the spatial attention module, the pre-processed 
data was transmitted to the upgraded CLSTM 

network. The average RMSE of the suggested 
work in the SOC prediction experiment for the 
LIBs in EVs was reduced by 32%, 67%, 178% and 
35%, respectively, when compared with MLP and 
other LSTM-based models. The outcomes of the 
experiments demonstrate that the proposed model 
was effective. 

The battery system-on-a-chip was predicted using 
six machine learning algorithms [29]: ensemble 
bagging and ensemble boosting algorithms, 
artificial neural network (ANN), Gaussian process 
regression (GPR), linear regression (LR) and 
support vector machine (SVM). The performance 
of the proposed ANN and GPR approach was 
exceptional, surpassing that of alternative 
methods, with an MAE of 85%. The MAE of the 
GPR-linear approach was 10% lower, indicating 
superior performance compared to the SVM-ANN. 
All six algorithms were subsequently evaluated in 
terms of performance indices. The optimal 
techniques were determined to be ANN and GPR, 
with respective MSE and RMSE values of 
(0.0004, 0.00170) and (0.023, 0.04118). 

The literature review highlights the environmental 
issues associated with conventional combustion 
engine vehicles and presents Electric Vehicles 
(EVs), which are powered by Lithium-Ion 
Batteries (LIBs), as a possible solution to reduce 
greenhouse gas emissions and air pollution. It 
highlights the essential role of accurate SOC 
prediction in improving battery management 
systems for electric vehicles (EVs). This, in turn, 
boosts consumer confidence and adoption by 
maximizing battery utilization and extending 
battery lifespan. Furthermore, it acknowledges the 
intricate nature of LIBs and the need for 
sophisticated approaches, such as deep learning 
algorithms and hybrid models as proposed in this 
research, to address issues in SOC prediction and 
promote progress in battery management systems. 
Finally, it highlights the advantages of accurate 
SOC prediction in terms of operational efficiency, 
such as optimizing energy usage, increasing the 
distance a vehicle can travel, and reducing 
operational expenses. This ultimately supports the 
overall sustainability and viability of EVs. 

2.1. Research Gap Analysis 

The research gap in the presented reviews 
lies in the need for further exploration and 
comparison of DL-based methodologies for 
predicting the battery SOC, particularly in EVs. 
These methodologies leverage advanced 
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techniques such as RNNs, CNNs, and LSTM 
networks to achieve accurate SOC estimations 
under diverse conditions. For instance, the 
utilization of TA-LSTM models in one study 
enabled precise SOC predictions by segmenting 
driving cycles and incorporating GPS data. 
Another approach, a CNN-LSTM network, 
showcased superior tracking performance for 
lithium iron phosphate batteries compared to 
traditional LSTM and CNN networks, even when 
initial SOC values were unknown. Additionally, 
hybrid deep learning architectures, such as RNN 
combined with bidirectional GRU, demonstrated 
enhanced model performance while maintaining 
computational efficiency. Furthermore, while some 
studies focus on specific aspects such as SOC 
estimation accuracy or computational efficiency, 
there is a need for holistic assessments considering 
factors like real-time applicability, robustness 
under varying conditions, and potential integration 
into practical battery management systems. The 
proposed study aims to fill these gaps by providing 
a systematic and standardized comparative 
analysis, assessing the performance of multiple 
algorithms comprehensively, and emphasizing 
interpretability, ultimately contributing to the 
development of robust EV battery prediction 
models. The literature review provides a 
comprehensive overview of existing research and 
sets the groundwork for the proposed DBN-AOA 
approach to improving IoT-IDS capabilities. 

