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ABSTRACT 
 

 

Reinforcement learning is a field of machine learning where agents learn optimal actions through trial and 
error interactions with their environment. Games provide an effective benchmark to evaluate and compare 
the performance of reinforcement learning algorithms. This study utilized Unity's ML-Agents to implement 
the 'CartPole' game and applied various algorithms, including the Deep Q-Network (DQN), Advantage Actor-
Critic (A2C), and Proximal Policy Optimization (PPO), to compare their performance. The primary research 
contribution of this work is the systematic comparison of these algorithms within a consistent environment, 
providing insights into their respective strengths and weaknesses. The study presents detailed analyses of the 
learning processes and outcomes of each algorithm, highlighting the DQN's superior performance in terms 
of stability and efficiency. Additionally, this work contributes new knowledge by demonstrating the practical 
applications and potential of reinforcement learning algorithms in simple game environments, thereby 
informing future developments in more complex domains. 

Keywords: Reinforcement Learning Algorithm, Deep Q-Network (DQN) Algorithm, Performance 
Comparison, CartPole Game 

 
1. INTRODUCTION  
 

In contemporary society, artificial 
intelligence (AI) technologies are rapidly advancing 
and being utilized across various fields. Among these 
technologies, games have emerged as a compelling 
platform for evaluating reinforcement learning (RL) 
algorithms and developing new techniques. Games 
offer complex environments that mimic real-world 
scenarios, enabling agents to learn the skills 
necessary to solve actual problems through diverse 
situations and rules. Additionally, games provide a 
benchmark for effectively assessing and comparing 
the performance of RL algorithms [1]. 

Reinforcement learning, a subset of 
machine learning, enables an agent to interact with 
its environment through trial and error to learn 
optimal actions. In game environments, RL 
algorithms play several critical roles. RL algorithms 
can learn the rules and dynamics of a game 
environment and develop optimal strategies for 
gameplay. This capability can be applied to create 
AI-based game-playing systems that surpass human 
performance, contributing to the development of 
agents capable of outperforming human players in 

various games. RL algorithms can be employed in 
the design and development of new games. They can 
adjust game difficulty levels and introduce new 
elements that enhance player experience. By doing 
so, RL can create more engaging and entertaining 
game environments. Research and development of 
RL algorithms in game environments significantly 
contribute to the advancement of AI technologies. 
Through RL, agents can improve their ability to learn 
and solve problems in complex environments, which 
is crucial for applying AI technologies across diverse 
domains. 

Reinforcement learning algorithms face a 
critical challenge in balancing exploration and 
exploitation during the learning process. Exploration 
involves the agent taking random actions to gain new 
experiences, while exploitation involves choosing 
the best-known actions based on learned knowledge. 
Both are essential for optimal learning performance, 
but finding the right balance is challenging. 

If an agent focuses too much on 
exploration, it may fail to settle on stable actions, 
resulting in poor performance. While gaining new 
experiences is important, purely random actions can 
reduce learning efficiency and waste time. 
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Conversely, if an agent overemphasizes exploitation, 
it may miss out on discovering better strategies by 
not exploring new possibilities. Acting solely on 
learned knowledge without exploring new 
experiences can prevent the agent from developing 
optimal strategies. 

The exploration-exploitation dilemma is a 
major factor that can hinder the performance of RL 
algorithms. Therefore, designing RL algorithms 
requires effective strategies to maintain a balance 
between exploration and exploitation. 

Various strategies have been developed to 
address the exploration-exploitation dilemma in RL 
algorithms. Prominent methods include Epsilon-
Greedy Policy, Boltzmann Exploration and Upper 
Confidence Bound (UCB) [1]. 

