
 Journal of Theoretical and Applied Information Technology 
15th August 2024. Vol.102. No. 15 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5853 

 

A DEEP LEARNING APPROACH TO SOFTWARE 
VULNERABILITY DETECTION BY LEVERAGING CNN’s 

AND COMPARING WITH RNN’s FOR IMPROVED 
ACCURACY AND EFFICIENCY 

RAGHUPATHY DURGA PRASAD1 ,  Dr. MUKTEVI SRIVENKATESH2 

1Research Scholar, GITAM University, Department of Computer Science, Visakhapatnam, India 
2Associate Professor,  GITAM University, Department Computer Science,Visakhapatnam, India 

E-mail:  1deardp@gmail.com, 2smuktevi@gitam.edu 
 

ABSTRACT 

This study introduces an innovative paradigm for software security that leverages convolutional neural 
networks (CNNs) to detect emerging cyber threats. Our approach enhances software security detection 
mechanisms, offering superior performance compared to traditional machine learning methods and recurrent 
neural networks (RNNs), which underperformed in this context. The CNN architecture includes multiple 
convolutional layers for feature extraction, pooling layers for dimensionality reduction, and fully connected 
layers for classification, with non-linear activation functions like SoftMax to expedite classification. Dropout 
layers mitigate overfitting and enhance generalization. 

Using both synthetic and real-world data, our CNN model exhibited robust performance, achieving an 
accuracy of 0.91, precision of 0.90, recall of 0.89, and an F1-score of 0.895. These metrics indicate CNNs' 
proficiency in identifying intricate patterns and anomalies in software code, reducing false positives 
significantly. Although RNNs with LSTM or GRU layers capture temporal correlations in code sequences, 
they were less effective than CNNs in this application. 

The study's methodologies and code are available on Google Drive for cybersecurity specialists to replicate 
and build upon. By automating vulnerability detection with CNNs, cybersecurity professionals can focus 
more on pre-emptive measures. This research underscores the potential of CNNs to enhance software 
vulnerability detection, advocating for their integration with RNNs to create safer and more resilient software 
systems in response to escalating cyber threats. 

Keywords: Convolutional Neural Networks, Recurrent Neural Networks, Software Vulnerabilities, 
Automated Vulnerability Detection. 

1.  INTRODUCTION 
 

Software is pervasive in the digital age and 
is necessary for almost every aspect of modern life, 
including personal gadgets, business processes, and 
basic infrastructure [1-3]. Even while software is 
essential, its built-in flaws continue to be a serious 
problem, putting consumers and businesses at risk of 
cyberattacks [4, 5, 6]. Cyber dangers have changed 
as attackers improve their methods to exploit even 
the tiniest software system vulnerabilities [5, 7, 8, 9]. 
These vulnerabilities compromise data security and 
damage firms' reputations and finances [10]. 
Traditional vulnerability detection methods, such as 
static and dynamic analyses, are increasingly 
inadequate due to their high false positive rates, 
limited code coverage, and reliance on human-

defined features and rules [11, 12, 13, 14]. Given this 
context, it is necessary to adopt a revolutionary 
strategy for software vulnerability identification, 
moving away from rule-based detection systems and 
toward intelligence-driven ones [15]. This study 
aims to enhance software vulnerability detection by 
leveraging the computing capacity and pattern 
recognition skills of convolutional neural networks 
(CNNs), a subset of deep neural networks known for 
their proficiency in high-dimensional data 
processing tasks [16]. CNNs excel in tasks like 
speech and image recognition and their ability to 
automatically learn from data and generalize makes 
them ideal for challenging and error-prone human 
feature definition. This study investigates CNNs' 
ability to detect and categorize software framework 
security issues. We can employ CNN architecture to 
exploit deep learning's abilities to uncover 
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complicated, nuanced data patterns that standard 
detection methods miss [18]. The research uses a 
dataset carefully selected to cover a variety of 
software vulnerability manifestations to test and 
train the CNN model [19]. Our research 
demonstrates that the CNN model can detect 
software vulnerabilities with an accuracy of 90%, 
significantly reducing false positives and improving 
the overall reliability of automated detection 
systems. The rapid expansion of the digital 
environment has made software vulnerability 
discovery harder [20]. The National Vulnerability 
Database (NVD) and Common Vulnerabilities and 
Exposures (CVE) have experienced an exponential 
growth in vulnerabilities revealed, underlining the 
urgent need for enhanced detection [11, 21]. 
Constant threat actor development, which exploits 
weaknesses to launch attacks, and software 
complexity drive this rise. Our work uses CNNs to 
automate detection systems to overcome these 
limitations and shift from manual to more effective 
techniques. Due to the variety and complexity of 
software vulnerabilities, a flexible and effective 
detection technique is needed [22]. Classic other 
learning approaches work but need manual feature 
selection and model change [23]. These painstaking 
approaches are limited by human bias and mistakes. 
CNNs automate feature extraction, eliminate human 
involvement, and may enhance detection accuracy 
through deep learning. Automation is needed to 
manage massive data sets and complex software 
vulnerability patterns [24]. There have been inherent 
constraints to the conventional dependence on static 
and dynamic analysis techniques, especially about 
scalability and adaptability to new or developing 
forms of software risks [25]. While helpful for some 
kinds of analysis, static methods can produce a high 
number of false positives and are ineffective against 
unidentified vulnerabilities [26]. However, dynamic 
tools may struggle with insufficient coverage and 
real-time implementation. Our CNNs solve these 
limitations by learning from real-world data patterns 
to better detect known and new vulnerabilities. This 
research aims to radically change our understanding 
of cybersecurity, not merely solve an old problem 
with new technology. Our goal is to create a system 
that can identify vulnerabilities faster, with less 
human intervention, and with higher accuracy by 
utilizing CNNs. This might greatly reduce attackers' 
window of opportunity and increase digital system 
security worldwide [27]. Our work proves the 
efficacy of deep learning algorithms in vulnerability 
discovery through extensive experimentation and 
rigorous testing, setting a new standard for 
cybersecurity research and application. 

2. RELATED WORKS:  

Several studies and reviews have 
documented the methods used to combine deep 
learning and vulnerability detection. Liu et al. [28 
41] extended neural model-based vulnerability 
detection from source code to binary code, 
broadening the scope to include commercial 
software and firmware of Internet of Things (IoT) 
devices. This expansion is crucial as it allows 
vulnerability detection in environments where 
source code may not be available, enhancing 
security measures across a broader range of 
applications. Pang et al. [29 13] leveraged the N-
gram model to encode source code, refining the 
detection capabilities of local representation 
methods. While effective at representing source code 
for vulnerability detection, such methods often 
struggle with high dimensionality and inadequate 
abstraction of contextual information. Distributed 
representation methods are proposed to overcome 
these limitations, suggesting a pathway to more 
robust and context-aware models. Radjenovic et al. 
[30] review the literature on software metrics used in 
software failure prediction to demonstrate the scope 
of this issue. Dam et al. [31 36] employed long short-
term memory (LSTM) networks to learn 
embeddings from serialized ASTs, using both local 
and global features to train classifiers. This approach 
underscores the potential of LSTMs to capture 
deeper semantic features from structured code data, 
although the file-level granularity of detection may 
limit the precise localization and understanding of 
vulnerabilities. Wang et al. [32 37] parsed files into 
AST nodes and utilized deep belief networks (DBN) 
to extract semantic features from token vectors. 
While this method offers a scalable approach to 
vulnerability detection at a file level, challenges 
remain in the granularity of detection and the depth 
of vulnerability understanding required for 
comprehensive software security analyses. Singh et 
al. [33] provide a critical feasibility assessment and 
a brief review of deep learning-based software 
vulnerability detection methods to address this gap. 
Lin et al. [4] demonstrate innovative code semantics 
enhancements for discovering susceptible patterns 
using deep learning methods. Deep learning and 
other software vulnerability identification 
approaches have been researched.  Votipka et al. [6] 
divide issues into security, functionality, and 
performance. Software issues may include 
vulnerabilities, they say. According to Ghaffarian 
and Shahriari [31], vulnerabilities are faults caused 
by configuration, development, or design problems 
that can be used to bypass security measures. 
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The new vulnerability detection approaches from AI 
bypass old limitations. Bug prediction-inspired 
metrics-based vulnerability detection uses software 
engineering metrics [35, 36, 37, 38]. Patterns save 
manual labor and increase efficiency. Fabian [39, 40] 
and Bian et al. [41] say these methods find 
vulnerabilities using normative patterns from mature 
software.They identify aberrant syntactic patterns. 
Inter-procedural statement-level vulnerability 
detection methods represent the cutting edge in this 
field. SySeVr [42] and VulDeePecker [43, 44] use 
inter-procedural dependency analysis to generate 
sliced source code, with word2vec employed as the 
embedding method. VulDeeLocator [45] uses an 
attention mechanism and LSTM neural networks to 
learn high-level features and convert source code to 
LLVM IR for syntax and semantics. These methods 
demonstrate how advanced deep learning models 
that understand code semantics have replaced 
pattern recognition for vulnerability finding. CNNs 
improve detection, accuracy, labor efficiency, and 
effectiveness. According to this methodological and 
historical backdrop, our CNNs for software 
vulnerability identification are substantial advances. 

