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ABSTRACT 
 

Agricultural production is pivotal for alleviating extreme poverty and boosting economic stability in line 
with Sustainable Development Goal 1 (SDG 1) of eradicating poverty in all its forms everywhere. India's 
agricultural sector is essential to feed its growing population, projected to reach 1.6 billion by 2050. Crop 
diseases, particularly wheat rusts—yellow rust, leaf rust, and stem rust—are significant obstacles to 
agricultural productivity, causing substantial yield losses and affecting the livelihoods of millions of 
farmers. Therefore, developing an automated system for recognizing and classifying wheat rust diseases is 
crucial for ensuring food security and economic stability. This study aims to design an automated system 
for identifying and categorizing wheat rust diseases using advanced image processing and machine learning 
techniques. We collected a dataset of wheat leaf images from agricultural fields in Punjab and Haryana and 
applied noise filtering and segmentation methods to enhance image quality. Transfer learning and deep 
convolutional neural networks (CNNs) were used to develop a classifier model. The ResNet50 model 
achieved an accuracy of 98.5% in classifying wheat rust diseases. By addressing wheat rust diseases 
effectively, this system supports SDG 1 by enhancing agricultural productivity, improving food security, 
and contributing to the economic well-being of farmers. 

Keywords: Deep learning, wheat rust, transfer learning, convolutional neural networks, agricultural 
productivity, SDG 1, poverty alleviation. 

 
1. INTRODUCTION 
 

Agriculture is the most important sector due to its 
economic influence on society, especially in 
developing countries [1]. Food demand is growing 
rapidly because of the increasing population and 
shortage of food ingredients. Crops like wheat, 
maize, and rice are the main components of food 
[2]. However, crop diseases are one of the biggest 
factors affecting the quality and quantity of crop 
production. These diseases cause major crop yield 
losses, impacting both large and small-scale farmers 
[3].  

Small-scale cultivators in developing countries 
contribute up to 80% of global crop production. 
However, food losses are much higher in these 

regions due to a lack of resources and access to the 
latest technology [4]. According to the World 
Health Organization (WHO) [5], more than a 
hundred diseases are caused by contaminated food, 
affecting around 600 million people annually, with 
0.4 million deaths. Farmers often lack quick and 
reliable methods to diagnose diseases, which 
hinders timely treatment and impacts crop quality 
and yield.  

Wheat is the most important ingredient of food 
globally and is the most popular cereal cultivated by 
farmers around the world [6]. According to the 
Food and Agriculture Organization (FAO) of the 
United Nations [7], wheat accounted for nearly 28% 
of total global cereal production from an estimated 
area of 215 million hectares in 2018 and 2019. 
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However, the demand for wheat is much higher 
than its production, especially in developing 
countries [2]. Diseases are a major factor 
contributing to low wheat production, causing 15–
20% losses in global wheat production annually [8]. 
Common wheat diseases like leaf rust and yellow 
rust are widespread and can cause significant 
economic losses if not controlled [9]. Most farmers, 
particularly in developing countries, rely on 
agriculture experts to identify and diagnose these 
diseases [10].  

Detecting and identifying wheat plant diseases is 
a challenge for farmers who need to monitor entire 
fields, which is time-consuming and resource-
intensive due to the density of wheat crops [11]. 
Recent advancements in computer technology, such 
as human-computer interaction [12,13] and AI [14–
19], have enabled the development of intelligent 
systems to assist farmers in identifying wheat leaf 
diseases through automatic methods like Computer 
Vision (CV) and AI-based techniques [20]. 

 

2. LITERATURE REVIEW 

Researchers worldwide are working to 
provide significant guidance and insights to help 
farmers make better decisions and take appropriate 
actions. Over the past two decades, advancements 
in technology such as AI and computing have 
garnered researchers' attention. To produce an 
effective system for actual disease diagnosis and to 
categorize diseases with high accuracy, various 
alternative schemes with diverse combinations have 
been explored. These include conventional 
statistical and image processing techniques as well 
as ML-based methods for plant and leaf disease 
recognition, specifically for wheat disease 
classification. Researchers have made significant 
contributions to different aspects of precision 
agriculture [31]. Advances in digital image 
processing and ML methods have been used for 
crop leaf disease detection and recognition using 
leaf images [21-24]. The literature can be divided 
into two subsections: less intelligent methods like 
pure image processing or CV-based disease 
classification and more intelligent ones like ML-
based task handling during precision agriculture. 

