
 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6185

OBJECT-ASPECT ORIENTED MODELS TO PETRI NETS
MODEL, AN APPROACH FOR THE TRANSFORMATION,

ANALYSIS AND VERIFICATION OF SOFTWARE SYSTEMS

 MOUNA AOUAG1, NOUHAD MERABET2, WIAM KENNOUCHE 3
1, 2, 3 Department of Computer Science, Abd elhafid Boussouf University Centre Mila, Algeria

E-mail:
1aouag.mouna@centre_univ_mila.dz,2nouhadmerabet58@gmail.com,3wiamkennouche@gmail.com

ABSTRACT

Object-Oriented Modeling (OOM) is a software design approach that structures and organizes code to
accurately reflect reality, thereby facilitating its maintenance and evolution. However, it does have
limitations in managing crosscutting concerns. Aspect-Oriented Modeling (AOM) provides solutions to
these challenges, despite its lack of formal semantics. This underscores the importance of formal modeling,
which does offer rigorous semantics.

In this paper, we propose an approach to transform a detailed object-oriented sequence diagram into a
detailed aspect-oriented sequence diagram, based on graph transformation. Subsequently, we propose a
method to transform the aspect-oriented diagram into a Petri net. Our work begins with a single meta-
modeling for the first approach, using graph grammar rules to achieve an aspect-oriented model. Then, we
apply the second approach to the result of the first one, using two meta-modeling and graph grammar rules,
resulting in a Petri net. We use the AToMPM modeling tool. Finally, we perform a property analysis with
the TINA tool.

Keywords: Object-Oriented Modeling, Aspect-Oriented Modeling, Petri nets, AToMPM, TINA.

1. INTRODUCTION

 UML (Unified Modeling Language) is
defined as a graphical and textual modeling
language designed to understand and describe
requirements, specify, and document systems. UML
2.0 consists of thirteen types of diagrams. Among
them, the sequence diagram, a type of interaction
diagram, illustrates the chronological sequence of
messages exchanged between different objects
interacting within a system [1]. Despite the
numerous advantages of object-oriented languages,
managing crosscutting concerns remains a
challenge. The aspect-oriented paradigm emerges as
a complementary solution, offering a more effective
way to handle these concerns by separating them
from the rest of the main logic.

We will transform from object-oriented to aspect-
oriented UML models to achieve significant
advantages in handling cross-cutting concerns. This
transformation will reduce code duplication,
enhance maintainability, and improve scalability.

Formal methods enable the verification of systems
using mathematical notations and formal
techniques. One of the most interesting formal

methods is Petri nets. The transition from aspect-
oriented modeling to formal methods aims to
overcome the limitations of semi-formal
approaches, such as ambiguity and verification
difficulty. Once the transformation is completed,
the resulting Petri net must be verified using a
specialized tool such as TINA (Time Petri Net
Analyzer). TINA is a software tool for the modeling
and analysis of Petri nets, allowing for the formal
verification of essential properties.

In this article, we propose two approaches
and two tools. The first approach involves the
automatic transformation of detailed object-oriented
sequence diagrams into detailed aspect-oriented
sequence diagrams, for which we have proposed a
single meta-model and a graph grammar. The
second approach transforms detailed aspect-
oriented sequence diagrams into Petri nets, for
which we have proposed two meta-models and a set
of rules. The resulting Petri nets will be verified
using the TINA verification tool.

The rest of the article is organized as
follows. In Section 1 we start with a general
introduction which gives a clear idea of the work. In
Section 2, we discuss related works. In Section 3,

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6186

we present the basic concepts of our approaches. In
Section 4, we describe our two approaches: the first
transforms detailed object-oriented sequence
diagrams into detailed aspect-oriented sequence
diagrams, and the second transforms the latter into
Petri nets. We also define the proposed meta-
models and graph grammars, and conclude this
section with a representation of the TINA tool and
we make a comparison between works related to
our work and discuss this comparison. In Section 5,
we illustrate our approach using case studies. The
final section concludes the article.

2. RELATED WORKS

Numerous research efforts have focused on
object-oriented modeling and UML 2.0 diagrams,
providing a deep understanding of fundamental
software design concepts. Researchers have
explored various approaches to represent the
structures and behaviors of software systems using
object-oriented models and UML 2.0 diagrams.

In [2], the authors update the formalization of
sequence diagrams, extending causal semantics
based on partial order theory to derive all possible
valid traces for sequence diagrams with CF
behavior modeling of distributed systems.

The study proposes a method for verifying the
compliance of UML sequence diagrams. This
approach aims to determine if the behavior
described by a low-level model is contained within
a high-level model, thus ensuring the conformity
and coherence of UML sequence diagrams.
Meanwhile, aspect-oriented modeling has emerged
as a new paradigm in software engineering, offering
techniques to manage crosscutting concerns and
improve system modularity. Researchers have
developed methods and tools to integrate aspects
into object-oriented models, thereby enabling better
separation of concerns and more effective
management of crosscutting concerns [3].

In [4] the authors look at the feasibility and
potential advantages of employing an aspect
orientation approach in the software development
lifecycle to ensure efficient integration of security.
These notations are aimed at documenting and
analyzing security in a software design model. It
also proposes a model called the Aspect-Oriented
Software Security Development Life Cycle
(AOSSDLC), which covers arrange of security
activities and deliverables for each development
stage.

The paper [5] discusses the application of aspect-
oriented UML use case diagrams and formal

language AspectZ to part of a classic Aspect-
Oriented Software Development (AOSD) case
study, the Health-Watcher software system. In
addition, this article proposes an extension of
AspectZ to reach a new property for asymmetric
AOSD which reacts after a schema successfully
finishes, or not, showing messages for that
situation, with an implicit join point; and a way for
generalizing similar operations in a system using
AspectZ.

In [6] the main idea is to emphasize the aspect-
oriented approach as an effective means to improve
the reliability and temporal performance of fault-
tolerant systems. This research focuses on the
probabilistic evaluation of critical fault-tolerant
systems to enhance their reliability and availability
from the design phase, emphasizing the importance
of separating concerns, both functional (behavior)
and non-functional (control), to improve response
time. Efforts have been made to transform object-
oriented models into aspect-oriented models, thus
facilitating the transition to this innovative approach
and providing more flexible and modular solutions
for the development of complex software.

