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ABSTRACT 
 

Cloud computing has experienced significant growth in recent years, becoming a cornerstone of modern IT 
infrastructure. Promising "infinite scalability and unlimited resources," cloud service providers offer on-
demand access that often obscures the underlying computing infrastructure. The inherent complexity of 
virtualized, multi-tenant cloud environments surpasses that of traditional data centers, complicating service 
management, particularly in terms of security. Despite these challenges, the appealing features of cloud 
computing have led many organizations to adopt cloud storage services for their critical data. Users can store 
data remotely in the cloud and access it via thin clients when needed. However, data security remains a 
paramount concern due to the internet-based nature of cloud services, which limits user control over stored 
data. This paper proposes an innovative approach to enhance data security in cloud environments through a 
Long-Term Secret Sharing Scheme (SSS-LT). Secret sharing schemes partition and distribute data across 
multiple cloud service providers, thereby increasing data privacy and availability. Our proposed SSS-LT 
addresses a key limitation of existing secret sharing methods: the degradation of computational performance 
with large data sets. We conduct a theoretical analysis of the security and complexity factors influencing our 
approach and validate its efficacy through experimental evaluation, demonstrating its superiority over 
existing methods.  
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1. INTRODUCTION  
 

 Cloud computing is heralded as a transformative 
paradigm poised to revolutionize the consumption of 
computing resources. Despite its numerous benefits, 
cloud computing has brought forth specific security 
issues that are now a primary focus of research in this 
field. One of the most significant challenges in 
adopting cloud services is convincing users to trust 
the security of these services enough to store their 
sensitive data. Although cloud service providers 
often boast sophisticated encryption mechanisms, 
traditional cloud systems cannot guarantee data 
security if cloud servers are compromised. This 
inherent insecurity is exacerbated in cloud 
environments due to their unique characteristics, 
including seamless scalability, shared resources, 
multi-tenancy, ubiquitous access, and high 
availability on demand.  

A substantial body of research has identified 
various security and privacy issues specific to cloud 
computing. These issues are generally classified into 
two categories: 

Amplified Cloud Security Issues -- These are 
existing problems in traditional distributed 
computing environments that are magnified by the 
characteristics of cloud computing. 

Specific Cloud Security Issues -- These are new 
security challenges that arise due to the unique 
features of cloud computing. 

A comprehensive review of the literature, best 
practices, and standard recommendations on cloud 
computing security reveals several critical security 
issues: 

 Misuse of Administrator Rights / Malicious 
Collaborators: The threat posed by the 
misuse of administrator rights is amplified 
in cloud computing. Virtual machines 
(VMs) are often provided as root servers, 
giving cloud providers access to VMs via 
the hypervisor, which can be misused by 
malicious insiders. 

 Lack of Transparency of Security 
Measures: Cloud computing often lacks 
transparency regarding the security 
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measures and processes applied by cloud 
providers, forcing customers to rely on 
vendor assurances without verifiable 
evidence. 

 Lack of Transparency in Security Incidents: 
In cloud environments, both the client and 
the vendor must collaborate to address 
security incidents. However, there is 
currently no standardized procedure for 
such collaboration. 

 Shared Technology Issues: The shared use 
of physical resources and the potential for 
compromised VMs to affect others are 
significant security risks due to inadequate 
isolation in virtualization. 

 Data Lifecycle Management: The challenge 
of securely managing data at the end of a 
contract is heightened in cloud computing 
due to the shared use of resources. 

 Monitoring Service Level Agreements 
(SLAs): Monitoring SLAs in a multi-tenant 
cloud environment requires specialized 
tools for hypervisor and virtualized network 
monitoring, which are currently 
insufficient. 

Additionally, cloud-specific security issues 
include: 

 Imprecise Location of Data: Customers 
often do not know the precise location of 
their data within a cloud provider's 
infrastructure, which complicates data 
sovereignty and compliance concerns. 

 Abuse and Harmful Use of Cloud 
Resources: The rapid provisioning of VMs 
in the cloud can be exploited for malicious 
activities, such as launching Distributed 
Denial of Service (DDoS) attacks. 

 Lack of Supervision: Cloud providers are 
responsible for detecting and mitigating 
security incidents, but there is a lack of 
automated reporting systems to inform 
clients about such incidents. 

 Non-Secure Application Programming 
Interfaces (APIs): The security of cloud 
services depends on the security of vendor-
specific APIs, which must be robust to 
prevent unauthorized access and malicious 
attacks. 

 Lack of Cloud Scalability Monitoring: 
Cloud users often rely on the scalability of 

cloud infrastructure to handle peak 
demands. However, adequate monitoring 
tools to manage this scalability are often 
lacking. 

 Absence of Interoperability among Cloud 
Service Providers: The lack of 
compatibility between different cloud 
providers' services increases the risk of 
vendor lock-in and complicates the 
migration of resources between providers. 

