
 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5928

A MODEL-DRIVEN APPROACH TO TRANSFORM UML
MODELS INTO MONGODB SCHEMAS USING QVTO:

FROM PIM TO PSM

HAMZA NATEK1, AZIZ SRAI2, ABDELMOUNAIM BADAOUI3, FATIMA GUEROAUTE4
1,3,4Laboratory LASTIMI, High School of Technology Sale, Mohammed V University, Rabat, MOROCCO

2ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, MOROCCO

E-mail: 1hamzanatek@gmail.com, 2a.srai@uae.ac.ma, 3abdelmounaim.badaoui@est.um5.ac.ma,
4fatima.guerouate@est.um5.ac.ma

ABSTRACT

Translating UML models into efficient NoSQL databases is a complex task within the domain of software
engineering. This study addresses the problem of transforming UML models into MongoDB collections
using the Model-Driven Architecture (MDA) approach. The research method involves defining metamodels
for UML and MongoDB, followed by the development of QVTo transformation scripts to map UML class
diagrams to MongoDB document structures. The transformation process was tested on a sample UML
model, ensuring the correctness of the generated MongoDB schema. The findings demonstrate that the
QVTo transformation scripts can accurately convert UML models into MongoDB collections, preserving
the integrity and semantics of the original UML diagrams. The conclusions highlight the effectiveness of
the MDA approach in bridging the gap between UML-based designs and NoSQL database
implementations, providing a robust solution for data management in complex systems.

Keywords: Model-Driven Architecture (MDA), UML to NoSQL Transformation, QVTo Transformation
Scripts, MongoDB Schema Generation, Automated Data Modeling

1. INTRODUCTION

In the realm of software engineering, Model-
Driven Architecture (MDA) has emerged as a
pivotal framework for automating the
transformation of high-level models into executable
artifacts. This paradigm shift facilitates the design,
analysis, and implementation of complex systems
through systematic model transformations. Unified
Modeling Language (UML) serves as a standard
modeling language that enables the visualization,
specification, and documentation of software
system artifacts [1]. However, transitioning from
UML models to NoSQL databases, particularly
MongoDB, presents significant challenges due to
the inherent differences between relational and
NoSQL data structures. MongoDB, a prominent
NoSQL database, offers flexible and scalable data
management solutions, making it ideal for modern
applications that require dynamic schema evolution.
Despite its advantages, converting UML class
diagrams into MongoDB's document-oriented
structure remains a complex task that necessitates
an automated and accurate transformation process.
Existing literature highlights various model

transformation techniques, yet there is a notable gap
in effective methodologies for converting UML
models to MongoDB schemas, which this study
aims to address.

This study not only fills the gap in existing
methodologies but also enhances IT knowledge by
introducing novel insights into the automated
transformation process. The proposed methodology
leverages the strengths of MDA to automate the
conversion of UML models into MongoDB
schemas, providing best practices that go beyond
incremental knowledge. These include the precise
definition of metamodels for both UML and
MongoDB, the development of robust QVTo
transformation scripts, and the validation of the
transformation process to ensure the generated
MongoDB schemas maintain the integrity and
semantics of the original UML models. By
synthesizing and integrating information from
various sources, this research offers a
comprehensive approach that enhances the
efficiency and accuracy of database schema
generation, contributing significantly to the field of
model-driven engineering.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5929

The primary problem addressed in this study is
the lack of automated and accurate methods for
transforming UML models into MongoDB schemas
while preserving the semantic integrity and
structure of the original UML diagrams. To tackle
this problem, the study evaluates the practical
benefits of integrating MDA with NoSQL
databases, determining improvements in database
management efficiency through comparisons with
case studies and performance metrics from existing
literature. It explores the methodological aspects of
implementing MDA methodologies using
JavaScript, reviewing best practices and validating
guidelines for broader adoption. Additionally, the
study assesses the theoretical and practical
contributions to the broader field of IT knowledge
by synthesizing prior knowledge and new insights.
The validity of the study is ensured through
rigorous testing and validation of the transformation
process, confirming that the generated MongoDB
schemas accurately reflect the original UML
models. Peer reviews and expert consultations
further substantiate the findings. Lastly, the study
examines the incremental value of the research by
comparing it with previous studies, determining
whether the new methodology offers significant
improvements in terms of efficiency, accuracy, and
applicability.