Epsilon-Greedy Policy selects a random 
action with a probability of epsilon (ε) and the best-
known action with a probability of 1-ε. It effectively 
balances exploration and exploitation, although the 
performance depends on the choice of ε. For 
Boltzmann Exploration, actions are chosen based on 
a probability distribution that favors higher-valued 
actions but allows for some exploration of lesser-
known actions. This method helps in gradually 
shifting towards exploitation while still exploring 
new actions. UCB algorithms choose actions based 
on a confidence interval that balances the estimated 
value of actions with the uncertainty in those 
estimates. This approach encourages exploration of 
actions with high uncertainty, helping to discover 
potentially better strategies. 

The paper [2] provides a comprehensive 
review of the recent advances in reinforcement 
learning, particularly deep reinforcement learning 
(DRL), and its applications in the gaming industry. 
It discusses how RL has been used in classic games 
like Atari, Chess, and Go, highlighting the 
development of algorithms capable of outperforming 
human players. 

The paper [3] delves into various deep 
reinforcement learning techniques applied to video 
games. It covers a range of DRL algorithms such as 
DQN, DQfD, and IQN, explaining their evolution 
and improvements. The paper [3] also explores the 
application of these algorithms in different game 
genres and the challenges faced in integrating RL 
with complex game environments. 

The article [4] discusses the practical 
application of reinforcement learning methods like 
TD(0) and TD(λ) in game scenarios. It explains the 
theoretical foundations and implementation details 

of these algorithms, providing insights into their 
effectiveness in learning and decision-making within 
games. 

The paper [5] introduces a novel approach 
that combines deep reinforcement learning (DRL) 
with supervised learning from human 
demonstrations to improve the efficiency and 
performance of DRL agents. The proposed method 
leverages human demonstrations to enhance the 
initial learning phase of the agent. By combining Q-
learning with supervised learning, the agent can learn 
valuable behaviors from the demonstrations, which 
accelerates its ability to perform well in the 
environment. 

Game environments are not only attractive 
platforms for evaluating RL algorithms and 
developing new technologies but also play an 
essential role in applying RL techniques across 
various fields. This paper aims to contribute to the 
advancement of this field through a comparative 
analysis of RL algorithms, highlighting their 
importance and impact on AI technology 
development.  

 

2. BACKGROUNDS 
 

Reinforcement learning (RL) algorithms 
can be broadly categorized based on their approach 
to handling state-action spaces and their complexity. 
Here, we discuss three major categories: table-based 
methods, temporal-difference (TD) learning, and 
deep learning-based RL [1] in Table 1. 

 

2.1 Table-Based Methods 
 

Table-based methods involve storing state-
action pairs in a table and updating these values 
based on experiences. These methods are suitable for 
problems with relatively small state spaces. Two 
prominent algorithms in this category are Q-
Learning and SARSA (State-Action-Reward-State-
Action).  

Q-Learning is an off-policy algorithm 
where the agent learns the value of the optimal policy 
independently of the agent's actions.  
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The Q-values (state-action pairs) are 
updated using the Bellman equation:  

Q(s,a)←Q(s,a)+α[r+γa′maxQ(s′,a′)−Q(s,a)] 

It is widely used due to its simplicity and 
effectiveness in various applications. 

SARSA is an on-policy algorithm where the 
agent updates its Q-values based on the action 
actually taken by the policy being followed. The 
update rule is: 

Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)] 

This method ensures that the learning process is 
more stable as it updates the Q-values based on the 
current policy’s actions. 

 

2.2 Temporal-Difference (TD) Learning 
 

TD learning combines the ideas of Monte 
Carlo methods and dynamic programming. It uses 
the difference between predicted rewards and actual 
rewards to update the value functions. This approach 
is suitable for problems with medium-sized state 
spaces. Key algorithms include TD(0), TD(λ), and 
Sarsa(λ). 

TD(0) algorithm updates the value function 
based on the immediate reward and the estimated 
value of the next state: 

V(s)←V(s)+α[r+γV(s′)−V(s)] 

It is simple and can be used for online learning as it 
does not require the entire episode to update values. 

TD(λ) introduces eligibility traces, which 
allow it to take into account the entire history of 
states and actions. The update rule integrates the 
traces. 