Xu et al. [25] designed an image 
recognition-based embedded technique for wheat 
leaf rust disease identification, achieving 92.3% 
accuracy. However, their method is not robust 
under changing field conditions. Similarly, Islam et 

al. [26] combined image processing and ML to 
identify potato diseases, achieving 95% accuracy 
using only 300 images. Alehegn et al. [27] 
proposed a hybrid ML approach for maize leaf 
disease classification, achieving 95.63% accuracy. 
Hossain et al. [28] developed an automated SVM-
based model for tea leaf disease recognition with 
93% accuracy but faced limitations such as a small 
dataset and reliance on statistical features. 

ML techniques are widely used in various 
domains, including agriculture. Akmal et al. [29] 
used plant village datasets and feature extractors 
like LTP, HOG, and SFTA, achieving 92.8% to 
98.7% accuracy. Jerome Treboux et al. [30] used a 
decision tree ensemble approach, improving 
accuracy from 89.6% to 94.27% for vineyard 
discrimination. Rump et al. [31] used SVM and 
spectral vegetation indices for sugar beet disease 
detection, achieving up to 97% accuracy. However, 
differentiating between multiple diseases remained 
a challenge. Ramesh et al. [32] used RFC for 
papaya leaf disease identification but achieved only 
70% accuracy due to a small dataset. 

Phadikar et al. [33] used Bayes’ theorem 
and SVM classifiers for rice leaf disease 
classification, achieving 68.1% and 79.5% 
accuracy, respectively. Prajapati et al. [34] used 
SVM for rice plant disease identification, achieving 
up to 93.33% accuracy. Ahmed et al. [35] 
compared four ML techniques for rice leaf disease 
detection, finding decision tree to be the most 
accurate at 97.91%. Panigrahi et al. [36] used 
various ML algorithms for maize crop disease 
detection, with RFC achieving 79.23% accuracy. 
Waghmare et al. [37] used multi-class SVM for 
grape plant disease identification, achieving 96.6% 
accuracy. Zhao et al. [38] used SVM for wheat 
powdery mildew detection, achieving 93.33% 
accuracy. GuanLin et al. [39] used SVM for wheat 
rust recognition, achieving 96.67% accuracy. 
Azadbakht et al. [40] used support vector 
regression for wheat leaf rust severity detection, 
achieving up to 99% accuracy. Researchers use ML 
and computer vision for plant disease 
detection[41,42.43]. 

In Table 1, we summarize the discussed 
related work. Various techniques have been 
proposed for crop leaf disease recognition in the 
ML domain, including maize, rice, tea, vineyard, 
and wheat. Different methods have been used for 
preprocessing, feature extraction, and recognition. 
However, deficiencies exist in wheat leaf disease 
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recognition using ML methods, such as the 
unavailability of diverse datasets and robust 
preprocessing techniques. Our proposed framework 
aims to bridge this gap by achieving high accuracy 
in wheat disease recognition using a fine-tuned 
RFC framework and robust preprocessing 
techniques. 

Table 1: Summary Table. 

Author Crop 
Methodol

ogy 
Accura

cy 
Limitation

s 

Xu et al. 
[25] 

Wheat 

Image 
processing

-based 
embedded 
technique 

92.30
% 

Not robust 
under 

changing 
field 

conditions 

Islam et 
al. [26] 

Potato 

Image 
processing 
and ML, 

color-
based 

segmentat
ion 

95% 

Small 
dataset, 

used 
statistical 
features 

Alehegn 
et al. 
[27] 

Maize 
Hybrid 

ML 
approach 

95.63
% 

None 
mentioned 

Hossain 
et al. 
[28] 

Tea 

Automate
d SVM-

based ML 
model 

93% 

Small 
dataset, 

reliance on 
statistical 
features 

Akmal 
et al. 
[29] 

Corn, 
Potato 

LTP, 
HOG, 
SFTA 
with 

multi-
class 
SVM 

92.8-
98.7% 

None 
mentioned 

Treboux 
et al. 
[30] 

Vineya
rd 

Decision 
tree 

ensemble 

94.27
% 

Initial low 
accuracy, 
improved 
with DTE 

Rump et 
al. [31] 

Sugar 
Beet 

SVM and 
spectral 

vegetation 
indices 

97% 

Low 
accuracy 

for 
multiple 
disease 

differentiat
ion 

Ramesh 
et al. 
[32] 

Papaya 
RFC with 

HOG 
70% 

Small 
dataset 

Phadika
r et al. 
[33] 

Rice 
Bayes’ 

theorem, 
SVM 

68.1-
79.5% 

Limited 
dataset 

Prajapat
i et al. 
[34] 

Rice SVM 
93.33

% 

Dataset 
lacks 

variations 

Ahmed 
et al. 
[35] 

Rice 

Decision 
tree, 

logistic 
regression

, KNN, 
Naïve 
Bayes 

97.91
% 

Used 
statistical 
features 

Panigra
hi et al. 