The problem statement defines a critical challenge 
in EV technology, considering the accuracy of 
SOC estimation in LIBs for safe and efficient 
battery management. Based on analyzed existing 
works the complexity of SOC estimation due to 
the indirect nature of battery measurements and the 
nonlinearities inherent in LIBs, the research aims 
to address this challenge by proposing a novel 
deep-learning model utilizing a Deep Belief 
Network (DBN) optimized with an Aquila 
algorithm (AOA). By leveraging recent 

advancements in deep learning techniques and 
optimization algorithms, the research seeks to 
develop a robust and adaptable SOC prediction 
model that outperforms existing methodologies. 
This problem statement highlights the importance 
of the research contribution in enhancing battery 
management systems for EVs and connecting it 
with the most recent advancements in the area. 

3. PROPOSED METHODOLOGY OF THE 
DBN-AOA MODEL 

This research proposes a model to 
improve battery SOC prediction in EVs by 
combining DBN for feature extraction and 
classification. By incorporating these techniques, 
the model aims to resolve the challenges of battery 
prediction in EV environments and enhance 
detection accuracy. This research developed a 
novel DBN-AOA algorithm for predicting the 
SOC performance of LIBs in EVs. The model that 
has been presented consists of several stages: 
accumulation of datasets, pre-processing, feature 
extraction and classification. In the preprocessing 
stage, the normalisation technique is incorporated 
by using Z-score normalisation to improve the 
model performance. DBN is used for feature 
extraction from the processed data and 
classification to reduce the complexity of the 
model. After classification, for tuning 
hyperparameters obtained in the DBN, and AOA 
algorithm is used algorithm for the effective 
output. The effectiveness of this DBN-AOA model 
is assessed across a range of temperatures using 
the Sicwell dataset and is subsequently compared 
to pre-existing models.  

The DBN-AOA algorithm's overall procedure is 
depicted in Fig 3. It consists of the following 
stages: data collection, pre-processing, feature 
extraction and classification, parameter tuning, 
training, testing and performance measures. The 
following sections explain and discuss the 
implementation of these stages. 
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Figure 3. Workflow Of The Proposed Model 

As shown in the workflow of the proposed 
research model, the research initially operates by 
collecting the dataset related to the EV’s LiB 
features. The collected SicWell dataset is first 

preprocessed by employing a data preprocessing 
technique called Z-score normalization to 
standardize the input data fed to the proposed 
model. After preprocessing, the preprocessed data 
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is divided into two sets, one to train the model and 
another to evaluate the model. Using the training 
set of data, the feature extraction and classification 
operations are performed utilizing the proposed 
DBN classifier. To further increase the prediction 
accuracy and overall performance, the DBN 
classifier’s hyperparameters are fine-tuned and 
optimized using the AOA technique. For 
evaluation, the test set was evaluated using the 
trained model and the performances are measured 
based on metrics like RMSE, MAE, and MSE. The 
obtained results are then compared with the 
current models discussed in the literature for 
proper validation. 

3.1. SicWell Dataset 

By applying the SiCWell dataset, this 
work employs a novel method to determine the 
SOC of EV batteries. Due to the utilization of 
wide-bandgap semiconductors (e.g., silicon 
carbide), significant attention has been developed 
to the switching frequency components of the 
ripple current in the SiCWell, which permit higher 
switching frequencies and consequently cause 
frequency components to shift. The current 
spectrum exhibits main harmonics at specific 
frequencies, which are determined by the 
switching (fs) and fundamental (fg) frequencies: fs 
± 3 fg; fs ± 6 fg; 2 fs; 4 fs; 2 fs ± 6 fg; 3 fg. The 
amplitudes are extremely operation point 
dependent [31]. The SiCWell Dataset consists of 
information about LIBs utilized in battery EVs, 
with a specific focus on diagnostics and modelling. 
The battery's cycling data possesses favourable 
characteristics for the development and 
verification of state-of-charge diagnosis techniques 
within an authentic setting. The dataset's realistic 
ripple testing comprises the current profiles of 
numerous battery cells during two driving cycles. 
Thus, a standard is established for an extensive 
array of battery diagnosis techniques. By using the 
following link, the dataset can be downloaded. 
https://ieee-dataport.org/open-access/sicwell-
dataset. 

