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ABSTRACT 
Finding and classifying brain tumors are important parts of medical image analysis that need 

advanced deep-learning methods and optimization algorithms. Recognizing the urgent need for accurate 
methods in brain tumor diagnosis, we present a comprehensive approach integrating various stages, including 
data preprocessing. In this preprocessing phase, we employ techniques like aspect ratio normalization and 
resizing to form a standardized dataset. By standardizing image dimensions, we aim to improve subsequent 
processes like feature extraction and segmentation, reducing potential distortions. The suggested model is 
made by using Convolutional Neural Networks (CNN) to find patterns and traits that make tumor and non-
tumor areas different from each other. To overcome the intricate sections and fine textures during down-
sampling, the proposed model is hybridized with U-Net architecture which gives accurate and robust results 
of 98%. Furthermore, the Dice coefficient is measured using Intersection Over Union (IOU) to ensure 
whether it is robust to class imbalance. This shows an intuitive interpretation, with higher values of 0.83 and 
0.9 indicating strong and better segmentation performance. The model is further developed with VGG-16 to 
classify the tumor grades. In terms of accurately segmenting the tumor grades, the learnt relevant 
characteristics that are derived from the segmented tumor photos provide a 73% level of satisfaction.  In 
order to overcome the complexity and over-fitting problems, the Butterfly Optimization algorithm is 
hybridized with VGG-16 which gives an enhanced output in classifying the grades. The proposed model 
outperforms other Machine Learning (ML) and Deep Learning (DL) methods in tumor and non-tumor 
identification and categorization with 99.99% accuracy. To further evaluate the suggested model's 
performance, mobility, and energy economy, it is also implemented in JETSON Orin hardware. 

 
Keywords-Deep Learning, Convolutional Neural Networks (CNNs), U-Net, VGG-16, Butterfly Optimization 

Algorithm. 
 
1. INTRODUCTION 

 
The battle against brain tumors has reached 

a critical juncture, where innovation in medical 
imaging analysis stands as a beacon of hope [1]. The 
intricate challenge of accurately detecting and 
classifying these malignancies demands a paradigm 
shift in technological solutions. Our research reveals 
a breakthrough framework that blends state-of-the-
art deep learning methods with metaheuristic 
optimization algorithms; this framework has the 
potential to alter, when it comes to identifying and 

planning therapies for brain tumors [2].  The scope 
of this research lies in recognizing the pressing need 
for precision and efficiency in medical imaging 
analysis to bolster brain tumor diagnostics and 
therapeutic interventions [4]. Traditional 
methodologies, hampered by their limited accuracy 
and efficacy, fall short in meeting the demands of 
modern healthcare. Thus, the crux of our endeavor 
lies in surmounting these challenges through the 
development of a holistic pipeline encompassing 
data analysis, pre-processing, segmentation, feature 
extraction, optimization, and classification phases. 
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Our framework represents a pioneering 
effort to amalgamate Convolutional Neural 
Networks (CNNs) with U-Net for meticulous 
segmentation and to integrate the formidable VGG-
16 architecture with Butterfly Optimization for 
optimized feature extraction [3]. Brain tumor 
identification and categorization reach new heights 
of accuracy and efficiency because to the domino 
effect of these components working together. 
Central to our approach is the concept of federated 
learning, a decentralized paradigm that respects data 
privacy while harnessing the collective intelligence 
embedded within disparate datasets. Leveraging the 
Federated Averaging (FedAvg) algorithm [1], our 
framework trains on decentralized data sources 
without compromising sensitive information—a 
pivotal breakthrough in medical AI. Drawing from a 
rich tapestry of references, our methodology is 
fortified by the insights gleaned from recent 
advancements in brain tumor classification and 
segmentation. Hasan et al. underscores the 
transformative potential of transfer learning in 
automating multi-class brain tumor classification, 
paving the way for enhanced treatment strategies [2]. 
In the same way, Gamal et al. argue that 3D U-Net 
can automatically separate brain tumors, which 
would start a new age of precision medicine [4]. 

Our system is proof of how powerful 
optimization methods can be for making deep 
learning models work betterTo make brain tumor 
segmentation more accurate, Ramírez et al. talk 
about how to use deep learning to make variational 
models better [3].  Dolaat et al. showed how 
cooperative learning can help solve problems caused 
by uneven medical picture datasets. To move 
healthcare AI forward [5], it's important for people 
to work together and share their thoughts. The results 
of our study are a huge step forward in the search for 
better and faster ways to find and diagnose brain 
tumors. We are almost ready to start a new era of 
precision medicine where every patient gets the care, 
they deserve by using the combined knowledge of 
deep learning and optimization algorithms. 

 
1.1 Motivation  

Brain tumor detection and classification are 
paramount in medical imaging, demanding precise 
diagnostic methods to avoid misdiagnoses and 
delays in treatment. Our research addresses this gap 
by integrating advanced deep-learning techniques 
and optimization algorithms. We prioritize data 
preprocessing to establish a standardized dataset, 
employing techniques like aspect ratio normalization 
and resizing. This ensures uniform image 
dimensions, streamlining subsequent processes and 

reducing potential distortions. In order to 
differentiate between tumor and non-tumor areas, 
our model uses Convolutional Neural Networks 
(CNNs) to detect complex patterns. To overcome 
downsampling challenges, we hybridize our model 
with the U-Net architecture, achieving a robust 
segmentation performance of 98%. We evaluate 
segmentation robustness using the Dice coefficient, 
ensuring resilience to class imbalances. Expanding 
our research, we classify tumor grades with the 
VGG-16 architecture, achieving 73% accuracy. To 
mitigate complexities and overfitting, we integrate 
the Butterfly Optimization algorithm, enhancing 
classification performance. 
Through rigorous evaluation, our model achieves an 
unparalleled efficiency of 99.99%, outperforming 
existing methodologies. Deploying it on JETSON 
Orin hardware validates its performance and 
portability, promising enhanced patient care 
globally. 

The contributions of the article are as follows:  
● Introduction of novel preprocessing 

techniques for standardized dataset 
formation. 

● Integration of CNNs with U-Net 
architecture for robust segmentation. 

● Rigorous evaluation using Dice coefficient 
and VGG-16 for tumor grade classification. 

● Enhancement of classification performance 
through Butterfly Optimization algorithm. 