The main objectives of this research are to
develop a comprehensive methodology for
transforming UML models into MongoDB
collections using QVTo transformation scripts,
define and implement precise metamodels for both
UML and MongoDB to facilitate accurate
mappings, and validate the transformation process
to ensure the generated MongoDB schemas
maintain the integrity and semantics of the original
UML models. The scope of this study includes the
development and testing of QVTo transformation
scripts to map UML class diagrams to MongoDB
document structures. This study does not cover the
transformation of other UML diagram types or the
integration with other NoSQL databases.

This study employs the Model-Driven
Architecture (MDA) framework to guide the
transformation process. We define detailed
metamodels for UML and MongoDB and utilize
QVTo transformation scripts to automate the
mapping of UML class elements to MongoDB
document structures. The transformation process is
validated through rigorous testing on sample UML
models, ensuring the accuracy and consistency of
the generated MongoDB schemas.

The findings of this research hold significant
potential for improving the efficiency and accuracy
of database schema generation from UML models.
By providing a robust and automated solution for
transforming UML models into MongoDB
schemas, this study contributes to the existing body
of knowledge in model-driven engineering and
offers practical implications for developers and
engineers. The methodology developed herein can
be adapted for other NoSQL databases, further
extending its impact and applicability.

The structure of this paper is as follows: the
Introduction provides context, problem statement,
objectives, approach, significance, and an overview
of the paper. The Related Work section reviews
existing literature on model transformation
techniques and identifies gaps that this study
addresses. The Methodology section describes the
MDA framework, metamodel definitions, and
QVTo transformation scripts in detail. The
Implementation section details the environment
setup, transformation execution, and validation
process. The Case Study section presents a sample
UML model and demonstrates the transformation
process and results. The Results and Discussion
section discusses the findings, performance
evaluation, challenges, and limitations. The
Conclusion section summarizes the main
contributions, implications, and future research
directions. Finally, the References section lists all
cited works.

2. METHODOLOGY

2.1 Model-Driven Architecture Framework:

A. Overview of MDA:

Model-driven architecture (MDA) is a
comprehensive approach to software design,
development, and implementation that emphasizes
the use of domain models as primary artifacts in the
development process. By focusing on creating and
exploiting these domain models, MDA provides a
systematic framework that helps bridge the gap
between the conceptual design and the actual
implementation of software systems. One of the
fundamental principles of MDA is the separation of
the specification of system functionality from the
specification of the implementation of that
functionality on a specific technology platform.
This principle ensures that the core business logic
and requirements are captured in a technology-
agnostic manner, allowing for greater flexibility and
adaptability [2] [3].

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5930

At the heart of MDA are two key concepts: the
Platform-Independent Model (PIM) and the
Platform-Specific Model (PSM). The PIM is an
abstract representation of the system, focusing on
the essential business logic and functionality
without being tied to any technology. This high
level of abstraction enables developers to
concentrate on the core aspects of the system
without being distracted by implementation details.
Once the PIM is defined, it can be transformed into
one or more PSMs. Each PSM provides a detailed
specification of how the system's functionality will
be implemented on a specific technology platform,
such as a particular programming language,
database, or hardware environment [4].

The transformation from PIM to PSM is a crucial
aspect of MDA, as it automates the generation of
code and other artifacts needed for the
implementation of the system. This automation not
only improves productivity by reducing the amount
of manual coding required but also enhances
consistency and reliability by ensuring that the
generated artifacts faithfully adhere to the specified
models. By maintaining a higher level of
abstraction throughout the development process,
MDA enables developers to focus on solving
business problems and designing robust systems,
while the underlying transformations handle the
technical details of implementation. This approach
leads to more efficient development cycles, better
alignment between business requirements and
technical solutions, and ultimately, higher-quality
software systems [5].

Model-driven architecture (MDA) serves as a
pivotal strategy in software design and
development, emphasizing the use of models as
core artifacts. By implementing MDA, the
conversion of UML models into NoSQL database
schemas can be automated [6] [7] [8] [9], thereby
enhancing consistency and minimizing manual
labor. This approach has found applications across
numerous fields, including the development of web
service platforms [10], web frameworks [6] [7] [8]
[9], blockchain and IoT systems [15] [16] [17],
artificial intelligence [18], mobile applications [19],
and database generation [20] [21].