Deep learning research in intrusion detection has 
shown the potential and challenges of employing 
these cutting-edge algorithms in real-world 
situations. Aldweesh et al. [46] gave a taxonomy and 
detailed analysis of anomaly-based deep learning 
intrusion detection systems (IDS) and 
recommendations for further research. Ferrag et al.'s 
[47] review of deep learning-based intrusion 
detection systems (IDS), with a focus on network 
IDS, and performance evaluation across various 
datasets, including two new real traffic datasets, 
supports their findings. Vinayakumar et al. proposed 
Scale-hybrid-IDS-AlertNet, a hybrid deep neural 
network (DNN) architecture [48]. It may monitor 
network traffic in real time and notify administrators 
of cyberattacks. On NSL-KDD and KDD'99 
benchmark datasets, this system performed 80.7% 
binary and 76.5% multiclass F-measure. It used 
distributed deep learning models to evaluate massive 
data sets. Tang et al. [49] constructed a DNN model 
to recognize software-defined networking 
irregularities. Their simple and effective binary 
classification model, trained on the NSL-KDD 
dataset, has 75.75% accuracy. A basic structure with 
three concealed levels was adopted. A sparse 
autoencoder-based self-taught deep learning model 
for network intrusion detection was developed by 
Javaid et al [50]. The next step involves using an 
ANN classifier that is based on Softmax regression. 
Two-class and five-class models had 88.39% and 
79.10% accuracy, respectively. Work by pals. The 

intrusion detection model in [51] employs RNNs 
because they can handle changing data. Forward and 
reverse propagation weights were changed for 
binary and multiclass classifications to obtain 
83.28% and 81.29% accuracy. Cybersecurity RNNs 
handle sequence and time-series data well. 

Traditional various learning and deep learning 
hybrids can increase intrusion detection system 
accuracy. Using SVM and sparse autoencoder, Al-
Qatf et al. [52] trained a reliable classification model. 
Training using the NSL-KDD dataset, their model 
beat J48, naïve Bayesian, and SVM in two- and five-
class classifications, respectively, with 84.96% and 
80.48%. Shone et al. [53] used random forests and 
non-symmetric deep autoencoders for unsupervised 
feature learning. The accuracy of 97.85% across five 
categories was impressive. Vinayakumar et al. 
examined numerous deep learning architectures on 
the KDD'99 dataset, including CNN-LSTM 
networks. CNN-LSTM combinations outperform 
conventional multiclass classification 
configurations, demonstrating that neural networks 
enhance cybersecurity feature extraction and 
categorization. The findings show deep learning can 
classify software vulnerabilities and network 
breaches. Our work shows that CNNs find software 
flaws, boosting cybersecurity. Cyber threats change, 
so systems must too. 

3. LITERATURE REVIEW 

3.1. Overview of Software Vulnerability 
Detection: Software vulnerability detection has 
been a critical area of research, with numerous 
studies focusing on identifying and mitigating 
security flaws in software systems. Traditional 
methods, such as static and dynamic analysis, have 
been widely used but have limitations in terms of 
high false positive rates and low code coverage [57], 
[61] 

3.2. Advancements in Deep Learning for 
Cybersecurity: Recent advancements in deep 
learning have shown promise in addressing these 
limitations. Deep learning techniques, particularly 
convolutional neural networks (CNNs), have been 
successfully applied in various domains such as 
image and speech recognition [71]. Their ability to 
automatically extract features from raw data makes 
them suitable for complex tasks like software 
vulnerability detection [64]. 

3.3. CNNs vs. RNNs in Vulnerability Detection: 
Studies have compared the effectiveness of CNNs 
and recurrent neural networks (RNNs) for software 
vulnerability detection. While RNNs are proficient 
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in handling sequential data, they have shown 
limitations in accurately detecting vulnerabilities 
due to their inability to capture spatial hierarchies in 
code [58]. On the other hand, CNNs excel in 
identifying complex patterns within software code, 
making them more effective for this task [66]. 

3.4. Hybrid Models and Their Potential: Hybrid 
models combining CNNs and RNNs have been 
proposed to leverage the strengths of both 
architectures. These models aim to enhance 
detection capabilities by capturing both spatial and 
temporal features of the code [60]. However, the 
integration of these models is still in its nascent 
stages and requires further exploration. 

3.5. Need for Automated and Scalable Solutions: 
With the exponential growth of software 
applications and increasing complexity of code, 
there is a pressing need for automated and scalable 
vulnerability detection solutions. Current methods 
are often resource-intensive and lack the flexibility 
to adapt to new and evolving threats [68]. CNNs, 
with their robust feature extraction capabilities and 
scalability, present a promising solution to these 
challenges. 

3.6. Application to IoT Systems and Broader 
Implications: The applicability of deep learning 
models extends beyond traditional software systems 
to include Internet of Things (IoT) devices, which 
are particularly vulnerable to cyberattacks. Research 
in this area has demonstrated the effectiveness of 
CNNs in detecting vulnerabilities in IoT systems, 
further underscoring their versatility and potential 
impact [72]. 

3.7 Justification for This Research 

Despite the progress in applying deep learning to 
software vulnerability detection, several gaps 
remain. Traditional methods and RNNs are 
insufficient in capturing the complex spatial 
relationships within code, leading to suboptimal 
detection performance. While hybrid models offer 
promise, their integration is still underdeveloped. 

This research aims to address these gaps by: 

Focusing on CNNs: Leveraging the proven 
strengths of CNNs in feature extraction and pattern 
recognition to improve vulnerability detection 
accuracy. 

Comprehensive Evaluation: Conducting a rigorous 
comparative analysis of CNNs and RNNs to provide 
empirical evidence of their effectiveness. 

Scalability and Automation: Developing a scalable 
and automated detection system that can handle the 

increasing volume and complexity of software code, 
thereby reducing reliance on manual processes. 

Broad Applicability: Ensuring the proposed 
solution is versatile and applicable to various 
domains, including traditional software systems and 
IoT devices. 

The significance of the research contribution can be 
evaluated based on several key aspects: 

Innovative Application of CNNs to Software 
Vulnerability Detection: This research introduces 
the innovative application of convolutional neural 
networks (CNNs) to the field of software 
vulnerability detection. While CNNs have been 
extensively used in image and speech recognition, 
their use in analyzing software code for security 
vulnerabilities is relatively novel. This opens up new 
avenues for leveraging deep learning in 
cybersecurity. 

Empirical Evidence of Superiority: The research 
provides empirical evidence that CNNs outperform 
recurrent neural networks (RNNs) and traditional 
methods in detecting software vulnerabilities. This 
evidence is crucial for the cybersecurity community, 
as it highlights the potential of CNNs to improve 
detection accuracy, reduce false positives, and 
enhance overall system security. 

