
 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6127

 ENHANCING CLOUD DATA SECURITY THROUGH LONG-
TERM SECRET SHARING SCHEMES

SARA IBN EL AHRACHE1, HASSAN BADIR2
1,2 IDS Team, School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Morocco

E-mail: 1selahrache@uae.ac.ma, 2hbadir@uae.ac.ma

ABSTRACT

Cloud computing has experienced significant growth in recent years, becoming a cornerstone of modern IT
infrastructure. Promising "infinite scalability and unlimited resources," cloud service providers offer on-
demand access that often obscures the underlying computing infrastructure. The inherent complexity of
virtualized, multi-tenant cloud environments surpasses that of traditional data centers, complicating service
management, particularly in terms of security. Despite these challenges, the appealing features of cloud
computing have led many organizations to adopt cloud storage services for their critical data. Users can store
data remotely in the cloud and access it via thin clients when needed. However, data security remains a
paramount concern due to the internet-based nature of cloud services, which limits user control over stored
data. This paper proposes an innovative approach to enhance data security in cloud environments through a
Long-Term Secret Sharing Scheme (SSS-LT). Secret sharing schemes partition and distribute data across
multiple cloud service providers, thereby increasing data privacy and availability. Our proposed SSS-LT
addresses a key limitation of existing secret sharing methods: the degradation of computational performance
with large data sets. We conduct a theoretical analysis of the security and complexity factors influencing our
approach and validate its efficacy through experimental evaluation, demonstrating its superiority over
existing methods.

Keywords: Cloud Computing, Data Security, Secret Sharing, Map Reduce

1. INTRODUCTION

 Cloud computing is heralded as a transformative
paradigm poised to revolutionize the consumption of
computing resources. Despite its numerous benefits,
cloud computing has brought forth specific security
issues that are now a primary focus of research in this
field. One of the most significant challenges in
adopting cloud services is convincing users to trust
the security of these services enough to store their
sensitive data. Although cloud service providers
often boast sophisticated encryption mechanisms,
traditional cloud systems cannot guarantee data
security if cloud servers are compromised. This
inherent insecurity is exacerbated in cloud
environments due to their unique characteristics,
including seamless scalability, shared resources,
multi-tenancy, ubiquitous access, and high
availability on demand.

A substantial body of research has identified
various security and privacy issues specific to cloud
computing. These issues are generally classified into
two categories:

Amplified Cloud Security Issues -- These are
existing problems in traditional distributed
computing environments that are magnified by the
characteristics of cloud computing.

Specific Cloud Security Issues -- These are new
security challenges that arise due to the unique
features of cloud computing.

A comprehensive review of the literature, best
practices, and standard recommendations on cloud
computing security reveals several critical security
issues:

 Misuse of Administrator Rights / Malicious
Collaborators: The threat posed by the
misuse of administrator rights is amplified
in cloud computing. Virtual machines
(VMs) are often provided as root servers,
giving cloud providers access to VMs via
the hypervisor, which can be misused by
malicious insiders.

 Lack of Transparency of Security
Measures: Cloud computing often lacks
transparency regarding the security

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6128

measures and processes applied by cloud
providers, forcing customers to rely on
vendor assurances without verifiable
evidence.

 Lack of Transparency in Security Incidents:
In cloud environments, both the client and
the vendor must collaborate to address
security incidents. However, there is
currently no standardized procedure for
such collaboration.

 Shared Technology Issues: The shared use
of physical resources and the potential for
compromised VMs to affect others are
significant security risks due to inadequate
isolation in virtualization.

 Data Lifecycle Management: The challenge
of securely managing data at the end of a
contract is heightened in cloud computing
due to the shared use of resources.

 Monitoring Service Level Agreements
(SLAs): Monitoring SLAs in a multi-tenant
cloud environment requires specialized
tools for hypervisor and virtualized network
monitoring, which are currently
insufficient.

Additionally, cloud-specific security issues
include:

 Imprecise Location of Data: Customers
often do not know the precise location of
their data within a cloud provider's
infrastructure, which complicates data
sovereignty and compliance concerns.

 Abuse and Harmful Use of Cloud
Resources: The rapid provisioning of VMs
in the cloud can be exploited for malicious
activities, such as launching Distributed
Denial of Service (DDoS) attacks.

 Lack of Supervision: Cloud providers are
responsible for detecting and mitigating
security incidents, but there is a lack of
automated reporting systems to inform
clients about such incidents.

 Non-Secure Application Programming
Interfaces (APIs): The security of cloud
services depends on the security of vendor-
specific APIs, which must be robust to
prevent unauthorized access and malicious
attacks.

 Lack of Cloud Scalability Monitoring:
Cloud users often rely on the scalability of

cloud infrastructure to handle peak
demands. However, adequate monitoring
tools to manage this scalability are often
lacking.

 Absence of Interoperability among Cloud
Service Providers: The lack of
compatibility between different cloud
providers' services increases the risk of
vendor lock-in and complicates the
migration of resources between providers.

 Increased Complexity due to Cloud
Characteristics: The complexity of cloud
environments necessitates a re-evaluation
of traditional best practices in security and
business continuity, as they may not be
sufficient to mitigate security incidents.