B. Transformation types in MDA:

In the MDA framework, transformations are
categorized into several types based on the direction
and nature of the transformation process. The
primary types include Model-to-Model (M2M)
transformations, which involve converting one
model to another within the same level of

abstraction, such as transforming a PIM into a PSM
by mapping abstract concepts to platform-specific
implementations. In the context of this study, the
transformation of UML models to MongoDB
schemas is an example of an M2M transformation.
Model-to-Text (M2T) transformations generate
textual artifacts like code, configuration files, or
documentation from models, exemplified by
generating Java code from a UML model. Text-to-
model (T2M) transformations parse textual artifacts
and generate models from them, such as creating a
UML model from a set of XML configuration files.
Additionally, model merging and synchronization
processes involve combining multiple models into a
single coherent model or ensuring that different
models remain consistent with each other over time
[2].

C. Key components of MDA:

Key components of Model-Driven Architecture
(MDA) include the Platform-Independent Model
(PIM), which is an abstract model that defines the
system's functionality without concern for the
underlying platform, and the Platform-Specific
Model (PSM), which includes details about the
specific platform and technology used to implement
the system. Transformation rules are guidelines and
algorithms that map elements from the PIM to
corresponding elements in the PSM. Additionally,
the Meta-Object Facility (MOF) is a standard for
defining metamodels, which are models that
describe the structure and semantics of other
models.

D. MDA Workflow:

The MDA process depicted in the Figure below
demonstrates a structured approach to software
development, starting from a business request and
progressing through various levels of abstraction to
reach platform-specific implementations. This
approach ensures that business requirements are
accurately captured, abstracted, and systematically
transformed into executable models on different
platforms. By following this process, developers
can maintain consistency, improve productivity,
and ensure that the final implementations align
closely with the initial business goals and
requirements.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5931

Figure 1: Model Driven Architecture Workflow

E. Application of MDA in UML to MongoDB

Transformation:

The application of MDA in UML to MongoDB
transformation involves several key components.
The Platform-Independent Model (PIM) is
represented by the UML model, which captures the
structure of the system in terms of classes,
properties, and associations. The Platform-Specific
Model (PSM) is embodied by the MongoDB
schema, detailing how data is stored in collections,
documents, and fields. Transformation rules defined
using QVTo—a model transformation language—
map UML elements (classes, properties,
associations) to MongoDB elements (collections,
documents, fields), ensuring that the semantics and
relationships of the UML model are preserved in
the MongoDB schema. The transformation process
is automated with QVTo scripts, which read the
UML model and generate the corresponding
MongoDB schema, thereby reducing manual effort,
minimizing errors, and ensuring consistency
between the PIM and PSM.

F. Benefits of Applying MDA:

The benefits of applying MDA include ensuring
consistency by consistently translating the high-
level design in the UML model into the MongoDB
schema, enhancing efficiency by automating the
transformation process and reducing the potential
for human error, facilitating flexibility by allowing
changes at the model level to be automatically
propagated to the database schema, and supporting

scalability by enabling the creation of scalable and
maintainable database schemas that align with the
evolving needs of the application.

2.2 Metamodel Definitions:

A. UML Metamodel:

The UML metamodel defines the structure and
semantics of UML models, which are used to
capture the design of software systems. Key
elements of the UML metamodel include classes,
properties, and associations. Classes represent the
main building blocks of the system, encapsulating
data and behavior. Properties are attributes of
classes, defining the characteristics and data stored
within each class. Associations define relationships
between classes, indicating how instances of one
class relate to instances of another.

In this study, the UML metamodel is used to
define the structure of the system in terms of its
classes, properties, and associations. This
metamodel provides the foundation for the
Platform-Independent Model (PIM) in our MDA
approach, capturing the system's design without
concern for the underlying implementation
platform.

B. MongoDB Metamodel:

The MongoDB metamodel defines the structure
and semantics of MongoDB schemas, which are
used to store data in a flexible and scalable manner.
Key elements of the MongoDB metamodel include
collections, documents, and fields. Collections are
analogous to tables in relational databases and are
used to group related documents. Documents are
JSON-like structures that store data in key-value
pairs, representing instances of classes in UML.
Fields are individual attributes within documents,
corresponding to properties in UML classes.

In our implementation, the MongoDB metamodel
is used to define the structure of the database
schema that will be generated from the UML
model. This metamodel provides the foundation for
the Platform-Specific Model (PSM) in our MDA
approach, detailing how data is stored and managed
in MongoDB.