3.2. Data Preprocessing 

Preprocessing is an essential procedure 
that transforms the input information into a format 
that is more suitable for importing into the 
developed algorithm. The unprocessed data 
collected from the dataset is deemed unfit for 
additional analysis. As a result of the potential 
presence of absent, duplicate, or irrelevant feature 
data. Subsequently, the dataset undergoes 

preprocessing procedures to attain clarity. 
Encoding of labels, elimination of special 
characters, and removal of duplicate data cases 
containing null values are included in these 
processes [18]. The Z-score normalization method 
is employed to analyze the information obtained 
from the Sicwell dataset. To attain zero 
normalization, an approach known as Z-score 
normalization is necessary to compute the standard 
deviation (SD) of each attribute within the set of 
training and mean. These values are then separated 
by several variables that are also present in the 
training set. The mean and SD of each attribute are 
calculated [30]. The general formula defines the 
operation to be executed as the transformation. 

𝐶 =
( )

     

     
  (2) 

where the average of 𝐶 is 𝜇 and its SD is 𝜎 [30]. 
The z-score method is employed to normalize 
every feature in the dataset before commencing the 
training procedure. It is essential, following the 
computation of a set of training data, to preserve 
the mean and standard deviation for each feature to 
be able to utilize them as weights in the 
architecture of the system. 

3.3. Deep Belief Network for Feature Extraction 
and Classification 

Deep Belief Network (DBN) has been 
effectively implemented in collaborative filtering, 
feature learning, and classification [30]; it was 
originally developed by Hinton. Following the 
preprocessing of the dataset’s collected data, the 
DBN model is proposed to facilitate classification. 
In the context of battery SOC prediction for EVs, 
DBNs are utilized for feature extraction and 
classification to enhance the accuracy and 
robustness of SOC estimation models. DBNs are 
composed of multiple layers of hidden units, 
where each layer learns increasingly abstract 
representations of the input data. In battery SOC 
prediction, the input data typically consists of 
various parameters such as voltage, current, 
temperature, and possibly additional sensor 
readings. The DBN learns to extract meaningful 
features from this input data through unsupervised 
learning algorithms such as Restricted Boltzmann 
Machines (RBMs). RBMs are used to pre-train 
each layer of the DBN by capturing statistical 
dependencies within the input data. As a result, the 
hidden units in each layer learn to represent high-
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level features that are relevant for SOC prediction, 
such as charge/discharge patterns, voltage 
fluctuations, and temperature effects. Through this 
process, the DBN effectively extracts a compact 
and informative representation of the input data, 
which can improve the model's ability to capture 
complex relationships between input features and 
SOC. Once the DBN has learned to extract 
meaningful features from the input data, it can be 
used for classification tasks such as predicting the 
SOC of the battery. The output layer of the DBN is 
typically a softmax layer, which produces 

probability distributions over the possible classes 
(e.g., different SOC levels). During the 
classification phase, the learned features from the 
DBN are fed into the network, and the model's 
parameters are fine-tuned using supervised 
learning techniques such as backpropagation. The 
DBN learns to map the extracted features to the 
corresponding SOC values based on the training 
data, adjusting its parameters to minimize the 
prediction error. As a result, the trained DBN can 
accurately classify new instances of input data and 
SOC prediction of the battery with high precision. 