Addressing Limitations of Traditional Methods: 
Traditional vulnerability detection methods, such as 
static and dynamic analysis, often struggle with high 
false positive rates and limited code coverage. This 
research addresses these limitations by 
demonstrating how CNNs can automatically extract 
relevant features from software code, thereby 
improving detection performance and reducing the 
need for manual feature engineering. 

Scalability and Automation: The research 
emphasizes the scalability and automation potential 
of CNN-based detection systems. As software 
systems become more complex and the volume of 
code increases, automated solutions are essential for 
efficient vulnerability detection. This contribution is 
significant in reducing the resource burden on 
cybersecurity professionals and allowing them to 
focus on more strategic tasks. 

Versatility Across Domains: The research shows 
that the proposed CNN-based approach is versatile 
and can be applied to various domains, including 
traditional software systems and Internet of Things 
(IoT) devices. This broad applicability enhances the 
relevance and impact of the research, making it 
significant for a wide range of applications in 
cybersecurity. 
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Framework for Future Research: By providing a 
detailed methodology and comparative analysis, the 
research sets a strong foundation for future studies in 
the field. It encourages further exploration of hybrid 
models that combine CNNs and RNNs, as well as the 
application of CNNs to other types of software and 
cybersecurity challenges. 

Improving Cybersecurity Measures: The ultimate 
goal of the research is to improve cybersecurity 
measures by enhancing the detection of software 
vulnerabilities. By providing a more accurate and 
automated detection system, the research contributes 
to the development of more secure software systems, 
which is of critical importance given the increasing 
frequency and sophistication of cyberattacks. 

The research contribution is highly significant 
because it introduces a novel application of CNNs to 
a critical area of cybersecurity, provides robust 
empirical evidence of their effectiveness, addresses 
the limitations of traditional methods, and offers a 
scalable and versatile solution. The research also 
lays the groundwork for future advancements in the 
field, making it a valuable contribution to both 
academic research and practical applications in 
cybersecurity. 

4. PROBLEM STATEMENT 

Software vulnerability detection is a critical 
aspect of cybersecurity, as software systems are 
integral to nearly every facet of modern life, from 
personal devices to enterprise infrastructure. Despite 
advances in vulnerability detection techniques, 
traditional methods such as static and dynamic 
analysis continue to face significant challenges, 
including high false positive rates, limited code 
coverage, and the need for extensive manual feature 
engineering [57],[61].  These methods are 
increasingly inadequate in the face of rapidly 
evolving cyber threats and the exponential growth of 
software complexity [59]. 

Recent advances in deep learning have demonstrated 
significant potential in various domains, including 
image and speech recognition, due to their ability to 
automatically extract and learn complex patterns 
from raw data [71]. Convolutional neural networks 
(CNNs), in particular, have shown remarkable 
success in high-dimensional data processing tasks. 
However, their application in software vulnerability 
detection remains underexplored. 

Several studies have attempted to apply machine 
learning techniques to software vulnerability 
detection, with mixed results. Recurrent neural 
networks (RNNs), known for their proficiency in 

handling sequential data, have been employed in this 
context but have shown limitations in accurately 
detecting vulnerabilities due to their inability to 
capture spatial hierarchies within code [58].  Hybrid 
models combining CNNs and RNNs have also been 
proposed, aiming to leverage both spatial and 
temporal features, but these approaches are still in 
their infancy and require further development [60]. 

Given these challenges and the promising 
capabilities of CNNs, there is a clear need for 
research that rigorously evaluates the effectiveness 
of CNNs in software vulnerability detection. This 
research aims to address this gap by developing a 
CNN-based methodology for automated software 
vulnerability detection, providing a comprehensive 
comparative analysis with RNNs and traditional 
methods. By leveraging the feature extraction 
capabilities of CNNs, this research seeks to improve 
detection accuracy, reduce false positives, and 
enhance the scalability and automation of 
vulnerability detection systems. 

4.1 Justification for the Research 

Inadequacy of Traditional Methods: Traditional 
static and dynamic analysis methods struggle with 
high false positive rates and limited code coverage, 
making them increasingly inadequate in addressing 
modern cybersecurity challenges [57], [61]. 

Promise of Deep Learning: Deep learning 
techniques, particularly CNNs, have demonstrated 
significant potential in other domains due to their 
ability to automatically learn complex patterns, but 
their application to software vulnerability detection 
is underexplored [71]. 

Limitations of Existing Machine Learning 
Approaches: While RNNs have been used for 
vulnerability detection, they fall short in capturing 
the spatial hierarchies in code, leading to suboptimal 
performance [58]. Hybrid models offer promise but 
require further development and validation [60]. 

Need for Scalable and Automated Solutions: With 
the increasing complexity and volume of software, 
there is a pressing need for scalable and automated 
vulnerability detection systems. CNNs offer a 
promising solution due to their robust feature 
extraction capabilities and scalability [68]. 

This research is essential to advancing the field of 
software vulnerability detection by rigorously 
evaluating and demonstrating the effectiveness of 
CNNs. By addressing the limitations of traditional 
methods and existing machine learning approaches, 
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this research aims to provide a scalable, automated, 
and accurate solution to detect software 
vulnerabilities, ultimately contributing to enhanced 
cybersecurity measures in an increasingly digital 
world. 

5. RESEARCH DESIGN 

5.1 Introduction This study aims to enhance 
software vulnerability detection by leveraging 
convolutional neural networks (CNNs). Traditional 
methods and recurrent neural networks (RNNs) are 
inadequate due to their limitations in capturing 
complex patterns and high false positive rates. This 
research will develop, implement, and evaluate a 
CNN-based approach, providing a comparative 
analysis with existing methods. 

5.2 Objectives 

 Develop a CNN-based model for software 
vulnerability detection. 

 Compare the performance of CNNs with 
RNNs and traditional methods. 

 Validate the model using diverse datasets to 
ensure robustness and generalizability. 

 Provide empirical evidence of CNNs' 
effectiveness in improving detection 
accuracy and reducing false positives. 

5.3 Research Questions 

 How effective are CNNs in detecting 
software vulnerabilities compared to RNNs 
and traditional methods? 

 Can a CNN-based model reduce false 
positives and improve accuracy in software 
vulnerability detection? 

 What are the key factors influencing the 
performance of CNNs in this context? 

5.4 Methodology 

5.4.1 Data Collection 

 Datasets: Utilize publicly available 
datasets like the National Vulnerability 
Database (NVD) and custom datasets 
comprising synthetic and real-world 
software vulnerabilities. 

 Data Preparation: Preprocess code 
snippets to a format suitable for CNN input, 
such as tokenization and normalization. 

 

 

5.4.2 Model Development 
 CNN Architecture: 

Input Layer: Preprocessed code snippets. 

Convolutional Layers: Multiple layers to 
capture different levels of abstraction in the 
code. 

Pooling Layers: To reduce dimensionality 
and computational complexity. 

Fully Connected Layers: For 
classification of code segments as 
vulnerable or non-vulnerable. 

Activation Functions: Use ReLU for 
hidden layers and SoftMax for the output 
layer. 

Dropout Layers: To prevent overfitting. 

 RNN Architecture (for comparison): 

Input Layer: Preprocessed code 
sequences. 

Recurrent Layers: Using LSTM or GRU 
units to capture temporal dependencies. 

Fully Connected Layers: For 
classification. 

Activation Functions: Use tanh for hidden 
layers and SoftMax for the output layer. 

5.4.3 Training and Optimization 

 Loss Function: Use cross-entropy loss for 
classification tasks. 

 Optimizer: Adam optimizer for efficient 
training. 

 Training Process: Utilize backpropagation 
with mini-batch gradient descent. 

 Hyperparameters: Experiment with 
different learning rates, batch sizes, and 
epochs to optimize model performance. 

5.4.4 Model Validation and Testing 

 Cross-Validation: Use K-fold cross-
validation to ensure model robustness and 
generalizability. 

 Evaluation Metrics: Measure accuracy, 
precision, recall, and F1-score to assess 
model performance. 

 Comparative Analysis: Compare the 
performance of CNNs, RNNs, and 
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traditional methods using the same 
evaluation metrics. 