V(s)←V(s) + αδte(s) 

where δt is the TD error and e(s) is the eligibility 
trace for state s. 

 

 Sarsa(λ), an extension of SARSA, it also 
uses eligibility traces to update the Q-values. This 
algorithm balances between immediate and long-
term rewards using a decay parameter λ: 

Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)]e(s,a) 

where e(s,a) is the eligibility trace for the state-
action pair. 

 

Table 1. Deep Learning Algorithms. 
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2.3 Deep Learning-Based Reinforcement 
Learning 

 

Deep learning-based RL methods utilize 
neural networks to approximate policy and value 
functions. These approaches are particularly 
effective for handling large and complex state 
spaces. Prominent algorithms include Deep Q-
Network (DQN) [6][7][8][9], Advantage Actor-
Critic (A2C) [9][10][11], and Proximal Policy 
Optimization (PPO) [9][12][13]. 

DQN uses a neural network to approximate 
the Q-value function. It incorporates techniques such 
as experience replay and fixed Q-targets to stabilize 
training: 

Q(s,a;θ)←Q(s,a;θ)+α[r+γa′max
Q(s′,a′;θ−)−Q(s,a;θ)] 

where θ represents the network parameters and θ− 

represents the parameters of the target network. 

The paper [6] is the seminal paper on DQN, 
presenting the algorithm and its application to Atari 
2600 games. It covers the core concepts of using 
deep learning with Q-learning and demonstrates the 
algorithm's effectiveness. The paper [7] provides an 
in-depth analysis of DQN's performance and its 
ability to achieve human-level control in Atari 
games. It elaborates on the techniques used to 
stabilize training, such as experience replay and 
target networks. The paper [8] introduces Double 
DQN, an improvement on the original DQN that 
addresses the overestimation bias in Q-learning. It 
discusses the theoretical background and presents 
empirical results showing enhanced performance. 
The book [9], while not specific to DQN, provides 
foundational knowledge in reinforcement learning, 
including Q-learning, which is crucial for 
understanding the principles behind DQN. 

A2C uses two networks: an actor network 
to select actions and a critic network to evaluate 
them. The advantage function helps reduce variance 
in policy updates: 

Advantage = R − V(s) 

where R is the total reward and V(s) is the value 
function estimated by the critic. 

The book [9] provides foundational 
concepts in reinforcement learning, including actor-
critic methods. It is a comprehensive resource for 
understanding the theoretical background behind 
A2C. The paper [10] introduces the Asynchronous 
Advantage Actor-Critic (A3C) algorithm, from 
which A2C is derived. It presents the core ideas and 

the performance of A3C in various environments. 
The paper [11] discusses methods that improve the 
stability and performance of policy gradient 
methods, including A2C. It is useful for 
understanding enhancements to the basic A2C 
algorithm. 

PPO improves upon traditional policy 
gradient methods by ensuring that policy updates are 
not too drastic. It uses a clipped objective to maintain 
the stability of learning: 

LCLIP(θ) = E[min(r(θ)Adv,clip(r(θ),1−ϵ,1+ϵ)Adv)] 

where r(θ) is the probability ratio between the new 
and old policies. 

 The book [9] covers a wide range of 
reinforcement learning methods, including policy 
optimization techniques. It provides the theoretical 
background necessary to understand the principles 
behind PPO. The paper [12] is the seminal work on 
PPO, presenting the algorithm and its advantages 
over previous policy optimization methods such as 
Trust Region Policy Optimization (TRPO). It 
includes theoretical foundations, implementation 
details, and experimental results demonstrating 
PPO's effectiveness. The paper [13] provides 
important background on policy optimization 
methods, introducing concepts and techniques that 
influenced the development of PPO. Understanding 
TRPO helps in comprehending the improvements 
made by PPO. 

