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ABSTRACT 
 
This paper addresses the challenge of imitating the behavior of video game players using Deep Reinforcement 
Learning algorithms. By training intelligent agents with algorithms such as Proximal Policy Optimization 
(PPO), Behavioral Cloning (BC), and Generative Adversarial Imitation Learning (GAIL), we enable these 
agents to learn from their interactions with the game environment, optimizing their actions based on rewards 
and punishments. Experimental evaluations across various video games demonstrate that these trained agents 
can successfully mimic human player behavior in complex situations. This capability offers significant 
opportunities for creating challenging non-player characters (NPCs), designing adaptive difficulty levels, and 
enhancing the overall gaming experience. Our findings suggest that integrating Reinforcement Learning 
techniques allows game developers to provide more realistic and immersive gameplay, effectively bridging 
the gap between Artificial Intelligence and both video games and serious games. 

Keywords: Deep Reinforcement Learning, Proximal Policy Optimization, Behavioral cloning, Generative 
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1.  INTRODUCTION 
 

The video game market is projected to 
experience exponential growth, reaching a 
remarkable $396.20 billion in 2023 [1]. 
Furthermore, rapid advancements in Artificial 
Intelligence and Machine Learning are creating new 
opportunities to enhance the gaming experience by 
simulating the behaviors of both video game players 
and serious game learners. 

 
During the last few years, researchers [15, 

16] have explored the application of various deep 
reinforcement learning algorithms, including deep 
Q-networks (DQN), policy gradients, proximal 
optimization policy (POO), Behavioral Cloning 
(BC), Generative Adversarial Imitation Learning 
(GAIL), and actor-critic methods (A2C), to imitate 
player behavior. These algorithms enable agents to 
learn from interactions with the game environment 
(2D/3D), optimizing their actions based on rewards 
and penalties received. The trained agents aim to 
mimic the decision-making processes, adaptive 
strategies, and skill levels of human players, thereby 
creating a more realistic and immersive gaming 
experience. 

 

The importance of this issue lies in the 
growing demand for more engaging and dynamic 
gaming experiences. As games become more 
sophisticated, the need for intelligent, adaptive, and 
realistic non-player characters (NPCs) becomes 
critical. Traditional game design often relies on 
scripted behaviors that lack the complexity and 
adaptability of human players, leading to predictable 
and less challenging gameplay. This limitation not 
only affects player satisfaction but also hinders the 
potential for serious games to be used effectively in 
educational and training contexts. 
 

In the imminent future, the seamless 
integration of intelligent agents into advanced 
serious games will revolutionize experiential 
learning. These sophisticated agents will have the 
remarkable capability to understand and learn 
complex behaviors through systematic 
experimentation. Acting as dynamic mentors, they 
will guide students through tackling multifaceted 
challenges by meticulously demonstrating step-by-
step problem-solving procedures. 
 

Addressing this challenge is crucial for 
advancing the field of game design and enhancing 
the utility of serious games. By developing and 
refining reinforcement learning algorithms that can 
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accurately imitate human behavior, we can create 
NPCs that provide more engaging and challenging 
interactions. This, in turn, can lead to better learning 
outcomes in educational settings and more satisfying 
experiences for recreational players. 

 
In this research perspective, this paper aims 

to contribute to the existing literature on imitating 
the behavior of video game players using 
reinforcement learning algorithms. We will explore 
and evaluate the effectiveness of different 
algorithms such as POO, BC, and GAIL in imitating 
player behavior in various gaming scenarios and 
environments. By examining the performance and 
limitations of these algorithms, we seek to provide 
insights into their applicability for creating more 
realistic and challenging NPCs, designing adaptive 
difficulty levels, and ultimately enhancing the 
overall gaming experience. 

 
The rest of this paper is organized as 

follows. Section 2 provides a comprehensive review 
of the related literature on imitating player behavior 
in video games using reinforcement learning. 
Section 3 describes the methodology and 
experimental setup employed in this research. 
Section 4 presents the results and analysis of our 
experiments using several metrics of evaluation. 
Finally, Section 5 concludes the paper with a 
summary of the findings, implications for future 
research, and potential applications in the field. 

 
2. STATE OF THE ART 
 
Imitation Learning In Video Game 
Environments 

 
Numerous research studies have explored 

the potential of reinforcement learning algorithms to 
replicate player behavior in video games. For 
instance, Johnson and Miikkulainen [14] employed 
the PPO algorithm to train agents that can mimic 
expert players across various game genres. Their 
findings revealed that these agents exhibited 
behaviors similar to those of expert players, 
enhancing the overall gaming experience by 
providing more challenging and engaging gameplay. 

 
In another study, Ho and Ermon [15] 

applied the GAIL algorithm to imitate the strategies 
of expert players in the popular game Dota 2. This 
approach showcased the capability of capturing 
complex player behaviors effectively. 

 
Matheus et al. [17] used two machine 

learning techniques, namely a reinforcement 

learning approach and an Artificial Neural Network 
(ANN), in a fighting game to enable the agent/fighter 
to emulate human players. They incorporated a 
special reward function in the reinforcement 
learning approach, allowing the agent to exhibit 
specific human-like behaviors. 
 

Daniel et al. [18] conducted research on 
simulating human behavior in video games using 
machine learning algorithms and emulating 
predefined behaviors. The experiments yielded 
promising results, demonstrating the potential of this 
approach. 
 