[36] 
Maize 

SVM, 
RFC, DT, 

KNN 

79.23
% 

Poorly 
captured 
images 

Waghm
are et al. 

[37] 
Grape 

Multi-
class 
SVM 

96.60
% 

None 
mentioned 

Zhao et 
al. [38] 

Wheat SVM 
93.33

% 
Low 

accuracy 

GuanLi
n et al. 

[39] 
Wheat 

SVM with 
RBF 

96.67
% 

Invariant 
dataset 

Azadba
kht et al. 

[40] 
Wheat 

-support 
vector 

regression 
99% 

Focused 
on one 
disease 
severity 

 
From the literature review the following research 
gaps has been identified. 

1. Many studies rely on small or invariant 
datasets, which restricts the 
generalizability and robustness of their 
models, particularly in real-world 
applications where environmental 
conditions vary significantly. 

2. Several studies depend on conventional 
machine learning techniques and statistical 
features, which may not fully capture the 
complexity of plant diseases, especially 
under changing field conditions. There is a 
need for more advanced approaches like 
deep learning to improve model accuracy 
and adaptability. 

3.  METHODOLOGY 

3.1 Research Design 

In this study, the authors have selected the 
design science research (DSR) methodology to 
uncover and identify opportunities and challenges 
in wheat production within the agricultural sector. 
This approach has been chosen for the following 
reasons: it enables the creation of new artifacts to 
address productivity issues effectively. 

3.2 Proposed Architecture 

Recent academic literature has consistently 
highlighted the significance of Convolutional 
Neural Networks (CNNs) as a groundbreaking 
technology. In our research, we aim to leverage 
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CNNs to revolutionize agricultural practices, 
specifically focusing on wheat production and the 
classification of leaf diseases using leaf images as 
our primary input data. 

To achieve this, we explored two distinct 
methodologies: firstly, constructing a custom multi-
layer convolutional neural network (MCNN) from 
scratch tailored to our specific needs, and secondly, 
employing transfer learning with pre-trained 
networks. Our objective was to devise an optimal 
classifier capable of accurately detecting and 
categorizing various wheat leaf issues. We 
subsequently conducted a thorough comparative 
analysis to evaluate the efficacy of both approaches. 

3.3 Transfer Learning 

Transfer learning has emerged as a highly effective 
strategy in deep learning, especially in addressing 
intricate challenges. By leveraging pre-trained 
models, where the network's layers are frozen and 
transferred from previously trained datasets, we 
mitigate the need for extensive new data collection 
and training. This approach proves particularly 
advantageous in developing robust classification 
networks even with limited datasets. Table 2 
provides an overview of the key attributes of the 
pre-trained models utilized in our study, 
underscoring their applicability and 
effectiveness.This strategic use of transfer learning 
not only enhances computational efficiency but also 
accelerates model development, making it a pivotal 
component in our quest to advance agricultural 
productivity through cutting-edge technology. 

Table 2: CNN model property of VGG19 and RESN50 
CNN 
Architectures  

Paramete
rs (M)   Layers  Accuracy  

VGG19 138 19 92.70% 

RESN50  25 50 94.11% 

3.4 MCNN 

This research propose a Multilayer CNN 
built entirely from scratch for this task. This 
architecture consists of five convolutional layers, 
each followed by ReLU activation and max-pooling 
layers. Dropout layers are incorporated to prevent 
overfitting, followed by a Flatten operation and a 
fully connected layer with softmax activation for 
classification. Throughout training, we employ 
Keras to dynamically adjust the learning rate, a 
crucial metric for halting training when 

improvements cease. This model architecture is 
specifically designed to classify wheat leaf 
diseases, encompassing the entire process from 
input data, through processing, to the final output. 
Data from various sources are utilized as inputs to 
train and validate the model. The architecture 
diagram for the wheat leaf disease classification 
model is depicted in figure 1. 