The thesis [7] addresses related works on aspect-
oriented modeling, aiming to present an in-depth
analysis of the advantages and disadvantages of
object-oriented modeling, while introducing the
concept of aspect-oriented modeling as a solution to
the limitations of the object-oriented approach.

In [8], the authors propose a transformation model
to convert object-oriented design patterns into
aspect-oriented design patterns, offering a
systematic approach to integrate the advantages of
both programming paradigms. Thus, over time,
formal models such as Petri nets are added, which
contain the semantics and mathematics to facilitate
understanding, provide semantics to these models,
and also enable easier analysis and modeling.

In [9], the work presents the importance of Petri
nets. It examines the structure of multicellular
converters using control strategies to ensure better
results and improve system performance and
reliability.

The study [10] presents a Petri net model that uses
mathematical and graphical modeling to determine
in advance the structure of fault evolution. This
model describes how a functional failure evolves
from a fault-free state to a state with a specific level
of failure. With the rapid development of
computing, object-oriented and aspect-oriented
models may encounter challenges in complex
software and lack semantic clarity. Hence,

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6187

researchers propose transforming these models into
formal models such as Petri nets to ease modeling
and enhance semantic integration.

The work [11] demonstrates the transformation of
UML 2.0 diagrams into Petri nets, as the latter serve
as a powerful tool for analysis and verification.
Similarly to UML, extensions have been suggested
to utilize them as a modeling language for mobile
agents.

The thesis [12] explores the significance of formal
models in addressing UML deficiencies. This
allows the conversion of stereotyped models into
NestedNet Petri nets to conduct formal verifications
of these models. After transforming into formal
models, researchers perform the analysis of the
properties of formal methods, such as the
verification of Petri nets, to ensure that the priorities
are aligned with the system requirements to
guarantee their proper functioning.

In this article [13], the researchers present another
way to transform State Machine Diagrams (UML
SMD) into Colored Petri nets models and to prove
certain structural properties within this
transformation itself

The study [14] presents an analysis of the results
obtained after transforming the graphs to perform a
verification of the target model's acceptance in the
company's complex and virtual systems, in order to
avoid errors and operational issues.

In this work [15], timed Petri nets are applied to
model the temporal behavior of workflow systems,
using TINA as a tool to support the verification of
activity deadlines.

In our work, we propose a new transformation
approach that integrates multiple methodologies to
address complex software systems. Our approach
combines the transformation from object-oriented
(OO) paradigms to aspect-oriented (AO) paradigms
and from aspect-oriented paradigms to Petri nets.
This integration aims to resolve the limitations of
object-oriented modeling. (Duplication, enhances
maintainability, and improves scalability) and to
ensure software properties and facilitate system
comprehension, given that Petri nets provide a
broad and commonly understood formalism.
Aspect-oriented Modeling (AOM) serves as an
intermediary, offering solutions for modeling
object-oriented systems, particularly in complex
scenarios. By leveraging aspect-oriented modeling
(AOM), we can modularize cross-cutting concerns
more effectively. Our transformation approach
enhances this by converting aspect-oriented models

into Petri nets, which provide a clear and formal
method for system analysis and verification
Finally, we employ the TINA tool for verification
to ensure the correctness of the system properties,
including those related to aspect-oriented designs.
This tool helps validate the properties of the woven
net, which integrates the various concerns and
modules identified during the transformation
process.

This approach not only addresses the limitations of
previous methodologies but also contributes to a
more comprehensive, understanding and
verification of complex systems

3. BACKGROUNDS

Centered In this section we present the
basic concepts of aspect oriented modeling, Petri
nets, graph transformation and analysis Petri nets.

3.1 Aspect-Oriented Modeling (AOM)

Aspect-Oriented Modeling (AOM) is an
approach (among others) that aims to achieve this
goal. In other words, the process of weaving
(composition) aspects is divided into two phases.
First, a detection phase identifies specific parts of a
base model, followed by a composition phase to
construct the model taking into account the aspect
[7]. Aspect-oriented modeling is based on the
following points:
Concern: A concern is an interest related to the
development of a system, its operation, or any other
issues that are essential or important to one of the
participants in the system [16].
There are two types of concerns: cross-cutting
concerns or aspect concerns, and non-cross-cutting
concerns or base concerns [7] [24] [25].
Base Concern: It therefore represents a non-cross-
cutting (functional) concern that can be effectively
captured with traditional approaches such as
Object-Oriented approach.
Aspect Concern: It therefore represents a cross-
cutting (non-functional) concern that can be
effectively captured with the Aspect-Oriented
approach.
Join point (PJ): The location in the model where
advices should be inserted [7].
Pointcut (PC): It describes the set of join points
where the aspect should intervene and be
introduced [16].
Advice: Represents a particular technical behavior
of an aspect. In concrete terms, it is a code block
that will be grafted into the application at the
execution of a join point defined in a point cut [17].

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6188

Aspect: A module defining Advices and their
points cuts [7].
Weaver: The aspect weaver is an operation that
takes as input base modules and aspect modules,
and aims to apply and attach aspects to the base
modules at specific join points corresponding to the
aspect's cut specification [16].
So, an Aspect = Point cut + Advice.
Point cut = Σ join points [7].

3.2 Petri Nets

 The Petri net is a graphical and

mathematical tool used to model and analyze
discrete systems, such as those that operate
concurrently, in parallel, or non-deterministically.
As a graphical tool, it helps to understand and
simulate dynamic and concurrent activities. As a
mathematical tool, it allows for the analysis of the
modeled system using graphs and algebraic
equations. [18]
A Petri net is a four-tuple (P, T, IN, OUT) where
P = {P1, P2, ……, Pm} is a set of places.
T = {t1, t2, …….., tm} is a set of transitions.
P∪T ≠ ᴓ, P ∩ T= ᴓ.
IN: (P x T) ->N is an input function that defines
directed arcs from places to transitions.
OUT: (P x T) –> N is an output function that
defines directed arcs from transitions to places.
Pictorially, places are represented by circles and
transitions by horizontal bars.
If IN (Pi, Tj) = k, where k > 1 is an integer, a
directed arc from place Pi, to transition Tj is drawn
with label k [26] [27].
 If IN (Pi, Tj) = 0, no arc is drawn from Pi, to Tj.
Similarly, if OUT (Pi, Tj) = k, a directed arc is
included from transition Tj to place Pi, with label k
If k > 1 and without label if k = 1. If k = 0, no arc is
included from TJ to Pi. [19], [20].