Barros et al. [19] experimented with ANN 
to map the strategies of specific opponents. They 
trained their model online, utilizing a composite loss 
based on contrastive optimization, which proved 
effective for learning competitive and multiplayer 
games. Their experiments showed improved 
performance when the model played against offline 
opponents. 

 
To replicate concurrent actions in 3D 

games, Harmer, Jack, et al. [20] introduced a novel 
architecture that efficiently allows multiple actions 
to be selected at each step. This architecture not only 
offers a 4x improvement in training time but also 
enhances performance by 2.5x compared to single 
action selection. 

 
  In a separate study, Harshit Sikchi et al [21] 
proposed a new framework for imitation learning 
that focuses on imitating a two-player ranking-based 
game between a policy and reward agent. In this 
framework, the reward agent learns to satisfy 
pairwise performance rankings between behaviors, 
while the policy agent aims to maximize this reward. 
According to the authors, this approach has 
successfully solved tasks in learning from 
observation that were previously considered 
unsolvable. 
 
 Despite these advancements, there are still 
significant challenges in developing intelligent 
agents that can fully replicate the nuanced behaviors 
of human players. These challenges include the need 
for more sophisticated models that can handle the 
complexity of real-time decision-making and the 
variability of human behavior across different game 
contexts. 
 
 Problem Statement: While current research 
has made strides in using reinforcement learning and 
imitation learning to emulate player behavior, there 
remains a gap in achieving truly adaptive and 
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realistic NPCs. This gap highlights the necessity for 
more advanced algorithms and frameworks that can 
better mimic the adaptive strategies and complex 
decision-making processes of human players. 
Addressing this issue is critical for enhancing the 
realism and engagement of video games, which is 
increasingly important as the gaming industry 
continues to grow and diversify. 
 
3. THEORETICAL BACKGROUND 

 
3.1. Reinforcement & Imitation Learning 

Algorithms 
 

Reinforcement learning is a field of 
machine learning. It involves taking appropriate 
action to maximize benefits in a given situation. It is 
used by various software programs and machines to 
find the best possible behavior or path to follow in a 
given situation. Reinforcement learning differs from 
supervised learning in that, in supervised learning, 
the training data has the answer key; the model is 
therefore trained with the correct answer, whereas in 
reinforcement learning, there is no answer, but the 
reinforcement agent decides what to do. To perform 
the given task in the absence of a training dataset, it 
is necessary to learn from experience. The algorithm 
learns behavior based on observations. The actions 
taken by the algorithm in the environment produce 
feedback values that guide the learning process [2]. 

 
Proximal Policy Optimization 
 

PPO algorithm [3,23] plays a pivotal role in 
training the decision function of a computer agent to 
successfully tackle challenging tasks. This 
innovative algorithm, conceived by artificial 
intelligence luminary John Schulman in 2017, 
represents a significant advancement in the field, 
providing a robust framework for enhancing the 
capabilities of computer agents through effective 
decision-making processes. PPO uses an on-policy 
approach to train a stochastic policy, meaning it 
explores task dynamics by sampling actions based 
on the latest version of its stochastic policy. The 
degree of randomness in action selection is 
influenced by initial conditions and the ongoing 
training process. As training progresses, the policy 
generally exhibits reduced randomness due to the 
update rule that encourages the exploitation of 
previously discovered rewards. However, this 
progression can potentially cause the policy to 
become stuck in local optima during the training 
process. 
 
Advantage Actor-Critic 

 
The A2C [4,24] algorithm presents a 

synchronous counterpart to the Asynchronous 
Advantage Actor-Critic (A3C) policy gradient 
method in reinforcement learning. In contrast to the 
asynchronous nature of A3C, A2C operates 
synchronously, employing a deterministic 
implementation that mandates each actor to 
conclude its segment of experience before initiating 
updates. This synchronous paradigm allows for a 
coordinated update procedure, wherein updates are 
averaged across all actors, ensuring a more stable 
and deterministic learning process. By 
synchronizing the updates, A2C mitigates potential 
issues associated with asynchronous updates, such as 
instability due to varied update frequencies and non-
deterministic training trajectories. Consequently, 
A2C presents a promising alternative that maintains 
the benefits of actor-critic methods while addressing 
challenges posed by asynchronous implementations. 
Through empirical evaluation and comparative 
analysis, this study elucidates the efficacy of A2C as 
a synchronous and deterministic reinforcement 
learning algorithm, highlighting its utility in various 
environments and domains. 
 
Behavioral Cloning 
 

The BC algorithm [5,6] is a notable 
technique within the domain of reinforcement 
learning. It has demonstrated considerable success in 
tackling practical control problems across a diverse 
spectrum, from playing video games to navigating 
complex environments. By leveraging expert 
demonstrations or expert policies, BC learns to 
mimic the behavior exhibited by the expert in a given 
task. This approach has proven effective in scenarios 
where expert data is readily available, enabling the 
algorithm to quickly acquire high-quality policies 
through imitation learning. Notably, Behavioral 
Cloning has showcased its versatility and efficacy in 
real-world applications, exhibiting promising results 
in areas such as autonomous driving, robotic 
manipulation, and computer vision tasks. As 
research continues to evolve, further refinements and 
extensions to the Behavioral Cloning algorithm hold 
the potential to advance its applicability and 
performance across a broader array of challenging 
control problems. 
 