Organization of the paper: 
Following this, the paper has a 

comprehensive methodology part that provides a 
description of the framework for the detection and 
categorization of brain tumors. Other writers who 
have conducted research on the segmentation and 
categorization of brain tumors are covered in part II 
of this article. Following this, in section III, a 
discussion is held on the description of each phase of 
the process. These phases include data collecting, 
preprocessing, segmentation, feature extraction, 
optimization, and classification. Following that, the 
section on the outcomes of the experiment offers the 
empirical findings that were gained from the 
implementation of the suggested framework. These 
findings are complemented by visualizations and 
comparison analyses with methodologies that are 
already in use. There is a detailed analysis of the data 
that is presented in the discussion section. This 
analysis addresses the ramifications, limits, and 
potential future research areas. In conclusion, the 
conclusion provides a summary of the most 
important findings, reiterating the relevance of the 
framework that was provided, and encourages more 
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collaboration and creativity in the use of deep 
learning to address difficulties in the healthcare 
industry. 

 
2. RELATED WORKS 

 
Many deep learning experiments have 

targeted brain tumor detection and classification. 
Dipu et al. [6] used YOLOv5 for object 
identification and FastAi for classification to achieve 
good MRI scan accuracy (2021). To increase 
detection accuracy and resilience, better CNN 
architectures for tumor segmentation (2021), hybrid 
CNN-RNN models (2021), and ensemble learning 
(2021) have been investigated. Deep learning may 
change brain tumor diagnosis and therapy by 
enabling early detection and planning. 
Sankaranarayaanan et al. [7] presented a VGG-16 
solution for brain tumor identification and 
classification at the 2023 International Conference 
on AI and Knowledge Discovery in Concurrent 
Engineering.  As big data grows in medicine, the 
authors stressed the importance of data analysis and 
mining on tumor prediction, monitoring, diagnosis, 
and therapy. Brain tumors are aggressive and have 
low survival rates, thus better diagnostic and 
treatment methods are needed. Deep learning, 
particularly CNNs, was used to solve brain cancer 
diagnosis and treatment issues. Federated Learning 
(FL) was used to improve privacy and scalability in 
centralized data collecting. The study optimized 
model parameters for MRI tumor identification 
using the VGG-16 architecture for brain cancer 
detection and a CNN model framework. 
Experimental findings showed that the suggested 
approach outperformed traditional techniques with 
92% accuracy. This research advances brain tumor 
identification and shows how deep learning may 
improve healthcare.  

Younis et al. [8] combined deep learning 
and ensembling learning to show that AI and neural 
network algorithms may identify brain tumors early. 
Segmentation improved brain tumor detection and 
categorization. The study trained models to reliably 
identify brain cancers using MRI utilizing 
convolutional neural networks (CNNs) and VGG-16 
architecture. Popular for its simplicity and speed, 
VGG-16 developed convolutional feature maps that 
were categorized to find tumor locations. The 
proposed method was tested on 253 MRI brain 
scans, 155 of which showed cancers. CNN's 96% 
accuracy and 91.78% F1-score, VGG-16's 98.5% 
and 92.6%, and the ensemble model's 98.14% 
outperformed classical methods. The project closes 
with deep learning brain tumor detection 

instructions. In 2020, Bhanothu et al. [9] introduced 
a deep convolutional network to classify brain 
tumors in MRI scans. MRI scans are essential for 
tumor diagnosis, therefore the scientists created 
Faster R-CNN deep learning to automate tumor 
identification and localization. It designates tumor 
occurrence areas using Region Proposal Network 
(RPN), accelerating review and reducing errors. 
Regional proposal and categorization of glioma, 
meningioma, and pituitary tumors utilizing VGG-16 
architecture. Evaluation results showed promising 
accuracy ratings of 75.18% for glioma, 89.45% for 
meningioma, and 68.18% for pituitary tumors. The 
mean average precision of automated brain tumor 
detection and classification was 77.60% across all 
classes.  

In 2022, Abirami et al. [11] used 
Generative Adversarial Networks (GANs) to fuse 
PET and MRI images. They stressed the necessity of 
multimodal picture fusion in medical applications to 
improve visual content and medical analysis. They 
noted that multimodal fusion helps doctors view 
hard and soft tissue, especially in brain imaging 
where tumor segmentation is critical. The suggested 
method enhances tumor localization accuracy and 
diagnostic speed by fusing PET and MRI data. PET 
gives functional data while MRI provides 
anatomical data to characterize brain cancers. The 
proposed GAN-based fusion model blends different 
modalities to provide fused pictures for medical 
analysis and surgery planning. GAN-based model 
fared well with 0.8551 structural similarity and 
2.8059 mutual information. Multimodal medical 
image fusion enhances brain tumor identification 
and treatment planning in this research. Haq et al. 
[12] suggested DACBT, a deep learning brain tumor 
classification approach using MRI data in IoT 
healthcare, in 2022. Deep learning-based brain 
tumor classification was proposed to address the 
limitations of artificial diagnostic systems for brain 
cancer diagnosis in IoT-healthcare systems. DACBT 
classified brain tumors using brain magnetic 
resonance (MR) imaging data and an upgraded 
CNN. Adding data and transfer learning enhanced 
the model's categorization. The suggested model 
outperformed baseline brain cancer diagnostic 
methods in IoT-healthcare systems in experiments. 
This research improves brain tumor classification 
accuracy and efficiency using deep learning.  

Dhakshnamurthy et al. (2024) classified 
brain cancers using transfer learning [13]. 
Understanding the time-consuming nature of brain 
tumor identification and the limitations of 
conventional techniques in managing expanding 
data volume, the scientists researched deep learning 
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approaches to build automated systems for precise 
and efficient diagnosis. The study found AlexNet, 
VGG16, and ResNet-50 effective. The authors then 
created a hybrid VGG16–ResNet-50 model with 
99.98% accuracy, sensitivity, specificity, and F1 
score. The framework can accurately identify 
cerebral neoplasms when compared to other models, 
showing the promise of transfer learning in medical 
imaging for brain tumor identification and 
classification. Dhiman et al. (2022) proposed a 
machine learning-based hybrid CNN model for 
medical image processing tumor detection [14]. The 
study quickly extracted valuable malignant tumor 
oncology medical data from electronic clinical 
medical records. The study provided a standard 
extraction method for initial tumor site, size, and 
metastatic sites to address tumor-related medical 
events. Also, key-based and pseudo-data-generation 
algorithms improved transfer learning across tumor-
related medical event extractions. Multiple 
CCKS2020 dataset experiments demonstrated that 
the recommended approach placed third in clinical 
medical event extraction and assessment of the 
electronic medical record.  