With the rapid adoption of cloud computing,
organizations are migrating sensitive and critical
data to cloud environments. This transition has
heightened concerns about data security and privacy,
as cloud environments expose data to various risks,
including unauthorized access, breaches, and loss.
The increasing reliance on cloud services
necessitates more robust security solutions to protect
sensitive information from these evolving threats.

Despite the development of various security
mechanisms, traditional methods are often
insufficient for addressing the unique challenges
posed by cloud computing. For instance, traditional
encryption techniques may not effectively handle the
complex data sharing and access control
requirements in multi-tenant cloud environments.
The lack of transparency in security measures and
incident management, coupled with issues such as
shared resources and inadequate isolation, highlights
the need for innovative solutions that offer improved
security and reliability.

Current secret sharing schemes, while effective in
certain contexts, have limitations in terms of
computational performance and scalability when
dealing with large data sets in cloud environments.
Traditional schemes may struggle with the
performance overhead of processing and managing
large volumes of data, which can hinder their
effectiveness in real-world applications. This creates
a need for new approaches that can handle large data
sets more efficiently while maintaining strong
security guarantees.

As cloud environments continue to evolve, there
is a growing demand for solutions that enhance both
data privacy and availability. The proposed Long-
Term Secret Sharing Scheme (SSS-LT) aims to

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6129

address these needs by fragmenting and distributing
data across multiple cloud service providers. This
approach not only improves data privacy but also
ensures higher availability, reducing the risk of data
loss and unauthorized access.

The proposed SSS-LT offers a novel approach that
fills existing gaps in the literature and addresses the
limitations of current methods. By integrating secret
sharing with cloud-specific requirements and
demonstrating its superiority through theoretical
analysis and experimental validation, this research
contributes a significant advancement to the field of
cloud security. It provides a robust solution to
pressing issues in data security, offering a new
perspective on managing and protecting sensitive
information in cloud environments.

In summary, this research is required due to the
growing reliance on cloud computing, existing gaps
in current security measures, and the need for
improved privacy and availability. The proposed
Long-Term Secret Sharing Scheme (SSS-LT)
addresses these challenges, offering a significant
contribution to enhancing cloud data security.

2. RELATED WORK

Significant research efforts have been
directed towards enhancing the security of cloud
computing environments, particularly through the
use of secret sharing schemes. These schemes
provide a robust method for securing data by
dividing it into multiple parts and distributing these
parts across different locations or servers, thereby
reducing the risk of data breaches.

AlZain et al. (2012) introduced a model
leveraging Multi-Clouds Databases (MCDB) and
secret sharing algorithms to secure cloud services.
Their approach employs Triple Modulus
Redundancy (TMR) and the sequential method to
enhance reliability. The MCDB model utilizes the
Database-as-a-Service (DaaS) offerings from
multiple cloud providers, using secret sharing
algorithms like Shamir’s to ensure data security and
prevent sensitive data leakage. The TMR method
employs three identical modules or machines
performing the same task in parallel, with the output
determined by majority voting. This method,
combined with secret sharing algorithms,
significantly enhances data security and reliability
by mitigating the risk of data breaches .

Alsolami and Boult (2014) proposed an
approach combining Shamir’s secret sharing with
hashing and signature of shares to ensure data

integrity and fault tolerance. They implemented
multi-threading in the remote downloading and
uploading of shares to improve system performance.
This method ensures that the data remains secure and
intact even in the presence of faults or attacks .

Lee et al. (2014) concluded that multi-cloud
environments offer superior security, integrity, and
availability compared to single-cloud systems. They
proposed integrating a homomorphic encryption
system into the DepSky approach, which already
combines Byzantine Fault Tolerance (BFT) and
erasure code cryptography. This integration aims to
enhance the security of secret sharing algorithms,
particularly when handling sensitive data .

Fabian et al. (2015) presented a
comprehensive security framework incorporating
several measures, such as authentication to prevent
unauthorized access, network security through TLS
to encrypt communications, federated identity
management, and access control to medical records
based on Role-Based Access Control (RBAC). They
utilized Shamir’s secret sharing and Rabin’s
Information Dispersal Algorithm to secure data
replication across multiple cloud providers.

Ke et al. proposed a dual-threshold secret
sharing scheme (T, m) - (k, n), where the two
thresholds are used for secret and mask sharing.
Their approach involves two variants:
Computational Security and Information Theoretic
Security. The former uses a one-way function to
generate a key and share the secret, while the latter
ensures security even against opponents with
unlimited computational power. This method
involves generating a random number, XORing it
with the secret, and sharing the result across multiple
servers.

Recent advancements have also been made
in cloud security through the application of block
chain technology. Liu et al. (2018) proposed a
blockchain-based approach to enhance the security
and privacy of cloud data storage. Their method
leverages the decentralized nature of blockchain to
distribute and store data securely, ensuring integrity
and preventing unauthorized access. Similarly,
Zhang et al. (2019) introduced a blockchain-based
data sharing framework that utilizes smart contracts
to manage data access permissions, enhancing
transparency and security in cloud environments .

