
 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5734

REPLICATING VIDEO GAME PLAYERS' BEHAVIOR
THROUGH DEEP REINFORCEMENT LEARNING

ALGORITHMS

HAFSA GHARBI1, MR. LOTFI ELAACHAK2, AND MR. ABDELHADI FENNAN3
1,2,3Computer Science & Smart Systems Laboratory, Data & Intelligent Systems Team, FSTT, Abdelmalek

Essaadi University, Tetouan, Morocco

E-mail: 1hafsa.gharbi@etu.uae.ac.ma, 2lelaachak@uae.ac.ma, 3afennan@uae.ac.ma

ABSTRACT

This paper addresses the challenge of imitating the behavior of video game players using Deep Reinforcement
Learning algorithms. By training intelligent agents with algorithms such as Proximal Policy Optimization
(PPO), Behavioral Cloning (BC), and Generative Adversarial Imitation Learning (GAIL), we enable these
agents to learn from their interactions with the game environment, optimizing their actions based on rewards
and punishments. Experimental evaluations across various video games demonstrate that these trained agents
can successfully mimic human player behavior in complex situations. This capability offers significant
opportunities for creating challenging non-player characters (NPCs), designing adaptive difficulty levels, and
enhancing the overall gaming experience. Our findings suggest that integrating Reinforcement Learning
techniques allows game developers to provide more realistic and immersive gameplay, effectively bridging
the gap between Artificial Intelligence and both video games and serious games.

Keywords: Deep Reinforcement Learning, Proximal Policy Optimization, Behavioral cloning, Generative
Adversarial Imitation Learning, video game.

1. INTRODUCTION

The video game market is projected to
experience exponential growth, reaching a
remarkable $396.20 billion in 2023 [1].
Furthermore, rapid advancements in Artificial
Intelligence and Machine Learning are creating new
opportunities to enhance the gaming experience by
simulating the behaviors of both video game players
and serious game learners.

During the last few years, researchers [15,

16] have explored the application of various deep
reinforcement learning algorithms, including deep
Q-networks (DQN), policy gradients, proximal
optimization policy (POO), Behavioral Cloning
(BC), Generative Adversarial Imitation Learning
(GAIL), and actor-critic methods (A2C), to imitate
player behavior. These algorithms enable agents to
learn from interactions with the game environment
(2D/3D), optimizing their actions based on rewards
and penalties received. The trained agents aim to
mimic the decision-making processes, adaptive
strategies, and skill levels of human players, thereby
creating a more realistic and immersive gaming
experience.

The importance of this issue lies in the
growing demand for more engaging and dynamic
gaming experiences. As games become more
sophisticated, the need for intelligent, adaptive, and
realistic non-player characters (NPCs) becomes
critical. Traditional game design often relies on
scripted behaviors that lack the complexity and
adaptability of human players, leading to predictable
and less challenging gameplay. This limitation not
only affects player satisfaction but also hinders the
potential for serious games to be used effectively in
educational and training contexts.

In the imminent future, the seamless
integration of intelligent agents into advanced
serious games will revolutionize experiential
learning. These sophisticated agents will have the
remarkable capability to understand and learn
complex behaviors through systematic
experimentation. Acting as dynamic mentors, they
will guide students through tackling multifaceted
challenges by meticulously demonstrating step-by-
step problem-solving procedures.

Addressing this challenge is crucial for
advancing the field of game design and enhancing
the utility of serious games. By developing and
refining reinforcement learning algorithms that can

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5735

accurately imitate human behavior, we can create
NPCs that provide more engaging and challenging
interactions. This, in turn, can lead to better learning
outcomes in educational settings and more satisfying
experiences for recreational players.

In this research perspective, this paper aims

to contribute to the existing literature on imitating
the behavior of video game players using
reinforcement learning algorithms. We will explore
and evaluate the effectiveness of different
algorithms such as POO, BC, and GAIL in imitating
player behavior in various gaming scenarios and
environments. By examining the performance and
limitations of these algorithms, we seek to provide
insights into their applicability for creating more
realistic and challenging NPCs, designing adaptive
difficulty levels, and ultimately enhancing the
overall gaming experience.

The rest of this paper is organized as

follows. Section 2 provides a comprehensive review
of the related literature on imitating player behavior
in video games using reinforcement learning.
Section 3 describes the methodology and
experimental setup employed in this research.
Section 4 presents the results and analysis of our
experiments using several metrics of evaluation.
Finally, Section 5 concludes the paper with a
summary of the findings, implications for future
research, and potential applications in the field.

2. STATE OF THE ART

Imitation Learning In Video Game
Environments

Numerous research studies have explored

the potential of reinforcement learning algorithms to
replicate player behavior in video games. For
instance, Johnson and Miikkulainen [14] employed
the PPO algorithm to train agents that can mimic
expert players across various game genres. Their
findings revealed that these agents exhibited
behaviors similar to those of expert players,
enhancing the overall gaming experience by
providing more challenging and engaging gameplay.

In another study, Ho and Ermon [15]

applied the GAIL algorithm to imitate the strategies
of expert players in the popular game Dota 2. This
approach showcased the capability of capturing
complex player behaviors effectively.

Matheus et al. [17] used two machine

learning techniques, namely a reinforcement

learning approach and an Artificial Neural Network
(ANN), in a fighting game to enable the agent/fighter
to emulate human players. They incorporated a
special reward function in the reinforcement
learning approach, allowing the agent to exhibit
specific human-like behaviors.

Daniel et al. [18] conducted research on
simulating human behavior in video games using
machine learning algorithms and emulating
predefined behaviors. The experiments yielded
promising results, demonstrating the potential of this
approach.