2.3 QVTo Transformation Process:

A. QVTo:

QVTo (QVT Operational) is a model
transformation language specified by the Object
Management Group (OMG) for transforming
models in a precise and automated manner. QVTo

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5932

is part of the QVT (Query/View/Transformation)
family of languages and is particularly suited for
imperative transformations where complex
mappings and control flow are necessary [22]. In
the context of this study, QVTo is used to define
and execute the transformation rules that map UML
models to MongoDB schemas.

B. Mapping rules:

The transformation from UML to MongoDB
involves several key mapping rules that ensure the
semantic integrity and structural accuracy of the
models are preserved. The following are the
primary mapping rules used in this study:

Class to Collection: UML classes are
transformed into MongoDB collections. Each class
in the UML model is represented as a separate
collection in MongoDB. For example, the Student
class is mapped to a Student collection.

Property to Field: UML properties are
transformed into MongoDB fields. Each property
within a UML class becomes a field within the
corresponding MongoDB document. For instance,
the name property of the Student class is mapped to
a name field in the Student collection.

Association to Document Relationship: UML
associations are mapped to relationships between
MongoDB documents. This ensures that the
relationships defined in the UML model are
accurately represented in the MongoDB schema.

3. IMPLEMENTATION

3.1 Environment Setup:

A. Tools and Software:

The implementation of the UML to MongoDB
transformation using QVTo requires a specific set
of tools and software to ensure a smooth and
efficient process. Below is a list of the tools and
software used, along with their versions and
configurations:
Eclipse IDE: Eclipse IDE for Java Developers.

QVTo Plugin: Eclipse QVTo (Operational QVT)
plugin.

UML Metamodel: UML 2.5.1 metamodel

MongoDB Metamodel: Custom MongoDB
metamodel.

Java Development Kit (JDK): JDK 11 or later

3.2 The QVTo Transformation Script:
Developing the QVTo transformation script

involves structuring the script to efficiently and

accurately transform UML models into MongoDB
schemas. The script is organized into several key
components: initialization, mapping rules, and
validation steps.

The structure of the QVTo transformation script
is designed to systematically map elements from the
UML model to the corresponding elements in the
MongoDB schema. The script begins with the
definition of the source and target metamodels,
followed by the main transformation function that
orchestrates the overall process. Each
transformation rule is implemented as a separate
mapping function within the script. This modular
approach ensures clarity and maintainability of the
transformation logic. The script ends with
validation steps to ensure that the generated
MongoDB schema accurately reflects the original
UML model.

The initialization phase of the QVTo script
involves setting up the transformation environment
and loading the source UML model and target
MongoDB metamodel. This step ensures that the
necessary resources are available for the
transformation process. The script starts by
declaring the model types used, specifying the URIs
for the UML and MongoDB metamodels. The main
function is defined to invoke the transformation
logic, and the root objects of the UML model are
mapped to the initial transformation rule.

The core of the QVTo script consists of mapping
rules that define how UML elements are translated
into MongoDB elements. These rules are
implemented as QVTo mappings and cover the
primary elements in both metamodels. For example,
UML classes are mapped to MongoDB collections,
properties are mapped to fields within documents,
and associations are mapped to relationships
between documents. Each mapping rule includes
specific logic to extract relevant information from
the UML model and create the corresponding
MongoDB elements. The use of collection
operations ensures that all relevant elements in the
UML model are processed and transformed.

Validation is a critical part of the transformation
process to ensure the generated MongoDB schema
is correct and consistent with the UML model. The
QVTo script includes validation steps that check the
integrity and accuracy of the transformation results.
This involves verifying that all UML classes,
properties, and associations have been appropriately
mapped to MongoDB collections, fields, and
relationships. Additionally, the script performs
checks to ensure that the generated schema adheres

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5933

to MongoDB’s document-oriented data structure
requirements. These validation steps help identify
and rectify any discrepancies, ensuring the final
schema is both structurally and semantically
accurate.

By carefully structuring the QVTo
transformation script and incorporating
comprehensive mapping rules and validation steps,
the transformation process from UML models to
MongoDB schemas is made efficient, accurate, and
reliable. This approach ensures that the high-level
design captured in the UML model is faithfully
represented in the resulting MongoDB schema,
facilitating seamless integration and data
management.