The Additional Learning Nearest Neighbor 
(ALNN) algorithm [17][18], which might not be 
widely recognized in standard machine learning 
literature, seems to be a variant or a specific 
implementation involving nearest neighbor 
techniques with additional learning components. 
Given the name, it likely combines principles of 
nearest neighbor algorithms with some form of 
iterative learning or refinement. 

The ALNN algorithm extends the 
traditional k-nearest neighbor (k-NN) algorithm by 
incorporating additional learning mechanisms. 
While the standard k-NN algorithm relies purely on 
distance metrics to classify data points based on their 
nearest neighbors, ALNN could involve updating 
weights or refining the decision boundaries through 
iterative learning from the data. Unlike traditional k-
NN which uses a fixed set of training examples, 
ALNN likely adjusts its decision criteria based on 
additional training iterations, possibly improving its 
classification accuracy over time. It may involve 
adjusting the weights assigned to different neighbors 
based on their relevance or accuracy in classification 
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tasks. The algorithm could iteratively refine its 
model by incorporating feedback from 
misclassifications or using cross-validation 
techniques to optimize performance. 

The DQN algorithm effectively resolves the 
exploration-exploitation dilemma by employing 
experience replay memory and an epsilon-greedy 
policy. DQN leverages experience replay memory to 
store and utilize past experiences for learning. This 
approach allows the agent to learn from historical 
experiences, leading to more efficient Q-value 
updates. Additionally, experience replay memory 
mitigates data correlation and enhances the stability 
of the learning process.  

DQN employs experience replay memory 
in the following manner. The agent interacts with the 
environment to gather new experiences. These 
experiences are stored in the replay memory as tuples 
of the form (state, action, reward, next state). During 
training, the agent samples random batches of tuples 
from the replay memory. The sampled tuples are 
used to update the Q-values. 

Utilizing experience replay memory offers 
several benefits. The agent can learn from past 
experiences, improving the efficiency of Q-value 
updates. It reduces the correlation between data 
points, enhancing the stability of the learning process. 
Experience replay memory ensures efficient use of 
data, leading to improved learning performance. 

The DQN algorithm maintains a balance 
between exploration and exploitation using an 
epsilon-greedy policy. This policy selects actions 
based on a probability threshold, where the agent 
either explores by choosing random actions or 
exploits by selecting actions based on learned Q-
values. 

DQN utilizes the epsilon-greedy policy as 
follows. Before selecting an action, the agent 
evaluates the epsilon value to decide whether to 
explore or exploit. If a random number is less than 
epsilon, the agent chooses a random action 
(exploration). If the random number is greater than 
or equal to epsilon, the agent selects the action with 
the highest Q-value (exploitation). 

The epsilon-greedy policy offers several 
advantages. Balanced Exploration and Exploitation: 
It allows the agent to explore new experiences while 
leveraging learned knowledge to achieve better 
results. Faster Learning: The policy ensures that the 
agent learns quickly by balancing exploration and 
exploitation. 

In different gaming environments, DQN 
outperforms other reinforcement learning algorithms. 
For instance, in the 'CartPole' game [14][15][16], 
DQN achieves higher average episode lengths and 
faster learning compared to other algorithms.  

DQN's stability is attributed to experience 
replay memory, which allows the agent to learn from 
past experiences and efficiently update Q-values. 
This process reduces data correlation and minimizes 
errors during Q-value updates. The epsilon-greedy 
policy in DQN facilitates adaptation to new 
environments by encouraging exploration of new 
experiences and learning optimal actions. 

DQN can be applied in various gaming 
environments for different purposes. For instance, it 
can be used to. Learn Optimal Game-Playing 
Strategies: DQN can develop superior game-playing 
strategies based on the rules and environment of the 
game. Design and Develop New Games: DQN can 
aid in adjusting game difficulty levels and 
introducing new elements to enhance player 
experience. Advance AI Technology: Research and 
development of DQN in gaming environments 
contribute to the broader field of AI. 