3.3 Graph Transformation

 Graph transformation is the mechanism

for specifying and applying transformations
between graphs. The main idea behind this
transformation is the modification of graphs based
on rules.
A graph grammar evolves from Chomsky grammar
on strings to graphs. It consists of a set of graph-
rewriting rules. Each one has a graph at its Left
Hand Side (LHS) and another graph at its Right
Hand Side (RHS). [21]

3.4 Analysis Petri nets

 As systems become more complex,
ensuring the quality of the model becomes more
challenging. To address this, various techniques are
used for analysis, such as verification, validation,
qualification, and certification. In our work, we
primarily focus on verification and validation: [14]
[22] [28].

 Verification: answers the question "Are we
building the model correctly?" Verification
encompasses review, inspection, testing, automated
proof, or other appropriate techniques to establish
and document the compliance of development
artifacts with predefined criteria. ISO 8402 defines
verification as "confirmation through examination
and provision of tangible evidence (information
whose accuracy can be demonstrated, based on
facts obtained through observation, measurement,
testing, or other means) that specified requirements
have been fulfilled."

 Validation: involves assessing the suitability of
the developed system in relation to the needs
expressed by its future users. Validation seeks to
answer the question "Are we building the right
model?" ("is the right system being built?"). By
definition, validation is "confirmation through
examination and provision of tangible evidence that
specific requirements for an intended specific use
are satisfied. Multiple validations can be performed
if there are different intended uses" (ISO 8402).

4. PROPOSED APPROACHES

In our approach, we performed a
transformation from the detailed object-oriented
sequence diagram to an aspect-oriented detailed
sequence diagram. Subsequently, the result of the
first approach was transformed into Petri nets.

4.1 Transformation of detailed object-oriented
sequence diagrams into detailed aspect-
oriented sequence diagrams

To translate a detailed object-oriented
sequence diagram into a detailed aspect-oriented
sequence diagram, we propose a single meta-
model, and a graph grammar.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6189

Figure 1: From Detailed Object-Oriented Sequence
Diagrams to Detailed Aspect-Oriented Sequence

Diagrams.

4.1.1 Model Transformation Process:

In this approach, the transformation is based on a
set of transformation rules. These rules express the
semantics in the following table:

Table 1: the semantics of approach 1

Source state and
notation:

Description Target state and
notation

Actor

We have :
AD = ZoneAct.
PJ = Actor.
Type = Create.

Actor + Actor
zone

Actor activity zone

We have :
AD = ZoneAct.
PJ = Actor
activity zone.
Type = Create.

2Actor activity
zones

Boundary

We have :
AD =
ZoneDialog.
PJ = Boundary.
Type = Create.

Boundary +
Boundary zone

Boundary activity
zone

We have :
AD =
ZoneDialog.
PJ =Boundary
activity zone.
Type = Create.

2 Boundary
activity zones

Control

We have :
AD =
ZoneCntrl.
PJ = Control.
Type = Create.

Control +
Control zone

Control activity zone

We have :
AD =
ZoneCntrl.
PJ =Control
activity zone.
Type = Create.

2 Control activity
zones

Entity

We have :
AD =
ZoneEntity.
PJ =Entity.
Type = Create.

Entity + Entity
zone

Entity activity zone

We have :
AD =
ZoneEntity.
PJ =Entity
activity zone.
Type = Create.

2 Entity activity
zones

4.1.2 The Meta-model of the detailed

Sequence Diagram and Graphical
Representation of Classes

The meta-model of detailed sequence diagrams:
The meta-model for object-oriented sequence
diagram consists of seventeen classes:(Seq, MA,
Actor, Dialogue, Controleur, Entity, ZoneAct,
ZoneDialogue, ZoneCntrl, ZoneEntity,Destroy,

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6190

Aspect, Operation, Ref, Opt, Alt, Loop) and forty-
three associations Our meta-model for the UML 2.0
sequence diagram (see Figure 2) consists of the
following classes:
Seq: This class represents the aspect-oriented
detailed sequence diagram. It contains an attribute
<Diagram> of type String displaying by default
"detailed_sequence_diagram" and an attribute
<Model> of type String displaying by default
"basic_model" before the transformation. After the
transformation, it is modified to "Weaver".
Graphically, it is represented by a large blue
rectangle.
MA: This class represents the aspect model. It
contains an attribute <MA> of type String
displaying by default "Aspect_Model". Graphically,
it is represented by a large red rectangle.
Actor: This class represents the actor. It contains an
attribute <NameAct> of type string. Graphically, it
is represented by a simple shape such as a blue
stick figure.
ZoneAct: This class represents the actor's activity
zone. It contains an attribute <NomZoneAct> of
type string. Graphically, it is represented by a small
black rectangle.
Dialogue: This class represents the boundary. It
contains an attribute <NameDialogue> of type
string. Graphically, it is represented by a blue circle
with two horizontal and vertical lines.
ZoneDialogue: This class represents the boundary
activity zone. It contains an attribute
<NameDialogueZone> of type string. Graphically,
it is represented by a small black rectangle.
Contrôleur: This class represents the Controller. It
contains an attribute <NameCntrl> of type string.
Graphically, it is represented by a blue circle with
two diagonal lines inside and outside the circle.
ZoneCntrl:This class represents the controller
activity zone. It contains an attribute
<NameCntrlZone> of type string. Graphically, it is
represented by a small black rectangle.