Generative Adversarial Imitation Learning 
 

GAIL [15] represents a cutting-edge 
approach within the realm of imitation learning and 
reinforcement learning. Unlike traditional 
Behavioral Cloning methods, GAIL introduces a 
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novel paradigm by incorporating adversarial training 
techniques. The algorithm learns a policy by 
concurrently training it alongside a discriminator 
network, which is tasked with discerning expert 
trajectories from those generated by the learned 
policy. Through this adversarial process, the policy 
network seeks to generate trajectories that are 
indistinguishable from expert demonstrations, 
effectively leveraging the discriminative feedback to 
refine its own behavior. This adversarial framework 
imbues GAIL with the ability to learn from sparse or 
unstructured expert data, making it particularly well-
suited for scenarios where access to expert 
demonstrations is limited or costly. As a result, 
GAIL has garnered significant attention and 
demonstrated remarkable efficacy across a wide 
range of applications, including robotic 
manipulation, autonomous driving, and natural 
language processing tasks. 

 
3.2. Similarity Measurement 
 

In the realm of data analysis and machine 
learning, the measurement of similarity between data 
points serves as a fundamental component for 
various tasks, including clustering, classification, 
and information retrieval. The assessment of 
similarity involves quantifying the likeness or 
resemblance between pairs of data instances based 
on their respective features or attributes. Numerous 
methods have been developed to compute similarity, 
ranging from simple metrics such as Euclidean 
distance [7], Euclidean distance with normalization 
[7], Dice coefficient [8], cosine similarity[9] 
,Dynamic Time Warping (DTW) [10], Manhattan 
distance [11], Pearson correlation [12] and 
Mahalanobis distance [13] to more complex 
techniques like kernel functions and graph-based 
similarity measures. Each method offers unique 
advantages and is suited to specific data types and 
application domains. 
 
4. METHOD 

 
4.1. Implementing Agent in a Stochastic 2D 

Environment with one action: Flappy Bird 
 
4.1.1. Flappy bird game introduction 
 

Flappy Bird [22] (see Figure.1) is a popular 
2D game that challenges players to navigate a small 
bird through a series of obstacles. The objective is 
simple: keep the bird flying for as long as possible 
by tapping the screen or pressing a key to make it 
flap its wings. The bird automatically descends, and 
the player must time their taps to make it ascend and 
pass through openings in pipes. However, colliding 
with any obstacle or the ground ends the game. 
Flappy Bird's addictive gameplay, coupled with its 
simple yet challenging mechanics, has captivated 
players worldwide. 
 
 

 

  

 

 

 

 

 

Figure 1: Flappy Bird games by DotGears Studios. 
Source [20] 

 
4.1.2. PPO training process of agent (Flappy 

Bird) 
 

The process consists of training BirdAgent 
using PPO and A2C algorithms. In the PPO training 
process for Flappy Bird, we follow a series of steps 
to train six different brains with varying 
configurations. Table 1 below provides a summary 
of the hyper-parameters used to train BirdAgent 
using PPO algorithm. 

Table 1: Hyper-parameter values used in training Flappy bird using PPO algorithm
 

  Brain_1 Brain_2 Brain_3 Brain_4 Brain_5 Brain_6 

 trainer_type PPO PPO PPO PPO PPO PPO 

 
Hyper- 

parameters 

batch_size 1000 64 64 64 64 64 

buffer_size 1000 10000 10000 10000 10000 10000 
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learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

beta 0.001 0.001 0.001 0.001 0.001 0.001 

epsilon 0.2 0.7 0.7 0.7 0.7 0.7 

lambda 0.99 0.99 0.99 0.99 0.99 0.99 

num_epoch 3 4 4 4 4 4 

learning_rate
_schedule 

Linear Linear Linear Linear Linear Linear 

normalize False False False False False False 

Network- 
settings 

hidden_units 256 256 256 256 256 256 

num_layers 2 2 2 2 2 2 

vis_encode_ 
type 

Simple Simple Simple Simple Simple Simple 

Reward 
signals 

gamma 0.99 0.995 0.995 0.995 0.995 0.995 

strength 1.0 1.0 1.0 1.0 1.0 1.0 

 
keep_checkp

oints 
5 5 5 5 5 5 

 max_steps 50000 100000 100000 500000 500000 1M 

 time_horizon 1000 1000 1000 1000 1000 1000 

 
summary_fre

q 
2500 5000 5000 25000 25000 50000 

 
Number of 

envs 
1 1 3 1 3 6 

 
As shown in Table 1, we train the first brain 

using the default configuration. Next, we fine-tune 
the hyper-parameters of the second brain's 
configuration file within the suggested range. Then, 
we increase the number of environment instances to 
three for the third brain to introduce parallelism. 
The fourth brain increases the maximum number of 
training steps while keeping the other parameters the 
same as the second brain. Similarly, the fifth brain 
uses the same configuration as the fourth but with 
three environment instances. Finally, the sixth brain 
undergoes training with 1 million training steps and 
six environment instances. Each step involves 
running the reinforcement learning  agents-learn 
command with specific parameters to execute the 

training process and optimize the performance of the 
AI agents in Flappy Bird. 
 