Deep learning and machine learning were 
utilized by Senan et al. in 2022 in order to investigate 
the early identification of brain tumors using MRI 
images [15]. As a result of the fact that cancer is one 
of the most aggressive and life-threatening diseases, 
the purpose of the study was to improve patient 
survival by properly detecting brain tumors. With 
advances in deep and machine learning, computer-
aided diagnostic systems can help doctors make 
accurate diagnoses. The study integrated deep 
learning methods like AlexNet and ResNet-18 with 
classic machine learning methods like SVM for 
brain tumor classification and diagnosis. Brain 
tumor MRI pictures were improved using the 
average filter. Deep convolutional layers extracted 
robust and crucial deep features, followed by 
SoftMax and SVM classification. The 3,060 pictures 
were sorted into three tumor kinds and one normal 
class. All systems performed well, but the 
AlexNet+SVM hybrid approach had the highest 
accuracy (95.10%), sensitivity (95.25%), and 
specificity (98.50%). This study shows that hybrid 
methods can detect brain tumors early, advancing 
medical imaging and diagnostics.  

RU-Net2+ is a deep learning system that 
was created by Zaitoon and Syed (2023) for the 
purpose of brain tumor segmentation and survival 
rate prediction [16]. The process of diagnosing and 
treating brain tumors is challenging, but deep 
learning may make it possible to automate the 
process. The framework incorporates the detection 

of tumors, categorization of tumors, segmentation of 
tumors, and prediction of survival rates. It is 
necessary to collect data, perform preprocessing, and 
make improvements to the Convolutional 
Normalized Mean Filter in order to implement the 
approach for the BraTS dataset. Multi-class 
classification is accomplished by the utilization of 
the cutting-edge DBT-CNN classifier model. A 
survival rate prediction is made using a logistic 
regression model after the tumor has been delineated 
and features have been extracted using RU-Net2+. 
When it came to classification accuracy, tumor 
segmentation precision, and survival rate prediction, 
the experimental findings were superior to the 
standards that are now in place. LGG tumors had a 
classification accuracy of 99.28%, whereas HGG 
malignancies had a classification accuracy of 
99.51%. The HGG had a tumor segmentation 
accuracy of 98.39%, whereas the LGG had a 99.1% 
accuracy. Long-term patient survival rates were 
predicted by the RU-Net2+ algorithm to be 85.71%, 
medium-term survival rates to be 72.72%, and short-
term survival rates to be 61.54%, with Mean Squared 
Errors of 0.13, 0.21, and 0.31 respectively. These 
findings provide medical practitioners with 
information that assists them in making decisions 
regarding the treatment of brain tumors and 
demonstrate that automated brain tumor 
identification may enhance patient care.  

Srinivasan et al. (2023) used deep learning 
to grade cancers from brain magnetic resonance 
imaging [17]. In order to increase tumor 
identification accuracy, the study developed a 
unique automated detection and classification 
approach. MRI scans were pre-processed, 
segmented, feature-extracted, and classified. During 
the pre-processing stage of magnetic resonance 
imaging (MRI), an adaptive filter was utilized to 
eliminate background noise. The local-binary grey 
level co-occurrence matrix (LBGLCM) was utilized 
for feature extraction, and enhanced fuzzy c-means 
clustering was utilized for image segmentation. The 
images obtained from an MRI were categorized as 
either normal or glioma using a convolutional 
recurrent neural network (CRNN). In terms of 
accuracy, specificity, and sensitivity, the 
recommended method for classifying brain tumors 
performed better than BP, U-Net, and ResNet. It 
achieved 98.17 percent, 91.34%, and 98.79 percent 
respectively. In order to demonstrate that the CRNN 
technique enhanced the accuracy of brain image 
classification, the research utilized 620 testing and 
2480 training MRI images taken from the 
REMBRANDT dataset that were employed.  
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ZainEldin et al. (2023) classified brain 
cancers using deep learning and sine-cosine fitness 
gray wolf optimization [26]. Due to increased patient 
data volume, the study intended to develop reliable 
and efficient automated brain tumor diagnosis 
methods, which are time-consuming and rely on 
radiologists. Pre-trained CNN models are used for 
quicker brain tumor identification and segmentation 
using deep learning. BCM-CNN used ADSCFGWO 
to tune CNN hyperparameters. Hyperparameter 
adjustment and model training with Inception-
ResnetV2, a popular pre-trained model, provided 
binary outcomes (0: Normal, 1: Tumor) to improve 
brain tumor diagnosis. ADSCFGWO improved 
hyperparameters utilizing sine cosine and grey wolf 
strengths. BCM-CNN obtained 99.98% accuracy on 
the BRaTS 2021 Task 1 dataset, indicating 
hyperparameter change increases CNN 
performance. Butterfly optimization algorithm 
(BOA) is a nature-inspired metaheuristic for global 
optimization presented by Arora and Singh (2019) 
[28]. Computer scientists discovered more efficient 
ways to solve multidimensional and multimodal 
real-world problems. Metaheuristic algorithms 
inspired by nature outperform traditional approaches 
for comparable problems. BOA uses fragrance like 
butterflies to discover nectar and mates. It was tested 
on 30 benchmark functions and compared to other 
metaheuristic algorithms. BOA also addressed three 
old technical problems: spring, welded beam, and 
gear train design. BOA was more efficient than 
previous metaheuristic algorithms, implying a global 
optimization revolution.  Makhadmeh et al. (2023) 
conducted a study of the butterfly optimization 
algorithm (BOA), which is a metaheuristic swarm-
based optimization approach that has proved to be 
successful in recent times [29]. Scholars have 
studied the BOA owing of its few adaptive 
characteristics and good exploration-exploitation 
balance. In a short time, BOA has been widely used 
for optimization issues in several fields. The study 
begins by explaining BOA's fundamentals and 
optimization ideas. It then examines BOA's 
mathematical model and motivation, using an 
example to demonstrate its usefulness. Adaptation 
forms divide the examined research into original, 
modified, and hybridized. The primary BOA 
applications and their pros and cons in optimization 
situations are presented. The report finishes with a 
summary and offers future research on BOA's uses 
and developments.  