Yang et al. (2020) developed a secure and
efficient cloud data storage scheme using a verifiable
secret sharing mechanism. Their approach ensures
data security and integrity through the use of

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6130

cryptographic techniques and provides verifiability
to detect any unauthorized modifications

Chen et al. (2021) proposed a hybrid cloud
security model that combines secret sharing and
homomorphic encryption to secure sensitive data in
cloud environments. Their method ensures data
confidentiality and supports secure data computation
in the cloud without revealing the data to cloud
service providers .

In summary, various approaches and
models have been proposed to address the security
challenges in cloud computing. These include
leveraging multi-cloud environments, combining
secret sharing algorithms with hashing and multi-
threading, integrating homomorphic encryption, and
utilizing block chain technology. Each method offers
unique advantages in enhancing data security,
integrity, and availability in the cloud.

3. PROBLEM STATEMENT

The rapid adoption of cloud computing has
led to an unprecedented volume of data being stored
and processed in cloud environments. This shift
towards cloud storage has introduced significant
concerns regarding data security and privacy. While
cloud computing offers numerous advantages,
including scalability, cost-effectiveness, and
accessibility, it also presents unique security
challenges that are not adequately addressed by
traditional methods.

Data breaches and information leakage
from cloud systems have emerged as major concerns,
driven by vulnerabilities in cloud infrastructure and
the complex nature of managing sensitive data across
multiple tenants. Despite advancements in cloud
security, existing solutions often fall short in
addressing the comprehensive security needs of
cloud environments. Traditional encryption and
access control mechanisms, while effective in some
contexts, do not fully account for the dynamic and
multi-tenant nature of cloud computing, where data
is distributed across multiple servers and providers.

Recent literature highlights several key
challenges:

 Data Privacy and Security: Cloud
environments involve storing data across
multiple servers and potentially across
multiple providers, raising concerns about
data privacy and the security of data during
storage and transmission. Traditional
encryption techniques may not adequately

protect data from sophisticated threats and
vulnerabilities inherent in cloud computing
(Chen et al., 2021; Yang et al., 2020).

 Efficiency and Performance: Secret sharing
schemes, while providing robust security
guarantees, often suffer from performance
overhead, especially when handling large
data sets. This performance issue is
exacerbated in cloud environments where
efficiency is critical (Ke et al., n.d.;
Alsolami and Boult, 2014).

 Scalability: The scalability of cloud
services introduces additional complexity
in data management and security. Current
solutions may struggle to scale effectively
while maintaining high levels of security
and performance (AlZain et al., 2012;
Fabian et al., 2015).

 Integration with Cloud-Specific
Architectures: Many existing secret sharing
schemes are not optimized for integration
with cloud-specific architectures, such as
distributed storage systems and virtualized
environments. This gap creates a need for
novel approaches that align with the unique
characteristics of cloud computing (Lee et
al., 2014; Liu et al., 2018).

The proposed research aims to address
these challenges by integrating secret sharing
schemes within the Hadoop Map Reduce
architecture. This approach leverages the inherent
benefits of Map Reduce—such as parallel processing
and cost-effectiveness—while enhancing data
security through advanced secret sharing techniques.
The Long-Term Secret Sharing Scheme (SSS-LT)
proposed in this research is designed to improve both
the efficiency and security of data processing in
cloud environments. By fragmenting and
distributing data across multiple cloud service
providers, the SSS-LT approach aims to address the
limitations of existing methods and provide a more
robust solution to the problem of data security in
cloud computing.

This research is crucial because it addresses
current gaps in cloud security solutions, particularly
in terms of performance and scalability. The
integration of secret sharing with cloud-specific
architectures represents a significant advancement in
securing sensitive data and ensuring its availability,
contributing valuable insights and practical solutions
to the field of cloud security.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6131

4. PRPOSED SOLUTION

4.1 Preliminaries
4.1.1 Shamir Secret Sharing
Shamir and Blakley introduced straightforward yet
robust sharing schemes that allow a threshold k of n
participants, where k <= n, to reconstruct a secret.
Shamir's solution utilized polynomial curves,
enabling the secret to be reconstructed through
interpolation when at least k participants provided
their shares.
Definition: In a secret sharing threshold scheme (k,
n), a secret s∈F can be divided into parts S1, S2 ,….,
Sn such that:
 Any set of k or more shares can reconstruct the

secret.
 Any set of fewer than k shares reveals no

information about the secret.
Shamir’s Secret Sharing Scheme: Given n
participants, P = {p1,p2,….,pn }, polynomial
interpolation can be used to create a secret sharing
threshold scheme (k, n). To successfully reconstruct
the secret, a subset A ⊆ P with ∣A∣≥k is required.
Shares Creation: The dealer D selects a secret s∈F
and constructs a random polynomial f(x) of degree 𝑘
– 1 : f(x) = s + r1x + r2x2 + r(k−1)x(k−1) modF
Subject to the following conditions:
 The field F is a Galois Field GF(q) where F>n

and q is a prime power.
 The secret s∈F.
 The threshold is k.
 The coefficients r1 ….. rk-1 are chosen

independently and randomly from the interval
[0,F).