 
3. IMPLEMENTATION 
 

3.1 CartPole Game using Unity ML Agent 
 

The CartPole game [14][15][16] is a 
reinforcement learning environment provided by 
OpenAI Gym [16]. The primary goal is to keep a 
pole balanced vertically on a moving cart by 
adjusting the cart's position. Players can control the 
cart's movement using the left and right arrow keys. 

In the CartPole game, the action space is 
discrete with two possible actions: moving the cart 
left (0) or right (1). The observation space consists of 
a 4-dimensional vector that includes cart position, 
cart velocity, pole angle, and pole angular velocity.  
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The cart's position can vary between ±4.8 
units, while the pole's angle ranges between ±0.42 
radians. Players receive a reward of 1 point for each 
time step the pole remains balanced. The game 
terminates if the pole falls beyond a certain angle or 
if the cart moves out of the designated boundaries. 
These features make the CartPole game an excellent 
platform for benchmarking the performance of 
various reinforcement learning algorithms in a 
standardized and controlled setting. 

Figure 1 is a depiction of the CartPole 
environment. The blue rectangle represents the cart, 
and the red rectangle represents the pole. The 
objective is to balance the pole vertically by moving 
the cart left or right. 

This paper implements the CartPole Game 
using Unity ML-Agents [19], applying ALNN 
[17][18], PPO [9][12][13], A2C [9][10][11], and 
DQN (E-Greedy) [6][7][8][9]. 

 

Figure 1. CartPole Game. 

Unity ML-Agents [19] is a toolkit 
developed by Unity Technologies to enable the 
training of intelligent agents within the Unity game 

engine using reinforcement learning and other 
machine learning techniques. This toolkit provides a 
convenient interface for creating complex, 
interactive environments where agents can learn and 
improve their behaviors through trial and error. 

Table 2 shows that the CartPole game is an 
ideal environment for rapidly evaluating the 
performance of reinforcement learning algorithms 
due to its simplicity and small state space. The game 
involves balancing a pole on a moving cart by taking 
left or right actions to keep the pole upright. Rewards 
are given based on the duration the pole remains 
balanced. 

The straightforward environment and clear 
reward signal enable algorithms to converge quickly, 
facilitating rapid experimentation. Additionally, the 
low computational resource requirements make it an 
excellent platform for developing and testing 
reinforcement learning algorithms. The high 
reproducibility of experimental results and simple 
initial setup are valuable for comparing and 
evaluating various algorithms. 

 

 

 

 

 

 

 

Table 2. Comparison of reinforcement learning-related games. 
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3.2 Algorithms used in the Experiment 
 

Table 3. Pseudo code of ALNN-based AI Model 

 

The basic learning method of the ALNN 
algorithm [17][18] requires assigning and calculating 
weights for all combinations as shown in Table 3. 

The flowchart of the pseudocode in Table 3 
is as follows. In the initialization step, the weights 

W_ij and the threshold T_i are initialized randomly 
or using a specific initialization method. 

In the learning stage, forward propagation 
calculates the activation of each neuron in the 
network. An equation is presented to calculate the 
activation of each neuron using the input data X and 
the current weights. Here the activation function 
determines the activation of the neuron for given 
inputs and weights.  

Backward propagation calculates the error 
between the predicted output and the actual output, 
and updates weights and thresholds to minimize this 
error. Here we use optimization techniques such as 
gradient descent to update the weights and thresholds. 
Inference uses a trained network, given new input 
data, performs forward propagation through the 
trained network to obtain a predicted output. The 
process of building various resources necessary for 
ray tracing by traversing all objects in the entire 
scene, which is performed identically for both hybrid 
ray tracing and ray tracing only, is called the 
construction process. This process involves two main 
steps: building the hit group shader table and building 
the acceleration structure. 

PPO [9][12][13] is an algorithm used in the 
field of reinforcement learning and uses a policy-
based approach. This is a way to optimize the policy 
that determines what action to take in what state as 
the agent interacts with the environment. The main 
purpose of PPO is to achieve high performance 
through an efficient and stable learning process. 