 
Several deep learning research have 

improved brain tumor identification and 
classification, showing their potential to 

revolutionize medical imaging analysis [6–17]. 
However, despite these advancements, several gaps 
in the field remain to be addressed. One such 
technical gap is the need for more robust and 
generalizable deep learning models that can 
effectively handle diverse patient populations and 
imaging modalities. Additionally, there is a pressing 
need to develop more effective and secure federated 
learning frameworks to address privacy concerns 
associated with medical data sharing [7]. 
Furthermore, the establishment of standard 
evaluation protocols and benchmark datasets is 
essential to enable fair comparisons between 
different automated brain tumor analysis systems 
[7]. Lastly, extensive validation studies are required 
to evaluate the practicality and clinical utility of 
these automated systems in real-world settings [8]. 
To overcome these technological shortcomings, our 
research provides an improved deep learning 
framework for brain tumor detection and 
classification using advanced methodologies. The 
approach uses Convolutional Neural Networks 
(CNNs) for precise tumor detection and hybrid 
architectures like U-Net to handle complicated 
sections and fine textures during down-sampling for 
robust segmentation [13]. Additionally, VGG-16 is 
utilized for tumor grade classification, with relevant 
features extracted from segmented tumor images to 
achieve high accuracy [8]. To overcome complexity 
and overfitting issues, the Butterfly Optimization 
algorithm is hybridized with VGG-16, enhancing the 
model's performance in classifying tumor grades 
[26]. By addressing these technical gaps, our 
research contributes to the advancement of 
automated brain tumor analysis systems, offering 
improved accuracy and efficiency in tumor detection 
and classification. Moreover, the deployment of our 
model on JETSON Orin hardware ensures its 
performance, portability, and energy efficiency, 
further enhancing its practical applicability in 
clinical settings. Through multidisciplinary 
collaboration and innovative research, we aim to 
translate these advancements into therapeutically 
useful solutions while upholding patient privacy, 
data security, and regulatory compliance. 
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3. METHODOLOGY 
3.1 Proposed Methodology 
 

 
 

 
Figure 1: Proposed Work Flow of Brain Tumor Detection Model 

 
Figure 1 shows the proposed Work Flow 

of Brain Tumor Detection Model. The proposed 
methodology integrates Convolutional Neural 
Networks (CNNs) with U-Net for segmentation 
and VGG-16 architecture with Butterfly 
Optimization for feature extraction. Data 
preprocessing ensures standardization and noise 
removal in brain MRI images. CNN+U-Net 
facilitates precise tumor segmentation by 
integrating low and high-level features. VGG-16 
extracts intricate image features, optimized by 
Butterfly Optimization for reduced complexity. 
Classification distinguishes tumor and non-tumor 
regions using extracted features. Evaluation 
metrics and clinical validation ensure the efficacy 
and applicability of the proposed framework in 
accurate brain tumor diagnosis and treatment 
planning. 

 
3.1.1 Dataset Description 

Our research relies on a dataset[29] that is 
produced from a mixture of three main sources: 

Br35H[28], figshare[30], and the SARTAJ[31] 
dataset for brain tumor identification and 
classification. This dataset is well prepared and 
annotated to allow thorough study and model 
training; it contains 7023 MRI pictures of the 
human brain. This dataset offers a broad picture of 
brain tumor forms and pathophysiology. It 
comprises four separate classes: glioma, 
meningioma, no tumor, and pituitary. In particular, 
the no-tumor class guarantees a complete depiction 
of brain areas free of tumors by using pictures 
drawn entirely from the Br35H dataset. Figure 2 
shows the overview of Brain Tumor Data. 

Upon careful examination, it was 
observed that the glioma class images from the 
SARTAJ dataset exhibited categorization 
inconsistencies, prompting their exclusion from 
the dataset. To address this issue, the glioma class 
images were replaced with those sourced from the 
figshare repository, ensuring the integrity and 
accuracy of class labels for model training and 
evaluation. 
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Figure 2: Overview Of Brain Tumor Data 

Table 1: Dataset Attributes For Brain Tumor Detection And Classification 
Category No. Attribute Name 

Basic Image Features 

1 Image ID 
2 Tumor Type 
3 Patient ID 
4 Image Dimensions 
5 MRI Machine Vendor 
6 MRI Machine Model 
7 Image Modality 
8 Image Orientation 
9 Image Resolution 
10 Image Acquisition Parameters 
11 Image Contrast 
12 Tumor Localization 

Content Related Features 

1 Tumor Segmentation 
2 Tumor Grade 
3 Tumor Size 
4 Tumor Morphology 
5 Surrounding Tissue Characteristics 
6 Tumor Enhancement 
7 Edema Presence 
8 Necrosis Presence 
9 Tumor Hemorrhage 
10 Peritumoral Edema 
11 Tumor Boundary Clarity 
12 Tumor Growth Rate 
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Table 1 presents the attributes encompassed 
within the brain tumor. MRI dataset utilized for 
detection and classification tasks. The attributes are 
categorized into two main sections: Basic Image 
Features and Content Related Features. 
The distribution of images across classes is as 
follows: 
➢ Glioma: 300 files 
➢ Meningioma: 306 files 
➢ No tumor: 405 files 
➢ Pituitary: 300 files 
Additionally, a subset of 1,311 images from the 

dataset is reserved for use in testing models. By 
doing so, the model's performance may be validated 
using data that has not been seen before. The 
collection includes meticulously annotated images 
that indicate the presence or categorization of tumors 
based on ground truth. This facilitates the 
development of robust and precise deep-learning 
models for the processing of medical images. 
Further, we manually categorized the data into the 
following groups: tumor, tumor with grade II, tumor 
with grade III, tumor with grade IV, and no-tumor. 
Improved accuracy in tumor classification and 
grading is a direct result of this manual separation, 
which in turn allows for the development of more 
trustworthy deep-learning models for the detection 
and classification of brain tumors. 

Our study results will be reliable and 
informative because we used this vast dataset that 
was carefully picked. More than that, it enables us to 
build therapeutically useful, high-powered deep-
learning models for detecting and categorizing brain 
cancers.  
3.1.2 Feature Extraction & Preprocessing 

In the early stages of our method, it is very 
important to carefully prepare the input data so that 
our deep learning models can find and label brain 
tumors as well as possible. This section outlines the 
preprocessing techniques employed, followed by an 
in-depth discussion of the feature extraction process 
using the Multi-task Network and the Global Net 
architectures. 
3.1.3 Preprocessing Techniques: 

Before feature extraction, input MRI 
images undergo preprocessing steps to standardize 
their aspect ratios and dimensions. Aspect ratio 
normalization and resizing techniques are applied to 
ensure uniformity across the dataset, mitigating 
potential distortions and facilitating consistent 
model input. Mathematically, aspect ratio 
normalization is represented as: 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑖𝑑𝑡ℎ

𝐻𝑒𝑖𝑔ℎ𝑡
 

where Width and Height denote the dimensions of 
the image. This normalization technique ensures that 
images are proportionally scaled, enhancing the 
efficacy of subsequent feature extraction processes. 
3.1.4 Feature Extraction: 

Feature extraction is a crucial step in our 
methodology, aimed at capturing discriminative 
spatial and spectral features from brain tumor 
images. Two main algorithms are employed for 
feature extraction: the Multi-task Network and the 
Global Net architecture. 
3.2 Multi-task Network: 

The Multi-task Network utilizes three 
concurrent convolutional neural networks (CNNs) to 
extract and process features with resilience. Table 2 
presents a comprehensive summary of the design, 
specifying the quantity of filters, kernel sizes, 
strides, and activation functions utilized in each 
layer. 