 Each part Si of the secret is created by
evaluating the function f(x): S1 = f(1), S2 = f(2),
….., Sn = f(n)

Secret Reconstruction: The secret can be
reconstructed using polynomial interpolation. At
least k participants (the degree of the polynomial
plus one) must contribute their shares to reconstruct
the polynomial. Each participant provides a
consistent pair consisting of the value of x and the
result of the polynomial function at x (i.e., each
participant has a pair (x, q(x) = Sx). Since no two
participants share the same x value, the pairs form a
Lagrange basis. The interpolation polynomial in
Lagrange form is defined as: L(z) == (i = 1)k q(xi).(j
= 1)(k, ji)(z − xj)/(xi − xj) modF.
4.1.2 Map Reduce Paradigm

Map Reduce is a programming paradigm
designed for the distributed parallel processing of
large datasets. It transforms these datasets into tuples
and then combines and reduces them into smaller
tuples. Fundamentally, Map Reduce was created to

handle large amounts of data (terabytes or more) by
utilizing parallel distributed computing to convert
significant data into smaller, more manageable
chunks. The basic idea is to address data distribution
over a network of computers to maximize the use of
available memory, processors, and storage. This
allows programmers to focus on the unique aspects
of their processing tasks.
In Map Reduce, the developer only needs to define
two functions—Map and Reduce—while the
implementation handles the rest. Although there are
many additional features and settings to fine-tune the
model, the core functionality remains unchanged. A
Map Reduce computation follows these steps:
1. Input Reading: The input is read from disk and
converted into key-value pairs.
2. Mapping: The Map function processes each pair
separately and outputs the results as several key-
value pairs.
3. Reducing: For each distinct key, the Reduce
function processes all key-value pairs associated
with that key and returns any number of key-value
pairs.
4. Output Writing: Once all input pairs are
processed, the Reduce function's output is written to
the disk as key-value pairs.
Parallel distributed processing allows large volumes
of data to be processed quickly by distributing tasks
across groups of servers. In Map Reduce, tuples refer
to key-value pairs by which data is grouped, sorted,
and processed. Map Reduce jobs execute sequences
of map and reduce processes on a distributed set of
servers.
During the map phase, data is converted into key-
value pairs, transformed, and filtered, then assigned
to nodes for processing. In the reduce phase, the data
is condensed into smaller datasets. The data is
transformed into a standard keyframe format where
the key serves as a record identifier and the value is
the corresponding data. The process involves two
main steps:
1. Mapping the Data: Incoming data is delegated into
key-value pairs and divided into fragments assigned
to Map tasks. Each cluster (a group of connected
nodes performing a shared task) receives several
Map tasks, distributed among its nodes. Processing
key-value pairs generates intermediate key-value
pairs, which are sorted by their key values and
divided into new fragments.
2. Reducing the Data: Each reduction task processes
a fragment and produces an output, also in key-value
pairs. Reduction tasks are distributed among the
cluster nodes. Once the task is completed, the final
output is written to a file system. A diagram of the
Map Reduce architecture is presented in Figure 1.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6132

Figure 1: Map Reduce Architecture

It is important to note that the MapReduce model
specifies a general structure for how data is
transmitted and processed but does not detail the
specific steps of calculation with the data—these are
defined by the user for the four main steps.

4.2 Proposed Scheme
4.2.1 Proposed System Principle
Secure data storage in the Cloud is a challenging
task, especially with the increasing data sizes that
traditional algorithms struggle to handle. In this
section, we propose a scalable design and
implementation of the Secret Sharing scheme using
Map Reduce to manage large datasets. The goal is to
leverage the benefits of both security and cost-
effectiveness to enhance the IT security framework.
Shamir’s Secret Sharing scheme involves two
phases: a sharing phase and a reconstruction phase.
For each phase, we present a new implementation
based on the Map Reduce design model.
Consequently, each phase of the scheme
incorporates Map and Reduce steps.
4.2.2 Data Sharing
Our approach integrates the Secret Sharing scheme
with the MapReduce architectural pattern. Shamir’s
Secret Sharing (1979) is a cryptographic algorithm
that divides a secret into parts, distributing these
parts to participants, where a subset of these parts is
required to reconstruct the original secret. Map
Reduce, developed by Google, is a framework for
processing large datasets in parallel and often
distributed computations.
Our approach leverages the advantages of secret
sharing schemes while significantly improving
performance in terms of execution time. The
proposed Map Reduce approach involves dividing
the secret (a file) into p parts, distributing these
shares to cluster machines, and executing a secret
sharing method to calculate shares of each part. The
shares are then sent to storage servers. Figure 2
illustrates the data sharing phase of the proposed
approach.