 

 

Figure 1: The proposed model architecture 

3.5 Hyper-parameters 

Hyperparameters are predefined parameters 
that significantly influence the training process of a 
neural network. They are adjustable settings that 
can be tuned to optimize the model's performance. 
In the context of convolutional neural networks 
(CNNs), experiments involve manipulating these 
hyperparameters to explore different configurations 
and enhance classification accuracy. Several key 
hyperparameters were selected as benchmarks for 
this study: 

 

     (1) 

 

Padding: In CNNs, padding addresses the issue of 
reduced output dimensions caused by convolutional 
layers. By adding zero layers around the input 
image, the study preserves the spatial dimensions of 
the output feature maps. 

Stride: This parameter determines the number of 
pixels the filter moves across the input matrix 
during convolution. A stride of 1 means the filter 
shifts one pixel at a time, affecting the spatial 
resolution of the feature maps. 

Epoch: An epoch refers to one complete pass of the 
entire dataset through the neural network during 
both forward and backward propagation. In this 
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study, each epoch processes 50 images, with a 
batch size of 32 chosen to balance computational 
efficiency with memory utilization. 

Learning Rate: Initially set at its default value, the 
adaptive learning rate adjusts during training. The 
ReduceLRonPlateau callback function dynamically 
decreases the learning rate by a factor of 0.5 when 
performance metrics stagnate, aiding model 
convergence. 

Optimizer: The Adam optimizer is selected for 
updating network weights during training iterations. 
It efficiently computes adaptive learning rates for 
each parameter and has proven effective in 
optimizing convergence speed. 

Loss Function: Categorical cross-entropy is 
employed as the loss function to evaluate how well 
the network's predictions match the true labels. It 
quantifies the disparity between predicted 
probabilities (via softmax activation) and actual 
class labels across the training dataset. 

These hyperparameters collectively shape the 
training dynamics and performance of the 
convolutional neural network, crucial for achieving 
optimal classification results in this study. 

where M is the number of class for this study. 

Table 3: Hyperparameter values of the proposed 
model 

parameters Values 

Optimizer Adam 
Loss-Function categorical cross-

entropy 
Epoch 100 

Stride 1 

Padding 0 layer 

Bach Size 32 
Learning rate* Initial: 0.01 

Momentum 0.09 

Weight decay 0.005 

*Decreases by a factor of 1/2 

3.6 Proposed System Framework 

This research aimed to design a model for 
classifying Wheat leaf diseases using convolutional 
neural networks (CNNs) trained on image data. The 
CNN-based model was trained to identify images 
and classify them into specific disease categories. 
The system accepts Wheat leaf images in any 
digital format captured by a camera. 

The process started with collecting and 
preparing the required Wheat leaf images. Next, 
pre-processing steps were implemented. 
Normalization adjusted the pixel intensity of each 
image to a standardized scale, reducing 
computational complexity during network training 
and ensuring consistent data representation. 
Additionally, image resizing standardized the image 
dimensions since images captured by cameras vary 
in size. This step established a uniform size for all 
images fed into the algorithms. 

 
After pre-processing, a clean and standardized 

dataset was obtained. For classification, a deep 
learning approach using CNN models was 
employed. These models automatically extract 
complex features from images without manual 
feature engineering, enhancing their ability to 
classify Wheat leaf diseases accurately. 

Figure 2 illustrates the architecture of the 
proposed CNN-based Wheat leaf disease 
classification system. It depicts the framework from 
image capture through preprocessing to the training 
and testing phases. The system was designed to 
effectively process and classify images, aligning 
with the research goals. 

To improve classification performance, transfer 
learning with pre-trained CNN models was utilized. 
Pre-trained models were adapted by fine-tuning 
their learned features and adjusting output labels to 
match the specific disease categories studied. This 
approach leverages existing knowledge in neural 
networks to enhance feature extraction and 
classification accuracy for Wheat leaf disease 
detection. 

 

Figure 2: Framework of the proposed model 

Furthermore, essential image features were 
manually extracted using Gabor filtering techniques 
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to capture texture features. Additionally, data 
augmentation techniques were employed during 
training to present each image in various 
perspectives, mitigating model overfitting. 
Ultimately, the convolutional neural network 
classifier models were trained and established. 