𝑍 = 𝑊 ∗ 𝑋 + 𝑏 
where Z represents the output feature map, W 
denotes the convolutional filter weights, X denotes 
the input image, and b represents the bias term. By 
leveraging multiple CNNs in parallel, our model 
effectively captures diverse spatial and spectral 
features inherent in brain tumor images, enabling 
comprehensive analysis and classification. 
3.3 Global Net (U-Net) Architecture: 

The Global Net architecture, based on the 
renowned U-Net architecture, is specifically 
designed for semantic segmentation tasks. Table 3 
outlines the architectural details, including the 
number of filters, kernel sizes, strides, and activation 
functions employed in each layer. This architecture 
comprises both downsampling and upsampling 
layers, facilitating feature extraction and high-
resolution feature map reconstruction. 

By incorporating U-Net architecture into 
our model, we enhance its ability to capture intricate 
structural details and spatial relationships within the 
brain tumor images, thereby improving 
segmentation accuracy and classification 
performance. 

Together, the preprocessing techniques and 
feature extraction algorithms outlined in this section 
form the foundation of our robust and efficient 
approach to brain tumor detection and classification. 
By optimizing both data representation and feature 
extraction processes, we aim to develop a highly 
accurate and clinically relevant deep learning model 
capable of accurately identifying and classifying 
brain tumors with unprecedented precision and 
reliability. 
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Table 2:  Multi-Task Network and U-Net Architecture for Brain Tumor Segmentation 
 

Layer Type Output Shape Parameters 

InputLayer (None, 128, 128, 3) 0 

Lambda (None, 128, 128, 3) 0 

Conv2D (None, 128, 128, 8) 216 

BatchNormalization (None, 128, 128, 8) 512 

Activation (None, 128, 128, 8) 0 

Conv2D (None, 128, 128, 8) 576 

BatchNormalization (None, 128, 128, 8) 512 

Activation (None, 128, 128, 8) 0 

MaxPooling2D (None, 64, 64, 8) 0 

Conv2D (None, 64, 64, 16) 1152 

BatchNormalization (None, 64, 64, 16) 256 

Activation (None, 64, 64, 16) 0 

Conv2D (None, 64, 64, 16) 2304 

BatchNormalization (None, 64, 64, 16) 256 

Activation (None, 64, 64, 16) 0 

MaxPooling2D (None, 32, 32, 16) 0 

Conv2D (None, 32, 32, 32) 4608 

BatchNormalization (None, 32, 32, 32) 128 

Activation (None, 32, 32, 32) 0 

Conv2D (None, 32, 32, 32) 9216 

BatchNormalization (None, 32, 32, 32) 128 

Activation (None, 32, 32, 32) 0 

MaxPooling2D (None, 16, 16, 32) 0 

Conv2D (None, 16, 16, 64) 18496 

Activation (None, 16, 16, 64) 0 

Conv2D (None, 16, 16, 64) 36928 

BatchNormalization (None, 16, 16, 64) 256 

Activation (None, 16, 16, 64) 0 

MaxPooling2D (None, 8, 8, 64) 0 

Conv2D (None, 8, 8, 128) 73856 

Activation (None, 8, 8, 128) 0 

Conv2D (None, 8, 8, 128) 147584 

BatchNormalization (None, 8, 8, 128) 512 

Activation (None, 8, 8, 128) 0 
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MaxPooling2D (None, 4, 4, 128) 0 

Conv2D (None, 4, 4, 256) 295168 

Activation (None, 4, 4, 256) 0 

Conv2D (None, 4, 4, 256) 590080 

BatchNormalization (None, 4, 4, 256) 1024 

Activation (None, 4, 4, 256) 0 

MaxPooling2D (None, 2, 2, 256) 0 

Conv2D (None, 2, 2, 512) 1180160 

Activation (None, 2, 2, 512) 0 

Conv2D (None, 2, 2, 512) 2359296 

BatchNormalization (None, 2, 2, 512) 2048 

Activation (None, 2, 2, 512) 0 

MaxPooling2D (None, 1, 1, 512) 0 

Conv2D (None, 1, 1, 1024) 4719616 

Activation (None, 1, 1, 1024) 0 

Conv2D (None, 1, 1, 1024) 9438208 

BatchNormalization (None, 1, 1, 1024) 4096 

Activation (None, 1, 1, 1024) 0 

Conv2DTranspose (None, 2, 2, 512) 2097664 

Concatenate (None, 2, 2, 1024) 0 

Conv2D (None, 2, 2, 512) 4719104 

Activation (None, 2, 2, 512) 0 

Conv2D (None, 2, 2, 512) 2359296 

BatchNormalization (None, 2, 2, 512) 2048 

Activation (None, 2, 2, 512) 0 

BatchNormalization (None, 2, 2, 512) 2048 

Dense (None, 2, 2, 128) 65664 

Dropout (None, 2, 2, 128) 0 

Conv2DTranspose (None, 4, 4, 256) 131 

Table 2 presents the  Multi-Task Network 
and U-Net Architecture for Brain Tumor 
Segmentation. This combined table represents the 
multi-task network architecture and the U-Net 
architecture used in the proposed system for brain 
tumor segmentation. 

 
3.4 Butterfly Optimization Algorithm 

The Butterfly Optimization algorithm is a 
new type of metaheuristic optimization method that 
was inspired by the way butterflies flap their wings. 

In order to find the best answers, it mimics the way 
butterflies naturally move through their 
surroundings. By mimicking the dynamics of 
butterfly movements, this algorithm offers a 
powerful approach to solving complex optimization 
problems, including brain tumor detection and 
classification in medical imaging analysis. At the 
start of the optimization process, the search area is 
filled with a random group of butterflies. Each 
butterfly is a possible answer to the optimization 
problem. The positions of these butterflies 
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correspond to candidate solutions, and their 
movement within the search space is governed by 
mathematical equations derived from the principles 
of butterfly behavior. Central to the Butterfly 
Optimization algorithm is the evaluation of an 
objective function that quantifies the fitness or 
suitability of each potential solution. Most of the 
time, this target function is set based on the needs of 
the optimization situation. When brain tumors are 
being found and categorized, the objective function 
includes performance measures like classification 
accuracy, sensitivity, specificity, or other measures 
that are relevant to the job at hand. 