 Increased Complexity due to Cloud 
Characteristics: The complexity of cloud 
environments necessitates a re-evaluation 
of traditional best practices in security and 
business continuity, as they may not be 
sufficient to mitigate security incidents. 

With the rapid adoption of cloud computing, 
organizations are migrating sensitive and critical 
data to cloud environments. This transition has 
heightened concerns about data security and privacy, 
as cloud environments expose data to various risks, 
including unauthorized access, breaches, and loss. 
The increasing reliance on cloud services 
necessitates more robust security solutions to protect 
sensitive information from these evolving threats. 

Despite the development of various security 
mechanisms, traditional methods are often 
insufficient for addressing the unique challenges 
posed by cloud computing. For instance, traditional 
encryption techniques may not effectively handle the 
complex data sharing and access control 
requirements in multi-tenant cloud environments. 
The lack of transparency in security measures and 
incident management, coupled with issues such as 
shared resources and inadequate isolation, highlights 
the need for innovative solutions that offer improved 
security and reliability. 

Current secret sharing schemes, while effective in 
certain contexts, have limitations in terms of 
computational performance and scalability when 
dealing with large data sets in cloud environments. 
Traditional schemes may struggle with the 
performance overhead of processing and managing 
large volumes of data, which can hinder their 
effectiveness in real-world applications. This creates 
a need for new approaches that can handle large data 
sets more efficiently while maintaining strong 
security guarantees. 

As cloud environments continue to evolve, there 
is a growing demand for solutions that enhance both 
data privacy and availability. The proposed Long-
Term Secret Sharing Scheme (SSS-LT) aims to 
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address these needs by fragmenting and distributing 
data across multiple cloud service providers. This 
approach not only improves data privacy but also 
ensures higher availability, reducing the risk of data 
loss and unauthorized access. 

The proposed SSS-LT offers a novel approach that 
fills existing gaps in the literature and addresses the 
limitations of current methods. By integrating secret 
sharing with cloud-specific requirements and 
demonstrating its superiority through theoretical 
analysis and experimental validation, this research 
contributes a significant advancement to the field of 
cloud security. It provides a robust solution to 
pressing issues in data security, offering a new 
perspective on managing and protecting sensitive 
information in cloud environments. 

In summary, this research is required due to the 
growing reliance on cloud computing, existing gaps 
in current security measures, and the need for 
improved privacy and availability. The proposed 
Long-Term Secret Sharing Scheme (SSS-LT) 
addresses these challenges, offering a significant 
contribution to enhancing cloud data security. 

 

2. RELATED WORK 

Significant research efforts have been 
directed towards enhancing the security of cloud 
computing environments, particularly through the 
use of secret sharing schemes. These schemes 
provide a robust method for securing data by 
dividing it into multiple parts and distributing these 
parts across different locations or servers, thereby 
reducing the risk of data breaches. 

AlZain et al. (2012) introduced a model 
leveraging Multi-Clouds Databases (MCDB) and 
secret sharing algorithms to secure cloud services. 
Their approach employs Triple Modulus 
Redundancy (TMR) and the sequential method to 
enhance reliability. The MCDB model utilizes the 
Database-as-a-Service (DaaS) offerings from 
multiple cloud providers, using secret sharing 
algorithms like Shamir’s to ensure data security and 
prevent sensitive data leakage. The TMR method 
employs three identical modules or machines 
performing the same task in parallel, with the output 
determined by majority voting. This method, 
combined with secret sharing algorithms, 
significantly enhances data security and reliability 
by mitigating the risk of data breaches . 

Alsolami and Boult (2014) proposed an 
approach combining Shamir’s secret sharing with 
hashing and signature of shares to ensure data 

integrity and fault tolerance. They implemented 
multi-threading in the remote downloading and 
uploading of shares to improve system performance. 
This method ensures that the data remains secure and 
intact even in the presence of faults or attacks . 

Lee et al. (2014) concluded that multi-cloud 
environments offer superior security, integrity, and 
availability compared to single-cloud systems. They 
proposed integrating a homomorphic encryption 
system into the DepSky approach, which already 
combines Byzantine Fault Tolerance (BFT) and 
erasure code cryptography. This integration aims to 
enhance the security of secret sharing algorithms, 
particularly when handling sensitive data . 

Fabian et al. (2015) presented a 
comprehensive security framework incorporating 
several measures, such as authentication to prevent 
unauthorized access, network security through TLS 
to encrypt communications, federated identity 
management, and access control to medical records 
based on Role-Based Access Control (RBAC). They 
utilized Shamir’s secret sharing and Rabin’s 
Information Dispersal Algorithm to secure data 
replication across multiple cloud providers. 

Ke et al. proposed a dual-threshold secret 
sharing scheme (T, m) - (k, n), where the two 
thresholds are used for secret and mask sharing. 
Their approach involves two variants: 
Computational Security and Information Theoretic 
Security. The former uses a one-way function to 
generate a key and share the secret, while the latter 
ensures security even against opponents with 
unlimited computational power. This method 
involves generating a random number, XORing it 
with the secret, and sharing the result across multiple 
servers. 