Entity: This class represents the entity. It contains
an attribute <NameEntity> of type string.
Graphically, it is represented by a blue circle with a
line at the bottom.
ZoneEntity: This class represents the entity
activity zone. It contains an attribute
<NameEntityZone> of type string. Graphically, it is
represented by a small black rectangle.
Destroy: This class represents the destruction. It
contains an attribute <D> of type string.
Graphically, it is represented by a black cross.
Aspect: This class represents the aspect. It contains
attributes <AD>, <PJ>, <Type>, and <Name>, all
of type string. Graphically, it is represented by a
class.
Operation: This class represents an operation. It
inherits from the <Actor> class and contains an
attribute <idop> of type string. Graphically, it is
represented by a large black rectangle.
Ref: This class represents the reference operation.
It inherits from the <Operation> class and contains
attributes <Nameref> and <ref>, both of type
string. Graphically, it is represented by a small
black rectangle.
Opt: This class represents the optional operation
and inherits from the < Operation> class. It contains
an attribute <opt> of type string. Graphically, it is
represented by a small black rectangle.
Loop: This class represents the loop operation and
inherits from the < Operation> class. It contains
attributes <N> and <Loop>, both of type string.
Graphically, it is represented by a small black
rectangle.
Alt: This class represents the alternative operation
and inherits from the < Operation> class. It contains
an attribute <Alt> of type string. Graphically, it is
represented by a small black rectangle.

The graphical representation of the classes in the

detailed Sequence Diagram meta-model:

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6191

Figure 2:Meta-model for the object-oriented sequence diagram.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6192

Figure 3: Graphical representation of the meta-model of the sequence diagram

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6193

Figure 4 illustrates the tool generated for
manipulating detailed aspect-oriented sequence

diagrams.

Figure 4: The generated tool for modeling the sequence diagram (AToMPM).

4.1.3 Our proposed graph grammar for

transforming object-oriented detailed
sequence diagrams into aspect-oriented
detailed sequence diagrams

The main idea for transforming sequence diagrams
into aspect-oriented sequence diagrams is to add
aspects at the selected join points identified by the
points cut found in the aspect model.

In this section, we present a graph grammar
containing eighty-eight (88) rules, each expressing
a particular case. These rules will be executed in an
order determined by the motif (T). We decompose
the 88 rules into three categories based on the type
of aspect, which are defined as follows:

Aspect.type: the action of the aspect, whether it is
creation, deletion, or linking between two
components.
In the following figure, the pattern (T_O2A) of this
graph grammar for this approach 1:

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6194

Figure 5: The motif of transformation of approach

Category 1: Rules that have the aspect type
"create" are applied to create an aspect according to

the PJ (the join point) and AD (advice). In the
following figures, we depict the rules of the first
category:

Figure 6: Application of category 1 with Aspect.PJ == Actor and Aspect.Ad== linevieAct.

In Figure 6, for the application of the first category,
in this rule we positioned the aspect on the actor
(the join point) and added an activity zone (advice)
with the aspect type set to ‘create’.

In Figures 7 and 8, the Python code for the first
creation rule:

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6195

Figure 7: The LHS of the first create rule (Python code).

Figure 8: The RHS of the first create rule (Python code).

Figure 9: Application of category 1 with Aspect.PJ== Control Zone and Aspect.AD== CreateDlg.

In Figure 9, for the application of the first category,
in this rule we positioned the aspect on the

Controller zone (the join point) and added boundary
(advice) with the aspect type set to ‘create’.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6196

Category 2: Rules with the aspect type "lien" are
applied to add an aspect to a link between two
objects.

In the following figure, we depict the rules of the
second category:

Figure 10: The Application of category 2 with Aspect.PJ== Control Zone, Entity Zone and Aspect.AD==
Asynchrone2E

.
In Figure 10, for the application of the second
category, in this rule we positioned the aspect on
the Controller zone and entity zone (the join points)

and added asynchronous message (advice) with the
aspect type set to ‘lien’
In Figures 11 and 12, the Python code for the first
link rule:

Figure 11: The LHS of the first link rule (Python code).

Figure 12: The RHS of the first Link rule (Python code)

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6197

Figure 13: Application of category 2 with Aspect.PJ== Synchrone message and Aspect.AD== Cntrl

.In Figure 13, for the application of the second
category, in this rule we positioned the aspect on
the boundary zone and controller zone (the join
points) and added a controller (advice) with the
aspect type set to ‘lien’.

Category 3: Rules with the aspect type "Delete"
are applied respectively to delete an object
automatically delete the relations associated with it.
In the following figures, we depict the rules of the
third category:

Figure 14: Application of category 3 with Aspect.PJ== Zone Actor and Aspect.type== delete

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6198

In Figure 14, for the application of the third
category, in this rule we positioned the aspect on
the actor zone (the join point) with the aspect type
set to ‘delet’.

In Figures 15 and16, the Python code for the first
Delet rule:

Figure 15: The LHS of the first delete rule (Python code).

Figure 16: The RHS of the first delete rule (Python code).

In Figure 17, for the application of the third
category, in this rule we positioned the aspect on

destroy (the join point) with the aspect type set to
‘delete’.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6199

Figure 17: Application of category 3 with Aspect.PJ== Destroy and Aspect.type== delet

4.2 Transformation of Aspect-Oriented Detailed
Sequence Diagrams into Petri Nets

In the second approach, we take the result
of the first transformation, which is an aspect
oriented detailed sequence diagram, as the input.
Using the proposed graph grammar, we obtain a
Petri net.

Figure 18: From Aspect-Oriented Sequence Diagram to
Petri net.

To translate a detailed aspect-oriented sequence
diagram into a Petri net, we propose two meta-
models, and a graph grammar.

4.2.1 Model Transformation Process:

In this approach, the transformation relies on
transformation rules. These rules express the
semantics in the following table

Table 2: the semantics of this approach 2
Source state and
notation:

Description Target state and
notation

Actor

That transforms
the actor into a
place because
there is no change
in state.

Place

Actor activity zone

That transforms
the actor’s activity
zone into a
transition because
it performs a state
change.

Transition

Boundary

That transforms
the boundary into
a place because
there is no change
in state.

Place

Boundary activity
zone

That transforms
the boundary’s
activity zone into
a transition
because it
performs a state
change.

Transition

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6200

Control

That transforms
the control into a
place because
there is no change
in state.

Place

Control activity
zone

That transforms
the control’s
activity zone into
a transition
because it
performs a state
change.

Transition

Entity

That transforms
the entity into a
place because
there is no change
in state.

Place

Entity activity
zone

That transforms
the entity’s
activity zone into
a transition
because it
performs a state
change.