4.1.3. A2C Training Process of Agent (Flappy 

Bird) 
 

For the training process of the A2C 
algorithm in Flappy Bird, a series of steps is 
followed to train five distinct brains, each with 
varying configurations. The information in Table 2 
below outlines the hyper-parameters utilized in the 
configuration file of each brain for the A2C 
algorithm. 
 

To initiate the A2C training process, we 
start by using the default configuration file of the 
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initial brain. The training begins with a single 
environment. Next, we tune the hyper-parameters of 
the second brain's configuration file by adjusting the 
values within the suggested range. This tuning 
process also uses a single environment. For the third 
brain, we increase the number of environment 

instances to three, allowing parallel training within 
the same scene. In the fourth and fifth brains, we 
modify the maximum number of training steps to 
500,000 while maintaining the parameters from the 
second brain, using either one environment or three 
environments, respectively. 

Table 2: Hyper-parameter values used in training Flappy bird using A2C algorithm 
 

 

 Brain_1 Brain_2 Brain_3 Brain_4 Brain_5 

trainer_type A2C A2C A2C A2C A2C 

 
Hyper- 

parameters 

batch_size 1000 64 64 64 64 

buffer_size 1000 10000 10000 10000 10000 

learning_rate 0.0003 0.0008 0.0008 0.0008 0.0008 

beta 0.001 0.01 0.01 0.01 0.01 

lambda 0.99 0.99 0.99 0.99 0.99 

num_epoch 1 1 1 1 1 

learning_rate_ 
schedule 

Linear Linear Linear Linear Linear 

normalize True True True True True 

Network- 
settings 

hidden_units 256 256 256 256 256 

num_layers 2 2 2 2 2 

vis_encode_type Simple Simple Simple Simple Simple 

Reward 
signals 

gamma 0.99 0.995 0.995 0.995 0.995 

strength 1.0 1.0 1.0 1.0 1.0 

 

keep_checkpoints 5 5 5 5 5 

max_steps 50000 100000 100000 500000 500000 

time_horizon 1000 1000 1000 1000 1000 

summary_freq 2500 5000 5000 25000 25000 

Number of envs 1 1 3 1 3 

 
4.1.4. Behavioral Cloning with PPO Training 

Process of Agent (Flappy Bird) 

 
Imitation learning involves learning from 

demonstrations provided by human experts, while 
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reinforcement learning focuses on learning through 
trial and error interactions with the environment. By 
combining BC and PPO, we leverage the strengths 
of both algorithms to improve the agent's 
performance and enhance its decision-making 
capabilities. 

 
Two demonstrations of human players were 

recorded and used to test different combinations of 
hyper-parameters, the demo called Demo_1 
achieved the best scores by the player, while 
Demo_2 obtained remarkably less scores.  
During the testing of the Behavioral Cloning (BC) 
algorithm, different values of lambda were evaluated 
to determine their impact on the highest rewards 
achieved. Lambda is a parameter used in BC to 
control the trade-off between the expert 
demonstrations and the agent's own policy. 
 

The results showed that varying lambda 
had a noticeable effect on the highest rewards 

obtained. Both demos achieved higher rewards when 
lambda was set to 0.95 compared to when it was set 
to 0.9. 
 

Increasing lambda to 0.95 resulted in 
improved performance, indicating that giving more 
weight to the agent's own policy during training was 
beneficial. This suggests that relying more on the 
agent's exploration and learning from its own 
experiences, rather than solely relying on the expert 
demonstrations, led to better rewards. 
 

Based on these findings, it is recommended 
to use a lambda value of 0.95 for the BC algorithm. 
This choice allows for a greater emphasis on the 
agent's own policy, promoting learning and 
exploration, and resulting in improved performance 
and higher rewards. 

Here is the final hyper-parameters values 
(Table 3) used to train agents with BC and PPO 
combination: 

 
Table 3: Hyper-parameter values used in training Flappy bird using BC Based PPO algorithm 

 

Hyper-parameter Value Hyper-parameter Value 

batch_size 256 Extrinsic:gamma 0.99 

buffer_size 10000 Extrinsic:strength 1.0 

learning_rate 0.0005 keep_checkpoints 5 

beta 0.005 time_horizon 1000 

epsilon 0.3 
behavioral_cloning: 

steps 
 0 

lambd 0.95 
behavioral_cloning: 

strength 
0.3 

num_epoch 5 
behavioral_cloning: 
samples_per_update 

0 

learning_rate_schedule linear - - 

normalize false - - 

hidden_units 128 - - 

num_layers 2 - - 
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4.1.5. GAIL with PPO Training Process of Agent 
(Flappy Bird) 

 
Testing imitation learning algorithms, such 

as GAIL, in combination with PPO as a 
reinforcement learning method, can be a powerful 
approach in training intelligent agents. This 
combination leverages the strengths of both 
algorithms to improve the agent's performance and 
learning capabilities, involving the evaluation of the 
agent's performance trained with GAIL and PPO on 
various tasks or environments. The testing phase 
measures the agent's ability to imitate the expert's 
behavior, adapt to different scenarios, and achieve 
high rewards. 
 