5.5 Experimental Setup 

5.5.1 Data Preprocessing 

 Tokenization: Convert source code into 
tokens. 

 Normalization: Scale the tokens to ensure 
uniformity. 

5.5.2 Model Training 

 Environment: Use deep learning 
frameworks like TensorFlow or PyTorch. 

 Hardware: Leverage GPU acceleration for 
efficient training. 

5.5.3 Hyperparameter Tuning 

 Grid Search: Systematically explore 
different hyperparameter combinations to 
find the optimal settings. 

5.5.4 Cross-Validation 

 K-Fold Method: Split the dataset into K 
subsets and train the model K times, each 
time using a different subset as the 
validation set. 

5.5.5 Performance Evaluation 

 Accuracy: Measure the proportion of 
correctly identified vulnerabilities. 

 Precision: Assess the accuracy of the 
model's positive predictions. 

 Recall: Evaluate the model's ability to 
identify all relevant vulnerabilities. 

 F1-Score: Calculate the harmonic mean of 
precision and recall. 

5.6 Results and Discussion 

 Performance Comparison: Present the 
comparative results of CNNs, RNNs, and 
traditional methods. 

 Analysis: Discuss the implications of the 
findings, highlighting the strengths and 
weaknesses of each approach. 

 Scalability and Automation: Address the 
potential for scaling the CNN-based model 
and its applicability in automated systems. 

Enhancing Software Security Vulnerability 
Detection Using Convolutional Neural Networks 
Abstract This study introduces an innovative 

software security paradigm that leverages 
convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and deep learning to tackle 
emerging cyber threats. By enhancing software 
security detection mechanisms, this approach aims 
to safeguard digital infrastructure more effectively. 
In our cybersecurity framework, CNNs have shown 
superior performance in detecting security 
vulnerabilities within software frameworks 
compared to traditional machine learning methods 
and RNNs, which, despite their success in other 
domains, underperformed in this application. The 
CNN architecture utilized in this study includes 
multiple convolutional layers for feature extraction, 
pooling layers for dimensionality reduction, and 
fully connected layers for classification. The 
integration of non-linear activation functions, such 
as SoftMax, expedites the classification process. 
While RNNs, employing LSTM or GRU layers, 
capture temporal correlations in code sequences, 
they proved less effective than CNNs in this context. 
Both synthetic and real-world data were used to train 
and evaluate these models, ensuring their stability 
and efficacy across diverse software environments. 
Dropout layers were employed to mitigate 
overfitting and enhance generalization. Upon 
validation, the CNN model exhibited robust 
performance and accuracy in detecting genuine 
vulnerabilities, significantly reducing false positives 
in the automated detection system. The study's 
methodologies and code are available on Google 
Drive for cybersecurity specialists to replicate and 
build upon. This research underscores the potential 
of CNNs to enhance software vulnerability detection 
and improve overall cybersecurity, providing a more 
reliable automated detection mechanism compared 
to RNNs. By automating detection with CNNs, 
cybersecurity professionals can focus more on pre-
emptive measures against attacks. Our research 
demonstrates that with an appropriately curated 
dataset, CNNs can achieve an accuracy of 0.91, 
precision of 0.90, recall of 0.89, and an F1-score of 
0.895. These metrics indicate that CNNs are 
proficient in identifying intricate patterns and 
anomalies in software code that conventional 
methods and RNNs may overlook. The study 
involved the collection and preparation of multiple 
datasets, followed by code analysis using CNNs and 
RNNs, and model fine-tuning to enhance 
performance. The study concludes by advocating for 
the integration of CNNs and RNNs to revamp 
software security strategies in response to escalating 
cyber threats. As digital infrastructure continues to 
expand, combining these technologies will be crucial 
to creating safer and more resilient software systems. 
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Summarize the research findings, emphasizing the 
effectiveness of CNNs in software vulnerability 
detection. Discuss the broader impact on 
cybersecurity and future research directions. 

6 . PROPOSED FRAMEWORK 

Our study introduces a CNN-based 
software system security vulnerability detection 
methodology. This system uses a modified CNN 
architecture to exploit CNNs' natural ability to find 
patterns and features in visual data to analyze and 
comprehend software code patterns. Preprocessing 
code snippets into CNN-friendly input creates 
structured information that closely resembles image 
data. CNN uses convolutional and pooling layers to 
scan and analyze software code like visual data, 
extracting and learning hierarchical elements needed 
to find vulnerabilities. Our approach is built on many 
convolutional layers that capture input abstraction 
levels. Pooling layers reduce dimensionality and 
computational complexity and improve model 
efficiency. After feature extraction, fully connected 
layers classify code segments as secure or 
dangerous. Dropout layers can reduce overfitting 
and ReLU activation functions can add non-linearity 
to help the model understand complex patterns. A 
Convolutional Neural Network (CNN) is trained on 
a carefully selected set of vulnerabilities to learn 
from real data. The collection simulates rare 
vulnerability scenarios to improve robustness and 
generalizability. Cross-validation maintains data 
subset model consistency. Experiments change 
learning rate, filter size, and layers to improve 
detection. The system remains running after 
verification to find security weaknesses in newly 
committed code. This helps developers and security 
specialists detect and solve security flaws early, 
reducing exploitation and improving software 
security. Our approach increases automated software 
security by recognizing known errors and zero-day 
vulnerabilities. 

The CNN software vulnerability detection approach 
contains layers, activation functions, and 
optimization algorithms. Great software code 
security classification and prediction require these 
components. This article covers our CNN model for 
comprehending complicated software code 
structures and its essential components and 
mathematical equations. 

 

 

 

6.1 Architecture Design:  

CNN architecture successfully records spatial 
hierarchies in changed software code preprocessed 
into a grid-like picture data structure. The model 
may employ image processing convolutional 
methods after this transformation: 

1. Convolutional Layers: Every 
convolutional layer processes the input by 
using many filters to gather different 
information at different levels of 
abstraction. The process inside of a 
convolutional layer is represented 
mathematically as follows: 

𝑍[] =  𝑊[] ∗ 𝐴[ିଵ] + 𝑏[]  (1) 

Where ∗ denotes the convolution operation, 
𝑊[] is the weight matrix for the l-th layer, 
𝐴[ିଵ] is the activation from the previous 
layer, and 𝑏[]is the bias. 

2. Activation Function: The Rectified Linear 
Unit (ReLU) function adds non-linearity to 
the learning process and improves the 
model's ability to learn complex patterns: 

𝐴[] =  max (0, 𝑍[])    (2)
  

3. Pooling Layers: Lowering data 
dimensionality lets the network focus on 
key properties. Max pooling is often used: 

𝑃[] =  max (𝐴[])   (3) 

4. Fully Connected Layers: After 
convolutional and pooling layers, the 
network organizes features using one or 
more fully connected layers, either 
susceptible or non-vulnerable. Their 
characteristics are: 

𝐴[] = σ൫𝑊[]. 𝐹[௧௧] + 𝑏[]൯    (4) 

Here, 𝐹[௧௧] represents the flattened 
feature map from previous layers, 𝑊[] 
and 𝑏[] represent the fully connected 
layer's weights and biases, and σ acts as a 
SoftMax classification function. 

6.2 Training and Optimization 

To train the CNN, one needs minimize a loss 
function, such as the cross-entropy loss for 
classification, which evaluates the difference 
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between data points' binary labels and predicted 
probabilities: 

𝐿 =  −
ଵ


∑ ቀ𝑦() log ቀ𝑦^()

ቁ + ൫1 −
ୀଵ

𝑦()൯ log ቀ1 − 𝑦^()
ቁቁ  (5) 

where 𝑦() is the label, 𝑦^()
 is the predicted 

vulnerability probability, and 𝑚 is the training case 
count. The Adam optimizer, a stochastic gradient 
descent version often used to manage sparse 
gradients and adapt learning rates for every 
parameter, optimizes the network. 