Figure 2: Data sharing phase based on the Map Reduce
paradigm

In the Map step, large data is subdivided into several
blocks, which are then sent to the slave nodes. Each
node calculates the polynomials associated with the
corresponding received data block. The first step in
this phase is to divide the file to be shared according
to the record size L chosen during the initialization
phase. The data is divided into L records as an array
of bytes. Each record is paired with its respective
position in the original file to form pairs (key: record
position in the file, value: record in the form of a byte
array), which serve as the input for the Map
functions.
For each byte of a record, the Map function
randomly generates the coefficients of a polynomial
P with the constant term equal to bytei. After
generating each polynomial, N points are computed,
representing the N parts of bytei. Upon completion
of each mapper’s execution, the output is
represented as follows: (key = i , (value = i , position,
record-partij)).
After all Map tasks are completed, a tri-grouping is
performed on the returned pairs, and the new pairs
are passed to a Reduce task. This sorting and
grouping process involves sorting the pairs
according to their keys and assembling pairs with the
same key into the same group.
Each group of pairs (key, list (values)) is sent to a
Reducer. Each Reducer processes one of these pairs
as input and writes it to an output file. Consequently,

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6133

we will have multiple files, each representing a part
of the original file.
4.2.3 Data Reconstruction
Similar to the data sharing process, we assume that
the shares are stored on HDFS. To reconstruct the
original file, we use K parts. Figure 3 illustrates the
data reconstruction process based on the MapReduce
paradigm.

Figure 3: Data reconstruction phase based on the Map

Reduce paradigm

The first step in this phase is to read the K parts and
send each part to a different mapper. Each mapper
will extract the objects constituting the parts and
change the key of each object to its position.
After all Map tasks are completed, a sorting
operation is performed on the pairs, and the resulting
pairs are sent to a Reduce task. At this stage, the pairs
are sorted according to their keys and then
assembled into groups. This results in N groups,
each of which is sent to a Reducer. Here, the keys
are the positions of the records in the original file,
with each share having a key (ID) that belongs to the
interval [0, fileSize - 1]. Thus, shares with the same
key represent shares of the same record at a certain
position in the original file.
The role of each Reducer is to rebuild a record to
eventually reconstruct the original file. Each pair
passed to the Reducer contains the shares from 1 to
K of a particular record. For example, consider the
first pair, which contains the K parts (byte arrays of
the same size = sizeRecord) of the first record. These
byte arrays are traversed by byte, and the first bytes
are extracted from the K arrays. Polynomial
interpolation is then used to find the polynomial of
degree k-1 that passes through all these points. We
use Lagrange interpolation to find the unique
polynomial P(x) of degree k-1. The constant term of
the found polynomial represents a byte of a record
from the original file.
First, we construct the Lagrange polynomials using
the formula: L(n, j)(x) = (i = 0, ij)3 ((x − xi))/((xi −
xj)).
Then, we can deduce the Lagrange interpolation
polynomial p(x) by: p(x) = (j = 0)(k − 1)yjL(k − 1, j)(x).

Obviously, the constant term of the polynomial is a
byte of a record of the original file. The Reducer will
perform these steps for each of the bytes of the k
parts. At the end of each Reduce function, a byte
array will be generated and will constitute the record
j of the file; this record is then written to its original
position and the original file is possibly correctly
rebuilt.

5. PERFORMANCE ANALYSIS

Our approach leverages the Secret Sharing
scheme to create a secure, fault-tolerant data storage
service for collaborative work environments,
including Cloud environments. These perfect
sharing schemes encode data into shares such that
only specific valid combinations of those shares can
reconstruct the original data, while invalid
combinations reveal no information about the
encoded data. By storing these shares across
different servers, the encoded data remains
confidential as long as a sufficient number of servers
are not compromised. However, most perfect secret
sharing schemes suffer from computational
inefficiencies. We address this issue by introducing
a MapReduce version of the secret sharing scheme.

Our proposed approach combines a perfect
partition schema with the MapReduce paradigm,
significantly enhancing computational performance
and achieving higher speeds compared to standard
secret sharing schemes. In this section, we evaluate
the properties and performance of the proposed
system to demonstrate that combining a perfect
partition scheme with the MapReduce paradigm can
build reliable and secure distributed data storage
systems for Cloud computing environments.

5.1 Experimental Analysis
5.1.1 Experimental Setup
To evaluate our approach, we installed a multinode
cluster using Cloudera CDH 5. This setup aims to
test, compare, and evaluate the performance of
various secret sharing algorithms implemented using
the MapReduce approach. Apache Hadoop,
developed in Java, is the most well-known
framework for implementing MapReduce.
Several Hadoop distributions facilitate the
installation and management of a Hadoop cluster.
Among these, Cloudera is the most widely deployed,
offering robust tools for deployment, management,
and monitoring. Thus, we chose Cloudera for our
platform.
Cluster Technical Characteristics: We implemented
the cluster using three virtual machines. One
machine was dedicated to the NameNode/DataNode
(which also hosts all administrative services), and

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6134

the other two were used as simple DataNodes. The
physical machine used had 32 GB of memory and 2
TB hard disk capacity. For virtualization, VMware
Workstation was used. Each virtual machine ran
CentOS 7, with 8 GB of memory, 500 GB of disk
space, and 4 vCPUs.
5.1.2 Data Sharing
We conducted experiments comparing Shamir’s
Secret Sharing Scheme (SSSS) with its MapReduce
version (mrSSS). The criteria for evaluating the
performance of each scheme were:

 Execution Time: Time required creating
and reconstructing shares, measured in
seconds.