Figure 3 shows the Workflow Design of 
Butterfly Optimization Algorithm. The core of the 
Butterfly Optimization algorithm lies in the iterative 
process of updating the positions of butterflies based 
on their current fitness evaluations. This movement 
is guided by a combination of exploitation and 
exploration strategies, wherein butterflies balance 
the exploitation of promising regions of the search 
space with the exploration of new areas. The 

algorithm incorporates randomness to facilitate 
exploration, ensuring that the search process remains 
diverse and avoids premature convergence to 
suboptimal solutions. Let's denote the position of the 
i-th butterfly as 𝑥, the best position found so far as 
𝑥𝑏𝑒𝑠𝑡, and the attraction coefficient as 𝛽. The update 
rule for the Butterfly Optimization algorithm can be 
represented as: 

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝛽 ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥(𝑡)) + 𝛼
∗ (𝑥(𝑡) − 𝑥(𝑡)) 

where 𝛼 is the step size, and 𝑥(𝑡) is the position of 
a randomly selected butterfly at time 𝑡. 
The derivative of the loss function with respect to the 
attraction coefficient β can be represented as: 

𝜕𝐿/𝜕𝛽 = 𝜕𝐿/𝜕𝑥 ∗ 𝜕𝑥/𝜕𝛽
= 𝜕𝐿/𝜕𝑥 ∗ (𝑥𝑏𝑒𝑠𝑡 − 𝑥) 

where 𝜕𝐿/𝜕𝑥 is the derivative of the loss function 
with respect to the position of the 𝑖-th butterfly, and 
𝑥𝑏𝑒𝑠𝑡 − 𝑥  is the difference between the best 
position found so far and the current position of the 
𝑖-th butterfly. 

 
Figure 3: Workflow Design of Butterfly Optimization 

Algorithm  
 

A distinguishing feature of the Butterfly 
Optimization algorithm is its ability to perform both 
local and global search. Local search involves 
refining solutions in the vicinity of promising 
regions, leveraging the gradient information 
obtained from the objective function evaluations. 
Meanwhile, global search enables butterflies to 
explore distant regions of the search space, thereby 

facilitating the discovery of novel and potentially 
superior solutions. This dual-mode search strategy 
enhances the algorithm's robustness and scalability 
across diverse optimization landscapes. The 
positions of butterflies are iteratively updated based 
on the fitness evaluations obtained from the 
objective function. This updating process involves a 
combination of deterministic and stochastic 
components, wherein butterflies adjust their 
positions to converge towards regions of higher 
fitness. The magnitude and direction of these 
adjustments are determined by mathematical 
equations that encapsulate the dynamics of butterfly 
movement and exploration. 

The movement of butterflies within the 
search space is governed by the following equations: 

 
𝑥ௗ(𝑡 + 1) = 𝑥ௗ(𝑡) + 𝑣ௗ(𝑡) 

𝑣ௗ(𝑡 + 1) = 𝑣ௗ(𝑡) + 𝑐ଵ. 𝑟ଵ. (𝑥ௗ
∗ − 𝑥ௗ(𝑡))

+ 𝑐ଶ. 𝑟ଶ. (𝑥ௗ
∗∗ − 𝑥ௗ(𝑡)) 

Where 𝑥ௗ(𝑡) and 𝑣ௗ(𝑡) denote the position and 
velocity of the 𝑖 − 𝑡ℎ butterfly along the 𝑑-th 
dimension at time 𝑡,respectively.𝑥ௗ

∗  and 𝑥ௗ
∗∗ 

represent the local and global best positions 
encountered by the butterfly,𝑐ଵ and 𝑐ଶ are 
acceleration coefficients, and 𝑟ଵand 𝑟ଶare random 
numbers sampled from uniform distributions. The 
positions of butterflies are updated iteratively based 
on their velocities, ensuring convergence towards 
regions of higher fitness. The position update 
equation is given by: 

𝑥ௗ(𝑡 + 1) = 𝑥ௗ(𝑡) + 𝑣ௗ(𝑡) 
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Algorithm 1 

 
Step 1: Generate random positions for each butterfly within the search space. 
Step 2: Evaluate the objective function for each butterfly's position. 
Step 3: Update the position and velocity of each butterfly using: 

Butterfly movement equation:𝑥ௗ(𝑡 + 1) = 𝑥ௗ(𝑡) + 𝑣ௗ(𝑡) 
Velocity update equation:   

𝑣ௗ(𝑡 + 1) = 𝑣ௗ(𝑡) + 𝑐ଵ. 𝑟ଵ. (𝑥ௗ
∗ − 𝑥ௗ(𝑡)) + 𝑐ଶ. 𝑟ଶ. (𝑥ௗ

∗∗ − 𝑥ௗ(𝑡)) 
𝑐ଵand 𝑐ଶare acceleration coefficients,  𝑟ଵ and 𝑟ଶare random numbers. 

Step 4: Perform local search around the best positions. 
Step 5: Explore new regions in the search space. 
Step 6: Update the positions of butterflies based on their velocities. 
Termination: 
Step 7: Repeat steps 2-5 until the termination criterion is met. 

 
The above algorithm 1 is the Butterfly 

Optimization Algorithm (BOA). It initializes a 
swarm of butterflies in a search space and evaluates 
their positions against an objective function. 
Through iterative updates guided by acceleration 
coefficients and random numbers, butterflies 
navigate toward promising solutions while exploring 
new regions. This process involves both local 
refinement and global exploration to optimize the 
objective function. Positions are continuously 
updated based on butterfly velocities until a 
termination criterion is met, leading to efficient 
optimization of complex problems. 

 
3.5 Implementing Hybrid Visual Geometry 
Group-16 with Reduced Weights via Butterfly 
Optimization 

In our pursuit of refining the efficacy of 
brain tumor detection and classification, we 
implement a novel approach leveraging the synergy 
between the renowned Visual Geometry Group-16 
(VGG-16) architecture and the Butterfly 
Optimization algorithm. This fusion aims to enhance 
the discriminative power of VGG-16 while 
mitigating the computational burden associated with 
its standard implementation. 
3.6 Architecture Modification of VGG-16 

The foundational step involves adapting the 
conventional VGG-16 architecture to accommodate 
reduced weights obtained through the Butterfly 
Optimization algorithm (algorithm 2). This 
modification streamlines the model's complexity 
while preserving its ability to extract relevant 
features from medical imaging data. By 
incorporating reduced weights, we aim to achieve a 
balance between model performance and 
computational efficiency, ensuring optimal 
utilization of computational resources. 

Our initial step involves adapting the 
conventional VGG-16 architecture to accommodate 
reduced weights obtained through Butterfly 
Optimization. Mathematically, this modification can 
be expressed as: 
3.7 Weight Adjustment 

𝑊௪ = 𝑊ீீି × 𝛼 
Where 𝑊ீீିଵ represents teh original weights of 
VGG-16, and 𝛼 denotes the weight reduction factor 
obtained through Butterfly Optimization. 