During the testing of the GAIL algorithm 
(Table 4), the parameter "use_vail" was adjusted to 
assess its impact on the achieved rewards. Both 
Demo_1 and Demo_2 were evaluated with true and 
false values for this parameter. When "use_vail" was 
set to true, it introduced a variational bottleneck 
within the GAIL discriminator, forcing the 

discriminator to learn a more general representation 
and reducing its tendency to be overly proficient at 
discriminating. This approach aimed to enhance the 
stability of learning. However, the results showed 
that setting "use_vail" to true led to slightly lower 
rewards compared to when it was set to false. 
 

On the other hand, when "use_vail" was set 
to false, allowing the discriminator to focus solely on 
learning the task at hand, higher rewards were 
achieved for both demos. This suggests that omitting 
the variational bottleneck and enabling the 
discriminator to solely discriminate between 
demonstrated and actual behavior without additional 
constraints resulted in better rewards. 
 

Therefore, it is recommended to set 
"use_vail" to false to optimize rewards when 
utilizing the GAIL algorithm. By doing so, the 
discriminator can solely focus on discriminating 
between the demonstrated and actual behavior, 
leading to improved performance in terms of reward 
attainment. 

 
Table 4: Hyper-parameter values used in training Flappy bird using GAIL Based PPO algorithm 

 

Hyper-parameter Value Hyper-parameter Value 

batch_size 256 Extrinsic: gamma 0.99 

buffer_size 10000 Extrinsic: strength 1.0 

learning_rate 0.0005 keep_checkpoints 5 

beta 0.005 time_horizon 1000 

epsilon 0.3 gail: gamma  0.99 

lambda 0.95 gail: strength 0.05(0.3) 

num_epoch 5 gail: learning_rate 0.0003 

learning_rate_schedule linear gail: use_actions false 

normalize false gail : use_vail false 

hidden_units 128 Gail: hidden_units 64 

num_layers 2 Gail: num_layers  2 
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5. RESULTS & DISCUSSION 
 
5.1. Behavioral Cloning with PPO 
 

Imitation learning involves acquiring skills 
by observing human experts, whereas reinforcement 
learning relies on trial-and-error interactions with 
the environment to learn. By integrating BC with 
PPO, we can harness the advantages of both methods 
to boost the agent’s performance and refine its 
decision-making abilities. In our study, we recorded 
two demonstrations of human players to test various 
combinations of hyper-parameters. The 
demonstration labeled Demo_1 featured the highest 
scores achieved by the player, while Demo_2 
resulted in significantly lower scores. 

 
Table 5:  Highest rewards value over number of steps 

 

Steps  50k 100k 500k 

Demo_1 2.565 2.565 1.136 

Demo_2 8.582 25.195 25.398 

 
When testing the BC algorithm, the highest 

rewards earned by two demos were recorded over 
different numbers of steps (50k, 100k, and 500k) 
“Table 5”. Surprisingly, the demo that performed the 
best in terms of highest scores during game-play 
(demo_1) did not fare well in terms of the highest 
average rewards earned during training. The 
comparison of graphs on TensorBoard revealed that 
the peak values were observed at 100k steps for both 
players. Consequently, the decision was made to use 
100k steps as a fixed hyper-parameter and fine-tune 
the remaining parameters. 
 

To explain why the best demo performed 
poorly in terms of highest average rewards, there are 
a few possibilities to consider. One possibility is that 
the bad demo, despite not achieving a high score, 
better represented the behavior that the agent needed 
to learn. Another possibility is that the hyper-
parameters used in the training process were not 
appropriately tuned for the good demo, resulting in 
ineffective learning from it. By acknowledging these 
observations and insights, adjustments can be made 
to further improve the training process and enhance 
the agent's performance. 

 
Table 6:  Highest rewards over different values of 

strength of behavioral cloning 
 

Strength 0.1 0.3 0.5 0.8 1.0 

Demo_1 
18.25

4 
8.013 2.565 0.823 

-
0.908 

Demo_2 
23.58

1 
20.18

8 
25.19

5 
7.736 4.221 

 
During testing, different values of the 

strength parameter in the Behavioral Cloning 
algorithm were evaluated “Table 6 ”. The highest 
average rewards were obtained when using lower 
strengths, specifically 0.1 and 0.3, for both the bad 
and good demonstrations. It was observed that lower 
strength values resulted in better performance, 
potentially because the agent had more opportunities 
to explore and learn from its own experiences. This 
is particularly relevant if the expert demonstrations 
were not flawless or representative of all possible 
situations the agent could encounter. Furthermore, 
lower strength values can help mitigate the risk of 
overfitting to the expert demonstrations, which can 
adversely affect performance on unseen data. The 
strength parameter in behavioral cloning determines 
the weight assigned to expert demonstrations versus 
the agent's own policy during training. A higher 
strength value indicates a greater reliance on expert 
demonstrations, limiting the agent's exploration and 
independent learning. Conversely, a lower strength 
value encourages the agent to rely more on its own 
policy, fostering exploration and potentially 
facilitating better learning. 
 

Given these findings, the decision was 
made to use a strength of 0.3 as a fixed hyper-
parameter and further fine-tune other parameters in 
subsequent iterations of the training process. 
 
Table 7:  Highest rewards as values over different values 

of batch size 

 

Batch size 64 128 256 512 

Demo_1 8.013 7.827 12.045 14.797 

Demo_2 20.188 20.652 17.577 11.090 

 
During the experimental phase, the impact 

of different batch sizes on the BC algorithm was 
evaluated. Higher batch sizes “Table 7” were found 
to yield higher average rewards and showed 
improved statistics on TensorBoard compared to 
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lower batch sizes. Based on these results, a batch size 
of 256 was selected as the optimal choice. 
 