3.7 Dataset Preparation 

Image acquisition serves as the initial phase 
in any computer vision system, detailing the 
process of obtaining and storing images from 
physical devices like cameras or webcams onto a 
computer system for subsequent processing. In 
developing a precise Wheat leaf disease classifier 
model, data were gathered from the Southern 
Nations, Nationalities, and Peoples' Region (SNNP) 
using a digital camera. Each leaf was then assigned 
a class label through a literature review and 
consultation with agricultural experts who observed 
the images. 

3.8 Image Pre-processing 

To ensure the classifier model meets user 
requirements and performs effectively, researchers 
meticulously assessed the quality and naturalness of 
collected and prepared images. This involved 
essential low-level image pre-processing steps. 

The proposed classification model for this study 
adhered to six key pre-processing steps. Firstly, 
images were resized to match the input layer size of 
the CNN, typically 224x224 pixels with 3 color 
channels. Secondly, images were converted to 
binary and then grayscale. Thirdly, efforts were 
made to minimize degradation in image quality that 
may occur during acquisition. 

Fourth, images were normalized to aid faster 
convergence of the model and enhance its ability to 
generalize to unseen data. Fifth, string values were 
converted to numeric values, and finally, one-hot 
encoding was applied. Additionally, given that 
noise is expected when capturing images, various 
noise filtering techniques, such as Gaussian and 
median filtering, were employed to effectively 
remove noise from the collected images. 

3.9 Feature Extraction 

The primary goal of this study is to develop a 
classifier model for categorizing Wheat leaf 
diseases using convolutional neural networks 
(CNNs). CNNs can either process images directly 

or extract essential features from them for 
classification purposes. In this research, both 
approaches were employed. To extract necessary 
features, researchers utilized GLCM (Gray-Level 
Co-occurrence Matrix) techniques, a widely used 
method in computer vision for texture analysis. 
GLCM operates by considering different 
frequencies and orientations within gray-scale 
images, and it calculates numeric features such as 
Entropy, Energy, Skewness, Correlation, Kurtosis, 
Homogeneity, and Contrast. Each Wheat leaf had 
these features extracted individually, showcasing 
various texture features in the resulting tables 4. 

3.10 Training Methods 

In this study, deep learning approaches using 
convolutional neural networks (CNNs) were chosen 
due to their specialized design for image analysis 
and classification. Unlike traditional machine 
learning algorithms that require manual feature 
extraction, CNNs automate this process by directly 
extracting relevant features from raw images using 
convolutional and pooling layers. This capability 
allows CNNs to effectively capture discriminating 
features that are crucial for accurate classification. 

 
Researchers employed two main approaches: 

training from scratch, where all model parameters 
are optimized specifically for the problem at hand, 
and transfer learning, which utilizes pre-trained 
CNN models. During training, pre-trained models 
such as Visual Geometry Group 19 (VGG-19) and 
Residual Network with 50 layers were employed. 
These models feature up to four layers for 
convolutional neural network-based feature 
extraction, complemented by six layers of fully 
connected networks in the training from scratch 
method. 

 
Table 4: extracted texture features from the wheat 
dataset 

Ent
rop
y 

Ener
gy 

Ske
wne
ss 

Corre
lation 

Kur
tosi
s 

Homo
geneit
y 

Con
tras
t 

0.06
053 

0.12
6301 

2.15
8967 

0.122
763 

0.01
447 

0.9999
8 

5.95
581 

0.04
836 

0.11
9847 

1.79
0198 

0.108
785 

0.01
18 

0.9999
75 

9.66
787 

0.10
914 

0.31
0663 

0.59
1272 

0.171
573 

0.04
119 

0.9999
89 

7.30
93 

0.04
914 

0.11
5945 

1.57
6879 

0.084
204 

0.00
958 

0.9999
75 

5.89
392 

2.10
983 

90.1
1273
1 

0.15
8712 

0.849
869 

0.68
805 

0.9725
35 

0.99
999 
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0.13
809 

0.22
2363 

4.08
659 

0.214
823 

0.03
785 

0.9999
92 

4.78
37 

1.70
892 

128.
5837
9 

0.07
0822 

0.894
122 

0.43
964 

0.9739
57 

0.31
066 

*GLCM techniques 

3.11 Experimental Setup 

Our experimental setup utilized Python 
programming language and the Flask framework for 
model deployment and testing. Experiments were 
conducted on a desktop computer equipped with an 
Intel® Core™ i7 CPU @ 2.70GHz, 8.00 GB of 
RAM, and a 64-bit Microsoft Windows 10 
operating system, providing a robust environment 
for training and evaluating our models. 