 Scalability: Performance impact with
increasing data sizes and thresholds.

 Resource Utilization: Efficiency in
utilizing computational and memory
resources.

The results demonstrate the strengths and
weaknesses of each scheme in different application
scenarios, as illustrated in Figures 4-7.

Figure 4: Sharing phase for different data sizes (N = 5, K

= 2)

Figure 5: Sharing phase for different data sizes (N = 10,

K = 4)

Figure 6: Sharing phase for different data sizes (N = 10,

K = 6)

Figure 7: Sharing phase for different data sizes (N = 5, K

= 3)

The experiments aimed to show the impact of data
size variations on the performance of each secret
sharing scheme (SSS) in terms of data sharing. Data
sizes from 2 KB to 262 KB were evaluated. The
generated data was arbitrary, as the evaluations were
not specific to any particular domain where SSS
algorithms might be applied.
We presented four primary sets of results using
configurations of (N = 5, K = 2), (N = 10, K = 4),
and (N = 6). Here, N refers to the number of shares
created, and K refers to the number of shares
required for reconstructing the original data using
each SSS algorithm. The time required for creating
and reconstructing shares is reported in seconds.
5.1.3 Data Reconstruction
Similar to data sharing, we compared the
performance of data reconstruction for each scheme
by varying thresholds and data sizes. The criteria for
evaluating data reconstruction were:

 Reconstruction Time: Time required to
reconstruct data from shares, measured in
seconds.

 Accuracy: Correctness of the reconstructed
data.

 Performance under Load: Efficiency with
different configurations of shares and data
sizes.

Figures 8-11 present the results.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6135

Figure 8: Reconstruction phase for different data sizes (N

= 5, K = 2)

Figure 9: Reconstruction phase for different data sizes (N

= 10, K = 4)

Figure 10: Reconstruction phase for different data sizes
(N = 10, K = 6)

Figure 11: Reconstruction phase for different data sizes

(N = 5, K = 3)

We evaluated four main series of results using
configurations of (N = 5, K = 2), (N = 10, K = 4),
and (N = 5, K = 3). Here, N refers to the number of
shares (fragments) created, and K refers to the

number of shares required to reconstruct the original
data using each SSS algorithm. The execution time
required for creating and reconstructing shares is
reported in seconds.
From Figures 4-11, it is evident that mrSSS is the
fastest algorithm regardless of data size. Notable
observations include the scalability issues of SSSS
with increasing data sizes; beyond 131,072 KB,
shares can no longer be created or rebuilt as the test
machine encounters out-of-memory exceptions.
Furthermore, increasing the parameters shows that
the sharing phase generates a significant increase in
performance time.

5.2 Security Analysis
5.2.1 Data Confidentiality
During data fragmentation, the original data d is
transformed into N unrecognizable fragments, each
stored in a different physical location. Data
reconstruction is only possible when k out of these
fragments are collected. The security of the resulting
data primarily depends on the parameters k and N,
which define the extent of dispersion. A higher value
of k makes it more difficult for an attacker to access
at least k storage locations. When N is close to k,
availability increases, but it also limits the choice of
fragments, making data retrieval more challenging.
If k equals N, all fragments are necessary for data
reconstruction.
In case an intruder manages to steal shares from x <=
K Cloud providers, the probability of reconstructing
the original data depends on:
1. The user-defined value of k. A higher k lowers the
probability of data reconstruction.
2. The number x of stolen shares. The probability of
reconstructing the data increases with x. However,
mrSSS remains secure because recovering shares
from at least k Cloud Service Providers (CSPs)
simultaneously is highly challenging.
5.2.2 Data Availability
Data availability is inherently ensured by the Secret
Sharing scheme. Our approach guarantees that a user
can reconstruct their secret if k or more CSPs are
honest and their shares are accessible. It is crucial to
choose k appropriately to ensure data availability.
5.2.3 Data Integrity
Dispersed fragments can be modified, especially
when stored on unreliable devices. Ensuring data
integrity can be achieved in several ways:

 Cryptographic Hashing: Adding a hash to
the data before fragmentation allows
verification of data integrity by comparing
the hashes after defragmentation.

 Voting System: Replicating fragments
across multiple nodes allows comparison of

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6136

multiple replicas during defragmentation,
with the most frequent answer being
selected. This method, while faster, is less
efficient in terms of storage and reduces the
protection offered by dispersion due to
increased exposure of replicated data.

Our proposed approach does not currently address
long-term security components, which will be
considered in future work.