Barros et al. [19] experimented with ANN
to map the strategies of specific opponents. They
trained their model online, utilizing a composite loss
based on contrastive optimization, which proved
effective for learning competitive and multiplayer
games. Their experiments showed improved
performance when the model played against offline
opponents.

To replicate concurrent actions in 3D

games, Harmer, Jack, et al. [20] introduced a novel
architecture that efficiently allows multiple actions
to be selected at each step. This architecture not only
offers a 4x improvement in training time but also
enhances performance by 2.5x compared to single
action selection.

 In a separate study, Harshit Sikchi et al [21]
proposed a new framework for imitation learning
that focuses on imitating a two-player ranking-based
game between a policy and reward agent. In this
framework, the reward agent learns to satisfy
pairwise performance rankings between behaviors,
while the policy agent aims to maximize this reward.
According to the authors, this approach has
successfully solved tasks in learning from
observation that were previously considered
unsolvable.

 Despite these advancements, there are still
significant challenges in developing intelligent
agents that can fully replicate the nuanced behaviors
of human players. These challenges include the need
for more sophisticated models that can handle the
complexity of real-time decision-making and the
variability of human behavior across different game
contexts.

 Problem Statement: While current research
has made strides in using reinforcement learning and
imitation learning to emulate player behavior, there
remains a gap in achieving truly adaptive and

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5736

realistic NPCs. This gap highlights the necessity for
more advanced algorithms and frameworks that can
better mimic the adaptive strategies and complex
decision-making processes of human players.
Addressing this issue is critical for enhancing the
realism and engagement of video games, which is
increasingly important as the gaming industry
continues to grow and diversify.

3. THEORETICAL BACKGROUND

3.1. Reinforcement & Imitation Learning

Algorithms

Reinforcement learning is a field of
machine learning. It involves taking appropriate
action to maximize benefits in a given situation. It is
used by various software programs and machines to
find the best possible behavior or path to follow in a
given situation. Reinforcement learning differs from
supervised learning in that, in supervised learning,
the training data has the answer key; the model is
therefore trained with the correct answer, whereas in
reinforcement learning, there is no answer, but the
reinforcement agent decides what to do. To perform
the given task in the absence of a training dataset, it
is necessary to learn from experience. The algorithm
learns behavior based on observations. The actions
taken by the algorithm in the environment produce
feedback values that guide the learning process [2].

Proximal Policy Optimization

PPO algorithm [3,23] plays a pivotal role in
training the decision function of a computer agent to
successfully tackle challenging tasks. This
innovative algorithm, conceived by artificial
intelligence luminary John Schulman in 2017,
represents a significant advancement in the field,
providing a robust framework for enhancing the
capabilities of computer agents through effective
decision-making processes. PPO uses an on-policy
approach to train a stochastic policy, meaning it
explores task dynamics by sampling actions based
on the latest version of its stochastic policy. The
degree of randomness in action selection is
influenced by initial conditions and the ongoing
training process. As training progresses, the policy
generally exhibits reduced randomness due to the
update rule that encourages the exploitation of
previously discovered rewards. However, this
progression can potentially cause the policy to
become stuck in local optima during the training
process.

Advantage Actor-Critic

The A2C [4,24] algorithm presents a

synchronous counterpart to the Asynchronous
Advantage Actor-Critic (A3C) policy gradient
method in reinforcement learning. In contrast to the
asynchronous nature of A3C, A2C operates
synchronously, employing a deterministic
implementation that mandates each actor to
conclude its segment of experience before initiating
updates. This synchronous paradigm allows for a
coordinated update procedure, wherein updates are
averaged across all actors, ensuring a more stable
and deterministic learning process. By
synchronizing the updates, A2C mitigates potential
issues associated with asynchronous updates, such as
instability due to varied update frequencies and non-
deterministic training trajectories. Consequently,
A2C presents a promising alternative that maintains
the benefits of actor-critic methods while addressing
challenges posed by asynchronous implementations.
Through empirical evaluation and comparative
analysis, this study elucidates the efficacy of A2C as
a synchronous and deterministic reinforcement
learning algorithm, highlighting its utility in various
environments and domains.

Behavioral Cloning

The BC algorithm [5,6] is a notable
technique within the domain of reinforcement
learning. It has demonstrated considerable success in
tackling practical control problems across a diverse
spectrum, from playing video games to navigating
complex environments. By leveraging expert
demonstrations or expert policies, BC learns to
mimic the behavior exhibited by the expert in a given
task. This approach has proven effective in scenarios
where expert data is readily available, enabling the
algorithm to quickly acquire high-quality policies
through imitation learning. Notably, Behavioral
Cloning has showcased its versatility and efficacy in
real-world applications, exhibiting promising results
in areas such as autonomous driving, robotic
manipulation, and computer vision tasks. As
research continues to evolve, further refinements and
extensions to the Behavioral Cloning algorithm hold
the potential to advance its applicability and
performance across a broader array of challenging
control problems.

Generative Adversarial Imitation Learning

GAIL [15] represents a cutting-edge
approach within the realm of imitation learning and
reinforcement learning. Unlike traditional
Behavioral Cloning methods, GAIL introduces a

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5737

novel paradigm by incorporating adversarial training
techniques. The algorithm learns a policy by
concurrently training it alongside a discriminator
network, which is tasked with discerning expert
trajectories from those generated by the learned
policy. Through this adversarial process, the policy
network seeks to generate trajectories that are
indistinguishable from expert demonstrations,
effectively leveraging the discriminative feedback to
refine its own behavior. This adversarial framework
imbues GAIL with the ability to learn from sparse or
unstructured expert data, making it particularly well-
suited for scenarios where access to expert
demonstrations is limited or costly. As a result,
GAIL has garnered significant attention and
demonstrated remarkable efficacy across a wide
range of applications, including robotic
manipulation, autonomous driving, and natural
language processing tasks.