 

Figure 4. Structure Of DBN Model 

The DBN is composed of numerous neural 
network layers, which can be categorized as either 
visible or concealed [22]. In contrast to the visible 
layer, which is employed to receive inputs, the 
concealed layer is utilized to extract features. The 
DBN is regarded as a DNN model composed of 
unsupervised RBM networks with multiple layers 
and single-layer BPNN. Beginning with the initial 
layer, the vector relative to the initial unit is 

initialized via mapping by layer as a consequence 
of layer-wise training. By utilizing the mapping 
process, the visible layer ‘v’ of DBN ascends to 
the hidden unit ‘h,’ which is subsequently followed 
by the hidden unit. The ‘h’ unit will be the ‘v’ units 
of the subsequent network until the training of the 
multi-layer DBN. This information would be 
obtained through additional means such as 
mapping. The weight of each layer is increased 
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throughout the training procedure by the 
correlation between the ‘h’ & ‘v’ layers. The 
reconstructed error is propagated from the DBN 
initial layer to the subsequent layers. Fig 4 shows 
the structure of the DBN. 

In the same way, the reconstructed error is 
transferred from the secondary to the succeeding 
layers of the DBN, until it reaches the concluding 
layer at the end. It is trained in layers. For optimal 
performance, it simply assures that the weights of 
every layer are mapped nonlinearly to the 
eigenvector of the current layer. During training, it 
is unable to ensuring that the eigenvectors of every 
network layer are mapped nonlinearly to the 
optimal value. Therefore, the DBN output dataset 
is utilized as input to the BPNN to train the BPNN 
on the trained dataset. Additionally, the pre-
training model obtains the learning rate of ε and θ= 
(W, b, c) as module parameters subsequently. The 
𝜎   error gradients for every visible layer element 
in 𝑣  can then be calculated as follows:  

𝜎 = 𝑄 (1 − 𝑄 )(𝑒 − 𝑄 )   
     

 (3) 

The visible layer of the output unit is denoted 
by 𝑄  in Equation (3), which represents the desired 
output as 𝑒  . The following expression is used to 
compute the 𝜎  error gradients for each ℎ  hidden 
layer element. 

𝜎 = 𝑄 (1 − 𝑄 ) ∑ 𝜃 𝜎 ℎ    
     

  (4) 

The predictive module for the durability of 
concrete structures is established by the error 
gradient value. The coefficient of expected value is 
represented by C, while the t is represented as 𝑔 . 

The module for predicting the durability of 
concrete structures is installed by the previously 
mentioned error gradient value. The term t is 
indicated as 𝑔  and the Coefficient of expected 
value is represented by the term C. 

𝐸 = 𝜎 + (1 − 𝜆)𝑔     
     

  (5) 

For model training, the module for predicting 
concrete durability structures receives the training 
and testing datasets; the output layer is represented 
by the term P. 

𝑃 = 𝐸 𝐶𝐻     
     

  (6) 

The term C denotes the DBN memory model state, 
while H represents the output of the model, as 
shown in Equation (6). 

3.4. Aquila optimization algorithm for DBN 
hyperparameter tuning 

The enhancement of classification 
performance through the optimization of model 
hyperparameters. Until the loss function of DBN 
reaches its minimum, it is necessary to make 
minor adjustments to the parameters under 
supervision. The effectiveness of the DBN model 
are enhanced through the tuning of 
hyperparameters utilizing the AOA in this study. 
Regularly, DBN employs a top-down approach 
throughout the fine-tuning procedure. The aquila 
optimization algorithm draws inspiration from the 
hunting behavior of the Aquila raptor as a 
metaheuristic optimization algorithm. It aims to 
efficiently search through the hyperparameter 
space of DL models to find the optimal set of 
hyperparameters that maximize the performance of 
the model on a given dataset. Here's how the AOA 
can be used for hyperparameter tuning: The 
optimization process begins by initializing a 
population of potential solutions, each representing 
a set of hyperparameters for the machine learning 
model. The hyperparameters can include 
parameters such as learning rate, regularization 
strength, number of layers, number of neurons per 
layer, etc. By employing the AOA for 
hyperparameter tuning, researchers can efficiently 
search the hyperparameter to find configurations 
that optimize the performance of SOC prediction 
models, leading to more accurate and reliable 
predictions for electric vehicle battery 
management. 