3.3 Sample UML Model:
To illustrate the transformation process, a sample

UML model is used as a case study. This model
represents a simple university system consisting of
classes such as Student, Teacher, and Course, each
with their respective properties and associations.
The Student class includes properties like
studentID, name, and email. The Teacher class
includes properties such as teacherID, name, and
department. Additionally, the Course class includes
properties like courseID, title, and credits. This
model serves as a representative example to
demonstrate the transformation from UML to
MongoDB.
Classes and Properties:

In the sample UML model, the Student class
encapsulates the attributes of a student, with
properties including:

- `studentID`: A unique identifier for each
student.

- `name`: The name of the student.

- `email`: The email address of the student.

The Teacher class includes properties that describe
a teacher:

- `teacherID`: A unique identifier for each
teacher.

- `name`: The name of the teacher.

- `department`: The department to which
the teacher belongs.

The Course class represents a course offered at
the university, with properties including:

- `coursed`: A unique identifier for each
course.

- `title`: The title of the course.

- `credits`: The number of credits the course
is worth, representing the workload and
learning value of the course.

Visual Representation:

Here is the UML model representing the Student,
Teacher, and Course classes with their respective
properties:

Figure 2: UML Model Representation of a University System with Classes and Properties.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5934

3.4 Executing the Transformation:
Executing the transformation from UML to

MongoDB involves several steps, starting with
loading the UML model and MongoDB metamodel
into the QVTo transformation tool within the
Eclipse IDE. The UML model, in XMI format, is
loaded as the source model, while the MongoDB
metamodel, defining the target schema structure, is
loaded as the target model. This setup ensures the
QVTo script has access to both metamodels,
enabling accurate transformation. As shown in
Figure 4, the configuration screen in Eclipse allows
specifying the transformation module, trace file
generation, and model parameters. The next step is
to run the QVTo transformation script from the
QVTo perspective in Eclipse. The script reads the
UML model, applies the defined transformation
rules, and generates the corresponding MongoDB

schema. During execution, the script processes each
UML model element according to the mapping
rules, converting UML classes, properties, and
associations into MongoDB collections, documents,
and fields. Upon successful execution, the output is
an XMI-formatted MongoDB schema, preserving
the structure and semantics of the original UML
model. This schema includes collections for UML
classes, documents for instances of these classes,
and fields for the properties of the UML classes.
The entire process, from loading models to
generating the MongoDB schema, is designed to be
seamless and efficient, leveraging QVTo's
capabilities to automate the transformation,
ensuring consistency, accuracy, and adherence to
the specified design, thereby enhancing productivity
and reliability in database schema generation.

Figure 3: Configuration Screen for Executing QVTo Transformation in Eclipse

3.5 Validation and Testing:

Validation and testing are crucial to ensure that
the transformation process accurately converts
UML models into MongoDB schemas while
preserving the original models' integrity and
semantics. The validation process involves
checking semantic integrity to ensure the meaning
and relationships in the UML model are correctly
represented in the MongoDB schema and verifying
structural accuracy to ensure elements in the
MongoDB schema correspond correctly to elements
in the UML model. Key validation criteria include

consistency, completeness, and correctness. The
testing methodology involves executing test cases
designed to validate different aspects of the
transformation, including loading test models,
running the transformation, comparing results, and
checking integrity. Several test cases were used to
validate the transformation process, including basic
transformations, complex associations, and edge
cases. The results analysis showed that most test
cases resulted in correct and consistent MongoDB
schemas, demonstrating the QVTo script's
accuracy. Any discrepancies identified during

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5935

testing were analyzed and addressed, ensuring the
transformation rules were refined for better
accuracy. Overall, the validation and testing
demonstrated the QVTo transformation script's

reliability and effectiveness in providing a robust,
automated solution for converting UML models
into MongoDB schemas, maintaining the original
UML diagrams' integrity and semantics.