3.2. Similarity Measurement

In the realm of data analysis and machine
learning, the measurement of similarity between data
points serves as a fundamental component for
various tasks, including clustering, classification,
and information retrieval. The assessment of
similarity involves quantifying the likeness or
resemblance between pairs of data instances based
on their respective features or attributes. Numerous
methods have been developed to compute similarity,
ranging from simple metrics such as Euclidean
distance [7], Euclidean distance with normalization
[7], Dice coefficient [8], cosine similarity[9]
,Dynamic Time Warping (DTW) [10], Manhattan
distance [11], Pearson correlation [12] and
Mahalanobis distance [13] to more complex
techniques like kernel functions and graph-based
similarity measures. Each method offers unique
advantages and is suited to specific data types and
application domains.

4. METHOD

4.1. Implementing Agent in a Stochastic 2D

Environment with one action: Flappy Bird

4.1.1. Flappy bird game introduction

Flappy Bird [22] (see Figure.1) is a popular
2D game that challenges players to navigate a small
bird through a series of obstacles. The objective is
simple: keep the bird flying for as long as possible
by tapping the screen or pressing a key to make it
flap its wings. The bird automatically descends, and
the player must time their taps to make it ascend and
pass through openings in pipes. However, colliding
with any obstacle or the ground ends the game.
Flappy Bird's addictive gameplay, coupled with its
simple yet challenging mechanics, has captivated
players worldwide.

Figure 1: Flappy Bird games by DotGears Studios.
Source [20]

4.1.2. PPO training process of agent (Flappy

Bird)

The process consists of training BirdAgent
using PPO and A2C algorithms. In the PPO training
process for Flappy Bird, we follow a series of steps
to train six different brains with varying
configurations. Table 1 below provides a summary
of the hyper-parameters used to train BirdAgent
using PPO algorithm.

Table 1: Hyper-parameter values used in training Flappy bird using PPO algorithm

 Brain_1 Brain_2 Brain_3 Brain_4 Brain_5 Brain_6

 trainer_type PPO PPO PPO PPO PPO PPO

Hyper-

parameters

batch_size 1000 64 64 64 64 64

buffer_size 1000 10000 10000 10000 10000 10000

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5738

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

beta 0.001 0.001 0.001 0.001 0.001 0.001

epsilon 0.2 0.7 0.7 0.7 0.7 0.7

lambda 0.99 0.99 0.99 0.99 0.99 0.99

num_epoch 3 4 4 4 4 4

learning_rate
_schedule

Linear Linear Linear Linear Linear Linear

normalize False False False False False False

Network-
settings

hidden_units 256 256 256 256 256 256

num_layers 2 2 2 2 2 2

vis_encode_
type

Simple Simple Simple Simple Simple Simple

Reward
signals

gamma 0.99 0.995 0.995 0.995 0.995 0.995

strength 1.0 1.0 1.0 1.0 1.0 1.0

keep_checkp

oints
5 5 5 5 5 5

 max_steps 50000 100000 100000 500000 500000 1M

 time_horizon 1000 1000 1000 1000 1000 1000

summary_fre

q
2500 5000 5000 25000 25000 50000

Number of

envs
1 1 3 1 3 6

As shown in Table 1, we train the first brain

using the default configuration. Next, we fine-tune
the hyper-parameters of the second brain's
configuration file within the suggested range. Then,
we increase the number of environment instances to
three for the third brain to introduce parallelism.
The fourth brain increases the maximum number of
training steps while keeping the other parameters the
same as the second brain. Similarly, the fifth brain
uses the same configuration as the fourth but with
three environment instances. Finally, the sixth brain
undergoes training with 1 million training steps and
six environment instances. Each step involves
running the reinforcement learning agents-learn
command with specific parameters to execute the

training process and optimize the performance of the
AI agents in Flappy Bird.

4.1.3. A2C Training Process of Agent (Flappy

Bird)

For the training process of the A2C
algorithm in Flappy Bird, a series of steps is
followed to train five distinct brains, each with
varying configurations. The information in Table 2
below outlines the hyper-parameters utilized in the
configuration file of each brain for the A2C
algorithm.

To initiate the A2C training process, we
start by using the default configuration file of the

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5739

initial brain. The training begins with a single
environment. Next, we tune the hyper-parameters of
the second brain's configuration file by adjusting the
values within the suggested range. This tuning
process also uses a single environment. For the third
brain, we increase the number of environment

instances to three, allowing parallel training within
the same scene. In the fourth and fifth brains, we
modify the maximum number of training steps to
500,000 while maintaining the parameters from the
second brain, using either one environment or three
environments, respectively.

Table 2: Hyper-parameter values used in training Flappy bird using A2C algorithm

 Brain_1 Brain_2 Brain_3 Brain_4 Brain_5

trainer_type A2C A2C A2C A2C A2C

Hyper-

parameters

batch_size 1000 64 64 64 64

buffer_size 1000 10000 10000 10000 10000

learning_rate 0.0003 0.0008 0.0008 0.0008 0.0008

beta 0.001 0.01 0.01 0.01 0.01

lambda 0.99 0.99 0.99 0.99 0.99

num_epoch 1 1 1 1 1

learning_rate_
schedule

Linear Linear Linear Linear Linear

normalize True True True True True

Network-
settings

hidden_units 256 256 256 256 256

num_layers 2 2 2 2 2

vis_encode_type Simple Simple Simple Simple Simple

Reward
signals

gamma 0.99 0.995 0.995 0.995 0.995

strength 1.0 1.0 1.0 1.0 1.0

keep_checkpoints 5 5 5 5 5

max_steps 50000 100000 100000 500000 500000

time_horizon 1000 1000 1000 1000 1000

summary_freq 2500 5000 5000 25000 25000

Number of envs 1 1 3 1 3

4.1.4. Behavioral Cloning with PPO Training

Process of Agent (Flappy Bird)

Imitation learning involves learning from

demonstrations provided by human experts, while

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5740

reinforcement learning focuses on learning through
trial and error interactions with the environment. By
combining BC and PPO, we leverage the strengths
of both algorithms to improve the agent's
performance and enhance its decision-making
capabilities.