Recent advancements have also been made 
in cloud security through the application of block 
chain technology. Liu et al. (2018) proposed a 
blockchain-based approach to enhance the security 
and privacy of cloud data storage. Their method 
leverages the decentralized nature of blockchain to 
distribute and store data securely, ensuring integrity 
and preventing unauthorized access. Similarly, 
Zhang et al. (2019) introduced a blockchain-based 
data sharing framework that utilizes smart contracts 
to manage data access permissions, enhancing 
transparency and security in cloud environments . 

Yang et al. (2020) developed a secure and 
efficient cloud data storage scheme using a verifiable 
secret sharing mechanism. Their approach ensures 
data security and integrity through the use of 
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cryptographic techniques and provides verifiability 
to detect any unauthorized modifications  

Chen et al. (2021) proposed a hybrid cloud 
security model that combines secret sharing and 
homomorphic encryption to secure sensitive data in 
cloud environments. Their method ensures data 
confidentiality and supports secure data computation 
in the cloud without revealing the data to cloud 
service providers . 

In summary, various approaches and 
models have been proposed to address the security 
challenges in cloud computing. These include 
leveraging multi-cloud environments, combining 
secret sharing algorithms with hashing and multi-
threading, integrating homomorphic encryption, and 
utilizing block chain technology. Each method offers 
unique advantages in enhancing data security, 
integrity, and availability in the cloud.   

 

3. PROBLEM STATEMENT 

The rapid adoption of cloud computing has 
led to an unprecedented volume of data being stored 
and processed in cloud environments. This shift 
towards cloud storage has introduced significant 
concerns regarding data security and privacy. While 
cloud computing offers numerous advantages, 
including scalability, cost-effectiveness, and 
accessibility, it also presents unique security 
challenges that are not adequately addressed by 
traditional methods. 

Data breaches and information leakage 
from cloud systems have emerged as major concerns, 
driven by vulnerabilities in cloud infrastructure and 
the complex nature of managing sensitive data across 
multiple tenants. Despite advancements in cloud 
security, existing solutions often fall short in 
addressing the comprehensive security needs of 
cloud environments. Traditional encryption and 
access control mechanisms, while effective in some 
contexts, do not fully account for the dynamic and 
multi-tenant nature of cloud computing, where data 
is distributed across multiple servers and providers. 

Recent literature highlights several key 
challenges: 

 Data Privacy and Security: Cloud 
environments involve storing data across 
multiple servers and potentially across 
multiple providers, raising concerns about 
data privacy and the security of data during 
storage and transmission. Traditional 
encryption techniques may not adequately 

protect data from sophisticated threats and 
vulnerabilities inherent in cloud computing 
(Chen et al., 2021; Yang et al., 2020). 

 Efficiency and Performance: Secret sharing 
schemes, while providing robust security 
guarantees, often suffer from performance 
overhead, especially when handling large 
data sets. This performance issue is 
exacerbated in cloud environments where 
efficiency is critical (Ke et al., n.d.; 
Alsolami and Boult, 2014). 

 Scalability: The scalability of cloud 
services introduces additional complexity 
in data management and security. Current 
solutions may struggle to scale effectively 
while maintaining high levels of security 
and performance (AlZain et al., 2012; 
Fabian et al., 2015). 

 Integration with Cloud-Specific 
Architectures: Many existing secret sharing 
schemes are not optimized for integration 
with cloud-specific architectures, such as 
distributed storage systems and virtualized 
environments. This gap creates a need for 
novel approaches that align with the unique 
characteristics of cloud computing (Lee et 
al., 2014; Liu et al., 2018). 

The proposed research aims to address 
these challenges by integrating secret sharing 
schemes within the Hadoop Map Reduce 
architecture. This approach leverages the inherent 
benefits of Map Reduce—such as parallel processing 
and cost-effectiveness—while enhancing data 
security through advanced secret sharing techniques. 
The Long-Term Secret Sharing Scheme (SSS-LT) 
proposed in this research is designed to improve both 
the efficiency and security of data processing in 
cloud environments. By fragmenting and 
distributing data across multiple cloud service 
providers, the SSS-LT approach aims to address the 
limitations of existing methods and provide a more 
robust solution to the problem of data security in 
cloud computing. 