AOA is an innovative, modern swarm intelligence 
algorithm. Aquila employs four distinct hunting 
strategies. In response to different categories of 
prey, the kind may adapt its hunting approach 
accordingly and subsequently utilize its swift 
speed, strong feet, and claws to attack the prey. 
Utilize the following procedures to define the 
summary of the mathematical expression: 

Step 1: Extended exploration (𝑍 ): Increased 
altitude by employing a vertical squat Here, the 
Aquila rises to a greater altitude than the ground 
and conducts a broad survey of the area in issue. 
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After locating the prey area, the AOA descends in 
a vertical trajectory. This behavior can be 
represented mathematically in the following way: 

𝑍 (𝑡 + 1) = 𝑍 (𝑡) × 1 − + (𝑍 (𝑡) −

𝑍 (𝑡) ×  𝑝 )      (7) 

𝑍 (𝑡) =  ∑ 𝑍 (𝑡)    

     
 (8) 

𝑍 (𝑡) denotes the location that was obtained 
optimally, while Z(t) signifies the mean location of 
every Aquila in the current iteration. The variables 
t and T represent the current iteration and the 
maximum number of iterations, respectively. 𝑁 
and 𝑝  denote the population size and an arbitrary 
integer between 0 and 1, respectively. 

Step 2: Narrowed exploration (𝑍 ): glide attack 
reduction and contour flight This is a widely 
utilized foraging strategy for Aquila. It attacks the 
prey using brief gliding, then falls within the 
specified region and encircles the prey in flight. 
The position has been updated as follows: 

𝑍 (𝑡 + 1) = 𝑍 (𝑡) × 𝐿𝑃(𝐷) + (𝑍 (𝑡) + (𝑦 −
𝑥) ×  𝑝 )     

 (9) 

In Equation (9), 𝑍 (𝑡) signifies a region of Aquila 
that is arbitrary, 𝐷 represents the size of 
dimension, and 𝑝  indicates a random integer that 
ranges between 0 and 1. 𝐿𝑃(𝐷) represents the 
Levy flight function, which is defined as follows: 

𝐿𝑃(𝐷) = 𝑠 ×
 × 

| |

    

     
  (10) 

𝜎 =  
( )× 

× × 

    

     
 (11) 

The expression denotes constant values s and β, 
which correspond to 0.01 and 1.5, respectively. 
Arbitrary numbers u and v are defined as such and 
fall within the range [0, 1].  

The spiral shape in the search space is denoted by 
y and χ, which are computed as follows: 

⎩
⎪
⎨

⎪
⎧

𝑥 = 𝑝 × sin(𝜃)

𝑦 =  𝑝 ×  cos(𝜃)
𝑝 =  𝑝 + 0.00565 ×   𝐷

𝜃 =  −𝜔 ×   𝐷 +  
×

   

     
 (12) 

In Equation (12), 𝑝   signifies the quantity of 
search cycles that fall within the range of 1 to 20, 
If 𝐷  consists of integer values ranging from one 
to the dimension of D, then ω equals 0.005.  

Third Step: Expanded exploitation (𝑍 ): attack 
with a slower descent and lower trajectory After a 
consensus has been reached on the location of the 
prey, the Aquila descends vertically to launch its 
initial attack. The designated area is utilized by 
AOA to approach and attack the prey. The 
subsequent equation serves as a mathematical 
representation of this behavior: 

𝑍 (𝑡 + 1) = 𝑍 (𝑡) × 𝑍 (𝑡)  ×  𝛼 − 𝑝 +

(𝑢𝐵 − 𝐿𝐵) × 𝑝 +  𝐿𝐵 × 𝛿   (13) 

In Equation (13), 𝑍 (𝑡) represents the location 
that was effectively attained, and 𝑍 (𝑡) indicates 
the present position average value. α and δ 
represents the tuning exploitation parameter set as 
0.1, 𝑢𝐵 and 𝐿𝐵 denote the limits (upper and 
lower), and 𝑝  and 𝑝  refer to values present 
randomly in the intervals of 0 and 1. 