A larger batch size can enhance the stability 
of the training process and contribute to better 
overall performance. By processing more samples in 

each iteration, the agent can benefit from a larger and 
more diverse set of experiences, potentially leading 
to more effective learning and improved results. 
Therefore, the decision was made to utilize a batch 
size of 256 for the subsequent stages of the training 
process. 

 
Table 8:  Highest rewards over different values of learning rate 

 

 0.001 0.0005 0.0003 0.0001 0.00005 

Demo_1 7.444 18.115 12.045 13.885 7.663 

Demo_2 21.821 23.191 17.577 10.143 1.216 

Throughout the testing stage, different 
values of the learning rate were evaluated for the 
Behavioral Cloning algorithm “Table 8”. The 
highest rewards were achieved with learning rates of 
0.0005, 0.0003, and 0.0001 for both Demo_1 and 
Demo_2. These learning rates resulted in better 
average rewards compared to the other values tested. 
Although the performance was promising with 
learning rates of 0.0007 and 0.0009, it was decided 
to establish 0.0005 as the standard value for this 
experiment. This choice is based on the consistent 

success achieved with this learning rate across both 
demos and is expected to provide a good balance 
between effective learning and stability. 
 

By selecting a standard learning rate, it 
becomes easier to compare and evaluate the 
performance of the algorithm across different 
experiments and variations. The chosen learning rate 
of 0.0005 will serve as the baseline for further tuning 
and refinement of the BC algorithm. 

 
Table 9:  Highest rewards over hidden units and number of layers 

 

Hidden units and number of layers 1/64 2/64 2/128 2/256 3/256 

Demo_1 11.325 11.112 19.456 18.115 9.582 

Demo_2 8.904 17.668 22.209 23.191 22.114 

 
During performance testing, different 

configurations of hidden units and number of layers 
were evaluated for the Behavioral Cloning algorithm 
“Table 9”. The highest rewards were obtained with 
the following configurations: 2 layers with 128 
hidden units, and 2 layers with 256 hidden units. 
These configurations resulted in better rewards 
compared to using 3 layers with 256 hidden units. 
 

The lower rewards obtained with the 3-
layer, 256-unit configuration suggest that increasing 
the number of layers and hidden units may have led 
to over-fitting. Overfitting occurs when the model 
becomes too specialized in the training data and 
performs poorly on new, unseen data. By reducing 
the number of layers and hidden units, it is possible 
to prevent overfitting and improve the model's 
ability to generalize to new data. 

 
To further refine the BC algorithm, it is 

suggested to explore configurations such as 3 layers 
with 128 hidden units or even 4 layers with 128 
hidden units. These configurations have the potential 
to provide more precision and better performance by 
finding an optimal balance between complexity and 
generalization. 
 

By carefully selecting the number of layers 
and hidden units, the BC algorithm can achieve 
improved results by effectively capturing the 
underlying patterns and dynamics of the expert 
demonstrations while maintaining the ability to 
generalize to new situations. 
 
5.2.  GAIL with PPO  
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Evaluating imitation learning algorithms 
like GAIL, combined with PPO as a reinforcement 
learning method, can effectively train intelligent 
agents. This approach capitalizes on the strengths of 
both algorithms to enhance the agent’s performance 
and learning capabilities. The assessment involves 
testing the agent trained with GAIL and PPO across 
various tasks or environments, measuring its ability 
to mimic expert behavior, adapt to different 
scenarios, and achieve high rewards. 
 
Table 10:  Highest rewards as value over GAIL strength 

 

Strength 0.01 0.05 0.1 0.3 1.0 

Demo_1 7.186 
14.63

9 
11.44

7 
16.58

6 
24.53

7 

Demo_2 6.591 9.458 
22.40

9 
16.69

3 
24.62

0 

 
While testing the GAIL algorithm, the 

highest rewards were achieved at different GAIL 
strengths “Table 10”. For both the Demo_1 and 
Demo_2, the rewards varied across the different 
GAIL strengths tested. 
 

It was observed that keeping the GAIL 
strength below approximately 0.1, as suggested in 
the documentation, yielded better results. This 
indicates that a lower GAIL strength allows the 
trained agent to prioritize receiving extrinsic rewards 
rather than strictly copying the demonstrations. 
 

By striking a balance between imitation and 
exploration, the agent can learn from the 
demonstrations while also adapting its policy to 

maximize the extrinsic rewards in the given 
environment. Therefore, it is recommended to use a 
GAIL strength of 0.05 for this particular scenario, 
based on the testing results. 
 

Table 11:  Highest rewards as value over ANN 
Architecture 

 

 1_64 2_64 1_128 2_128 1_256 

Demo_1 4.283 
13.91

9 
10.376 14.639 11.568 

Demo_2 8.096 
16.44

0 
13.981 9.458 11.842 

 
Also during the testing of this algorithm, 

the highest rewards were observed for different 
Neural Network architectures “Table 11”. Both 
demos demonstrated varying rewards across the 
different Neural Network architectures tested. 
 