Figure 4: Generated MongoDB Schema from UML Model using QVTo

Figure 5: UML Representation of MongoDB Metamodel

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5936

Figure 6: QVTo Transformation Script for Converting UML Models to MongoDB Schemas

4. CONCLUSION

In this study, we successfully applied
Model-Driven Architecture (MDA) to transform
UML models into MongoDB schemas using QVTo
transformation scripts, addressing the significant
challenge of preserving the semantic integrity of
UML models in NoSQL databases. Our
methodology enhances IT knowledge by
introducing novel insights and best practices, filling
a gap in existing literature primarily focusing on
relational databases. By defining precise
metamodels for UML and MongoDB, developing
robust QVTo scripts, and validating the
transformation process, we automated schema
generation, ensuring accuracy and consistency.
Compared to previous works, our study offers a
comprehensive approach tailored for MongoDB,
extending the applicability of MDA to modern,
flexible data management systems. This research
significantly contributes to model-driven
engineering by improving database management
efficiency and providing practical guidelines for IT
professionals. Future work will explore extending
this methodology to other NoSQL databases and
integrating advanced features like query

optimization and data validation, demonstrating the
versatility and scalability of using MDA and QVTo
for database schema generation.

REFERENCES:

[1] H. Koç, A. M. Erdoğan, Y. Barjakly, and S.

Peker, “UML Diagrams in Software
Engineering Research: A Systematic
Literature Review,” in The 7th International
Management Information Systems
Conference, MDPI, Mar. 2021, p. 13. doi:
10.3390/proceedings2021074013.

[2] D. Mouheb et al., “Model-Driven
Architecture and Model Transformations,” in
Aspect-Oriented Security Hardening of UML
Design Models, Cham: Springer International
Publishing, 2015, pp. 35–45. doi:
10.1007/978-3-319-16106-8_4.

[3] S. J. Mellor, K. Scott, A. Uhl, and D. Weise,
“Model-Driven Architecture,” in Advances in
Object-Oriented Information Systems, vol.
2426, J.-M. Bruel and Z. Bellahsene, Eds., in
Lecture Notes in Computer Science, vol.
2426. , Berlin, Heidelberg: Springer Berlin

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5937

Heidelberg, 2002, pp. 290–297. doi:
10.1007/3-540-46105-1_33.

[4] D. Dayan, R. Kaplinsky, A. Wiesen, and S.
Bloch, “AMDA: Matching the Model-Driven-
Architecture’s Goals Using Extended
Automata as a Common Model for Design
and Execution,” in IEEE International
Conference on Software-Science, Technology
& Engineering (SwSTE’07), Herzlia, Israel:
IEEE, Oct. 2007, pp. 1–13. doi:
10.1109/SwSTE.2007.13.

[5] M. Melouk, Y. Rhazali, and H. Youssef, “An
Approach for Transforming CIM to PIM up
To PSM in MDA,” Procedia Computer
Science, vol. 170, pp. 869–874, 2020, doi:
10.1016/j.procs.2020.03.122.

[6] F. Abdelhadi, A. Ait Brahim, and G. Zurfluh,
“Applying a Model-Driven Approach for
UML/OCL Constraints: Application to
NoSQL Databases,” in On the Move to
Meaningful Internet Systems: OTM 2019
Conferences, vol. 11877, H. Panetto, C.
Debruyne, M. Hepp, D. Lewis, C. A.
Ardagna, and R. Meersman, Eds., in Lecture
Notes in Computer Science, vol. 11877. ,
Cham: Springer International Publishing,
2019, pp. 646–660. doi: 10.1007/978-3-030-
33246-4_40.

[7] F. Abdelhedi, A. Ait Brahim, F. Atigui, and
G. Zurfluh, “MDA-Based Approach for
NoSQL Databases Modelling,” in Big Data
Analytics and Knowledge Discovery, vol.
10440, L. Bellatreche and S. Chakravarthy,
Eds., in Lecture Notes in Computer Science,
vol. 10440. , Cham: Springer International
Publishing, 2017, pp. 88–102. doi:
10.1007/978-3-319-64283-3_7.

[8] F. Abdelhedi, A. A. Brahim, and G. Zurfluh,
“Towards an automatic approach for
implementing UML/OCL models on NoSQL
systems”.

[9] A. Srai and F. Guerouate, “Towards the
Generation of a PSM Model from a PIM
Model, Integration of the MDA Approach in
NoSQL Databases, the Case of Document-
oriented NoSQL Platforms,” IJETT, vol. 71,
no. 5, pp. 146–155, May 2023, doi:
10.14445/22315381/IJETT-V71I5P215.

[10] J. Bezivin, S. Hammoudi, D. Lopes, and F.
Jouault, “Applying MDA approach for web
service platform,” in Proceedings. Eighth
IEEE International Enterprise Distributed
Object Computing Conference, 2004. EDOC
2004., Monterey, CA, USA: IEEE, 2004, pp.
58–70. doi: 10.1109/EDOC.2004.1342505.