4 EXPERIMENTAL RESULT AND ANALYSIS 

n this study, experiments were conducted using 
different testing configurations: 80% of the data 
allocated for training and the remaining 20% for 
testing, as well as 70% for training and 30% for 
testing. The classifier was evaluated using both 
extracted features, obtained using Gray Level Co-
occurrence Matrix (GLCM) for metrics like 
Entropy, Energy, Skewness, Correlation, Kurtosis, 
Homogeneity, and Contrast, and non-extracted 
features. 

The performance of the developed classifier 
model was assessed using accuracy, precision, 
recall, and F-measure metrics. This comprehensive 
analysis aimed to evaluate the effectiveness of the 
classifier under varying experimental conditions. 

 (2) 

 (3) 

   (4) 

  (5) 

 

 (6) 

4.1 ResNet-50 model performance 

In the context of using this model for 
Wheat classification, the default parameters of the 
state-of-the-art model were left unchanged. 

However, the last layer, which consists of fully 
connected layers, was adjusted to fit our specific 
classification problem. During the experiment, 
different training scenarios were applied: 80% for 
training and 20% for testing, and 70% for training 
and 30% for testing. These setups yielded accuracy 
rates of 84% and 69% respectively. As a result, the 
first scenario, which performed better, was chosen 
for detailed analysis. 

 

Figure 3: ResNet-50 confusion matrix 

he confusion matrix above demonstrates how 
effectively the developed classifier model operates. 
It shows that the model achieves an accuracy of 
84.1% in real-world applications. Furthermore, 
detailed accuracy results for the ResNet-50 state-of-
the-art algorithm, broken down by each class, are 
presented in Table 5 below: 
 
Table 5: ResNet-50 Model performance analysis 

Class 
Recal
l 

Precisi
on 

F-
measu
re 

TPR FPR 

Normal 
77.80
% 

83.70% 
80.60
% 

77.80
% 

22.20
% 

Rust 
high 
severity 

79.90
% 

83.80% 
81.80
% 

79.90
% 

20.10
% 

Rust 
Mediu
m 
severity 

87.80
% 

83.80% 
85.70
% 

87.80
% 

12.20
% 

Spot 
high 
severity 

86.00
% 

84.10% 
85.00
% 

86.00
% 

14.00
% 

Spot 
Mediu
m 
severity 

86.60
% 

83.70% 
85.10
% 

86.60
% 

13.40
% 
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Spot 
Low 
severity 

80.20
% 

86.20% 
83.00
% 

80.20
% 

19.80
% 

Weight
ed 
average 

84.30
% 

84.20% 
84.30
% 

84.30
% 

15.70
% 

 

4.2 VGG-19 model Performance 
The architecture of this state-of-the-art model 
consists of 19 layers, comprising convolutional 
layers, pooling layers, and three fully connected 
layers organized into three blocks. Two of these 
blocks contain 4096 neurons each, followed by a 
layer with 1000 neurons representing class 
probabilities. The model's hyper-parameters and 
parameters such as the number of filters, filter size, 
stride, and padding were kept at their default values 
during training, except for the modification of the 
last layers to accommodate the number of classes in 
this study. In this experiment, two testing scenarios 
were employed: one where 80% of the dataset was 
used for training and 20% for testing, and another 
with 70% for training and 30% for testing. This 
approach resulted in accuracies of 90% and 87.3%, 
respectively, with the first scenario chosen for 
detailed analysis. The following confusion matrix 
illustrates the model's performance: 

 
 

Figure 4: VGG-19 confusion matrix 
 

The researcher utilized a confusion matrix 
to present the experimental outcomes of the 
developed Wheat leaf disease classification model. 
This experiment involved manually splitting the 
dataset into training and testing subsets. Out of a 
total of 6000 images, 4800 (80%) were allocated to 
the training dataset, while the remaining 1200 
(20%) were assigned to the testing dataset. The 
VGG-19 model, a state-of-the-art algorithm used in 

this study, achieved an accuracy of 90% on the 
testing dataset, correctly classifying 1080 out of 
1200 images. The remaining 120 images (10%) 
were classified incorrectly. Based on the results 
from all testing scenarios, the first test option was 
selected for detailed analysis, as shown in the table 
6 below. 