Transition

Destroy

That transforms
the destroy into a
place and a
transition because
it is a final state.

Place and
transition

diagram
framework

That transforms
the diagram
framework into a
Petri net
framework

Petri-Net
framework

Loop operation

That transforms
the Loop
operation into a
place and a
transition as it's
performed in a
loop.

Place and
transition

4.2.2 The Meta-model of the Petri net and
Graphical Representation of Classes

The meta-modeling of Petri Nets consists of three
classes and three associations. In Figure 19, we
present the meta-model for Petri Nets.

Figure 19: Meta-model of Petri Net.

Classes:

PN: This class represents the Petri Net framework.
It contains an attribute <PN> of type string,
displaying "Petri-Net" by default. Graphically, it is
represented by a black rectangle.

Place: This class represents the place. It contains an
attribute <Pname> of type string, displaying "P" by
default, and an attribute <Tokens> of type string.
Graphically, it is represented by a green circle.

Transition: This class represents the Transition. It
contains an attribute <Tname> of type string,
displaying "T" by default. Graphically, it is
represented by a pink rectangle.

The graphical representation of the classes in the
detailed Sequence Diagram meta-model

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6201

Figure 20: The Concrete Syntax of Petri Nets.

Figure 21 illustrates the generated tool for
manipulating Petri Nets:

Figure 21: The generated tool for Petri Nets.

4.2.3 The proposed graph grammar for
transforming aspect-oriented detailed
sequence diagrams into Petri Nets

In this section, we present a graph grammar
containing fifty-six (56) rules, each expressing a
particular case. These rules will be executed in an
order determined by the motif (T). We decompose
the 56 rules into three categories based on the
transformation of objects, which are defined as
follows:

 Creation: For transforming, the object and aspect
in the aspect-oriented detailed sequence diagram
into a PN

Linking: to connect the PN objects and aspect from
the aspect-oriented detailed sequence diagram.

Deletion: for removing the aspect-oriented detailed
sequence diagram that conclude the transformation.

In the following figure, the pattern (T_OA2RDP) of
this graph grammar for this approach is
represented:

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6202

Figure 22: The transformation pattern of the approach.2.

Category1: the creation rules are applied to
create a PN (Petri Nets) based on an aspect-
oriented sequence diagram.
In the following figures, we illustrate the rules of
the first category:

The Figures 24 and 25 represent the Python code
for the rule of the first category on the actor:

Figure 23: Application of Category 1 on the actor

Figure 24: The LHS of the first rule on the actor (Python code).

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6203

Figure 25: The RHS of the first rule on the actor (Python code).

Figure 26: Application of Category 1 on the actor Activity Zone

.

Category2: The linking rules are applied to
connect Petri net based on the linking of object and

aspect from the aspect-oriented detailed sequence
diagram.

In the following figures, we represent the rules of
the second category:

Figure 27: Application of Category 2 on the lifeline boundary

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6204

.The Figures 28 and 29 represent the Python code
for the rule of the second category on the on the

lifeline boundary:

Figure 28: The LHS of the rule on the lifeline boundary (Python code).

Figure 29: The RHS of the rule on the lifeline boundary (Python code)

Figure 30: Application of Category 2 on the synchronous message.

Category3: the deletion rules are applied to remove
objects and aspects from the aspect-detailed
sequence diagram after the transformation.

 In the following figures, we represent the rules of
the third category:

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6205

Figure 31: Application of Category 3 on "destroy".

The Figures 32and 33 represent the Python code for
the rule of the third category on the on destroy:

Figure 32: The LHS of the rule on destroy (Python code).

Figure 33: The RHS of the rule on destroy (Python code).

Figure 34: Application of Category 3 on "Entity".

4.3 Representation of the TINA tool
The figure 35 and 36 illustrates the tool

used to verify the Petri nets obtained from the
transformation:

Figure 35: Representation of the TINA tool (Input).

Figure 36: Representation of the TINA tool (Output).

4.4 Results and Discussion

4.4.1 Results:

In this paper, we propose two new approaches.
There are several previous studies that are related to
our approaches: The works related to the first
approach, which involves transforming object-
oriented diagrams into aspect-oriented diagrams,
include the work of [7] titled "Des diagrammes
UML 2.0 vers les diagrammes orientés aspect à
l’aide de transformation de graphes". In addition,
the work of [23] titled "La génération d’un outil de
transformation des diagrammes UML 2.0 vers les
diagrammes orientés aspect, basée sur la
transformation de graphes". We have conducted a
comparison with the works related to our research
in Table 3.

Table 3: Comparison of Approaches for Transforming
into Aspect-Oriented Diagrams.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6206

The comparison work

Comparison
Points

[7] [23] Our Approach

Design Model Class diagram, Activity
diagram, and Communication
diagram.

State-transition diagram. Detailed sequence diagram.

Join point Any part of the model. Any part of the model. Components of detailed sequence
diagram.

Advice Any part of the model. Any part of the model. Components of detailed sequence
diagram.

Aspect A graphical model contains
the join points and advices to
be added.

A graphical model contains the join
points and advices to be added.

A graphical model contains the join
points and advices to be added.

Graph Based on graph
transformation.

Based on graph transformation. Based on graph transformation.

Graph grammar By given execution order. From a graph grammar and by given
execution order.

From a graph grammar and a (T)
pattern.

Modeling tool ATOM³ ATOM³ ATOMPM

The works related to the second approach, which
involves transformation into Petri nets for
verification purposes, include [29] with “specifing
and Verifing Aspect-Oriented Systems in Rewriting
Logic”, [30] with his work “Based Aspect-oriented
Petri Nets in Software Engineering”, [31] with
“Détection des préoccupations transversales par
l’analyse formelle de concepts des diagrammes de

sequence” and [32] with “A Petri net-based
approach for supporting aspect-oriented modeling”.
We have conducted a comparison with the works
related to our research in Table 4.

Table 4: Comparison of Petri Net Transformation and
Verification Approaches.

The comparison

 works

Comparison

Points

[29]

[30]

[31]

[32]

Our Approach

Transformation
Approach

Specifing and
Verifing Aspect-
Oriented Systems

The Petri net
methodology with
object-oriented
technology.