5.3 Time Complexity

Time complexity helps to understand the
factors influencing execution time. This section
describes the time complexities of data-sharing and
reconstruction processes from the user perspective.
We conducted 100 test cases with 1 GB of data,
modifying the N and k parameters.
5.3.1 Data Sharing
For the conventional Secret Sharing scheme, sharing
data involves generating a random polynomial,
computing N points, and distributing them among
participants. The time complexity is O(N). In the
MapReduce version, data is first transformed into a
set of bytes and divided into blocks of size Lbefore
being processed by the Map functions. Each Map
function computes L random polynomial equations,
distributing the time complexity among
simultaneously executed Map functions.
For instance, the execution times for sharing 1 GB
of data with mrSSS are plotted in Figures 12 and 13
with respect to k and N. The execution time is
approximately 15 seconds when N = k = 3. Figure 12
shows that execution time increases rapidly with k
when N = k. Figure 13 illustrates that execution time
increases linearly with N when k = 4. Higher k
values affect execution time more significantly than
higher N values.

Figure 12: Data Sharing Time with respect to K

Figure 13: Data Sharing Time with respect to N

5.3.2 Data Reconstruction
To reconstruct data, we use polynomial interpolation
to find the polynomial of degree k-1 that passes
through the k points. Lagrange interpolation is used
to find the unique polynomial. The constant term of
the polynomial is the original datum. In the
MapReduce version, these steps are repeated
according to the data size, resulting in a time
complexity of O(k log k).
For example, the execution time for reconstructing 1
GB of data is plotted in Figure 14 with respect to k.
The execution time is about 10 seconds when k = 3
and increases polynomially with k.

Figure 14: Data Reconstruction Time with respect to K

6. COMPARATIVE ANALYSIS AND
CONTRIBUTIONS

In this section, we outline the key
contributions of our research and compare them with
existing solutions in the literature. Our focus is on
how our proposed approach using the MapReduce
version of the Secret Sharing scheme (mrSSS) stands
apart from and advances the state of the art.

6.1 Key Findings
 Enhanced Computational Efficiency:

Unlike traditional Secret Sharing schemes,
which often suffer from computational
inefficiencies, our approach integrates a
MapReduce paradigm. This integration
significantly enhances computational

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6137

performance, allowing for faster data
sharing and reconstruction processes.
Previous works demonstrate that while
Secret Sharing provides strong security
guarantees, their implementations often
struggle with scalability and performance
issues, especially as data sizes increase.

 Scalability Improvements: Our method
addresses scalability challenges more
effectively. Existing solutions, including
Shamir’s Secret Sharing Scheme (SSSS)
and its variants, show performance
degradation with large data sizes and high
thresholds. In contrast, our MapReduce
version (mrSSS) maintains efficiency even
with larger datasets, overcoming the
memory and processing limitations
observed in prior research.

 Performance Benchmarks: Our
experimental results indicate that mrSSS
provides superior performance in both data
sharing and reconstruction phases
compared to conventional SSSS. For
example, the execution time of mrSSS is
significantly lower for various data sizes
and thresholds, as illustrated in Figures 12-
14. This improvement is a notable
advancement over traditional schemes,
which often show exponential increases in
execution time with growing data sizes.

 Practical Implementation: The use of
Cloudera CDH 5 and Hadoop for
implementing our approach provides a
practical framework for deploying and
managing MapReduce-based Secret
Sharing systems. While previous studies
have explored theoretical models and
simulations, our work provides a concrete
implementation that can be readily adapted
for real-world applications.

 Security and Confidentiality: Our
approach not only improves performance
but also upholds high security standards.
We ensure that data remains confidential
and secure even when shares are
distributed across multiple servers. Prior
research has sometimes compromised
security for performance, but our approach
maintains a balance by ensuring that
security remains robust while optimizing
computational efficiency.

6.2 Comparison with Prior Literature
Prior Work: Traditional Secret Sharing

schemes, such as those developed by Shamir and
Blakley, offer theoretical foundations for secure data

sharing. However, these schemes often face
limitations related to computational inefficiency and
scalability. Studies by [13] and [14] highlight these
inefficiencies and the challenges faced in real-world
deployments.

Our Contribution: By introducing the
MapReduce-based approach, we provide a solution
that not only addresses the performance limitations
but also scales effectively with increasing data sizes
and complexity. Our work builds on the theoretical
foundations laid by earlier researchers and translates
them into a practical, efficient, and scalable solution.
This advancement is a significant departure from
earlier methods, making our approach more suitable
for modern, data-intensive applications.

In summary, our research advances the
field by offering a more efficient and scalable
solution to the challenges of Secret Sharing in Cloud
environments. We bridge the gap between
theoretical models and practical applications, setting
a new benchmark for performance and security in
distributed data storage systems.

7. CONCLUSION

Cloud Computing is a global concept with

no geographical boundaries. The computers used to
process and store user data can be located anywhere
worldwide, depending on the capabilities required
by the global computer networks used for cloud
computing. The security of a cloud computing
system is a contentious issue that can hinder its
adoption. Many may argue that controlling a private
cloud on-site is safer than having resources managed
externally. However, the essence of cloud-based
services, whether private or public, lies in the
external management of provided services. This
creates a significant incentive for cloud service
providers to ensure robust and secure management
of their services.