6.3. Implementation and Evaluation: The CNN 
model is developed using a conventional deep 
learning package; thus GPU acceleration can handle 
huge training computations. On various code 
datasets, accuracy, precision, recall, and F1-score are 
calculated to evaluate the model. To ensure model 
robustness and usefulness, K-fold cross-validation is 
performed to test generalization. We offer a CNN 
architecture that detects software vulnerabilities 
using cutting-edge deep learning. This technique 
redefines automated security solutions by using 
image processing for code inspection and software 
security and reliability. 

6.4. Algorithm:  

Following the discussion of the preferred structure 
and algorithm, we outline the precise procedures 
required to develop the CNN-based detection 
system. This comprehensive elucidation will clarify 
the functioning of the CNN architecture and its use 
in the detection of software vulnerabilities. Step-by-
step instructions on using the CNN model to find 
software vulnerabilities demonstrate the relationship 
between theory and practice. 

We split the program into two interrelated, mutually 
reinforcing parts to demonstrate our methods. 
"Algorithm: CNN Framework for Vulnerability 
Detection in Software," the first paper, gives a 
detailed introduction and establishes the context for 
the recommendations. The validation and training 
procedures for each level of the CNN model are 
described in Part 2, "CNN Framework for Software 
Vulnerability Detection.” Depending on their 
technical proficiency and area of interest, readers 
can obtain a thorough knowledge or a quick 
overview from this dual-layered framework. 

1. Algorithm: CNN-based Vulnerability Detection 

Input: A set of software code segments S = {s1, s2, 
..., sn}, labeled vulnerability dataset D = {d1, d2, ..., 
dm} 

Output: A trained CNN model M capable of 
identifying security vulnerabilities in software code. 

1: Initialize the CNN model M with randomly 
assigned weights and biases. 

2. Preprocess each portion of S software code: 

   a. Partition the SI into segments. 

   b. Convert tokens into numerical values that may 
be processed by a CNN. 

   c. Token normalization is necessary for achieving 
uniform scalability. 

3. Perform the specified tasks for each identified data 
point di in the set D: 

   a. Arrange the elements of di into a file that 
contains picture data input. 

   b. Designate it as susceptible (li). 

4. CNN model M's architecture refers to the specific 
structure and design of the CNN model M. 

   a. Compute the number of L convolutional layers. 

   b. Calculate the number and dimensions of filter F 
for each layer. 

   c. Combine layers to decrease dimensions. 

   d. Incorporate rate-r dropout layers to mitigate 
overfitting. 

   f. Establish complete connections between 
categorization levels. 

5: Compile the CNN Model M 

   a. Select a loss function (LF), typically cross-
entropy, for classification. 

   b. Utilizing Adam, an optimization algorithm 
(OA), to find the minimum loss function (LF). 

6: Train Convolutional Neural Network M using 
preprocessed dataset D. 

   a. Utilize backpropagation and input to adjust the 
weights for each epoch E. 

   b. Mini-batch gradient descent is effective for 
training. 
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7: Perform k-fold cross-validation to validate the 
CNN model M. 

   a. Partition D into k subsets. 

   b. Evaluate the performance of M on the remaining 
subset of data after training it on k-1 subsets. 

 8.  Assess the trained CNN model M by calculating 
the average performance metrics and rotating the 
validation subset. 

   a. Calculate the F1-score, accuracy, precision, and 
recall by utilizing the validation data. 

   b. Optimize hyperparameters for improved 
efficiency. 

2. Algorithm: CNN Framework for Software Vulnerability 
Detection  

1: Start  

2: Source codes for software S = {s1, s2,..., sn} that 
have been flagged for vulnerabilities are the input. 

3: Apply random weights and biases to a 
Convolutional Neural Network (CNN) model M. 

4: Tokenization and embedding of source codes into 
a CNN-compatible matrix structure are two ways to 
preprocess the input set S. 

5. Describe the CNN architecture, taking into 
account the following: a. Convolutional layers with 
predetermined filter counts and sizes. 

   b. Activation functions, with softmax for the 
output layer and ReLU for hidden layers. 

   c. Down sampling the feature maps by layer 
pooling. 

   d. Fully linked layers for vulnerability prediction 
and feature fusion. 

   e. Regularization using dropout layers. 

6: Configure the learning rate, batch size, and epoch 
count as hyperparameters. 

7: Put together the model using an optimizer (usually 
Adam) and a suitable loss function (generally cross-
entropy for classification issues). 

8: Utilizing mini-batch gradient descent and 
backpropagation, train the CNN model M on the 
preprocessed dataset. 

9: Use strategies like class-weighted training or data 
augmentation during training to correct imbalances 
and enhance model generalization. 

10: To evaluate the CNN model M's prediction 
performance and avoid overfitting, verify it using a 
different validation dataset after training. 

11: Adjust the architecture or hyperparameters of the 
model to fine-tune it if the validation performance is 
not adequate. 

12: After verification, assess the CNN model M's 
practicality in identifying vulnerabilities by putting 
it to the test on an original collection of source codes. 

13: Produce the final CNN model M that has been 
trained and verified for use in software development 
environments for vulnerability detection. 

14: End 

Algorithm: CNN Framework for Software Vulnerability 
Detection 

1: Begin 

2: Input: A collection of software source codes S = 
{s1, s2, ..., sn} labeled for vulnerabilities. 

3: Initialize a Convolutional Neural Network (CNN) 
model M with random weights and biases. 

4: Preprocess the input set S by converting source 
codes into a matrix format compatible with CNN, 
including tokenization and embedding. 

5: Define the CNN architecture including: 

   a. Convolutional layers with specified filter sizes 
and counts. 

   b. Activation functions, specifically ReLU for 
hidden layers and softmax for the output layer. 

   c. Pooling layers to down-sample the feature maps. 

   d. Fully connected layers for feature fusion and 
vulnerability prediction. 

   e. Dropout layers for regularization. 

6: Set hyperparameters including learning rate, batch 
size, and the number of epochs. 

7: Compile the model with an appropriate loss 
function, usually cross-entropy for classification 
problems, and an optimizer, typically Adam. 
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8: Train the CNN model M on the preprocessed 
dataset using backpropagation and mini-batch 
gradient descent. 

9: During training, apply techniques such as data 
augmentation or class-weighted training to address 
imbalances and improve model generalization. 

10: After training, validate the CNN model M using 
a separate validation dataset to assess its predictive 
performance and prevent overfitting. 

11: If the validation performance is unsatisfactory, 
fine-tune the model by adjusting the architecture or 
hyperparameters. 

12: Once validated, test the CNN model M on a 
novel set of source codes to evaluate its real-world 
applicability in detecting vulnerabilities. 

13: Output the final trained and validated CNN 
model M for deployment in vulnerability detection 
within software development environments. 

14: End 

6.5. RNN Model in Detail for Vulnerability 
Detection in Software 

To further the investigation of deep learning 
techniques for detecting software vulnerabilities, a 
comprehensive introduction of Recurrent Neural 
Networks (RNNs) is provided to supplement the 
previously studied Convolutional Neural Networks 
(CNNs). Recurrent Neural Networks (RNNs) have 
notable benefits when it comes to handling 
sequential data, which makes them especially well-
suited for assessing the intricacies included in source 
code. Recurrent Neural Networks (RNNs) are 
specifically built to tackle sequence prediction 
problems by effectively exploiting their internal 
state, or memory, to interpret input sequences. RNNs 
are well-suited for tasks like natural language 
processing and, in the context of this study, for 
assessing the sequential development of code where 
vulnerabilities may be influenced by the preceding 
lines. A common RNN architecture consists of layers 
of nodes that are connected in a directed graph along 
a temporal sequence. This enables the RNN to 
demonstrate dynamic temporal behavior. RNNs, 
unlike feedforward neural networks, have the ability 
to utilize their internal state (memory) to handle 
inputs that come in sequences of varying lengths. 
This functionality is essential when working with 
source code because it enables the model to consider 
the wider context of preceding and subsequent 
sections of the code. 

Core Components: 

 Input Layer: The system's input layer gets 
tokenized source code. 

 Recurrent Layer: Each neuron in a 
recurrent layer self-connects to collect 
temporal interactions of various lengths. 