 
Table 6: VGG-19 model performance analysis 

Class 
Recal
l 

Precisi
on 

F-
measu
re 

TPR FPR 

Normal 
98.90
% 

90.90% 
94.70
% 

98.90
% 

1.10
% 

Rust 
high 
severity 

87.40
% 

91.60% 
89.40
% 

87.40
% 

12.60
% 

Rust 
Mediu
m 
severity 

90.10
% 

91.70% 
90.80
% 

90.10
% 

9.90
% 

Rust 
Low 
severity 

93.00
% 

91.40% 
92.10
% 

93.00
% 

7.00
% 

Spot 
high 
severity 

87.80
% 

90.10% 
88.90
% 

87.80
% 

12.20
% 

Spot 
Mediu
m 
severity 

87.20
% 

88.10% 
87.60
% 

87.20
% 

12.80
% 

Spot 
Low 
severity 

87.80
% 

88.10% 
87.90
% 

87.80
% 

12.20
% 

Weight
ed 
average 

90.30
% 

90.18% 
90.20
% 

90.30
% 

9.90
% 

For this experiment, the researcher evaluated 
the recall, precision, and F1-measure values to gain 
a better understanding and analysis of the results. 
Precision measures the ratio of correctly predicted 
true classifications to all predicted true 
classifications, while recall measures the ratio of 
correctly predicted true classifications to all actual 
instances of the class. The experimental results 
indicate that the classifier model developed using 
the Residual Network-50 achieved 86% accuracy 
with 80% of the data used for training and 20% for 
testing. Out of 1200 records, 1032 were correctly 
classified, while 168 were misclassified. 
Additionally, the same pre-trained model was tested 
with a split of 70% for training and 30% for testing, 
achieving 78% accuracy. This corresponds to 1404 
correctly classified records out of 1800, with 396 
misclassified. 

Furthermore, the researcher explored 
developing the model using all extracted features in 
the VGG-19 Pretrained model. In the first test 
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scenario with 80% training and 20% testing, 960 
records were correctly classified, resulting in 80% 
accuracy. In the second scenario with 70% training 
and 30% testing, the model achieved 75% accuracy. 
The experimental analysis using the pre-trained 
model with all features is depicted in the following 
figure 5. 

 
 

 
 
 
 
 
 
 
 
 

Figure 5: Accuracy comparison of the model with 
all the attributes 

 
Figure 5 illustrates the comparative 

performance of the developed models using both 
Residual Network-50 and Visual Geometry Group 
(VGG-19) across different test scenarios. Notably, 
the Residual Network-50 pretrained model 
outperforms VGG-19, achieving higher accuracy 
with the selected attributes. The experiment also 
extended to develop classifier models using these 
pretrained models with selected attributes. 
Attributes were selected based on information gain 
ratio, where features like Energy, Skewness, 
Correlation, Kurtosis, and Homogeneity were 
chosen. The following figures 6 depict the 
experimental results using these selected 
attributes.Additionally, experiments were 
conducted using the selected attributes with 
pretrained models (ResNet-50 and VGG-19) and 
from scratch, where the models were trained with 
80% of the data for training and 20% for testing. 
The results show that ResNet-50 achieved 91%, 
VGG-19 achieved 90%, and the model trained from 
scratch achieved 80% accuracy, respectively. 

 
 
 
 
 
 
 
 
 
 

 
Figure 6: Accuracy comparison of pre-trained 

models with extracted features. 

5 CONCLUSION AND FUTURE WORKS 
This study focuses on developing a classifier 

model capable of detecting and categorizing Wheat 
leaf images into various classes: Healthy, Rust 
(with high, medium, and low severity), and Brown 
Spot (with high, medium, and low severity). Data 
collection was conducted in the south nation and 
nationalities of people, followed by extensive 
preprocessing to enhance data quality for effective 
classification. The approach employed 
convolutional neural networks (CNNs), utilizing 
both pretrained models and training from scratch. 
The default test scenario involved splitting the 
dataset into 80% for training and 20% for testing. 
Additionally, experiments were conducted by 
extracting necessary features from the images and 
using CNNs for both feature extraction and 
classification. The developed classifier achieved 
98% accuracy using ResNet-50. Future research 
directions include expanding the model to recognize 
nutrient deficiencies and other classification labels 
from given images. 
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