Formal concept
analysis of UML
diagrams.

A Petri net-
based method to
support aspect-
oriented
modeling
(AOM).

Modeling and
verification of
UML2.0
diagrams

Design Model Aspect-Oriented
Systems

Object-Oriented
Petri Nets

UML class and
sequence diagrams.

woven net Detailed
sequence
diagram

Graph Based on Maude
Language

Colored Petri Net
and the Object-
Oriented Petri Net

Modeling the
migration of
crosscutting concerns.

Aspect Nets Based on graph
transformation

Verification
Method

Transformation
of the
base/aspects
modules into
ordinary Maude
modules.

Using the Petri net
structure to verify
real-time control
software.

Formal concept
analysis and method
call orders.

XML
Technology and
Java
Programming

Aspect-oriented
transformation
to Petri nets

Modeling Tool Maude Object-Oriented
Petri Nets
(OOPN).

Identification of
candidate aspects.

Structural
Analysis.

ATOMPM

Verification Tool AO-Maude Integrate SAADT
(IDEF0) models
and hierarchical
colored Petri nets.

FCA Tool Object Petri Net
(OPN).

TINA

4.4.2 Discussion

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6207

In the first approach, the focus is on detailed
sequence diagrams, providing a finer granularity for
aspect-oriented transformations. It specifies these
elements within the components of the detailed
sequence diagram, thereby allowing a more precise
localization of variation points. Additionally, our
method integrates a (T) pattern to structure the
transformation, which could offer extra flexibility
in defining the transformations. Our approach also
stands out by using ATOMPM, a tool that could
provide additional or enhanced functionalities
tailored to our specific needs. In conclusion, our
method proposes specific improvements, including
finer granularity with detailed sequence diagrams
and the use of a potentially more suitable modeling
tool, ATOMPM. These distinctions can lead to
more precise and flexible transformations, better
meeting the specific requirements of certain
modeling projects.

In the second approach, we rely on the use of
detailed sequence diagrams, allowing for a finer
and more precise analysis. Furthermore, we take it a
step further by transforming them into aspect-
oriented diagrams for Petri nets, thereby providing
a more nuanced perspective on verification. To
achieve this, we use ATOMPM, a tool specifically
adapted to our method. In summary, our approach
offers a more detailed and specific method for
modeling and verifying aspect-oriented diagrams
into Petri nets, enhancing the accuracy and scope of

verification.

 We have chosen comparison criteria from the
previous tables because they form the central
elements of our analysis. To mitigate threats to the
validity of our study, we carefully selected criteria
that cover the essential aspects of our field of study.
For example, in the context of aspect-oriented
transformation, we considered elements such as
join points, advice, and the aspect itself, as they are
crucial for evaluating the effectiveness of the
transformation. The use of a new and different tool
is also an important criterion, as it allows us to
assess the innovation and effectiveness of the
proposed approaches.

Regarding transformation with Petri nets and
verification, we identified key criteria such as the
transformation approach, design model, as well as
the transformation and verification tools. These
criteria are essential for ensuring the validity of
Petri nets and allow for a rigorous comparison of
the respective contributions. We selected these
criteria based on their relevance and their ability to
cover a broad spectrum of critical aspects, thereby
reducing potential biases and increasing the
reliability of our conclusions.

5. CASE STUDY

 In this section, we implemented
our transformation method on two case studies. The
first case study focuses on reservation in a travel
agency, and the second on managing a shopping
center

5.1 Case Study on Booking in a Tourist Agency

5.1.1 Transformation from Object-Oriented
to Aspect-Oriented

To demonstrate our approach, we applied it to
booking in a tourist agency. We employed the
detailed sequence diagram to represent the base
model. Then, we introduced the aspect model
representing the following three aspects: Security,
VerifyInformation, and DeleteDestroy.

Security: This aspect allows verifying
authentication security, positioned on the client.

VerifyInformation: This aspect verifies whether
the information entered by the client is correct or
not, positioned on the actor zone za2 and the
boundary zone zd2.

DeleteDestroy: This aspect facilitates deleting the
reservation database once its usage is completed,
positioned on the destroy.

Base and Aspect Models for the Detailed
Sequence Diagram

 Basic Model

In Figure 37, we present the basic model for the
detailed sequence diagram

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6208

Figure 37: The Basic Model.

 The Aspect Model In Figure 38, we present the aspect model of the
detailed sequence diagram.

Figure 38: The Aspect Model.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6209

 Composite Model for the Detailed
Sequence Diagram

In Figure 39, we present the composite model, this
model results from the integration of the basic
model and the aspect model, which is a detailed
aspect-oriented sequence diagram where we add:

 The actor zone to the client.
 Recursive messages to the boundary zone

zd2.
 And remove the destroy.

Figure 39: The Weaver

5.1.2 Transformation from Aspect-Oriented

to Petri Nets

In the second approach, we used the detailed
aspect-oriented sequence diagram obtained from

the first transformation of the reservation
modification case. We then applied the proposed
graph grammar to this diagram to generate the
corresponding Petri net.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6210

Figure 40: The Petri Net of the reservation modification case

5.1.3 Verification of the Petri Net

Finally, we perform a verification on the result of
the second approach (on the Petri net) of the
reservation modification case:

In the following figure, we present the result of
verification:

Figure 41: The result of the verification of the Petri Net for the reservation modification case in TINA.

 Based on the results:

Bounded = Y: The network is bounded.

Live = N: The network is not live.

Reversible = N: The network is not reversible

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6211

5.2 Case Study on the management of a
shopping mall

5.2.1 Transformation from Object-Oriented

to Aspect-Oriented

To demonstrate our approach, we applied it to mall
management (Adding a promotion). We employed
the detailed sequence diagram to represent the base
model. Then, we introduced the aspect model
representing the following four aspects: decision
evaluation, update, product availability and
Validate Information.
A decision evaluation: Allows making decisions
based on the entered information, positioned on the
controller zone zc1.

Update: This aspect updates the entries in the
database table by adding a promotion, positioned on
the entity promotion.
Product availability: Verifies the availability of
products before adding a promotion, positioned on
the controller zone zc1.
Validate Information: Validates the information
for adding a promotion, positioned on the actor
zone za1 and the boundary zone zd1

Base and Aspect Models for the Detailed
Sequence Diagram

 Basic Model
In Figure 42, we present the basic model for the
detailed sequence diagram.