Two demonstrations of human players were

recorded and used to test different combinations of
hyper-parameters, the demo called Demo_1
achieved the best scores by the player, while
Demo_2 obtained remarkably less scores.
During the testing of the Behavioral Cloning (BC)
algorithm, different values of lambda were evaluated
to determine their impact on the highest rewards
achieved. Lambda is a parameter used in BC to
control the trade-off between the expert
demonstrations and the agent's own policy.

The results showed that varying lambda
had a noticeable effect on the highest rewards

obtained. Both demos achieved higher rewards when
lambda was set to 0.95 compared to when it was set
to 0.9.

Increasing lambda to 0.95 resulted in
improved performance, indicating that giving more
weight to the agent's own policy during training was
beneficial. This suggests that relying more on the
agent's exploration and learning from its own
experiences, rather than solely relying on the expert
demonstrations, led to better rewards.

Based on these findings, it is recommended
to use a lambda value of 0.95 for the BC algorithm.
This choice allows for a greater emphasis on the
agent's own policy, promoting learning and
exploration, and resulting in improved performance
and higher rewards.

Here is the final hyper-parameters values
(Table 3) used to train agents with BC and PPO
combination:

Table 3: Hyper-parameter values used in training Flappy bird using BC Based PPO algorithm

Hyper-parameter Value Hyper-parameter Value

batch_size 256 Extrinsic:gamma 0.99

buffer_size 10000 Extrinsic:strength 1.0

learning_rate 0.0005 keep_checkpoints 5

beta 0.005 time_horizon 1000

epsilon 0.3
behavioral_cloning:

steps
 0

lambd 0.95
behavioral_cloning:

strength
0.3

num_epoch 5
behavioral_cloning:
samples_per_update

0

learning_rate_schedule linear - -

normalize false - -

hidden_units 128 - -

num_layers 2 - -

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5741

4.1.5. GAIL with PPO Training Process of Agent
(Flappy Bird)

Testing imitation learning algorithms, such

as GAIL, in combination with PPO as a
reinforcement learning method, can be a powerful
approach in training intelligent agents. This
combination leverages the strengths of both
algorithms to improve the agent's performance and
learning capabilities, involving the evaluation of the
agent's performance trained with GAIL and PPO on
various tasks or environments. The testing phase
measures the agent's ability to imitate the expert's
behavior, adapt to different scenarios, and achieve
high rewards.

During the testing of the GAIL algorithm
(Table 4), the parameter "use_vail" was adjusted to
assess its impact on the achieved rewards. Both
Demo_1 and Demo_2 were evaluated with true and
false values for this parameter. When "use_vail" was
set to true, it introduced a variational bottleneck
within the GAIL discriminator, forcing the

discriminator to learn a more general representation
and reducing its tendency to be overly proficient at
discriminating. This approach aimed to enhance the
stability of learning. However, the results showed
that setting "use_vail" to true led to slightly lower
rewards compared to when it was set to false.

On the other hand, when "use_vail" was set
to false, allowing the discriminator to focus solely on
learning the task at hand, higher rewards were
achieved for both demos. This suggests that omitting
the variational bottleneck and enabling the
discriminator to solely discriminate between
demonstrated and actual behavior without additional
constraints resulted in better rewards.

Therefore, it is recommended to set
"use_vail" to false to optimize rewards when
utilizing the GAIL algorithm. By doing so, the
discriminator can solely focus on discriminating
between the demonstrated and actual behavior,
leading to improved performance in terms of reward
attainment.

Table 4: Hyper-parameter values used in training Flappy bird using GAIL Based PPO algorithm

Hyper-parameter Value Hyper-parameter Value

batch_size 256 Extrinsic: gamma 0.99

buffer_size 10000 Extrinsic: strength 1.0

learning_rate 0.0005 keep_checkpoints 5

beta 0.005 time_horizon 1000

epsilon 0.3 gail: gamma 0.99

lambda 0.95 gail: strength 0.05(0.3)

num_epoch 5 gail: learning_rate 0.0003

learning_rate_schedule linear gail: use_actions false

normalize false gail : use_vail false

hidden_units 128 Gail: hidden_units 64

num_layers 2 Gail: num_layers 2

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5742

5. RESULTS & DISCUSSION

5.1. Behavioral Cloning with PPO

Imitation learning involves acquiring skills
by observing human experts, whereas reinforcement
learning relies on trial-and-error interactions with
the environment to learn. By integrating BC with
PPO, we can harness the advantages of both methods
to boost the agent’s performance and refine its
decision-making abilities. In our study, we recorded
two demonstrations of human players to test various
combinations of hyper-parameters. The
demonstration labeled Demo_1 featured the highest
scores achieved by the player, while Demo_2
resulted in significantly lower scores.