This research is crucial because it addresses 
current gaps in cloud security solutions, particularly 
in terms of performance and scalability. The 
integration of secret sharing with cloud-specific 
architectures represents a significant advancement in 
securing sensitive data and ensuring its availability, 
contributing valuable insights and practical solutions 
to the field of cloud security. 
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4. PRPOSED SOLUTION  

4.1 Preliminaries 
4.1.1 Shamir Secret Sharing  
Shamir and Blakley introduced straightforward yet 
robust sharing schemes that allow a threshold k of n 
participants, where k <= n, to reconstruct a secret. 
Shamir's solution utilized polynomial curves, 
enabling the secret to be reconstructed through 
interpolation when at least k participants provided 
their shares. 
Definition: In a secret sharing threshold scheme (k, 
n), a secret s∈F can be divided into parts S1, S2 ,…., 
Sn such that:  
 Any set of k or more shares can reconstruct the 

secret. 
 Any set of fewer than k shares reveals no 

information about the secret. 
Shamir’s Secret Sharing Scheme: Given n 
participants, P = {p1,p2,….,pn }, polynomial 
interpolation can be used to create a secret sharing 
threshold scheme (k, n). To successfully reconstruct 
the secret, a subset A ⊆ P  with ∣A∣≥k is required. 
Shares Creation: The dealer D selects a secret s∈F  
and constructs a random polynomial f(x) of degree 𝑘 
– 1 : f(x) = s + r1x + r2x2 + r(k−1)x(k−1) modF 
Subject to the following conditions: 
 The field F is a Galois Field GF(q) where F>n 

and q is a prime power.  
 The secret s∈F.  
 The threshold is k.  
 The coefficients r1 ….. rk-1 are chosen 

independently and randomly from the interval 
[0,F). 

 Each part Si of the secret is created by 
evaluating the function f(x): S1 = f(1), S2 = f(2), 
….., Sn = f(n)  

Secret Reconstruction: The secret can be 
reconstructed using polynomial interpolation. At 
least k participants (the degree of the polynomial 
plus one) must contribute their shares to reconstruct 
the polynomial. Each participant provides a 
consistent pair consisting of the value of x  and the 
result of the polynomial function at x (i.e., each 
participant has a pair  (x, q(x) = Sx). Since no two 
participants share the same x value, the pairs form a 
Lagrange basis. The interpolation polynomial in 
Lagrange form is defined as: L(z) == ( i = 1)k q(xi).(j 
= 1)(k, ji)(z − xj )/(xi − xj ) modF.  
4.1.2 Map Reduce Paradigm  

Map Reduce is a programming paradigm 
designed for the distributed parallel processing of 
large datasets. It transforms these datasets into tuples 
and then combines and reduces them into smaller 
tuples. Fundamentally, Map Reduce was created to 

handle large amounts of data (terabytes or more) by 
utilizing parallel distributed computing to convert 
significant data into smaller, more manageable 
chunks. The basic idea is to address data distribution 
over a network of computers to maximize the use of 
available memory, processors, and storage. This 
allows programmers to focus on the unique aspects 
of their processing tasks. 
In Map Reduce, the developer only needs to define 
two functions—Map and Reduce—while the 
implementation handles the rest. Although there are 
many additional features and settings to fine-tune the 
model, the core functionality remains unchanged. A 
Map Reduce computation follows these steps: 
1. Input Reading: The input is read from disk and 
converted into key-value pairs. 
2. Mapping: The Map function processes each pair 
separately and outputs the results as several key-
value pairs. 
3. Reducing: For each distinct key, the Reduce 
function processes all key-value pairs associated 
with that key and returns any number of key-value 
pairs. 
4. Output Writing: Once all input pairs are 
processed, the Reduce function's output is written to 
the disk as key-value pairs. 
Parallel distributed processing allows large volumes 
of data to be processed quickly by distributing tasks 
across groups of servers. In Map Reduce, tuples refer 
to key-value pairs by which data is grouped, sorted, 
and processed. Map Reduce jobs execute sequences 
of map and reduce processes on a distributed set of 
servers.  
During the map phase, data is converted into key-
value pairs, transformed, and filtered, then assigned 
to nodes for processing. In the reduce phase, the data 
is condensed into smaller datasets. The data is 
transformed into a standard keyframe format where 
the key serves as a record identifier and the value is 
the corresponding data. The process involves two 
main steps: 
1. Mapping the Data: Incoming data is delegated into 
key-value pairs and divided into fragments assigned 
to Map tasks. Each cluster (a group of connected 
nodes performing a shared task) receives several 
Map tasks, distributed among its nodes. Processing 
key-value pairs generates intermediate key-value 
pairs, which are sorted by their key values and 
divided into new fragments. 
2. Reducing the Data: Each reduction task processes 
a fragment and produces an output, also in key-value 
pairs. Reduction tasks are distributed among the 
cluster nodes. Once the task is completed, the final 
output is written to a file system. A diagram of the 
Map Reduce architecture is presented in Figure 1. 



 Journal of Theoretical and Applied Information Technology 
31st August 2024. Vol.102. No. 16 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6132 

 

 

 
Figure 1: Map Reduce Architecture  

It is important to note that the MapReduce model 
specifies a general structure for how data is 
transmitted and processed but does not detail the 
specific steps of calculation with the data—these are 
defined by the user for the four main steps. 
 