Figure 42: The Basic Model.

 The Aspect Model

In Figure 43, we present the aspect model of the
detailed sequence diagram.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6212

Figure 43: The Aspect Model

 Composite Model for the Detailed
Sequence Diagram

In Figure 44, we present the composite model,
which is an aspect-oriented detailed sequence
diagram where we add:

 Controller zone to zc1.

 Entity zone to the entity promotion.

 Controller with his zone to zc1.

 Asynchronous Message to the actor zone
za1 and the boundary zone zd1.

Figure 44: The Weaver

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6213

5.2.2 Transformation from Aspect-Oriented
to Petri Nets

We transformed the composite model, which is an
aspect-oriented sequence diagram of the promotion
addition case, into a Petri net.

Figure 45: The Petri Net of the promotion addition case.

5.2.3 Verification of the Petri Net

Finally, we perform a verification on the result of
the second approach (on the Petri net) of the
promotion addition case:

In the following figure, we present the result of
verification:

Figure 46: The result of verification of Petri Net for the promotion addition case with TINA.

 Based on the results:

Bounded = Y: The network is bounded.

Live = N: The network is not live.

Reversible = Y: The network is reversible

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6214

6. CONCLUSION AND PERSPECTIVES:

In this article, we have proposed two approaches.
The first aims to generate aspect-oriented sequence
diagrams from object-oriented sequence diagrams.
This approach relies on meta-modeling (meta-
models). We defined a single meta-model and
subsequently presented a set of rules for the
transformation process. In the second approach, we
introduced two meta-models and a graph grammar
to transform aspect-oriented sequence diagrams
into Petri nets. This transformation was performed
using the AToMPM modeling tool. Finally, we
conducted a verification of the priorities of Petri
nets such as liveness, boundedness, reachability,
and reversibility using the TINA Petri nets analysis
tool.

As perspectives, we propose to:

Study in detail how to transform the interaction
frames of the detailed sequence diagram, whether
alt, ref, loop, or opt, into Petri nets.

To develop a fully automated approach and
generalize it to other types of UML diagrams, we
plan to continue transforming other aspect-oriented
UML diagrams into Petri nets using graph
transformation and the AToMPM tool.
Additionally, we intend to transform the aspect-
oriented UML models into BPMN (Business
Process Model and Notation) models, and
subsequently convert these BPMN models into
Petri nets.

Concurrently, we will work on integrating our
approach into existing software development tools
to facilitate its use by practitioners in the field.
LOTOS (Language Of Temporal Ordering
Specification) is a formal specification language
widely used for the verification and validation of
Petri nets. We propose in our future works to use
LOTOS to verify our Petri nets. In addition, we can
propose using the TGG (Triple Graph Grammar)
modeling tool for model transformations, as it is
considered the best among the others.

As strong points, we propose to:

In our study, we not only achieved the set
objectives but also validated our hypotheses and
determined the properties of Petri nets based on a
detailed aspect-oriented sequence diagram.

We have innovated by transforming a detailed
sequence diagram using an aspect for the first time,
an approach still rare in the field of modeling.

As weak points, we propose to:

Time is very limited, and we sometimes end up
with certain methods being incorrect. Therefore,
few works on the aspect-oriented paradigm towards
the formal

The lack of important data or the difficulty in
collecting data for aspects oriented modeling.

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6215

REFERENCES:
[1] Pascal roques, Uml 2 par la pratique, Paris :

Eyrolles, , 2008, pp : 246.
[2] Fatma Dhaou, Ines Mouakher, Christian

Attiogbe and Khaled Bsaies. A Causal
Semantics for UML2.0 Sequence Diagrams
with Nested Combined Fragments, Proceedings
of 12th International Conference on Evaluation
of Novel Approaches to Software Engineering
Porto, France, April 28 – 29,2017,pp.47-56.

 [3] Faiz UL Muram, Huy Tran and Uwe Zdun. A
Model Checking Based Approach for
Containment Checking of UML Sequence
Diagrams, Proceedings of 23rd Asia-Pacific
Software Engineering Conference (APSEC), 6-
9 Dec. 2016, pp.73-80

[4] Aws A. Magableh and Anas M. R. AlSobeh.
Securing Software Development Stages using
Aspect-Orientation Concepts, international
Journal of Software Engineering & Applications
(IJSEA), Vol.9, No.6, November 2018, pp.57-
71.

[5] Cristian Vidal Silva, Rodrigo Saens, Carolina
Del Río, and Rodolfo Villarroel, Aspect-
Oriented Modeling: Applying Aspect-Oriented
UML use cases and Extending aspect-Z.
Computing and Informatics, Vol. 32, 2013, pp:
573–593.

[6] Khalid Bouragba, Hicham Belhadaoui, Mohamed
Ouzzif, and Mounir RIFI, Approche orientée
aspect pour l’amélioration de la fiabilité et de la
performance temporelle d’un système tolérant
aux fautes. Revue Méditerranéenne des
Télécommunications, vol2, n°1,January
2012,pp.20-28

[7] Aouag, Mouna, Des diagrammes UML 2.0 vers
les diagrammes orientés aspect à l’aide de
transformation de graphes. Doctoral thesis,
University of Mentouri, Constantine, 2014, pp.
23-25.

[8] Mohamed Lamine Berkane, Mahmoud Boufaida,
Un Modèle de transformation des patrons de
conception de l’Orienté Objet vers l’Orienté
Aspect. 2nd Conférence Internationale sur
l'Informatique et ses Applications, Proceedings
of the 2nd Conférence Internationale sur
l'Informatique et ses Applications (CIIA'09),
Saida, Algeria, May 3-4, 2009.

[9] Sana OTHMAN, Modélisation et commande à
base d’une représentation par réseau de Pétri
d’un filtre actif parallèle avec un onduleur
multicellulaire série. Doctoral thesis, University
of Gabès, 2021, pp .73-106

[10] Minh Toàn VÕ, Assessment of heat pump
operating faults coupled with building energy
simulation using Petri net model, Doctoral
thesis, University of, Rochelle France,
2021,pp.28-42.