In accordance with the documentation, it is 
recommended to choose a Neural Network  
architecture that strikes a balance between 
compressing the original observation and effectively 
differentiating between demonstrated and actual 
behavior. The chosen architecture should be small 
enough to encourage compression but not too small 
to hinder the discrimination process. 

Based on the testing results, the 2/64 
architecture yielded the highest reward. Therefore, it 
is advisable to select the 2/64 Neural Network 
architecture for this particular scenario, as it aligns 
with the recommended guidelines in the 
documentation. 

 
Table 12:   Highest reward as values over GAIL learning rate 

 

 0.001 0.0005 0.0003 0.0001 0.00005 

Demo_1 14.241 6.360 13.919 18.364 7.819 

Demo_2 9.046 3.122 16.440 11.900 4.451 

As part of the GAIL’s algorithm testing, 
different learning rates were evaluated to determine 
their impact on the rewards achieved “Table 12”. 
The Demo_1 and Demo_2 exhibited varying 
rewards across the different learning rates tested. 
 

Based on the testing results, it was observed 
that a learning rate of 0.0003 or a value close to it 

consistently yielded the highest rewards for both 
demos. Therefore, for future experiments and 
implementations, it is recommended to use a 
learning rate of 0.0003 as it has shown to be effective 
in maximizing the rewards achieved by the GAIL 
algorithm. 
 
5.3. Evaluating the integration of IL algorithms 
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Evaluating applied imitation learning 

algorithms using different metrics is crucial for 
assessing the similarity between an agent's game-
play and the player's game-play on which it was 
trained. It provides valuable insights into the 
effectiveness and performance of the imitation 
learning process. By employing various metrics, we 
can obtain a comprehensive understanding of how 
well the agent has learned to imitate the player's 
behavior and game-play style.  
 

In this experiment, we tried to record 3 
types of different play styles (in order to simulate 
different players), the first play style is centered 
around floating in the lowest area of the pipes, 
followed by mid lane area and high area, while 
recording the demos from the rounds game-plays, 
we train 3 bots according to those play styles and 
save actions and observations and using those to 
perform evaluations. 
 
 

 
Table 13:  Action Vectors Comparison is between brains and their associated demos 

 

Metrics 
euclidian_ 
distance_ 

score 

euclidian_d
istance_ 
wNorm_ 

score 

cosine_ 
distance_ 

score 

dice_ 
coefficient_

score 

values_ 
similarity_ 

short_ 
score 

difference 

Player/round1
/brain1 

19.51 47.81 50.0 92.09 94.28 2.19 

Player/round2
/brain2 

12.84 42.28 52.09 96.46 90.24 6.22 

Player/round3
/brain3 

10.54 42.81 50.0 96.42 91.98 4.44 

Player/round1
/brain2 

17.91 45.51 50.0 91.17 91.42 0.25 

Player/round1
/brain3 

19.07 47.76 50.0 91.77 94.29 2.52 

Player/round2
/brain1 

14.28 46.60 53.34 94.38 93.56 0.82 

Player/round2
/brain3 

13.65 45.92 51.60 93.90 93.42 0.48 

Player/round3
/brain1 

10.81 43.0015 51.28 97.08 92.004 5,076 

Player/round3
/brain2 

12.84 44.96 51.61 98.26 92.58 5.68 

Action vectors 
 

As we notice in Table 13, the most 
representative metrics are dice_coefficient and 
values_similarity. 
 

The pairs that are similar have a higher 
value for the first value (dice_coefficient_score) and 
a lower value for the second value 
(values_similarity_short_score), while the pairs that 

are dissimilar have a lower value for the first value 
and a higher value for the second value.  
 

In contrast, there is no clear similarity 
pattern among the second set of pairs. Some pairs 
have a higher first value and some have a higher 
second value. This suggests that for these pairs, the 
similarity between the player and the bot actions is 
not consistent across both similarity measures. 
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However, since the values are close, it is 
difficult to make a definitive conclusion and other 
factors should be taken into consideration as well. 

 
 

 
State vectors 
 

Using state vectors instead of action vectors 
for measuring similarity between a player's game-
play and a bot's game-play in the Flappy Bird game 
can work better for several reasons. 
 

Firstly, state vectors capture a more 
comprehensive representation of the game state at 
any given moment. They contain information such 
as the bird's position, the distance to obstacles, and 

the current score, which collectively define the 
current state of the game. By comparing the 
similarity of state vectors, we can assess how closely 
the bot's game-play aligns with the player's game-
play in terms of overall progress, obstacle avoidance, 
and general game strategy. 
 

Secondly, Flappy Bird is a game where 
timing and reaction play a crucial role. Actions alone 
may not provide enough context to accurately 
measure similarity. The same action at different 
moments in the game can yield different outcomes 
based on the current state. By considering state 
vectors, we can capture the temporal dynamics and 
contextual information necessary for evaluating 
similarity accurately. 