Step 4: Narrow exploitation (𝑍 ): Prey capture and 
movement 

In this scenario, the Aquila pursues the prey along 
its escape trajectory before charging it from the 
ground. The equation for the behavior is given as:

 

⎩
⎪
⎨

⎪
⎧

𝑍 (𝑡 + 1) = 𝑄𝐹 ×  𝑍 (𝑡) − (𝐺 × 𝑍(𝑡) ×  𝑝 ) − 𝐺 × 𝐿𝐹(𝐷) + 𝑝 × 𝐺  

𝑄𝑃(𝑡) =  𝑡
×

( )

𝐺 =  2 × 𝑝 − 1

𝐺 =  2 × 1 −

   (14) 
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Equation (14) defines the current location as Z(t), 
while the quality function value QF(t) represents 
the equilibrium of the searching approach. G1 
indicates the movement parameters of aquila while 
pursuing preys, a random integer that falls between 
the interval [-1, -1]. G2 denotes the slope flight 
that decreases sequentially from 2 to 0 while 
following prey. 𝑝 , 𝑝 , and 𝑝  were numbers 
randomly that lies between [0, 1]. To improve the 
efficacy of classifiers, the AOA system calculates a 
fitness function (FF). A positive integer is 
designated to represent candidate outcomes that 
exhibit superior performance [32]. The following 
section includes the pseudocode for the DBN-
AOA model. 

Pseudocode For DBN-AOA Algorithm 

Initialize the parameters of DBN and AOA 
Load EV battery data  
load('battery_data.mat'); 
Preprocess data  
X = normalizeData(battery_data.X); 
y = battery_data.y; 
Split data using MATLAB's crossvalind function 
cv = cvpartition(size(X,1), 'Holdout', 0.2); % 20% 
for validation 
X_train = X(training(cv); 
y_train = y(training(cv); 
X_val = X(test(cv); 
y_val = y(test(cv); 
Define hyperparameter search space 
learning_rates = [0.01, 0.001, 0.0001]; 
hidden_neurons = {[10, 5], [15, 10], [20, 15]}; 
best_params = []; 
best_performance = inf; 
Hyperparameter tuning 
for lr = learning_rates 
    for neurons = hidden_neurons 
        Train the model 
        Evaluate the model 
        Update best parameters and performance 
    end 
end 
Final training with best hyperparameters 
Evaluate final model on test data. 

4. EXPERIMENTAL ANALYSIS 

4.1. Experimental Setup 

The experiments are performed in a 
system with 12 GB operating memory. The system 
is equipped with a CPU, Intel i5 CPU @3.2 GHz. 
The performance evaluation of this research was 
carried out using the SiCWell Dataset. The 

DBN+AOA classification algorithm and the 
analysis of data are both performed with the help 
of the MATLAB module. 

4.2. Performance Metrics 

Measuring performance is critical to 
achieving success in the data-driven society of 
today. The efficiency of the research model is 
determined by evaluating the outcomes by the 
classification parameters. Three parameters—
RMSE, MSE, and MAE—were essentially 
employed to assess the proposed model's ability to 
predict SoC values. Consequently, the performance 
metrics are evaluated using the subsequent 
metrics: The MAE measures the average absolute 
differences among the actual and predicted values 
computed across the dataset. MAE measures 
accuracy for the model's performance on the same 
scale, as the final objective remains unchanged. A 
model is considered more accurate as the MAE 
approaches zero. 

𝑀𝐴𝐸 = ∑ (𝑦 − 𝑦)   (15) 

The MSE quantifies the variation among the 
predicted and actual values by taking the square 
root of the average variance throughout the whole 
dataset. 

𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦)     (16) 

RMSE is the error value obtained by taking the 
square roots of the MSE. 