 Output Layer: For vulnerability detection, 
the output layer categorizes code segments 
using obtained attributes. 

Mathematical Formulation 

The core functions of a Recurrent Neural Network 
(RNN) are determined by the following equations, 
which allow for the regulation of connections and 
weights between various nodes over time: 

1. Input to Hidden: 

ℎ௧ = 𝜎(𝑊𝑥௧ + 𝑏 + 𝑊ℎ(௧ିଵ) + 𝑏) 

The hidden state at time t is denoted as ℎ௧, while the 
input at time t is represented as 𝑥௧. The weights 
connecting the input layer to the hidden layer are 
denoted as 𝑊, whereas the weights within the 
hidden layer itself are represented as 𝑊. In 
addition, 𝑏 and 𝑏 represent the biases. The 
activation function, typically represented by the 
symbols ReLU or tanh, is designated as σ. 

2. Hidden to Output: 

𝑦௧ =  𝜎(𝑊ℎ௧ + 𝑏) 

Where 𝑦௧  is the output at time t, 𝑊  are the weights 
from hidden to output layer, and 𝑏is the output bias. 

Execution and Training 

Training a recurrent neural network (RNN) requires 
the use of backpropagation through time (BPTT) 
because of its recurrent structure. This approach 
involves expanding the Recurrent Neural Network 
(RNN) over time and subsequently implementing 
the conventional backpropagation procedure. The 
crucial steps in the training process include: 

 Forward Pass: Computation of the 
network's outcomes based on a sequence of 
data. 

 Backward Pass: During the backward 
pass, the weights are adjusted by utilizing 
the error gradient that has been calculated 
over the sequence. 
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 Loss Calculation: Typically, cross-entropy 
loss is used for classification tasks. 

Recurrent Neural Networks (RNNs) have 
challenges, such as the vanishing gradient problem, 
where gradients decrease and become negligible 
during backpropagation, hindering the ability to 
learn long-range dependencies. Utilizing techniques 
like Long Short-Term Memory (LSTM) or Gated 
Recurrent Unit (GRU) models can help mitigate 
these issues. Integrating RNN with CNN in 
vulnerability identification provides a 
comprehensive method for comprehending the 
geographical characteristics (by CNN) and the 
temporal patterns (via RNN) of code. This research 
utilizes the sequential data processing capabilities of 
RNNs to detect dangerous source code patterns and 
abnormalities. There should be a decrease in the 
number of incorrect positive results, leading to an 
improvement in vulnerability identification. This 
comprehensive analysis explores the potential of 
Recurrent Neural Networks (RNNs) and 
Convolutional Neural Networks (CNNs) to enhance 
the detection of software vulnerabilities in complex 
and realistic contexts. 

 

Fig 1. Architectural diagram of the CNN and RNN based 
Framework for Detecting Software Vulnerabilities: From 

Data Collection to Deployment 

To effectively integrate both CNN and RNN models 
into the vulnerability detection process, the flow 
chart has been meticulously expanded and 
articulated. The process commences with the Data 
Collection phase, where raw source code along with 
known vulnerability datasets are accumulated. 
Following this, the Data Preprocessing stage 
involves tokenizing and normalizing the data, 
preparing it for neural network analysis. 

The next critical phase is Feature Extraction, where 
two distinct paths are delineated: 

 The CNN Path employs convolutional 
layers to meticulously extract spatial 
features relevant to the structure and syntax 
of the code. 

 Concurrently, the RNN Path leverages 
recurrent layers to capture temporal 
dependencies and contextual nuances, vital 
for understanding sequential data like 
source code. 

Post feature extraction, Model Integration might 
occur where features from both paths are combined, 
enhancing the model’s capability to detect 
vulnerabilities by leveraging both spatial and 
temporal insights. Model Compilation follows, 
setting up the necessary computational framework 
including loss functions and optimizers. This leads 
to the Model Training phase where the model learns 
from the preprocessed data, adjusting internal 
parameters to minimize error. Subsequently, in the 
Model Validation stage, the model’s effectiveness 
and robustness are rigorously tested against an 
independent dataset. The Performance Evaluation 
then quantitatively assesses the model using metrics 
such as accuracy, precision, recall, and F1-score. 

Finally, the Model Deployment phase sees the 
application of the trained model in real-world 
settings to identify vulnerabilities in new software 
code, marking the culmination of the process. This 
detailed flow chart not only outlines each step in the 
integration of CNN and RNN for vulnerability 
detection but also emphasizes the synergy between 
the two models, harnessing their combined strengths 
to enhance detection capabilities. Each phase is 
critically important and is visually represented in the 
flow chart, ensuring clarity and ease of 
understanding for all stakeholders involved in the 
development and implementation of cybersecurity 
measures. 

6.6  Dataset Details for CNN-based Vulnerability 
Detection 

To enhance Convolutional Neural Network (CNN)-
based software security vulnerability detection, we 
present a composite dataset comprising synthetic 
data and real-world Quality of Service (QoS) 
measurements. Thus, the CNN model is 
strengthened, and a large and varied dataset is 
ensured. The primary dataset, the WD-REAM 
dataset [55], includes 64-time slices (15-minute 
intervals) of actual QoS measurements from 142 
consumers across 4,500 online services. This dataset 
emphasizes throughput and reaction time, which are 
crucial to service performance evaluation. We use 
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Python modules to create a synthetic dataset 
containing 11 QoS characteristics in the WS-
DREAM format [55]. This synthetic augmentation 
simulates more QoS situations than real-world data. 
After CUs get requested tasks, our approach 
incorporates their input as well, adding QoS 
parameters to the dataset. The dataset is improved 
via this feedback loop to more accurately reflect user 
experiences and service performance. To track 
dynamic QoS characteristics of virtualized cloud 
resources, we aggregate data from Private Cloud 
Monitoring System (PCMONS) and Amazon Cloud 
Watch [56]. These systems help our dataset by 
revealing QoS performance variations and SLA 
violations. Cloud Harmony APIs [56] also gather 
dynamic and network layer QoS characteristics from 
specified Cloud Service Providers. We create 
random data within CMS and industry practice 
ranges to capture the unpredictability and dynamic 
of real-time QoS monitoring. This random data 
includes runtime and network layer QoS parameters, 
offering a more complete operating picture. 
Simulation tests utilizing this expanded dataset 
provide a multifaceted picture of cloud QoS. These 
simulations, validated against fake data and WD-
REAM measurements, support our CNN-based 
vulnerability identification technique. This complex 
mix of real and synthetic data provides a solid 
foundation for training and assessing our CNN 
model to improve CSP performance by detecting 
security issues. 

7. RESULTS AND DISCUSSION 

The CNN model demonstrated impressive 
performance on new data, indicating a robust ability 
to avoid overfitting. It is crucial for practical 
purposes that the model can effectively identify 
weaknesses in recently created code without any 
previous exposure. We conducted an investigation 
into the utilization of Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks 
(RNNs) to improve the detection of software 
security vulnerabilities. The results of our study 
indicate substantial advancements in this field, 
specifically through the utilization of Convolutional 
Neural Networks (CNNs). The CNN model 
demonstrated excellent proficiency in identifying 
weaknesses in different software code datasets, 
following extensive training and validation using a 
combination of synthetic and real-world data. The 
dataset was subjected to thorough testing, which 
uncovered multiple security issues. The CNN model 
displayed exceptional performance by reliably 
identifying susceptible code portions with a success 
rate of 90%. Furthermore, the recall rate indicated its 

capacity to effectively recover a significant number 
of crucial events. An extensive performance 
assessment of the CNN model was carried out using 
established measures, demonstrating its durability 
and stability. The model demonstrated consistently 
excellent accuracy across several data subsets, 
indicating its strong generalization capabilities. The 
model's high precision rate demonstrates its ability 
to effectively detect actual vulnerabilities while 
avoiding false positives. In automated systems, 
minimizing false positives is of utmost importance 
as it can greatly improve operational efficiency by 
preventing unnecessary warnings. The recall metric 
measures the proportion of relevant items that are 
correctly identified by a classification model. 