The flowchart of the pseudocode in Table 4 
is as follows. The purpose of a PPO is to maximize 
expected returns. This is expressed as the objective 
function. Here, θ is a parameter that parameterizes the 
policy. The objective function is expressed as the sum 
of the expected discounted rewards, which is the sum 
of the rewards r_t at each time step discounted by 
gamma (γ). PPO updates the policy using a clipped 
surrogate objective function. This formula updates 
the policy in a way that minimizes it within the 
confidence region for r_t, which is the ratio of the 
new policy probability to the old policy probability. 
A_t represents the estimated advantage function, and 
ε is the clipping parameter. PPO improves policy 
learning through updates of the value function. Here 
we update the value function by minimizing the mean 
squared error. V_ϕ (s_t) represents the predicted value 
of state s_t, and V_target represents the target value. 

Algorithm: ALNN 
 
Input: 
 - Input data: X (input vector) 
 - Actual output data: Y (actual output vector) 
 - Learning rate: η (learning rate) 
 - Activation function: ϕ (activation function) 
 - Number of hidden layer neurons: n_h 
 - Number of repetitions: epochs 
 
Output: 
 - Learned weight: W 
 - Learned bias: b 
 
Initialize: 
 - Initialize weight W and bias b with small random 

numbers 
 
Learning steps: 
 for epoch from 1 to epochs do: 
    for each (x, y) in (X, Y) do: 
       # Forward propagation 
       # From input layer to hidden layer 
       for j from 1 to n_h do: 
           h_j = ϕ(Σ w_ij * x_i + b_j) 
       # From hidden layer to output layer 
       for k from 1 to m do: 
          y_k = ϕ(Σ w_jk * h_j + b_k) 
       # Calculate loss 
       L = (1/N) Σ (y_i - ŷ_i)^2 
       # Backpropagation step 
       # Update weights and biases from output layer 

to hidden layer 
       for k from 1 to m do: 
          for j from 1 to n_h do: 

             w_jk = w_jk - η * ∂L/∂w_jk 

          b_k = b_k - η * ∂L/∂b_k 
       # Update weights and bias from hidden layer to 

input layer 
       for j from 1 to n_h do: 
          for i from 1 to n do: 

             w_ij = w_ij - η * ∂L/∂w_ij 

          b_j = b_j - η * ∂L/∂b_j 
 
Output: 
 - Learned weights and bias: W, b 
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Table 4. Pseudo code of PPO-based AI Model 

Table 5. Pseudo code of A2C-based AI Model 

 

A2C [9][10][11 is one of the algorithms 
used in reinforcement learning and is based on the 
Actor-Critic methodology. Here, "Actor" is 
responsible for deciding what action to take in a given 
state, and "Critic" is responsible for evaluating how 
good the action taken is. A2C uses these two 
components to optimize the learning process. 

The flowchart of the pseudocode in Table 5 
is as follows. The A2C algorithm uses an Actor-Critic 
architecture. An Actor is a policy network 
parameterized by θ, which is used to select actions 
based on observations. Critic is a value network 
parameterized by ϕ that evaluates the state value 
function. The goal of the policy gradient is to 
maximize the expected return. This objective 
function is defined as the expected return for policy ϕ 
_θ parameterized by policy parameter θ. Estimate the 
advantage function. The benefit function is defined as 
the difference between the state-action value function 
and the state value function. To update the policy and 
value networks, we use gradient descent to maximize 
θ and minimize the loss of each value function. 
Typically, the loss function for a value network is the 
mean squared error between the predicted and target 
values. 