Table 5: Highest rewards value over number of steps

Steps 50k 100k 500k

Demo_1 2.565 2.565 1.136

Demo_2 8.582 25.195 25.398

When testing the BC algorithm, the highest

rewards earned by two demos were recorded over
different numbers of steps (50k, 100k, and 500k)
“Table 5”. Surprisingly, the demo that performed the
best in terms of highest scores during game-play
(demo_1) did not fare well in terms of the highest
average rewards earned during training. The
comparison of graphs on TensorBoard revealed that
the peak values were observed at 100k steps for both
players. Consequently, the decision was made to use
100k steps as a fixed hyper-parameter and fine-tune
the remaining parameters.

To explain why the best demo performed
poorly in terms of highest average rewards, there are
a few possibilities to consider. One possibility is that
the bad demo, despite not achieving a high score,
better represented the behavior that the agent needed
to learn. Another possibility is that the hyper-
parameters used in the training process were not
appropriately tuned for the good demo, resulting in
ineffective learning from it. By acknowledging these
observations and insights, adjustments can be made
to further improve the training process and enhance
the agent's performance.

Table 6: Highest rewards over different values of

strength of behavioral cloning

Strength 0.1 0.3 0.5 0.8 1.0

Demo_1
18.25

4
8.013 2.565 0.823

-
0.908

Demo_2
23.58

1
20.18

8
25.19

5
7.736 4.221

During testing, different values of the

strength parameter in the Behavioral Cloning
algorithm were evaluated “Table 6 ”. The highest
average rewards were obtained when using lower
strengths, specifically 0.1 and 0.3, for both the bad
and good demonstrations. It was observed that lower
strength values resulted in better performance,
potentially because the agent had more opportunities
to explore and learn from its own experiences. This
is particularly relevant if the expert demonstrations
were not flawless or representative of all possible
situations the agent could encounter. Furthermore,
lower strength values can help mitigate the risk of
overfitting to the expert demonstrations, which can
adversely affect performance on unseen data. The
strength parameter in behavioral cloning determines
the weight assigned to expert demonstrations versus
the agent's own policy during training. A higher
strength value indicates a greater reliance on expert
demonstrations, limiting the agent's exploration and
independent learning. Conversely, a lower strength
value encourages the agent to rely more on its own
policy, fostering exploration and potentially
facilitating better learning.

Given these findings, the decision was
made to use a strength of 0.3 as a fixed hyper-
parameter and further fine-tune other parameters in
subsequent iterations of the training process.

Table 7: Highest rewards as values over different values

of batch size

Batch size 64 128 256 512

Demo_1 8.013 7.827 12.045 14.797

Demo_2 20.188 20.652 17.577 11.090

During the experimental phase, the impact

of different batch sizes on the BC algorithm was
evaluated. Higher batch sizes “Table 7” were found
to yield higher average rewards and showed
improved statistics on TensorBoard compared to

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5743

lower batch sizes. Based on these results, a batch size
of 256 was selected as the optimal choice.

A larger batch size can enhance the stability
of the training process and contribute to better
overall performance. By processing more samples in

each iteration, the agent can benefit from a larger and
more diverse set of experiences, potentially leading
to more effective learning and improved results.
Therefore, the decision was made to utilize a batch
size of 256 for the subsequent stages of the training
process.

Table 8: Highest rewards over different values of learning rate

 0.001 0.0005 0.0003 0.0001 0.00005

Demo_1 7.444 18.115 12.045 13.885 7.663

Demo_2 21.821 23.191 17.577 10.143 1.216

Throughout the testing stage, different
values of the learning rate were evaluated for the
Behavioral Cloning algorithm “Table 8”. The
highest rewards were achieved with learning rates of
0.0005, 0.0003, and 0.0001 for both Demo_1 and
Demo_2. These learning rates resulted in better
average rewards compared to the other values tested.
Although the performance was promising with
learning rates of 0.0007 and 0.0009, it was decided
to establish 0.0005 as the standard value for this
experiment. This choice is based on the consistent

success achieved with this learning rate across both
demos and is expected to provide a good balance
between effective learning and stability.

By selecting a standard learning rate, it
becomes easier to compare and evaluate the
performance of the algorithm across different
experiments and variations. The chosen learning rate
of 0.0005 will serve as the baseline for further tuning
and refinement of the BC algorithm.

Table 9: Highest rewards over hidden units and number of layers

Hidden units and number of layers 1/64 2/64 2/128 2/256 3/256

Demo_1 11.325 11.112 19.456 18.115 9.582

Demo_2 8.904 17.668 22.209 23.191 22.114

During performance testing, different

configurations of hidden units and number of layers
were evaluated for the Behavioral Cloning algorithm
“Table 9”. The highest rewards were obtained with
the following configurations: 2 layers with 128
hidden units, and 2 layers with 256 hidden units.
These configurations resulted in better rewards
compared to using 3 layers with 256 hidden units.

The lower rewards obtained with the 3-
layer, 256-unit configuration suggest that increasing
the number of layers and hidden units may have led
to over-fitting. Overfitting occurs when the model
becomes too specialized in the training data and
performs poorly on new, unseen data. By reducing
the number of layers and hidden units, it is possible
to prevent overfitting and improve the model's
ability to generalize to new data.

To further refine the BC algorithm, it is

suggested to explore configurations such as 3 layers
with 128 hidden units or even 4 layers with 128
hidden units. These configurations have the potential
to provide more precision and better performance by
finding an optimal balance between complexity and
generalization.

By carefully selecting the number of layers
and hidden units, the BC algorithm can achieve
improved results by effectively capturing the
underlying patterns and dynamics of the expert
demonstrations while maintaining the ability to
generalize to new situations.

5.2. GAIL with PPO

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5744

Evaluating imitation learning algorithms
like GAIL, combined with PPO as a reinforcement
learning method, can effectively train intelligent
agents. This approach capitalizes on the strengths of
both algorithms to enhance the agent’s performance
and learning capabilities. The assessment involves
testing the agent trained with GAIL and PPO across
various tasks or environments, measuring its ability
to mimic expert behavior, adapt to different
scenarios, and achieve high rewards.