The CNN model exhibited its adaptability to many 
programming languages and software architectures 
across multiple codebases, thus verifying its 
versatility and practical usefulness. The results 
indicate that our CNN model greatly improves 
software vulnerability detection by automating the 
process, minimizing human error, and speeding up 
the identification of security vulnerabilities. In 
contrast, the RNN model, although it achieved some 
level of success, displayed lower performance 
metrics in all areas. Recurrent Neural Networks 
(RNNs) consistently showed lower accuracy than 
Convolutional Neural Networks (CNNs), and their 
precision, recall, and F1-scores also indicated a 
delay. This implies that although RNNs have the 
capability to analyze data in a sequential manner, 
they do not possess the effectiveness to identify the 
intricate spatial connections observed in software 
code, which are crucial for uncovering 
vulnerabilities. CNNs demonstrate exceptional 
efficacy in identifying complex patterns and 
anomalies in software code, which are frequently 
overlooked by conventional methods like RNNs. 
Convolutional neural networks (CNNs) achieve a 
high degree of precision, hence reducing the 
occurrence of false positive results. Automated 
vulnerability detection systems greatly benefit from 
this feature as it effectively eliminates the inefficient 
allocation of resources and the inadvertent disregard 
of potential threats.  

CNNs are more effective than RNNs in increasing 
software security due to their resilience and stability, 
giving them a major edge in this area. Our study 
shows that Convolutional Neural Networks (CNNs) 
greatly enhance the process of identifying software 
vulnerabilities and enhancing cybersecurity 
measures. CNNs enable the automation of threat 
detection, enabling cybersecurity professionals to 
allocate their efforts towards the more efficient 
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mitigation and elimination of threats. Integrating 
CNNs and comparable technologies is essential for 
improving the durability and security of software 
systems against evolving cyber threats. The results 
of this study establish a strong basis for future 
progress in software security, emphasizing the 
revolutionary capabilities of CNNs in this crucial 
domain. When comparing Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks 
(RNNs) for detecting software vulnerabilities, CNNs 
demonstrate clear advantages in terms of 
performance metrics across numerous testing 
scenarios. The investigation primarily examined the 
fundamental metrics of accuracy, precision, recall, 
and F1-score, which are essential for assessing the 
efficacy of these models in a cybersecurity setting. 

Table 1: Comparative Performance of CNN and RNN 
Models 

Mod
el 

Fol
d 

Accura
cy (%) 

Precisi
on (%) 

Reca
ll 
(%) 

F1-
scor
e 
(%) 

CNN 1 91.2 90.3 89.5 90.1 

CNN 2 91.5 90.7 89.8 90.4 

CNN 3 91.4 90.5 89.7 90.3 

CNN 4 91.3 90.2 89.4 90.0 

CNN 5 91.1 90.1 89.3 89.9 

RNN 1 87.6 86.9 86.2 86.5 

RNN 2 87.8 87.1 86.4 86.7 

RNN 3 87.5 86.8 86.1 86.4 

RNN 4 87.4 86.7 86.0 86.3 

RNN 5 87.3 86.6 85.9 86.2 

Upon comparing CNN and RNN models across five 
testing cycles, the performance table clearly 
indicates that CNNs have superior capability in 
detecting software problems. CNNs consistently 
outperformed RNNs in terms of accuracy, precision, 
recall, and F1-scores across all versions. CNN 
routinely achieved accuracy scores ranging from 
91.1 to 91.5 percent when identifying vulnerabilities. 
Conversely, Recurrent Neural Networks (RNNs) 
achieved an accuracy ranging from 87.3% to 87.8%, 
which fell significantly short of being outstanding. 
CNNs exhibited superior performance in accurately 

detecting genuine vulnerabilities, achieving an 
impressive average accuracy of approximately 
90.3%.  Although RNNs continue to demonstrate 
good performance, they exhibited a slight delay with 
an average precision of approximately 86.8%. CNNs 
maintained higher recall and F1-scores than RNNs. 
CNNs had an 89.5% recall rate, indicating they 
could identify all relevant vulnerabilities. CNNs 
averaged 90.2% and RNNs 86.4% in the F1-score, 
which considers precision and recall. Research 
shows that CNNs outperform RNNs in analyzing 
complex software architectures to find security 
flaws. 

 

Figure 2: Accuracy (%) across 5 Folds for CNN and 
RNN 

Figure 2 displays a juxtaposition of the precision of 
CNN and RNN models throughout five distinct 
testing cycles. The evaluation is dependable and 
unbiased in its treatment of data splitting, as each 
fold precisely reflects a segment of the dataset. CNN 
model accuracy is illustrated by the blue line with 
circular markers and RNN model accuracy by the red 
line with square markers. CNN excels in all five 
cross-validation folds with 91.1% to 91.5% 
accuracy. Convolutional Neural Networks (CNNs) 
can rapidly gather and acquire software code's 
spatial features, resulting in reliable and uniform 
vulnerability discovery. The RNN model has 87.3%–
87.8% precision. RNNs handle sequential data well, 
whereas CNNs do better. CNN accuracy is 
consistent across folds, proving its generality and 
durability. The RNN model works well but varies 
more, showing CNNs may misrepresent software 
code complexity. RNNs are 3-4 percentage points 
less accurate than CNNs in this application. CNNs 
detect software vulnerabilities more accurately and 
consistently than RNNs, as seen in the graphic. 
CNNs inspect software code architecture for security 
vulnerabilities better. 
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Figure 3: Performance Comparison of CNN and RNN 
Models in Software Vulnerability Detection: Precision, 

Recall, and F1-Score 

The initial bar chart displays the precision scores for 
both CNN and RNN models. Precision is a crucial 
statistic that quantifies the correctness of the model's 
positive predictions. The CNN model demonstrates 
a precision of 0.90 in this chart, but the RNN model 
has a little lower precision of 0.87. The CNN model 
demonstrates superior performance in accurately 
detecting real positive vulnerabilities while limiting 
false positives, as compared to the RNN model. The 
first bar chart illustrates the precision scores for both 
CNN and RNN models. Precision is a critical metric 
that measures the accuracy of the positive 
predictions made by the model. In this chart, the 
CNN model achieves a precision of 0.90, while the 
RNN model has a slightly lower precision of 0.87. 
This indicates that the CNN model is better at 
correctly identifying true positive vulnerabilities, 
minimizing false positives compared to the RNN 
model. The recall comparison chart displays the 
recall scores for both the CNN and RNN models in 
the form of a bar chart. Recall quantifies the model's 
capacity to accurately detect all pertinent 
occurrences of vulnerabilities. The CNN model 
achieves a recall rate of 0.89, whilst the RNN model 
attains a score of 0.86. The higher recall value 
observed for the CNN model indicates that it is more 
proficient in identifying genuine vulnerabilities, 
hence minimizing the likelihood of overlooking true 
positive instances when compared to the RNN 
model. The third bar chart displays the F1-scores, 
which represent the harmonic mean of accuracy and 
recall. This measure provides a balanced evaluation 
by considering both precision and recall. The CNN 
model achieved an F1-score of 0.895, whereas the 
RNN model achieved an F1-score of 0.865. The 
larger F1-score for CNN signifies a superior 
equilibrium between precision and recall, rendering 
it more dependable in accurately detecting software 
vulnerabilities overall. To summarize, the graphic 
unequivocally illustrates that the CNN model 
surpasses the RNN model in all three metrics. The 
CNN model's greater precision, recall, and F1-score 
demonstrate its effectiveness in identifying software 
vulnerabilities, making it a more appropriate option 
for improving cybersecurity measures. CNN 

consistently demonstrates stability and 
dependability in processing complicated patterns 
within software code, which gives it a major edge 
over the RNN model in this application. 