 

4. PERFORMANCE EVALUATION 

4.1 Experimental Environment 
 

Table 6 describes the CartPole game 
settings. As details, the episode length is a cartpole 
game where the agent must keep the bar vertical for 
30 seconds. For this, we set an episode length of 
1800 timesteps (30 seconds * 60 FPS). The agent 
must learn the behavior of keeping the bar as vertical 
as possible during this time. Learning Rate is an 
important hyperparameter used in the Q-value 
update process. Setting it to 0.001 will result in 
incremental improvements during the learning 
process. A learning rate that is too high can result in 
unstable learning, while a learning rate that is too 
low can result in slow learning. Discount Factor 
indicates how important the value of future rewards 
is compared to current rewards. Setting it to 0.99 
makes future rewards of similar importance to 
current rewards. This allows the agent to learn 
optimal behavior over the long term. Exploration 
Probability refers to the probability that an agent will 
randomly choose an action. Setting it to 0.1 will 
cause the agent to choose the optimal action most of 
the time, but may occasionally explore new 
situations. This allows the agent to find better action 
strategies. 

Algorithm: Proximal Policy Optimization (PPO) 
 
Input: 

- Initial policy parameter: θ_0 
 - Initial value function parameter: ϕ_0 
 - Policy network: π_θ(a|s) 
 - Value function network: V_ϕ(s) 
 - Discount coefficient: γ 
 - GAE coefficient: λ 
 - Clipping parameter: ε 
 - Learning rate: η_θ, η_φ 
 - Batch size: N 
 - Number of epochs: K 
 
Output: 
 - Optimal policy parameter: θ 
 - Optimal value function parameters: ϕ 
Initialize: 
 - Policy parameter θ = θ_0 
 - Value function parameter ϕ = ϕ_0 
 
Repeat: 
 for iteration = 1, 2, ..., M do: 
    Initialize collected samples: D = [] 
    # Sample collection step 

for actor = 1 to N do: 
       Initial state: s_0 
       for t = 0 to T do: 
         Action selection: a_t ~ π_θ(a_t|s_t) 
         Execute action in environment: s_{t+1},       

r_t = env.step(a_t) 
         Add sample: D.append((s_t, a_t, r_t, s_{t+1})) 
         if s_{t+1} is terminal: 

           break 
    # Value function update step 
    Calculate:R_t=sum(γ^k*r_{t+k}) for k in 0 to T-t 
    Calculate:A_t using GAE with parameters (γ, λ) 

# Policy update step 
    for epoch = 1 to K do: 
       Minibatch extraction from sample D 
       for each mini-batch (s, a, r, s') do: 
          Calculate: ratio = π_θ(a|s) / π_θ_old(a|s) 
          Calculate: surrogate1 = ratio * A 
          Calculate: surrogate2=clip(ratio,1-ε, 1 + ε) * A 
          Calculate: policy_loss=-mean(min(surrogate1, 

surrogate2)) 
          Calculate: value_loss = mean((V_ϕ(s) - R)^2) 

          Policy network update:  θ ← θ - η_θ * ∇_θ 
policy_loss 

          Update value function network: ϕ ← ϕ - η_ϕ * 

∇_ϕ value_loss 
Output: 
 - Optimal policy parameter: θ 
 - Optimal value function parameters: ϕ 

Algorithm: A2C (Advantage Actor-Critic) 
 
Input: 
- Initial policy parameter: θ 
 - Initial value function parameters: ϕ 
 - Policy network: π_θ(a|s) 
 - Value function network: V_ϕ(s) 
 - Discount coefficient: γ 
 - Learning rate: η_θ, η_φ 
 - Batch size: N 
 - Number of epochs: K 
 
Output: 
 - Optimal policy parameter: θ 
 - Optimal value function parameters: ϕ 
 
Initialize: 
 - Policy parameter θ = θ_0 
 - Value function parameter ϕ = ϕ_0 
 
Repeat: 
 for iteration = 1, 2, ..., M do: 
    Initialize collected samples: D = [] 
    # Sample collection step 

for actor = 1 to N do: 
       Initial state: s_0 
       for t = 0 to T do: 
         Action selection: a_t ~ π_θ(a_t|s_t) 
         Execute action in environment: s_{t+1},       

r_t = env.step(a_t) 
         Add sample: D.append((s_t, a_t, r_t, s_{t+1})) 
         if s_{t+1} is terminal: 

           break 
    # Extract samples from batch 
    for each (s, a, r, s') in D do: 
       # Calculate value 
       R_t = r + γ * V_φ(s_{t+1}) if s' is not terminal 

else r 
       A_t = R_t - V_ϕ(s_t) 
 