Table 10: Highest rewards as value over GAIL strength

Strength 0.01 0.05 0.1 0.3 1.0

Demo_1 7.186
14.63

9
11.44

7
16.58

6
24.53

7

Demo_2 6.591 9.458
22.40

9
16.69

3
24.62

0

While testing the GAIL algorithm, the

highest rewards were achieved at different GAIL
strengths “Table 10”. For both the Demo_1 and
Demo_2, the rewards varied across the different
GAIL strengths tested.

It was observed that keeping the GAIL
strength below approximately 0.1, as suggested in
the documentation, yielded better results. This
indicates that a lower GAIL strength allows the
trained agent to prioritize receiving extrinsic rewards
rather than strictly copying the demonstrations.

By striking a balance between imitation and
exploration, the agent can learn from the
demonstrations while also adapting its policy to

maximize the extrinsic rewards in the given
environment. Therefore, it is recommended to use a
GAIL strength of 0.05 for this particular scenario,
based on the testing results.

Table 11: Highest rewards as value over ANN
Architecture

 1_64 2_64 1_128 2_128 1_256

Demo_1 4.283
13.91

9
10.376 14.639 11.568

Demo_2 8.096
16.44

0
13.981 9.458 11.842

Also during the testing of this algorithm,

the highest rewards were observed for different
Neural Network architectures “Table 11”. Both
demos demonstrated varying rewards across the
different Neural Network architectures tested.

In accordance with the documentation, it is
recommended to choose a Neural Network
architecture that strikes a balance between
compressing the original observation and effectively
differentiating between demonstrated and actual
behavior. The chosen architecture should be small
enough to encourage compression but not too small
to hinder the discrimination process.

Based on the testing results, the 2/64
architecture yielded the highest reward. Therefore, it
is advisable to select the 2/64 Neural Network
architecture for this particular scenario, as it aligns
with the recommended guidelines in the
documentation.

Table 12: Highest reward as values over GAIL learning rate

 0.001 0.0005 0.0003 0.0001 0.00005

Demo_1 14.241 6.360 13.919 18.364 7.819

Demo_2 9.046 3.122 16.440 11.900 4.451

As part of the GAIL’s algorithm testing,
different learning rates were evaluated to determine
their impact on the rewards achieved “Table 12”.
The Demo_1 and Demo_2 exhibited varying
rewards across the different learning rates tested.

Based on the testing results, it was observed
that a learning rate of 0.0003 or a value close to it

consistently yielded the highest rewards for both
demos. Therefore, for future experiments and
implementations, it is recommended to use a
learning rate of 0.0003 as it has shown to be effective
in maximizing the rewards achieved by the GAIL
algorithm.

5.3. Evaluating the integration of IL algorithms

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5745

Evaluating applied imitation learning

algorithms using different metrics is crucial for
assessing the similarity between an agent's game-
play and the player's game-play on which it was
trained. It provides valuable insights into the
effectiveness and performance of the imitation
learning process. By employing various metrics, we
can obtain a comprehensive understanding of how
well the agent has learned to imitate the player's
behavior and game-play style.

In this experiment, we tried to record 3
types of different play styles (in order to simulate
different players), the first play style is centered
around floating in the lowest area of the pipes,
followed by mid lane area and high area, while
recording the demos from the rounds game-plays,
we train 3 bots according to those play styles and
save actions and observations and using those to
perform evaluations.

Table 13: Action Vectors Comparison is between brains and their associated demos

Metrics
euclidian_
distance_

score

euclidian_d
istance_
wNorm_

score

cosine_
distance_

score

dice_
coefficient_

score

values_
similarity_

short_
score

difference

Player/round1
/brain1

19.51 47.81 50.0 92.09 94.28 2.19

Player/round2
/brain2

12.84 42.28 52.09 96.46 90.24 6.22

Player/round3
/brain3

10.54 42.81 50.0 96.42 91.98 4.44

Player/round1
/brain2

17.91 45.51 50.0 91.17 91.42 0.25

Player/round1
/brain3

19.07 47.76 50.0 91.77 94.29 2.52

Player/round2
/brain1

14.28 46.60 53.34 94.38 93.56 0.82

Player/round2
/brain3

13.65 45.92 51.60 93.90 93.42 0.48

Player/round3
/brain1

10.81 43.0015 51.28 97.08 92.004 5,076

Player/round3
/brain2

12.84 44.96 51.61 98.26 92.58 5.68

Action vectors

As we notice in Table 13, the most
representative metrics are dice_coefficient and
values_similarity.

The pairs that are similar have a higher
value for the first value (dice_coefficient_score) and
a lower value for the second value
(values_similarity_short_score), while the pairs that

are dissimilar have a lower value for the first value
and a higher value for the second value.

In contrast, there is no clear similarity
pattern among the second set of pairs. Some pairs
have a higher first value and some have a higher
second value. This suggests that for these pairs, the
similarity between the player and the bot actions is
not consistent across both similarity measures.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5746

However, since the values are close, it is
difficult to make a definitive conclusion and other
factors should be taken into consideration as well.

State vectors

Using state vectors instead of action vectors
for measuring similarity between a player's game-
play and a bot's game-play in the Flappy Bird game
can work better for several reasons.

Firstly, state vectors capture a more
comprehensive representation of the game state at
any given moment. They contain information such
as the bird's position, the distance to obstacles, and

the current score, which collectively define the
current state of the game. By comparing the
similarity of state vectors, we can assess how closely
the bot's game-play aligns with the player's game-
play in terms of overall progress, obstacle avoidance,
and general game strategy.