Using the Butterfly Optimization 
technique, the VGG-16 model's weights are 
optimized iteratively. To fine-tune the model's 
parameters for the goal of brain tumor detection and 
classification, this optimization procedure involves 
modifying the weights depending on their 
contribution to the overall classification accuracy. 
Our goal is to improve the model's diagnosis 
accuracy by repeatedly tweaking the weights until it 
can better distinguish between tumor and non-tumor 
areas. 
Mathematically, the weight adjustment can be 
formulated as: 

𝑊௨ௗ௧ௗ = 𝑊ௗ + 𝛥𝑊 
Where 𝑊ௗ  represents the current weights and 𝛥𝑊 
denotes the change in weights computed using 
Butterfly Optimization. 
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Algorithm 2 

 
Step 1: Initialize the VGG-16 architecture with random weights. 
Step 2: Generate a swarm of butterflies within the search space. 
Step 3: Perform Butterfly Optimization to obtain a reduction factor 𝛼. 

 Update the weights of VGG-16 using the reduction factor: 
For each layer 𝑙 in VGG-16: 

Obtain the original weight matrix 𝑊. 

Multiply 𝑊 by 
ଵ

ఈ
 to obtain the reduced weight matrix 𝑊

ᇱ. 

Step 4: Feed the modified VGG-16 architecture with the reduced weights using labeled brain tumor 
datasets. 

Utilize standard optimization techniques of stochastic gradient descent to update the weights and 
biases of the network. 

Step 5: Iterate over the training dataset multiple times to minimize the classification loss. 
 

 
Figure 4: Sequence Flow For The Proposed Hybrid Visual Geometry Group-16 With Reduced Weights Via Butterfly 

Optimization 
 
The figure 4 illustrates the sequence flow 

for the proposed Hybrid Visual Geometry Group-16 
(VGG-16) with Reduced Weights via Butterfly 
Optimization. It outlines the sequential interactions 
within the algorithm, commencing with the 
initialization phase, where the VGG-16 architecture 
is initialized, and Butterfly Optimization is initiated. 
The reduction factor obtained from Butterfly 
Optimization is then applied to update the weights of 
VGG-16. The design then goes on to classify and 
extract features, and finally, during training, it 
updates the network's biases and weights using 
labeled datasets of brain tumors. Lastly, validation 
datasets are used to evaluate the model's 
performance in terms of classification accuracy. In 
order to better understand how to apply the 
suggested hybrid method for brain tumor detection 

and classification, this figure offers a structured 
visual representation of the process. 
4. EXPERIMENTATION RESULTS AND 
DISCUSSION 
 Experiments were conducted on a dataset 
consisting of 7023 brain MRI images to see how 
well the suggested hybrid method worked. 

4.1 Experimental Setup 
A computer with an Intel Core i7 processor, 

16 GB of RAM, and an NVIDIA GeForce GTX 1080 
Ti graphics card was used for the experiments, as 
was an NVIDIA Jetson AGX Orin module, a low-
power AI computing platform designed for edge AI 
applications. The proposed approach was 
implemented using the Keras deep learning 
framework with a TensorFlow backend. The 
approach's adaptability and potential for deployment 
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in multiple situations were demonstrated by our 
evaluation of its performance on both a high-
performance computer and a low-power edge AI 

platform. Figure 5 shows the Hardware 
Specification Used for Experimentation. 

 
Figure 5: Hardware Specification Used For Experimentation 

 
4.2 Dataset 

The dataset used in the experiments 
consisted of 7023 brain MRI images, divided into 
training, validation, and testing sets in a ratio of 

60:20:20. The dataset was annotated manually, with 
each image labeled as either tumor, tumor grade II, 
tumor grade III, tumor grade IV, or no tumor. Figure 
6 shows the Annotated and Processed Dataset.

 
Figure 6 Annotated and Processed Dataset 

 
4.3 Experimental Design 

The studies were planned to assess the 
accuracy, sensitivity, specificity, Dice coefficient, 
and Jaccard coefficient of the proposed hybrid 
method. The approach was compared with existing 
approaches, including the standard VGG-16 
architecture and other deep learning models. 

4.3.1 Hyperparameter Tuning 
A grid search technique was used to 

optimize the hyperparameters of the suggested 
approach. Learning rate, batch size, and epoch count 
were among the hyperparameters fine-tuned. The 
method's efficacy on the validation set informed the 
selection of the best hyperparameters. 
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Figure 7: Hyperparameter Tuning Results and Learning Rate 

 
The outcomes of tuning the 

hyperparameters of a deep learning model through 
the utilization of various combinations of dropout 
rates, learning rates, loss functions, and optimizers 
are illustrated in Figure 7. The plot displays the 
relationships between these hyperparameters and the 
resulting model performance, measured by the loss 
function. The color bar indicates the loss value, with 
lower values indicating better model performance. 
The scatter points represent individual 
hyperparameter combinations, with the size of each 
point corresponding to the dropout rate. The y-axis 
denotes the optimizer executed, while the x-axis 
represents the learning rate. The plot can be used to 
identify the most promising hyperparameter 
combinations and to visualize the relationships 
between the different hyperparameters. Table 3 

shows the Optimized Parameters for the Proposed 
Model. 
Table 3: Optimized Parameters for the Proposed Model 

Hyperparameter 
Optimized 

Value 
Learning Rate 0.00123 
Batch Size 32 
Number of Epochs 150 
Dropout Rate 0.25 
Weight Decay 0.0001 
Momentum 0.9 
Activation Function (Hidden 
Layers) 

ReLU 

Activation Function (Output 
Layer) 

Sigmoid 

Number of Hidden Layers 3 
Number of Neurons (Hidden 
Layers) 

128, 64, 32 

 
Figure 8 Accuracy Comparison of Deep Learning Models with and without Butterfly Optimization on Local PC and 

Nvidia Jetson AGX ORIN 
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Figure 8 shows the accuracy Comparison of 
Deep Learning Models with and without Butterfly 
Optimization on Local PC and Nvidia Jetson AGX 
ORIN. On two separate hardware platforms, a local 
PC (NVIDIA GTX 1080) and an Nvidia Jetson AGX 
ORIN, this graphic compares the accuracy of 
multiple deep learning models, such as Simple CNN, 
Mix-pooling CNN with FCRF Segmentation, Fine-
tuned YOLOv7, BCM-CNN, Inception+resnetV2, 

and Proposed VGG-16. In this graph, we can 
observe how well each model performed with and 
without Butterfly Optimization, a unique 
optimization method developed to boost the 
efficiency of DL models. The outcomes show that 
Butterfly Optimization is a powerful tool for 
enhancing the precision of deep learning models on 
both hardware types. 
 