4.2 Proposed Scheme  
4.2.1 Proposed System Principle 
Secure data storage in the Cloud is a challenging 
task, especially with the increasing data sizes that 
traditional algorithms struggle to handle. In this 
section, we propose a scalable design and 
implementation of the Secret Sharing scheme using 
Map Reduce to manage large datasets. The goal is to 
leverage the benefits of both security and cost-
effectiveness to enhance the IT security framework. 
Shamir’s Secret Sharing scheme involves two 
phases: a sharing phase and a reconstruction phase. 
For each phase, we present a new implementation 
based on the Map Reduce design model. 
Consequently, each phase of the scheme 
incorporates Map and Reduce steps. 
4.2.2 Data Sharing  
Our approach integrates the Secret Sharing scheme 
with the MapReduce architectural pattern. Shamir’s 
Secret Sharing (1979) is a cryptographic algorithm 
that divides a secret into parts, distributing these 
parts to participants, where a subset of these parts is 
required to reconstruct the original secret. Map 
Reduce, developed by Google, is a framework for 
processing large datasets in parallel and often 
distributed computations. 
Our approach leverages the advantages of secret 
sharing schemes while significantly improving 
performance in terms of execution time. The 
proposed Map Reduce approach involves dividing 
the secret (a file) into p parts, distributing these 
shares to cluster machines, and executing a secret 
sharing method to calculate shares of each part. The 
shares are then sent to storage servers. Figure 2 
illustrates the data sharing phase of the proposed 
approach. 

 

 
 

Figure 2: Data sharing phase based on the Map Reduce 
paradigm  

In the Map step, large data is subdivided into several 
blocks, which are then sent to the slave nodes. Each 
node calculates the polynomials associated with the 
corresponding received data block. The first step in 
this phase is to divide the file to be shared according 
to the record size L chosen during the initialization 
phase. The data is divided into L records as an array 
of bytes. Each record is paired with its respective 
position in the original file to form pairs (key: record 
position in the file, value: record in the form of a byte 
array), which serve as the input for the Map 
functions. 
For each byte of a record, the Map function 
randomly generates the coefficients of a polynomial 
P with the constant term equal to bytei. After 
generating each polynomial, N points are computed, 
representing the N  parts of bytei. Upon completion 
of each mapper’s execution, the output is 
represented as follows: (key = i , (value = i , position, 
record-partij)). 
After all Map tasks are completed, a tri-grouping is 
performed on the returned pairs, and the new pairs 
are passed to a Reduce task. This sorting and 
grouping process involves sorting the pairs 
according to their keys and assembling pairs with the 
same key into the same group. 
Each group of pairs (key, list (values)) is sent to a 
Reducer. Each Reducer processes one of these pairs 
as input and writes it to an output file. Consequently, 
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we will have multiple files, each representing a part 
of the original file. 
4.2.3 Data Reconstruction  
Similar to the data sharing process, we assume that 
the shares are stored on HDFS. To reconstruct the 
original file, we use K parts. Figure 3 illustrates the 
data reconstruction process based on the MapReduce 
paradigm. 

 
Figure 3: Data reconstruction phase based on the Map 

Reduce paradigm  

 
The first step in this phase is to read the K parts and 
send each part to a different mapper. Each mapper 
will extract the objects constituting the parts and 
change the key of each object to its position. 
After all Map tasks are completed, a sorting 
operation is performed on the pairs, and the resulting 
pairs are sent to a Reduce task. At this stage, the pairs 
are sorted according to their keys and then 
assembled into groups. This results in N  groups, 
each of which is sent to a Reducer. Here, the keys 
are the positions of the records in the original file, 
with each share having a key (ID) that belongs to the 
interval [0, fileSize - 1]. Thus, shares with the same 
key represent shares of the same record at a certain 
position in the original file. 
The role of each Reducer is to rebuild a record to 
eventually reconstruct the original file. Each pair 
passed to the Reducer contains the shares from 1 to 
K of a particular record. For example, consider the 
first pair, which contains the K parts (byte arrays of 
the same size = sizeRecord) of the first record. These 
byte arrays are traversed by byte, and the first bytes 
are extracted from the K  arrays. Polynomial 
interpolation is then used to find the polynomial of 
degree k-1 that passes through all these points. We 
use Lagrange interpolation to find the unique 
polynomial P(x) of degree k-1. The constant term of 
the found polynomial represents a byte of a record 
from the original file. 
First, we construct the Lagrange polynomials using 
the formula: L(n, j)(x) = (i = 0, ij)3  ((x − xi))/((xi − 
xj)). 
Then, we can deduce the Lagrange interpolation 
polynomial p(x) by: p(x) = (j = 0)(k − 1)yjL(k − 1, j)(x). 

Obviously, the constant term of the polynomial is a 
byte of a record of the original file. The Reducer will 
perform these steps for each of the bytes of the k 
parts. At the end of each Reduce function, a byte 
array will be generated and will constitute the record 
j of the file; this record is then written to its original 
position and the original file is possibly correctly 
rebuilt. 