 
Table 14:  State Vectors Comparison is between brains and their associated demos 

 

 
cosine
_simil
arity 

euclid
ian_di
stance 

dtw_d
istanc

e 

dice_c
oeffici

ent 
cosine 

euclid
ean 

manh
attan 

manh
attan2 

pears
on_co

rr 

mahal
anobi
s_dist 

Player_
round1/
brain1 

67.22 72.62 19.91 2.56 65.84 36.30 44.30 43.85 72.86 35.32 

Player_
round2/
brain2 

79.22 73.94 19.9 1.89 77.52 35.89 45.27 43.60 80.25 34.08 

Player_
round3/
brain3 

79.73 72.611 22.612 1.76 80.519 35.74 43.89 43.147 81.06 36.39 

Player_
round1/
brain2 

75.90 71.68 15.89 2.78 69.92 41.13 53.06 51.89 78.62 29.50 

Player_
round1/
brain3 

70.09 67.09 13.44 1.51 71.09 41.93 54.47 53.49 73.39 25.82 

Player_
round2/
brain1 

73.67 72.48 18.42 1.76 73.75 35.95 43.99 44.08 76.53 34.36 

Player_
round2/
brain3 

81.98 75.135 21.89 1.36 79.30 34.98 44.72 42.28 83.42 37.52 

Player_
round3/
brain1 

75.07 68.24 13.67 2.54 75.45 40.90 52.47 52.15 77.22 29.29 

Player_
round3/
brain2 

81.70 74.62 21.07 2.79 78.90 37.19 46.21 45.39 82.44 35.52 
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Based on Tables 13 and 14, which display 

the similarity values between various brains and the 
demos they were trained on using different metrics, 
we can derive some general conclusions. 
 

In the first table, where the comparison is 
between brains and their associated demos, we 
observe varying similarity values across different 
metrics. Cosine similarity, Pearson correlation, and 
Mahalanobis distance consistently yield high 
similarity scores, indicating a strong resemblance 
between the brains and their corresponding demos. 
On the other hand, metrics such as Euclidean 
distance, DTW distance, and dice coefficient tend to 
provide lower similarity values, suggesting some 
dissimilarity or deviations in behavior. 
 

In the second table, which compares 
different brains with different demos, the goal is to 
identify patterns and determine which metric is most 
useful in distinguishing between similar and 
dissimilar pairs. Cosine similarity, Pearson 
correlation, and Mahalanobis distance again emerge 
as reliable metrics, consistently assigning higher 
values to pairs that exhibit similarity in game-play. 
Euclidean distance, DTW distance, and dice 
coefficient continue to provide lower values, 
indicating dissimilarity between pairs. This suggests 
that the selected metrics are effective in capturing 
the similarity between different brains and demos, 
providing valuable insights into the extent of 
imitation learning. 

 
When comparing our findings with existing 

literature, we see that previous studies have also 
highlighted the effectiveness of Cosine similarity 
and Pearson correlation in capturing behavioral 
similarities [9, 12]. However, our results extend 
these findings by demonstrating that Mahalanobis 
distance can be equally reliable in this context, 
which has been less emphasized in earlier works. 
Conversely, the lower performance of Euclidean 
distance and DTW distance aligns with the 
observations made by Ho and Ermon [15] in their 
study on Dota 2, where these metrics were found to 
be less effective in capturing nuanced player 
behaviors. 
 

Overall, these tables demonstrate the 
importance of employing multiple metrics to 
evaluate similarity in imitation learning. Each metric 
captures different aspects of similarity, and the 
consistent patterns observed across metrics validate 
the effectiveness of the chosen evaluation methods. 
By considering these metrics collectively, we can 

gain a comprehensive understanding of the degree to 
which the trained brains mimic the behavior of the 
demos. This information is valuable for assessing the 
quality of the imitation learning process, identifying 
areas for improvement, and making informed 
decisions in further refining the algorithms. 

 
Future research should address the 

following open issues: 
- Improving the robustness of similarity 

metrics across different game genres to 
ensure generalizability. 

- Investigating the impact of more diverse 
training datasets on the performance and 
adaptability of the trained agents. 

- Exploring advanced reinforcement learning 
techniques that can mitigate the limitations 
observed with Euclidean and DTW 
distances. 

- Enhancing the interpretability of the 
learned behaviors to better understand the 
decision-making processes of the agents. 

 
6. CONCLUSION 
 

This paper delves into the application of 
deep reinforcement learning algorithms to imitate 
video game player behavior. By training intelligent 
agents with algorithms like Proximal Policy 
Optimization, Behavioral Cloning, and Generative 
Adversarial Imitation Learning, we empower them 
to learn from game environment interactions and 
optimize actions based on rewards and penalties. 
Through experiments across various video games, 
our research showcases these agents' potential to 
mimic human player behavior in complex scenarios, 
thereby enabling the creation of challenging non-
player characters, adaptive difficulty levels, and 
enriched gaming experiences. 

 
Our results align with and build upon 

existing studies, demonstrating the robust 
capabilities of these algorithms in various gaming 
contexts. Compared to the work of Johnson and 
Miikkulainen [14], who focused on PPO, our 
integration of GAIL and BC has shown additional 
strengths in adaptive behavior simulation. 
Furthermore, our findings corroborate the 
effectiveness of GAIL observed by Ho and Ermon 
[15], while also highlighting new insights into the 
utility of Mahalanobis distance for behavior 
comparison. 

 
This work not only advances our 

understanding of artificial intelligence in gaming but 
also paves the way for future innovations aimed at 
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crafting more lifelike and immersive gaming 
encounters. 

 
Addressing the identified open issues in 

future research will be crucial for further 
advancements in this field, providing new directions 
for the development of more sophisticated and 
adaptable intelligent agents. 
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