The comparison of CNNs and RNNs for software 
vulnerability identification yields substantial results. 
Convolutional Neural Networks (CNNs) 
outperformed all other models in accuracy, 
precision, recall, and F1-score in our studies. The 
work shows that CNNs can accurately represent 
spatial hierarchies in source code, which helps 
discover complicated vulnerabilities. Convolutional 
Neural Networks (CNNs) are reliable and effective 
in this area due to their precision, which ranges from 
91.1% to 91.5% across iterations.  The stability 
observed indicates that Convolutional Neural 
Networks (CNNs) are very suitable for the intricate 
task of detecting software vulnerabilities, where 
comprehending the spatial connections inside the 
code is essential. Although they excelled in 
sequential data processing, RNNs had far lower 
accuracy and higher variability. This shows they may 
struggle to identify source code vulnerabilities. 
Precision and recall boost CNNs' benefits. CNNs' 
increased precision results in a reduced number of 
false positives, which is crucial in a security setting. 
This reduction in unnecessary alarms can greatly 
improve operational efficiency. Similarly, a better 
recall rate guarantees the detection of the majority of 
actual vulnerabilities, hence minimizing the danger 
of overlooking serious security problems. The CNNs 
exhibit a well-balanced performance, which is 
evident from their F1-scores, indicating their overall 
effectiveness and resilience. Moreover, the 
consistent dominance of CNNs over RNNs in all 
metrics suggests that the former's ability to extract 
and assimilate information from spatial features in 
the code gives them a distinct edge. This revelation 
is particularly crucial as software systems get more 
complex, hence making it increasingly challenging 
to uncover vulnerabilities. 

The study found that Convolutional Neural 
Networks (CNNs) can easily meet modern software 
security criteria. CNNs and RNNs find weaknesses 
well. CNNs are stronger, more accurate, more 
dependable. Outstanding performance in all areas 
and measures indicates their fitness for this crucial 
task. Both models can increase detection in research. 
CNN spatial feature extraction and RNN sequential 
data processing may be needed. This comprehensive 
approach may help develop more advanced and 
effective cybersecurity solutions to secure software 
systems in a developing digital environment. CNNs' 
constant outperformance of RNNs in all metrics 
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implies that their capacity to extract and integrate 
information from spatial features in the code gives 
them an edge. This discovery is essential as software 
systems get more sophisticated, making 
vulnerabilities harder to find. The study found that 
Convolutional Neural Networks (CNNs) can easily 
meet modern software security criteria. CNNs and 
RNNs find weaknesses well. Convolutional Neural 
Networks (CNNs) are more robust, reliable, and 
precise. 

8. MAJOR FINDINGS AND DIFFERENCES 
FROM PRIOR LITERATURE  

This section highlights the unique contributions and 
differences of the current research compared to prior 
literature in the field of software vulnerability 
detection. 

8.1 Superior Performance Metrics 

Current Research: The CNN-based model 
achieved an average accuracy of 91.3%, precision of 
90.3%, recall of 89.5%, and an F1-score of 90.1%. 

Prior Literature: Traditional methods [57] and 
RNN-based models [58] generally reported lower 
performance metrics. For example, Goseva-
Popstojanova & Perhinschi (2015) [57] noted the 
limitations of static code analysis with lower 
accuracy and higher false positives. Kim et al. 
(2022) [58] found that RNN models, although useful 
for sequential data, could not match the spatial 
pattern recognition capabilities of CNNs. 

Key Difference: This research demonstrates a clear 
improvement in accuracy, precision, recall, and F1-
score, establishing CNNs as a superior approach for 
detecting software vulnerabilities. 

8.2 Reduction in False Positives 

Current Research: The CNN-based approach 
significantly reduces false positives, enhancing the 
efficiency of the detection process. 

Prior Literature: Harman & O'Hearn (2018) [59] 
highlighted the high false positive rates of traditional 
methods. Guo et al. (2021) [60] showed that while 
RNNs could reduce false positives, they were not as 
effective as CNNs. 

Key Difference: The significant reduction in false 
positives with the CNN-based approach reduces the 
burden on cybersecurity professionals, improving 
operational efficiency. 

8.3 Automation and Efficiency 

Current Research: The CNN-based system 
automates feature extraction and vulnerability 

detection, minimizing the need for manual 
intervention. 

Prior Literature: Coulter et al. (2020) emphasized 
[61] the labor-intensive nature of traditional methods 
requiring extensive manual feature engineering. 
Shah (2021) [62] noted that RNNs still required 
considerable preprocessing and manual tuning. 

Key Difference: This research demonstrates the 
advantages of automation, showcasing how CNNs 
can streamline the detection process, making it more 
efficient and less reliant on human input. 

8.4 Robustness and Generalizability 

Current Research: The CNN model demonstrated 
robustness and generalizability across various 
datasets, including synthetic and real-world data. 

Prior Literature: Shar et al. (2014) [63] and Ding 
et al. (2023) [64] noted that many existing solutions 
struggled with generalizability, performing well on 
specific datasets but failing on others. 

Key Difference: The extensive validation process, 
including K-fold cross-validation, ensures that the 
CNN model in this research maintains high 
performance across diverse datasets, enhancing its 
applicability. 

8.5 Architectural Innovation 

Current Research: The CNN architecture, with 
multiple convolutional layers, pooling layers, and 
fully connected layers, was specifically designed to 
capture complex patterns in software code. 

Prior Literature: Lin et al. (2020) [65] and Zhang 
et al. (2022) [66] pointed out that traditional methods 
lacked sophisticated pattern recognition capabilities, 
and while RNNs captured temporal dependencies, 
they were less effective at recognizing spatial 
hierarchies. 

Key Difference: This research presents an 
innovative architectural design that effectively 
captures spatial hierarchies within software code, 
providing a more nuanced understanding of 
vulnerabilities. 

8.6 Scalability 

Current Research: The CNN-based model is 
scalable and can handle the increasing volume and 
complexity of software code. 

Prior Literature: Luo (2016) [67] and Huang et al. 
(2022) [68] discussed the challenges traditional 
methods faced with scalability, particularly as 
software systems grew in size and complexity. 
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Key Difference: The CNN model’s scalability 
allows it to efficiently process large datasets, making 
it suitable for large-scale applications. 

8.7 Practical Applicability 

Current Research: The CNN model demonstrates 
practical applicability in real-world cybersecurity 
scenarios, allowing professionals to focus on 
mitigating and eliminating threats. 

Prior Literature: Augasta & Kathirvalavakumar 
(2012) [69] and Tang et al. (2016) [70] noted that 
while some models were theoretically sound, they 
often lacked the flexibility and automation needed 
for practical deployment. 

Key Difference: This research highlights the 
practical applicability of the CNN model, 
emphasizing its effectiveness and efficiency in 
operational environments. 

9. CONCLUSION 

The primary aim of this study was to enhance 
software vulnerability detection by leveraging 
convolutional neural networks (CNNs) and to 
demonstrate their superiority over traditional 
methods and recurrent neural networks (RNNs). The 
results section clearly shows that the CNN model 
achieved an average accuracy of 91.3%, precision of 
90.3%, recall of 89.5%, and an F1-score of 90.1%. 
In contrast, the RNN model had lower performance 
metrics across all measures, highlighting the 
effectiveness of CNNs in detecting software 
vulnerabilities. By automating the detection process 
and reducing false positives, our CNN-based 
approach significantly improves operational 
efficiency and allows cybersecurity professionals to 
focus on mitigating and eliminating threats. This 
demonstrates the practical applicability and 
importance of our findings in real-world 
cybersecurity scenarios. 

The CNN architecture, with its multiple 
convolutional layers, pooling layers, and fully 
connected layers, was specifically designed to 
capture complex patterns in software code. This 
design choice is validated by the superior 
performance metrics achieved in our experiments, 
confirming the efficacy of our approach. Our 
extensive validation process, including K-fold cross-
validation and testing on both synthetic and real-
world datasets, ensured the robustness and 
generalizability of our CNN model. The consistent 
performance across various data subsets further 
supports the reliability of our approach. 

While our study demonstrates the superior 
performance of CNNs, future work could explore the 
integration of CNNs with RNNs to leverage both 
spatial and temporal features of software code. 
Additionally, applying our approach to different 
programming languages and binary code could 
further enhance its practicality and effectiveness. 
This study provides a strong foundation for future 
advancements in software security, emphasizing the 
transformative potential of CNNs in this critical 
field. 
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