5. PERFORMANCE ANALYSIS  

Our approach leverages the Secret Sharing 
scheme to create a secure, fault-tolerant data storage 
service for collaborative work environments, 
including Cloud environments. These perfect 
sharing schemes encode data into shares such that 
only specific valid combinations of those shares can 
reconstruct the original data, while invalid 
combinations reveal no information about the 
encoded data. By storing these shares across 
different servers, the encoded data remains 
confidential as long as a sufficient number of servers 
are not compromised. However, most perfect secret 
sharing schemes suffer from computational 
inefficiencies. We address this issue by introducing 
a MapReduce version of the secret sharing scheme. 

Our proposed approach combines a perfect 
partition schema with the MapReduce paradigm, 
significantly enhancing computational performance 
and achieving higher speeds compared to standard 
secret sharing schemes. In this section, we evaluate 
the properties and performance of the proposed 
system to demonstrate that combining a perfect 
partition scheme with the MapReduce paradigm can 
build reliable and secure distributed data storage 
systems for Cloud computing environments. 

 
5.1 Experimental Analysis 
5.1.1 Experimental Setup 
To evaluate our approach, we installed a multinode 
cluster using Cloudera CDH 5. This setup aims to 
test, compare, and evaluate the performance of 
various secret sharing algorithms implemented using 
the MapReduce approach. Apache Hadoop, 
developed in Java, is the most well-known 
framework for implementing MapReduce. 
Several Hadoop distributions facilitate the 
installation and management of a Hadoop cluster. 
Among these, Cloudera is the most widely deployed, 
offering robust tools for deployment, management, 
and monitoring. Thus, we chose Cloudera for our 
platform. 
Cluster Technical Characteristics: We implemented 
the cluster using three virtual machines. One 
machine was dedicated to the NameNode/DataNode 
(which also hosts all administrative services), and 
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the other two were used as simple DataNodes. The 
physical machine used had 32 GB of memory and 2 
TB hard disk capacity. For virtualization, VMware 
Workstation was used. Each virtual machine ran 
CentOS 7, with 8 GB of memory, 500 GB of disk 
space, and 4 vCPUs. 
5.1.2 Data Sharing 
We conducted experiments comparing Shamir’s 
Secret Sharing Scheme (SSSS) with its MapReduce 
version (mrSSS). The criteria for evaluating the 
performance of each scheme were: 

 Execution Time: Time required creating 
and reconstructing shares, measured in 
seconds. 

 Scalability: Performance impact with 
increasing data sizes and thresholds. 

 Resource Utilization: Efficiency in 
utilizing computational and memory 
resources. 

The results demonstrate the strengths and 
weaknesses of each scheme in different application 
scenarios, as illustrated in Figures 4-7. 
 

 
Figure 4: Sharing phase for different data sizes (N = 5, K 

= 2) 

 

 
Figure 5: Sharing phase for different data sizes (N = 10, 

K = 4) 

 

 
Figure 6: Sharing phase for different data sizes (N = 10, 

K = 6) 

 

 
Figure 7: Sharing phase for different data sizes (N = 5, K 

= 3) 

 
The experiments aimed to show the impact of data 
size variations on the performance of each secret 
sharing scheme (SSS) in terms of data sharing. Data 
sizes from 2 KB to 262 KB were evaluated. The 
generated data was arbitrary, as the evaluations were 
not specific to any particular domain where SSS 
algorithms might be applied. 
We presented four primary sets of results using 
configurations of (N = 5, K = 2), (N = 10, K = 4), 
and (N = 6). Here,  N refers to the number of shares 
created, and K refers to the number of shares 
required for reconstructing the original data using 
each SSS algorithm. The time required for creating 
and reconstructing shares is reported in seconds. 
5.1.3 Data Reconstruction 
Similar to data sharing, we compared the 
performance of data reconstruction for each scheme 
by varying thresholds and data sizes. The criteria for 
evaluating data reconstruction were: 

 Reconstruction Time: Time required to 
reconstruct data from shares, measured in 
seconds. 

 Accuracy: Correctness of the reconstructed 
data. 

 Performance under Load: Efficiency with 
different configurations of shares and data 
sizes. 

Figures 8-11 present the results. 
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Figure 8: Reconstruction phase for different data sizes (N 

= 5, K = 2)  

 
Figure 9: Reconstruction phase for different data sizes (N 

= 10, K = 4)  

 

Figure 10: Reconstruction phase for different data sizes 
(N = 10, K = 6) 

 

 
Figure 11: Reconstruction phase for different data sizes 

(N = 5, K = 3)  

 
We evaluated four main series of results using 
configurations of (N = 5, K = 2), (N = 10, K = 4), 
and (N = 5, K = 3). Here, N refers to the number of 
shares (fragments) created, and K refers to the 

number of shares required to reconstruct the original 
data using each SSS algorithm. The execution time 
required for creating and reconstructing shares is 
reported in seconds. 
From Figures 4-11, it is evident that mrSSS is the 
fastest algorithm regardless of data size. Notable 
observations include the scalability issues of SSSS 
with increasing data sizes; beyond 131,072 KB, 
shares can no longer be created or rebuilt as the test 
machine encounters out-of-memory exceptions. 
Furthermore, increasing the parameters shows that 
the sharing phase generates a significant increase in 
performance time.  
 