       # Update policy network 
       policy_loss = -log(π_θ(a|s)) * A_t 

       θ ← θ - η_θ * ∇_θ policy_loss 
 

 # Update value function network 
      value_loss = (R_t - V_ϕ(s_t))^2 

      ϕ ← ϕ - η_ϕ * ∇_ϕ value_loss 
 
Output: 
 - Optimal policy parameter: θ 
 - Optimal value function parameters: ϕ 
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Table 6. CartPole Game Settings. 

Items Setting 

Episode Length 30 seconds (1800 timesteps) 

Learning Rate 0.001 

Discount Factor 0.99 

Exploration 
Probability 

0.1 

 

4.2 Experimental Results 
 

Table 7. Experimental Results of CartPole Game. 

 

 

As shown in Table 7, based on the results of 
100 simulations, the DQN algorithm showed the 
lowest standard deviation, and the ALNN algorithm 
showed the lowest average horizontal angle. 
However, the DQN algorithm showed better results 
at the minimum horizontal angle. Therefore, the 
DQN algorithm is judged to be the best. The DQN 
algorithm showed higher performance than other 
reinforcement learning algorithms in the 'CartPole' 
game. 

The DQN algorithm showed a faster 
learning rate compared to other reinforcement 
learning algorithms. This is because DQN utilizes 
experience replay memory to maximize efficiency in 
the learning process. Setting the discount rate of the 
DQN algorithm allowed us to effectively consider 
long-term rewards and achieve excellent results. The 
DQN algorithm was able to quickly learn the optimal 
action policy by setting an appropriate exploration 
probability. This contributed to maintaining a higher 
horizontal angle compared to other algorithms. 

Based on the above, the DQN algorithm 
showed excellent performance in learning rate, 
discount rate, and exploration probability, achieving 

better results than other reinforcement learning 
algorithms. 

According to experimental results, the 
DQN algorithm shows much better performance 
than other reinforcement learning algorithms in the 
'CartPole' game. This is because the DQN algorithm 
effectively solves the dilemma of exploration and 
exploitation and increases the stability of learning by 
using experience replay memory. DQN algorithms 
can be effectively applied in a variety of game 
environments and can play an important role in game 
AI development. 

5. CONCLUSION 

In this paper, we examined the exploration-
exploitation dilemma within a game environment 
and highlighted the superiority of the Deep Q-
Network (DQN) algorithm. The DQN algorithm is a 
robust reinforcement learning approach that 
effectively addresses the exploration-exploitation 
trade-off while enhancing learning stability through 
the use of experience replay memory. Our research 
contributes by providing a comprehensive 
performance comparison of various reinforcement 
learning algorithms—namely DQN, A2C, and 
PPO—in the 'CartPole' game environment. This 
systematic comparison offers valuable insights into 
the respective strengths and weaknesses of these 
algorithms, contributing new knowledge to the field 
of reinforcement learning. 

Experimental results demonstrated that the 
DQN algorithm significantly outperforms other 
reinforcement learning algorithms in the 'CartPole' 
game. The findings suggest that DQN algorithms 
can be efficiently applied to a variety of game 
environments, playing a crucial role in the 
development of game AI. 

Furthermore, reinforcement learning holds 
substantial potential for application across various 
domains. Although it is currently predominantly 
applied in areas such as games, robot control, and 
autonomous vehicles, its principles can be extended 
to diverse fields including medicine, finance, 
manufacturing, and energy management. This 
underscores the necessity to identify new application 
areas and conduct focused research to explore these 
possibilities. By expanding the scope of 
reinforcement learning applications, we can leverage 
its capabilities to innovate and improve outcomes 
across different industries and sectors. 
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