 [11] GUERROUF FAYÇAL, Une Approche de
Transformation des Diagrammes d’Activités
d’UML Mobile 2.0 vers les Réseaux de Petri.
master's thesis, University of é El Hadj Lakhdar
– BATNA, 2009, pp .03-75

[12] BAHRI, Mohamed Redha, Une approche
intégrée Mobile-UML/Réseaux de Petri pour
l'Analyse des systèmes distribués à base
d'agents mobiles. Doctoral thesis, University of
Mentouri, Constantine, .2011, pp.8-75

[13] Said Meghzili, Allaoua Chaoui, Martin
Strecker, Elhillali Kerkouche, On the
Verification of UML State Machine Diagrams
to Colored Petri Nets Transformation Using
Isabelle/HOL. Proceedings of IEEE
International Conference on Information Reuse
and Integration (IRI), San Diego, CA, USA 04-
06 August, 2017, pp.419 – 426.

[14] ElMansouri, R. Modélisation et Vérification des
processus métiers dans les entreprises virtuelles
: Une approche basée sur la transformation de
graphes, Doctoral thesis, University of
Mentouri, Constantine, 2009, pp. 40-41.

[15] Pedro M. Gonzalez del Foyo et José Reinaldo
Silva, Using Time Petri Nets for Modeling and
Verification of timed Constrained Workflow
Systems, ABCM Symposium Series in
Mechatronics, Vol. 3, University of São Paulo,
Brazil.2008,pp.471-478.

[16] Boubendir, Amel, Un cadre générique pour la
détection et la résolution des intéractions entre
les aspects. Doctoral thesis, University of
Mentouri, Constantine, 2011, pp. 19-27.

[17] Otmane rachedi, Soumeya, Apports des
Approches de Séparation Avancée des
Préoccupations : Une Etude Comparative
Fondée sur les Modèles de Conception,
Doctoral thesis, University of Badji Mokhtar
Annaba, 2015, pp. 18

[18] S Dunnett , L Jackson and M Whiteley
Simulation of polymer electrolyte membrane
fuel cell degradation using an integrated Petri
Net and 0D model, Reliability Engineering &
System Safety, April 2020, Vol:196,pp.106741.

[19] N.Viswanadham, Y.Narahari and Timotht
L.Johnson, Deadlock Prevention and Deadlock
Avoidance in Flexible Manufacturing Systems
Using Petri Net Models. IEEE Transactions on

 Journal of Theoretical and Applied Information Technology
31st August 2024. Vol.102. No. 16

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6216

Robotics and Automation, Vol 6, N° 6,
December 1990), pp. 713 – 723.

[20] Sangita Kansal, Payal Dabas, An Introduction
to Signed Petri Net, Journal of Mathematics,
Volume 2021, N° 1, 16 June 2021,pp.1-8

[21] Raida Elmansouri, Said Meghzili, Allaoua
Chaoui, Aissam Belghiat and Omar Hedjazi,
Integrating UML 2.0 Activity Diagrams and Pi-
calculus for Modeling and verification of
Software Systems using TGG. Jordanian
Journal of Computers and Information
Technology, Vol 6, N° 4, Jordanian, December
2020, pp.326-344.

[22] Remigiusz Wi´sniewski , Marcin Wojnakowski
and Zhiwu Li, Design and Verification of Petri-
Net-Based Cyber-Physical Systems Oriented
toward Implementation in Field-Programmable
Gate Arrays—A Case Study Example, journal
Energies 2023, Vol 15, N° 23 pp.16-67.

[23] Zerara Ahmed, Megrous Fares, La génération
d’un outil de transformation des diagrammes
UML 2.0 vers les diagrammes orientés aspect,
basée sur la transformation de graphes , master
memory, Abd elhafid Boussouf University
Centre Mila, Algeria, .2020, pp.3-25.

[24] Anas Mohammad Ramadan AlSobeh, OSM:
Leveraging model checking for observing
dynamic behaviors in aspect-oriented
applications, Journal of Communication and
Media Technologies, Vol 13, N° 4, October
2023, pp.1-18.

[25] Fernando Pinciroli, Jose Luis Barros Justo,
Raymundo Forradellas, Systematic mapping
study: On the coverage of aspect-oriented
methodologies for the early phases of the
software development life cycle, Journal of
King Saud University –Computer and
Information Sciences, Vol 34, N° 6, June 2022,
pp. 2883-2896.

 [26] GokhanGelen and YaseminIçmez, Task
planning and formal control of robotic assembly
systems: A Petri net-based approach, Ain
Shams Engineering Journal, Vol 15, N° 7, July
2024, pp.1-12.

[27] Faming lu, Fenghua lv, Minghao cui, Yunxia
bao, Qingtian zeng, Petri Net Unfolding-Based
Detection and Replay of Program Deadlocks,
Open IEEE Access Journal, Vol 12, April 2024,
pp. 53716.

[28] MoezKrichen, Vérification et validation
formelles pour l’Internet des objets, HAL open
Science, 5 Jan 2024, pp.11

[29] Amina Boudjedir, Toufik Benouhiba, Djamel
Meslati, Specifing and Verifing Aspect-
Oriented Systems in Rewriting Logic,
International Conference on Advanced Aspects
of Software Engineering ICAASE, ,
Constantine, Algeria, 2-4 November, 2014,pp.
36 – 42.

[30] Wensong HUa , Xingui Yanga ,Ke Zuoa, Based
Aspect-oriented Petri Nets in Software
Engineering, 2011 International Conference on
Physics Science and Technology (ICPST 2011),
Physics Procedia 22, 2011,pp. 646 – 650.

[31] Fairouz Dahi, Nora Bounour, Détection des
préoccupations transversales par l’analyse
formelle de concepts des diagrammes de
séquence, Revue Africaine de la Recherche en
Informatique et Mathématiques Appliquées
(ARIMA Journal), vol 18. August 2014, pp.
19-35

[32] Lianwei Guan, Xingyu li, Hao hu, Jian lu,Petri
net-based approach for supporting aspect-
oriented modeling, 2nd IFIP/IEEE International
Symposium on Theoretical Aspects of Software
Engineering, Nanjing, China, 17-19 June,
2008,pp. 413–423.