5.2 Security Analysis 
5.2.1 Data Confidentiality 
During data fragmentation, the original data d is 
transformed into N unrecognizable fragments, each 
stored in a different physical location. Data 
reconstruction is only possible when k out of these 
fragments are collected. The security of the resulting 
data primarily depends on the parameters k and N, 
which define the extent of dispersion. A higher value 
of k makes it more difficult for an attacker to access 
at least k storage locations. When N is close to k, 
availability increases, but it also limits the choice of 
fragments, making data retrieval more challenging. 
If k equals N, all fragments are necessary for data 
reconstruction. 
In case an intruder manages to steal shares from x <= 
K Cloud providers, the probability of reconstructing 
the original data depends on: 
1. The user-defined value of k. A higher k lowers the 
probability of data reconstruction. 
2. The number x of stolen shares. The probability of 
reconstructing the data increases with x. However, 
mrSSS remains secure because recovering shares 
from at least k Cloud Service Providers (CSPs) 
simultaneously is highly challenging. 
5.2.2 Data Availability 
Data availability is inherently ensured by the Secret 
Sharing scheme. Our approach guarantees that a user 
can reconstruct their secret if k or more CSPs are 
honest and their shares are accessible. It is crucial to 
choose k appropriately to ensure data availability. 
5.2.3 Data Integrity 
Dispersed fragments can be modified, especially 
when stored on unreliable devices. Ensuring data 
integrity can be achieved in several ways: 

 Cryptographic Hashing: Adding a hash to 
the data before fragmentation allows 
verification of data integrity by comparing 
the hashes after defragmentation. 

 Voting System: Replicating fragments 
across multiple nodes allows comparison of 
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multiple replicas during defragmentation, 
with the most frequent answer being 
selected. This method, while faster, is less 
efficient in terms of storage and reduces the 
protection offered by dispersion due to 
increased exposure of replicated data. 

Our proposed approach does not currently address 
long-term security components, which will be 
considered in future work. 

 
5.3 Time Complexity 

Time complexity helps to understand the 
factors influencing execution time. This section 
describes the time complexities of data-sharing and 
reconstruction processes from the user perspective. 
We conducted 100 test cases with 1 GB of data, 
modifying the N and k parameters. 
5.3.1 Data Sharing 
For the conventional Secret Sharing scheme, sharing 
data involves generating a random polynomial, 
computing N points, and distributing them among 
participants. The time complexity is O(N). In the 
MapReduce version, data is first transformed into a 
set of bytes and divided into blocks of size Lbefore 
being processed by the Map functions. Each Map 
function computes L random polynomial equations, 
distributing the time complexity among 
simultaneously executed Map functions. 
For instance, the execution times for sharing 1 GB 
of data with mrSSS are plotted in Figures 12 and 13 
with respect to k and N. The execution time is 
approximately 15 seconds when N = k = 3. Figure 12 
shows that execution time increases rapidly with k 
when N = k. Figure 13 illustrates that execution time 
increases linearly with N when k = 4. Higher k 
values affect execution time more significantly than 
higher N values. 
 

 
Figure 12: Data Sharing Time with respect to K 

 

 
Figure 13: Data Sharing Time with respect to N 

 

5.3.2 Data Reconstruction 
To reconstruct data, we use polynomial interpolation 
to find the polynomial of degree k-1 that passes 
through the k points. Lagrange interpolation is used 
to find the unique polynomial. The constant term of 
the polynomial is the original datum. In the 
MapReduce version, these steps are repeated 
according to the data size, resulting in a time 
complexity of O(k log k). 
For example, the execution time for reconstructing 1 
GB of data is plotted in Figure 14 with respect to k. 
The execution time is about 10 seconds when k = 3 
and increases polynomially with k. 
 

 
Figure 14: Data Reconstruction Time with respect to K 

 

6. COMPARATIVE ANALYSIS AND 
CONTRIBUTIONS 

In this section, we outline the key 
contributions of our research and compare them with 
existing solutions in the literature. Our focus is on 
how our proposed approach using the MapReduce 
version of the Secret Sharing scheme (mrSSS) stands 
apart from and advances the state of the art. 

6.1 Key Findings 
 Enhanced Computational Efficiency: 

Unlike traditional Secret Sharing schemes, 
which often suffer from computational 
inefficiencies, our approach integrates a 
MapReduce paradigm. This integration 
significantly enhances computational 
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performance, allowing for faster data 
sharing and reconstruction processes. 
Previous works demonstrate that while 
Secret Sharing provides strong security 
guarantees, their implementations often 
struggle with scalability and performance 
issues, especially as data sizes increase. 