[11] M. Rahmouni, C. Talbi, and S. Ziti, “Model-
driven architecture: generating models from
Symfony framework,” IJEECS, vol. 30, no. 3,
p. 1659, Jun. 2023, doi:
10.11591/ijeecs.v30.i3.pp1659-1668.

[12] Dr. A. Srai*, Pr. G. Fatima, and Pr. H. D.
Lahsini, “Generation of an E-learning
Application Through Model Programming,”
IJEAT, vol. 10, no. 2, pp. 195–198, Dec.
2020, doi: 10.35940/ijeat.B2043.1210220.

[13] A. Srai, F. Guerouate, N. Berbiche, and H. D.
Lahsini, “Applying MDA approach for Spring
MVC Framework,” vol. 12, no. 14, 2017.

[14] Ibn Tofail University, Morocco., M.
Rahmouni, and S. Mbarki, “Model-Driven
Generation of MVC2 Web Applications:
From Models to Code,” IJEACS, vol. 02, no.
07, pp. 217–231, Aug. 2017, doi:
10.24032/ijeacs/0207/04.

[15] M. Abbas, M. Rashid, F. Azam, Y. Rasheed,
M. W. Anwar, and M. Humdani, “A Model-
Driven Framework for Security Labs using
Blockchain Methodology,” in 2021 IEEE
International Systems Conference (SysCon),
Vancouver, BC, Canada: IEEE, Apr. 2021,
pp. 1–7. doi:
10.1109/SysCon48628.2021.9447125.

[16] M. Jurgelaitis, V. Drungilas, L. Čeponienė, E.
Vaičiukynas, R. Butkienė, and J. Čeponis,
“Smart Contract Code Generation from
Platform Specific Model for Hyperledger
Go,” in Trends and Applications in
Information Systems and Technologies, vol.
1368, Á. Rocha, H. Adeli, G. Dzemyda, F.
Moreira, and A. M. Ramalho Correia, Eds., in
Advances in Intelligent Systems and
Computing, vol. 1368. , Cham: Springer
International Publishing, 2021, pp. 63–73.
doi: 10.1007/978-3-030-72654-6_7.

[17] N. Moadad, I. Damaj, and I. El Kabani, “A
Generic MDA-IoT Architecture for
Connected Vehicles in Smart Cities,” in 2022
IEEE Global Conference on Artificial
Intelligence and Internet of Things (GCAIoT),
Alamein New City, Egypt: IEEE, Dec. 2022,
pp. 122–129. doi:
10.1109/GCAIoT57150.2022.10019064.

[18] M. A. Kadampur and S. Al Riyaee, “Skin
cancer detection: Applying a deep learning
based model driven architecture in the cloud
for classifying dermal cell images,”
Informatics in Medicine Unlocked, vol. 18, p.
100282, 2020, doi:
10.1016/j.imu.2019.100282.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5938

[19] H. Benouda, R. Essbai, M. Azizi, and M.
Moussaoui, “Modeling and Code Generation
of Android Applications Using Acceleo,”
IJSEIA, vol. 10, no. 3, pp. 83–94, Mar. 2016,
doi: 10.14257/ijseia.2016.10.3.08.

[20] H. Natek, A. Srai, and F. Guerouate, “Model-
Driven Architecture Approach for SQL
Generation using Acceleo: A Case Study on
MySQL Database,” IJETT, vol. 71, no. 10,
pp. 20–28, Oct. 2023, doi:
10.14445/22315381/IJETT-V71I10P203.

[21] Dr. A. Srai*, Prof. F. Guerouate, and Prof. H.
D. Lahsini, “The Integration of the MDA
Approach in Document-Oriented NoSQL
Databases, the case of Mongo DB,” IJEAT,
vol. 10, no. 3, pp. 115–122, Feb. 2021, doi:
10.35940/ijeat.C2235.0210321.

[22] C. M. Gerpheide, R. R. H. Schiffelers, and A.
Serebrenik, “A Bottom-Up Quality Model for
QVTo,” in 2014 9th International Conference
on the Quality of Information and
Communications Technology, Guimaraes,
Portugal: IEEE, Sep. 2014, pp. 85–94. doi:
10.1109/QUATIC.2014.18.