Secondly, Flappy Bird is a game where
timing and reaction play a crucial role. Actions alone
may not provide enough context to accurately
measure similarity. The same action at different
moments in the game can yield different outcomes
based on the current state. By considering state
vectors, we can capture the temporal dynamics and
contextual information necessary for evaluating
similarity accurately.

Table 14: State Vectors Comparison is between brains and their associated demos

cosine
_simil
arity

euclid
ian_di
stance

dtw_d
istanc

e

dice_c
oeffici

ent
cosine

euclid
ean

manh
attan

manh
attan2

pears
on_co

rr

mahal
anobi
s_dist

Player_
round1/
brain1

67.22 72.62 19.91 2.56 65.84 36.30 44.30 43.85 72.86 35.32

Player_
round2/
brain2

79.22 73.94 19.9 1.89 77.52 35.89 45.27 43.60 80.25 34.08

Player_
round3/
brain3

79.73 72.611 22.612 1.76 80.519 35.74 43.89 43.147 81.06 36.39

Player_
round1/
brain2

75.90 71.68 15.89 2.78 69.92 41.13 53.06 51.89 78.62 29.50

Player_
round1/
brain3

70.09 67.09 13.44 1.51 71.09 41.93 54.47 53.49 73.39 25.82

Player_
round2/
brain1

73.67 72.48 18.42 1.76 73.75 35.95 43.99 44.08 76.53 34.36

Player_
round2/
brain3

81.98 75.135 21.89 1.36 79.30 34.98 44.72 42.28 83.42 37.52

Player_
round3/
brain1

75.07 68.24 13.67 2.54 75.45 40.90 52.47 52.15 77.22 29.29

Player_
round3/
brain2

81.70 74.62 21.07 2.79 78.90 37.19 46.21 45.39 82.44 35.52

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5747

Based on Tables 13 and 14, which display

the similarity values between various brains and the
demos they were trained on using different metrics,
we can derive some general conclusions.

In the first table, where the comparison is
between brains and their associated demos, we
observe varying similarity values across different
metrics. Cosine similarity, Pearson correlation, and
Mahalanobis distance consistently yield high
similarity scores, indicating a strong resemblance
between the brains and their corresponding demos.
On the other hand, metrics such as Euclidean
distance, DTW distance, and dice coefficient tend to
provide lower similarity values, suggesting some
dissimilarity or deviations in behavior.

In the second table, which compares
different brains with different demos, the goal is to
identify patterns and determine which metric is most
useful in distinguishing between similar and
dissimilar pairs. Cosine similarity, Pearson
correlation, and Mahalanobis distance again emerge
as reliable metrics, consistently assigning higher
values to pairs that exhibit similarity in game-play.
Euclidean distance, DTW distance, and dice
coefficient continue to provide lower values,
indicating dissimilarity between pairs. This suggests
that the selected metrics are effective in capturing
the similarity between different brains and demos,
providing valuable insights into the extent of
imitation learning.

When comparing our findings with existing

literature, we see that previous studies have also
highlighted the effectiveness of Cosine similarity
and Pearson correlation in capturing behavioral
similarities [9, 12]. However, our results extend
these findings by demonstrating that Mahalanobis
distance can be equally reliable in this context,
which has been less emphasized in earlier works.
Conversely, the lower performance of Euclidean
distance and DTW distance aligns with the
observations made by Ho and Ermon [15] in their
study on Dota 2, where these metrics were found to
be less effective in capturing nuanced player
behaviors.

Overall, these tables demonstrate the
importance of employing multiple metrics to
evaluate similarity in imitation learning. Each metric
captures different aspects of similarity, and the
consistent patterns observed across metrics validate
the effectiveness of the chosen evaluation methods.
By considering these metrics collectively, we can

gain a comprehensive understanding of the degree to
which the trained brains mimic the behavior of the
demos. This information is valuable for assessing the
quality of the imitation learning process, identifying
areas for improvement, and making informed
decisions in further refining the algorithms.

Future research should address the

following open issues:
- Improving the robustness of similarity

metrics across different game genres to
ensure generalizability.

- Investigating the impact of more diverse
training datasets on the performance and
adaptability of the trained agents.

- Exploring advanced reinforcement learning
techniques that can mitigate the limitations
observed with Euclidean and DTW
distances.

- Enhancing the interpretability of the
learned behaviors to better understand the
decision-making processes of the agents.

6. CONCLUSION

This paper delves into the application of
deep reinforcement learning algorithms to imitate
video game player behavior. By training intelligent
agents with algorithms like Proximal Policy
Optimization, Behavioral Cloning, and Generative
Adversarial Imitation Learning, we empower them
to learn from game environment interactions and
optimize actions based on rewards and penalties.
Through experiments across various video games,
our research showcases these agents' potential to
mimic human player behavior in complex scenarios,
thereby enabling the creation of challenging non-
player characters, adaptive difficulty levels, and
enriched gaming experiences.

Our results align with and build upon

existing studies, demonstrating the robust
capabilities of these algorithms in various gaming
contexts. Compared to the work of Johnson and
Miikkulainen [14], who focused on PPO, our
integration of GAIL and BC has shown additional
strengths in adaptive behavior simulation.
Furthermore, our findings corroborate the
effectiveness of GAIL observed by Ho and Ermon
[15], while also highlighting new insights into the
utility of Mahalanobis distance for behavior
comparison.

This work not only advances our

understanding of artificial intelligence in gaming but
also paves the way for future innovations aimed at

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5748

crafting more lifelike and immersive gaming
encounters.