 Scalability Improvements: Our method 
addresses scalability challenges more 
effectively. Existing solutions, including 
Shamir’s Secret Sharing Scheme (SSSS) 
and its variants, show performance 
degradation with large data sizes and high 
thresholds. In contrast, our MapReduce 
version (mrSSS) maintains efficiency even 
with larger datasets, overcoming the 
memory and processing limitations 
observed in prior research. 

 Performance Benchmarks: Our 
experimental results indicate that mrSSS 
provides superior performance in both data 
sharing and reconstruction phases 
compared to conventional SSSS. For 
example, the execution time of mrSSS is 
significantly lower for various data sizes 
and thresholds, as illustrated in Figures 12-
14. This improvement is a notable 
advancement over traditional schemes, 
which often show exponential increases in 
execution time with growing data sizes. 

 Practical Implementation: The use of 
Cloudera CDH 5 and Hadoop for 
implementing our approach provides a 
practical framework for deploying and 
managing MapReduce-based Secret 
Sharing systems. While previous studies 
have explored theoretical models and 
simulations, our work provides a concrete 
implementation that can be readily adapted 
for real-world applications. 

 Security and Confidentiality: Our 
approach not only improves performance 
but also upholds high security standards. 
We ensure that data remains confidential 
and secure even when shares are 
distributed across multiple servers. Prior 
research has sometimes compromised 
security for performance, but our approach 
maintains a balance by ensuring that 
security remains robust while optimizing 
computational efficiency. 

6.2 Comparison with Prior Literature 
Prior Work: Traditional Secret Sharing 

schemes, such as those developed by Shamir and 
Blakley, offer theoretical foundations for secure data 

sharing. However, these schemes often face 
limitations related to computational inefficiency and 
scalability. Studies by [13] and [14] highlight these 
inefficiencies and the challenges faced in real-world 
deployments. 

Our Contribution: By introducing the 
MapReduce-based approach, we provide a solution 
that not only addresses the performance limitations 
but also scales effectively with increasing data sizes 
and complexity. Our work builds on the theoretical 
foundations laid by earlier researchers and translates 
them into a practical, efficient, and scalable solution. 
This advancement is a significant departure from 
earlier methods, making our approach more suitable 
for modern, data-intensive applications. 

In summary, our research advances the 
field by offering a more efficient and scalable 
solution to the challenges of Secret Sharing in Cloud 
environments. We bridge the gap between 
theoretical models and practical applications, setting 
a new benchmark for performance and security in 
distributed data storage systems. 
 

7. CONCLUSION 

 
Cloud Computing is a global concept with 

no geographical boundaries. The computers used to 
process and store user data can be located anywhere 
worldwide, depending on the capabilities required 
by the global computer networks used for cloud 
computing. The security of a cloud computing 
system is a contentious issue that can hinder its 
adoption. Many may argue that controlling a private 
cloud on-site is safer than having resources managed 
externally. However, the essence of cloud-based 
services, whether private or public, lies in the 
external management of provided services. This 
creates a significant incentive for cloud service 
providers to ensure robust and secure management 
of their services. 

Secret sharing schemes are being applied to 
cloud computing environments because they can 
distribute data to multiple servers, preventing system 
failures due to natural disasters or human errors. 
Additionally, these schemes do not provide any 
information about the data if the number of shares is 
below the threshold, making the system secure even 
with the least computational security. Secret sharing 
schemes protect information against malicious 
insiders and attackers by distributing data across 
multiple servers in different locations. Such systems 
are essential security mechanisms, as they force 
adversaries to compromise multiple sites to learn or 
alter the data. However, these methods have three 
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major limitations: the long-term security of long-
lived data, the assumption that data corruption 
occurs only at the time of recovery, and degraded 
computational performance with large data. 

To address these concerns, we propose two 
new approaches to secure data storage in cloud 
computing environments: pSSS and mrSSS. pSSS 
addresses the long-term data security issue and 
ensures the correctness of data storage even when 
some servers fail. This is achieved through 
cryptographic techniques, such as distributed digital 
signatures and threshold cryptography-based key 
management. mrSSS implements Secret Sharing 
schemes according to the MapReduce architecture 
paradigm, combining security and cost-effectiveness 
to provide a more comprehensive IT security 
framework and potentially improve computational 
performance for large data. 

Performance tests have demonstrated that 
our approach is more efficient regardless of the data 
size. The results also highlight scalability issues with 
the SSSS algorithm concerning data size, with 
significant performance increases only observed 
during the data sharing phase. 

This work can be extended by combining 
the two proposed approaches into a single, secure 
distributed data storage system for cloud computing 
environments. Additionally, it would be beneficial to 
present the MapReduce version of other secret 
sharing schemes, such as Proactive Secret Sharing 
and Verifiable Secret Sharing, to further improve the 
system's performance. Another potential 
improvement is a broader deployment. A wider and 
more practical deployment of our system at a public 
cloud provider would allow for a comprehensive 
evaluation of the technique with real data on cloud 
usage and customer demands. 
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