Secret sharing schemes are being applied to
cloud computing environments because they can
distribute data to multiple servers, preventing system
failures due to natural disasters or human errors.
Additionally, these schemes do not provide any
information about the data if the number of shares is
below the threshold, making the system secure even
with the least computational security. Secret sharing
schemes protect information against malicious
insiders and attackers by distributing data across
multiple servers in different locations. Such systems
are essential security mechanisms, as they force
adversaries to compromise multiple sites to learn or
alter the data. However, these methods have three

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6138

major limitations: the long-term security of long-
lived data, the assumption that data corruption
occurs only at the time of recovery, and degraded
computational performance with large data.

To address these concerns, we propose two
new approaches to secure data storage in cloud
computing environments: pSSS and mrSSS. pSSS
addresses the long-term data security issue and
ensures the correctness of data storage even when
some servers fail. This is achieved through
cryptographic techniques, such as distributed digital
signatures and threshold cryptography-based key
management. mrSSS implements Secret Sharing
schemes according to the MapReduce architecture
paradigm, combining security and cost-effectiveness
to provide a more comprehensive IT security
framework and potentially improve computational
performance for large data.

Performance tests have demonstrated that
our approach is more efficient regardless of the data
size. The results also highlight scalability issues with
the SSSS algorithm concerning data size, with
significant performance increases only observed
during the data sharing phase.

This work can be extended by combining
the two proposed approaches into a single, secure
distributed data storage system for cloud computing
environments. Additionally, it would be beneficial to
present the MapReduce version of other secret
sharing schemes, such as Proactive Secret Sharing
and Verifiable Secret Sharing, to further improve the
system's performance. Another potential
improvement is a broader deployment. A wider and
more practical deployment of our system at a public
cloud provider would allow for a comprehensive
evaluation of the technique with real data on cloud
usage and customer demands.

REFERENCES:

[1] Chen, Yanpei and Paxson, Vern and Katz, Randy

H, "What's new about cloud computing
security," University of California, Berkeley
Report No. UCB/EECS-2010-5, January 2010,
Page 5.

[2] Sotto, Lisa J and Treacy, Bridget C and McLellan,
Melinda L, "Privacy and Data Security Risks in
Cloud Computing," World Communications
Regulation Report, 5, 2010, Page 38.

[3] Hubbard, Dan and Sutton, Michael and others,
"Top threats to cloud computing v1.0," Cloud
Security Alliance, 2010.

[4] Meer, Haroon and Arvanitis, Nick and Slaviero,
Marco, "Clobbering the cloud," Black Hat USA,
2009, Page 197.

[5] Gonzalez, Nelson and Miers, Charles and
Redigolo, Fernando and Simplicio, Marcos and
Carvalho, Tereza and Naslund, Mats and
Pourzandi, Makan, "A quantitative analysis of
current security concerns and solutions for cloud
computing," Journal of Cloud Computing:
Advances, Systems and Applications, 1, 2012,
Page 11.

[6] Balduzzi, Marco and Zaddach, Jonas and
Balzarotti, Davide and Kirda, Engin and
Loureiro, Sergio, "A security analysis of
Amazon’s Elastic Compute Cloud service,"
Proceedings of the 27th Annual ACM
Symposium on Applied Computing, 2012, Pages
1427–1434.

[7] Bugiel, Sven and N¨urnberger, Stefan and
P¨oppelmann, Thomas and Sadeghi, Ahmad-
Reza and Schneider, Thomas, "AmazonIA:
When elasticity snaps back," Proceedings of the
18th ACM Conference on Computer and
Communications Security, 2011, Pages 389–
400.

[8] Xiao, Zhifeng and Xiao, Yang, "Security and
privacy in cloud computing," IEEE
Communications Surveys & Tutorials, 15, 2013,
Pages 843–859.

[9] Bhadauria, Rohit and Sanyal, Sugata, "Survey on
security issues in cloud computing and
associated mitigation techniques," arXiv preprint
arXiv:1204.0764, 2012.

[10] Rai, Rashmi and Sahoo, Gadadhar and Mehfuz,
Shabana, "Exploring the factors influencing the
cloud computing adoption: A systematic study
on cloud migration," SpringerPlus, 4, 2015, Page
197.

[11] Chang, Victor and Ramachandran, Muthu,
"Towards achieving data security with the cloud
computing adoption framework," IEEE
Transactions on Services Computing, 9, 2016,
Pages IEEE Transactions on Services
Computing.

[12] Xiao, Zhifeng and Xiao, Yang, "Security and
privacy in cloud computing," IEEE
Communications Surveys & Tutorials, 15, 2013,
Pages 843–859.

[13] Rai, Rashmi and Sahoo, Gadadhar and Mehfuz,
Shabana, "Exploring the factors influencing the
cloud computing adoption: A systematic study
on cloud migration," SpringerPlus, 4, 2015, Page
197.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6139

[14] Yang, L., Wu, Q., & Zhang, F., "A secure and
efficient cloud data storage scheme using
verifiable secret sharing," Future Generation
Computer Systems, 108, 2020, Pages 1-12.

[15] Chen, J., Liu, Y., & Li, X., "Hybrid cloud
security model combining secret sharing and
homomorphic encryption," Journal of Cloud
Computing, 10(1), 2021, Pages 1-18.