𝑅𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦)    

     
  (17) 

4.3. Performance Evaluation 

This section presents the evaluation of the 
proposed predictive model’s comparative analysis. 
The data from the SicWell dataset are given as 
input to the predictive model. The data from the 
dataset are divided into training and test sets. 
According to these sets, the performance 
evaluation is performed with all the models. The 
performances of the DBN+AOA method in battery 
SoC prediction are measured based on various 
parameters like MSE, MAE and RMSE. 
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Table 1. Proposed Model’s Performances Of SOC Estimation Under Varying Temperatures 

Temperature 
(◦C) 

RMSE MAE MSE 

10 0.13 0.015 0.012 
20 0.18 0.012 0.008 
30 0.08 0.010 0.005 
40 0.20 0.008 0.010 
50 0.12 0.016 0.0155 

AVERAGE 0.136 0.0122 0.0101 
 

As shown in Table 1, the proposed DBN+AOA model produces excellent SOC estimation results across a 
range of temperatures. All RMSEs are within 0.2%, MAEs are within 0.17%, and MSEs are within 0.15%, 
according to the results. RMSE, MAE, and MAE have respective averages of 0.136, 0.0122, and 0.0101. 
Consequently, the suggested network can capture the impact of ambient temperature and delivering 
accurate SOC estimations despite varying temperatures.  

Figure 5 shows the graphical plot of the proposed model RMSE parameter for SOC prediction under 
varying temperatures like 10, 20, 30, 40, and 50 degrees respectively. The RMSE values vary from a 
maximum of 0.20 to a minimum of 0.08. The average RMSE value obtained is 0.136 with a difference of 
0.12. The graphical plot of MAE values under varying temperatures is shown in Figure 6. The MAE values 
vary from a maximum of 0.016 to a minimum of 0.008. the average value of 0.0122 is obtained by the 
DBN+AOA model. 

 

Figure 5. Graphical Plot Of RMSE Under Varying Temperatures 
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Figure 6. Graphical Plot Of MAE Under Varying Temperatures 

Figure 7 illustrates the MSE values of the 
proposed model under different temperature 
conditions. MSE vary from a maximum of 

0.0155 to a minimum of 0.005 with a difference 
of 0.15. 

 

Figure 7. Graphical Plot Of MSE Under Varying Temperatures 
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Table 2 compares the proposed model’s testing 
performance with existing models included in the 
review. The performance analysis was compared 

with models like XGBoost, NARX-Net & 
ARIMA, MLP + LSTM, RF + LSTM and CNN 
+ LSTM.  

Table 2. Comparison of Performance Analysis  

S.NO MODEL RMSE MAE MSE 
1 XGBoost [35] 0.1515 0.1426 - 
2 NARX-Net & ARIMA [36] 0.1707 0.0291 0.1383 
3 MLP + LSTM [37] 1.527 1.161 0.023 
4 RF + LSTM [38] 0.453 0.343 0.206 
5 CNN + LSTM [17] 1.31 0.92 - 
6 PROPOSED MODEL 

DBN+AOA 
0.136 0.0122 0.0101 

 

 

Figure 8. Graphical Plot Of RMSE Comparison 

Figure 8 shows the graphical plot for the 
comparison of RMSE values with various models. 
Based on the test performance comparison made 
with the existing models, the proposed model has a 
lower error rate than the other models. The 
research model has an RMSE of 0.136, which is 
1.291 to 0.015 lower than the other models. Figure 
9 shows the graphical plot for the comparison of 
values. The MAE value of the research model was 
0.012, which is 1.14 to 0.016 lower than the 

compared models. Figure 10 shows the graphical 
plot for the comparison of MSE values with 
existing models excluding XGBoost and CNN + 
LSTM models. The MSE score of the research 
model was 0.0101, which is 0.19 to 0.012 reduced 
than the NARX-Net & ARIMA, MLP + LSTM 
and RF + LSTM models. As a result, according to 
this comparison, the DBN+AOA model has 
obtained better results than the compared models 
in this research.  
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Figure.9. Graphical Plot Of MAE Comparison 