 
Figure 9 Performance Metrics of Deep Learning Models  

 
Figure 9 shows the Performance Metrics of 

Deep Learning Models. Simple CNN, Mix-pooling 
CNN with FCRF Segmentation, Fine-tuned 
YOLOv7, BCM-CNN, Inception+resnetV2, and 
Proposed VGG-16 (with and without Butterfly 
Optimization) are some of the deep learning models 

whose performance metrics are compared. Among 
the measures are F1 Score, Accuracy (ACC), 
Precision, and Recall. The outcomes prove that 
Butterfly Optimization is a powerful tool for 
enhancing the efficiency of deep learning models. 
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Figure 10 Performance Comparison of Segmentation Algorithms 

 
This figure 10 compares the performance of 

various segmentation algorithms, including U-Net, 
FCN, SegNet, CNN+UNet (Proposed), 
CNN+ResNet50, DeepLab, and PSPNet. The 
metrics include Accuracy, Intersection over Union 

(IOU), Dice Coefficient, and Jaccard Distance. The 
findings show that the CNN+UNet model works 
well, with competitive performance on Dice 
Coefficient and Jaccard Distance and excellent 
accuracy and IOU. 
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Figure 11: The Output Predicted by Our Proposed System 

 
Figure 11 illustrates the output predicted by 

our proposed system for brain tumor detection and 
classification, run on a local PC. The image 
showcases the segmented tumor regions accurately 
identified by the optimized deep learning 
framework. Utilizing advanced techniques such as 
Convolutional Neural Networks (CNNs) and hybrid 
architectures like U-Net, the system achieves precise 
segmentation, distinguishing tumor areas from non-

tumor regions with high fidelity. Furthermore, the 
classification of tumor grades using VGG-16, 
enhanced by the Butterfly Optimization algorithm, 
ensures accurate characterization of tumor severity. 
The integration of these methodologies results in a 
comprehensive and efficient system for brain tumor 
analysis, demonstrating the feasibility of deploying 
deep learning models on local hardware for medical 
imaging diagnostics. 
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Figure 12 Predicted Outputs on NVIDIA Jetson AGX Orin Module 

 
Figure 12 presents the predicted outputs of 

our brain tumor detection and classification system 
deployed on the NVIDIA Jetson AGX Orin module. 
The image illustrates accurately segmented tumor 
regions, showcasing the system's robust 
performance in real-world hardware settings. 
Utilizing advanced deep learning techniques and 
hybrid architectures like U-Net and VGG-16 with 
Butterfly Optimization, the system achieves precise 

tumor segmentation and grade classification. The 
predicted outputs include critical, mild, and 
moderate-grade tumors, with corresponding sizes of 
18360, 2688, and 4256, respectively. Additionally, 
the absence of tumors is accurately identified, 
ensuring reliable diagnosis and efficient deployment 
in clinical environments. Table 4 shows the 
Segmentation Models with Data Augmentation and 
Computational Efficiency.

 
Table 4: Segmentation Models with Data Augmentation and Computational Efficiency 

 

Model Number of 
Parameters 

Training 
Time 

Inference 
Time 

Memory 
Usage 

Data Augmentation Dataset 

CNN+UNet 
(Proposed) 

10M 2 hours 10ms 4GB Rotation (30°), Width 
Shift (0.1), Height 
Shift (0.1), Shear 
(0.2), Zoom (0.2) 

Segmentation 
Dataset 

CNN+ResNet50 20M 4 hours 20ms 8GB Rotation (30°), Width 
Shift (0.1), Height 
Shift (0.1), Shear 
(0.2), Zoom (0.2) 

Segmentation 
Dataset 
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Figure 13 Training and Validation Loss Curves for the 

Proposed Segmentation CNN+UNet Model 
 

Figure 13 shows the Training and 
Validation Loss Curves for the Proposed 
Segmentation CNN+UNet Model. Here we can 
observe the segmentation CNN+UNet model's loss 
curves, both during training and validation. The blue 
and orange loss curves, representing training and 
validation, are shown against the epoch count.  

Good convergence and generalization 
performance are indicated by the suggested model's 
training loss of 0.0374 and validation loss of 0.0377. 
By reducing the loss function and obtaining correct 
segmentation results, the loss curves show that the 
suggested model is successful. The findings indicate 
that the suggested method is capable of achieving 
real-time performance on the NVIDIA Jetson AGX 
Orin hardware, with an inference time of 300 
milliseconds and a power consumption of 15 watts. 
Table 5 shows the Hardware Performance Results. 

 
Table 5 Hardware Performance Results 

Hardware 
Inference 
Time (ms) 

Power 
Consumption 

(W) 

Computer 150 250 

NVIDIA 
Jetson AGX 
Orin 

300 15 

 
Figure 14: ROC Curve Values for the Proposed Hybrid 

VGG-16 Model with Reduced Weights via Butterfly 
Optimization 

 
The suggested Hybrid VGG-16 model with 

weight reductions using Butterfly Optimization is 
shown in Figure 14 along with the values of the ROC 
curve. The actual values of the thresholds, as well as 
the true positive rate (TPR), false negative rate 
(FNR), and true negative rate (FPR), are detailed in 
the table. By plotting the ROC curve with these 
numbers, we can see how well the suggested model 
works. 
 

5. CONCLUSION 
 The proposed optimized deep learning 
framework for brain tumor detection and 
classification represents a significant advancement 
in medical image analysis, seamlessly integrating 
Convolutional Neural Networks (CNNs), U-Net 
architecture, and the Butterfly Optimization 
algorithm. Through meticulous data preprocessing, 
including aspect ratio normalization and resizing, the 
framework ensures standardized input data, resulting 
in a segmentation accuracy of 98% as measured by 
the Dice coefficient and a classification accuracy of 
73% with VGG-16. The hybridization with the 
Butterfly Optimization algorithm further enhances 
performance, achieving an overall effectiveness of 
99.99%. Demonstrating resilience to class 
imbalances and complexity, the framework shows 
suitability for real-world applications in clinical 
settings, facilitated by its implementation on 
JETSON Orin hardware. Future research should 
focus on refining the framework's architecture and 
algorithms, exploring novel techniques such as 
ensemble learning and transfer learning, integrating 
clinical expertise, and enhancing interpretability for 
broader adoption and impact. In conclusion, the 
proposed framework offers a robust and efficient 
solution for brain tumor detection and classification, 
poised to revolutionize diagnostic practices and 
improve patient outcomes in clinical settings. 
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