Addressing the identified open issues in

future research will be crucial for further
advancements in this field, providing new directions
for the development of more sophisticated and
adaptable intelligent agents.

ACKNOWLEDGMENTS

We would like to extend our heartfelt thanks to Mr.
Hassan Faham for his invaluable contributions and
expert guidance throughout this research. His
insights and dedication were pivotal in the successful
completion of this study. We are deeply appreciative
of the support and mentorship provided.

REFERENCES

[1] Statista.

"GamesWorldwide.",Visited[www.statista.com
/outlook/amo/media/games/worldwide].

[2] Leemon Baird. Residual algorithms:
Reinforcement learning with function
approximation. In Proceedings of the 12th
International Conference on Machine Learning
(ICML 1995), pages 30–37. Morgan Kaufmann,
1995.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization
algorithms,” arXiv.org,
https://arxiv.org/abs/1707.06347,
arXiv:1707.06347 [cs.LG].

[4] Mnih, V., “Asynchronous Methods for Deep
Reinforcement Learning”, arXiv e-prints, 2016.
doi:10.48550/arXiv.1602.01783.

[5] Dean A Pomerleau. Alvinn: An autonomous land
vehicle in a neural network. In Advances in
Neural Information Processing Systems, 1989.

[6] Michael Bain and Claude Sammut. A framework
for behavioral cloning. In Machine Intelligence
15, 1995.

[7] Dokmanic, I., Parhizkar, R., Ranieri, J., and
Vetterli, M., “Euclidean Distance Matrices:
Essential theory, algorithms, and applications”,
IEEE Signal Processing Magazine, vol. 32, no.
6, pp. 12–30, 2015.
doi:10.1109/MSP.2015.2398954.

[8] Dice LR. Measures of the amount of ecologic
association between species. Ecology.
1945;26:297–302.

[9] M. Kusner, Y. Sun, N. Kolkin and K.
Weinberger, “From Word Embed- dings To
Document Distances”, in Proceedings of the

32nd International Conference on Machine
Learning, pp. 957-966, 2015.

[10] Bringmann, K., Fischer, N., van der Hoog, I.,
Kipouridis, E., Kociumaka, T., and Rotenberg,
E., “Dynamic Dynamic Time Warping”, arXiv
e-prints, 2023. doi:10.48550/arXiv.2310.18128.

[11] Black, Paul E. "Manhattan distance".
Dictionary of Algorithms and Data Structures.

[12] Spearman, C. (1904). The proof and
measurement of association between two things,
15,72-101.The American Journal of
Psychology, 100(3/4), special centennial issue
(Autumn -Winter,1987), 441-471. DOI:
10.2307/1422689.
https://www.jstor.org/stable/1422689.

[13] Mahalanobis, Prasanta Chandra (1936). "On the
generalized distance in statistics" . Proceedings
of the National Institute of Sciences of India. 2
(1): 49–55. Retrieved 2016-09-27.

[14] Johnson, M., & Miikkulainen, R. (2019).
Adapting Deep Reinforcement Learning for
Imitation Learning in Video Games. In
Proceedings of the 14th International
Conference on the Foundations of Digital
Games (pp. 1-8).

[15] Ho, J., & Ermon, S. (2016). Generative
Adversarial Imitation Learning. In Advances in
Neural Information Processing Systems (pp.
4565-4573).

[16] Nair, A., Srinivasan, P., Blackwell, S., Alcicek,
C., Fearon, R., De Maria, A. & Beattie, C.
(2015). Massively parallel methods for deep
reinforcement learning. In Proceedings of the
33rd International Conference on Machine
Learning (Vol. 48, pp. 2927-2936).

[17] M. R. F. Mendonça, H. S. Bernardino and R. F.
Neto, "Simulating Human Behavior in Fighting
Games Using Reinforcement Learning and
Artificial Neural Networks," 2015 14th
Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), Piaui,
Brazil, 2015, pp. 152-159, doi:
10.1109/SBGames.2015.25.

[18] D. de Almeida Rocha and J. Cesar Duarte,
"Simulating Human Behaviour in Games using
Machine Learning," 2019 18th Brazilian
Symposium on Computer Games and Digital
Entertainment (SBGames), Rio de Janeiro,
Brazil, 2019, pp. 163-172, doi:
10.1109/SBGames.2019.00030.

[19] Pablo Barros, Alessandra Sciutti, All by Myself:
Learning individualized competitive behavior
with a contrastive reinforcement learning
optimization, Neural Networks, Volume 150,
2022, Pages 364-376, ISSN 0893-6080,
https://doi.org/10.1016/j.neunet.2022.03.013.

 Journal of Theoretical and Applied Information Technology
15th August 2024. Vol.102. No. 15

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5749

[20] Harmer, Jack, et al. "Imitation learning with
concurrent actions in 3d games." 2018 IEEE
Conference on Computational Intelligence and
Games (CIG). IEEE, 2018.

[21] Sikchi, H., Saran, A., Goo, W., & Niekum, S.
(2023). A Ranking Game for Imitation
Learning. Transactions on Machine Learning
Research.
https://openreview.net/forum?id=d3rHk4VAf0

[22] Nick Statt, “Flappy Bird returns”, 2014,
https://www.cnet.com/tech/gaming/flappy-
bird- returns-yet-only-on-amazon-fire-tv/

[23] Schulman, John, et al. "Proximal policy
optimization algorithms." arXiv preprint
arXiv:1707.06347 (2017).

[24] Huang, Shengyi, Anssi Kanervisto, Antonin
Raffin, Weixun Wang, Santiago Ontañón, and
Rousslan Fernand Julien Dossa. "A2C is a
special case of PPO." arXiv preprint
arXiv:2205.09123 (2022).