 
Figure.10. Graphical Plot Of MSE Comparison 
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The model demonstrates superior performance in 
estimating SOC parameters with low error metrics. 
The model's effectiveness is demonstrated across 
various temperature conditions, showcasing its 
robustness in handling different environmental 
factors that influence battery behavior. The model's 
performance is compared with various other 
models commonly used for SOC prediction, 
demonstrating its superiority over alternative 
approaches such as XGBoost, NARX-Net & 
ARIMA, MLP + LSTM, RF + LSTM, and CNN + 
LSTM. 

The research topic concluded by assessing the 
effectiveness of the suggested model based on 
specified criteria outlined in the study. The 
research probably consisted of accuracy metrics 
such as RMSE, MAE, and MSE, which were 
employed to objectively evaluate the model's 
predicted accuracy. In addition, a temperature 
sensitivity analysis was performed to assess the 
model's robustness under different environment 
circumstances. A comparative analysis may have 
been conducted to determine the superiority or 
effectiveness of the suggested model, in 
comparison to existing SOC estimate models. This 
conclusion confirms that the proposed model 
effectively addresses the challenges of estimating 
SOC in EVs powered by LIBs. 

The scientific contribution of the proposed 
DBN+AOA model is in its higher performance for 
SOC estimation in EVs powered by LIBs, 
compared to other methods described in existing 
research. The existing models, including XGBoost, 
NARX-Net, ARIMA, MLP + LSTM, RF + LSTM, 
and CNN + LSTM, have different levels of 
accuracy in predicting SOC. However, the 
suggested DBN+AOA model outperforms them 
greatly in all metrics, such as RMSE, MAE, and 
MSE. The remarkable reduction in RMSE and 
MAE values achieved by the proposed model, 
indicating its enhanced precision and reliability in 
SOC estimation. The DBN+AOA model is more 
effective and superior compared to previous 
research in solving the issues of SOC prediction in 
EVs. This model significantly contributes to the 
improvement of battery management systems in 
the context of sustainable transportation. 

5. CONCLUSION 

In this paper, a combined DBN+AOA 
model for the SOC estimation of LIBs was 
proposed. The research model has a series of 
workflows including data pre-processing, feature 

extraction, classification and hyperparameter 
tuning. Data collected from the SiCWell dataset 
are preprocessed by Z-score normalization. DBN 
was used for classification and feature extraction. 
The hyperparameters were tuned by using an 
Aquila optimization algorithm. The proposed 
model’s performance was assessed by the SOC 
parameters such as RMSE, MAE, MSE. The 
DBN+AOA model produced the best results with 
RMSE under 0.14%, MAE under 0.013% and 
MSE less than 0.011% respectively. The average 
values of RMSE, MAE, MAE are 0.136, 0.0122 
and 0.0101 respectively. The proposed results are 
compared with the various models like XGBoost, 
NARX-Net & ARIMA, MLP + LSTM, RF + 
LSTM and CNN + LSTM. The comparative 
analysis shows that the proposed DBN+AOA 
model was the best method for SOC prediction 
under different temperatures, with minimum error 
values of RMSE, MAE, and MAE. To conclude, 
the SOC estimation method for LIBs that was 
suggested, which is founded upon the DBN+AOA, 
has undergone extensive validation and produced 
excellent results. The DBN+AOA model has some 
limitations as the performance of the model 
heavily relies on the availability and quality of the 
training data. Ensuring access to comprehensive 
and representative datasets may pose challenges in 
real-world applications. While the model 
demonstrates promising results across various 
temperature conditions, its generalizability to other 
environmental factors or battery chemistries may 
require further investigation and validation. In 
future, implementing the proposed model into real-
time battery management systems may require 
addressing latency and resource constraints to 
ensure practical applicability in dynamic 
operational environments. 
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