
 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6380

OPTIMIZING CLOUD RESOURCE UTILIZATION THROUGH
MACHINE LEARNING FORECASTING

ANGELICA KAYLEE WIESI1, JOSHUA SAMUAL1, MOHAMMED AMIN ALMAIAH2,
AITIZAZ ALI1, TAYSEER ALKHDOUR3, ROMEL AL-ALI4, THEYAZN H.H.

ALDHYANI5 AND RAMI SHEHAB3

1School of Technology Asia Pacific University of Technology & Innovation Kuala Lumpur, Malaysia
2King Abdullah the II IT School, University of Jordan, Amman 11942, Jordan.

3College of Computer Science and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
4Associate Professor, The National Research Center for Giftedness and Creativity, King Faisal University, Saudi

Arabia
5Applied college in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

tp064902@mail.apu.edu.my, talkhdour@kfu.edu.sa

ABSTRACT

This research introduces a resource utilization prediction tool tailored for dynamic and seasonal workloads
in cloud environments. Traditional prediction methods often fall short in accuracy due to the constantly
changing nature of cloud resources and workloads. To address this gap, the research proposes a machine
learning-centric approach aimed at enhancing prediction accuracy, thereby promoting sustainability, energy
savings, and improved user experience in line with SDG 7: Affordable and Clean Energy. The approach
begins with data collection and preprocessing, employing techniques such as Fourier Series and Lag Features
to capture temporal patterns. Three machine learning models—Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), and Random Forest—are developed, trained, and evaluated using metrics like MAE,
RMSE, and MAPE. Hyperparameter tuning is conducted to optimize model performance and minimize
overfitting. The best-performing model, identified as the one-step GRU, is then deployed using Streamlit and
AWS EC2, with User Acceptance Testing (UAT) ensuring it meets performance standards. This
comprehensive approach demonstrates significant improvements in prediction accuracy and resource
management, contributing to more efficient and sustainable cloud computing practices.

Keywords: Resource Utilization; Lstm; Gru; Random Forest; Machine Learning; Sustainability

1. INTRODUCTION

The rapid growth of the digital age has
transformed how businesses and individuals interact
with technology, with cloud computing emerging as
a critical innovation. Cloud computing offers
scalable, flexible, and cost-effective solutions,
allowing access to services like software, platforms,
and infrastructure on a pay-as-you-go basis [1]. This
shift has revolutionized commercial strategies and
fostered digital growth [2]. However, the dynamic
nature of cloud environments presents unique
challenges, particularly in resource management [3].
Unlike traditional on-premises systems with fixed
resource allocation, cloud computing requires
continuous adjustment due to unpredictable user
demands [4]. This creates a risk of over-
provisioning, leading to wasted resources and
increased costs, or under-provisioning, which can
result in poor service quality and unmet service level

agreements (SLAs) [5]. Therefore, efficient and
accurate resource utilization prediction is essential
for optimizing cloud resource allocation, minimizing
costs, and enhancing environmental sustainability.

To address these challenges, various resource
utilization prediction techniques, including statistical
methods, machine learning models, and deep
learning architectures, have been developed.
Traditional methods like ARIMA have limitations in
handling the non-linear and dynamic nature of cloud
workloads, necessitating more adaptive and accurate
approaches [6]. Machine learning models, such as
weighted quadratic random forests, genetic
algorithms, and artificial neural networks (ANNs),
have shown promise in improving prediction
accuracy, but there is still room for enhancement [7].
The complexity of cloud resources, especially with
the increasing influence of digitalization, demands a
more dynamic method capable of adapting to real-

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6381

time demands and effectively handling seasonal and
non-seasonal workload patterns [8]. The evolution of
cloud computing requires prediction models that can
accurately forecast resource utilization, particularly
for CPU usage, to ensure cost-effectiveness, optimal
service delivery, and user satisfaction.

The aim of this project is to develop a machine
learning-based model to optimize cloud resource
utilization prediction, focusing on accurately
forecasting dynamic cloud workloads, including
factors like seasonality and trends. By conducting a
comparative analysis of various models, the project
seeks to enhance the accuracy of resource utilization
predictions, targeting specific performance metrics
such as Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). The anticipated
benefits of this research include significant cost
savings, improved operational efficiency, and
enhanced customer satisfaction by ensuring SLAs
are met and minimizing service disruptions. The
insights gained from accurate predictions will enable
businesses to make data-driven decisions, gain a
competitive edge, and focus on innovation,
ultimately contributing to sustainable and cost-
effective cloud services.

2. OVERVIEW OF RESOURCE

UTILIZATION IN CLOUD COMPUTING

This section provides a comprehensive overview
of resource management and utilization in cloud
computing. It explores the vital factors influencing
resource consumption, and the challenges
associated with effective allocation and utilization
in cloud computing. Furthermore, it explores the
application of machine learning techniques for
accurate resource utilization prediction, a vital
component of modern cloud management practices

A. Resource Management and Utilization in Cloud
Computing

Cloud computing provides a scalable and flexible
environment where users can access virtualized
resources like memory, storage, network, and CPU
on demand. This technology's inherent advantages,
such as scalability, agility, and cost-effectiveness,
make it a vital component of modern IT
infrastructure. However, these benefits come with
the challenge of managing these resources efficiently
to satisfy both cloud providers and users. Resource
management (RM) in cloud computing is crucial in
this context, involving the acquisition, allocation,
and monitoring of virtualized resources to ensure
optimal performance and user satisfaction. Effective
RM is key to balancing functionality, cost, and
performance, ensuring the scalability, quality of
service (QoS), and cost-effectiveness that cloud
computing promises [9]. It focuses on capacity

allocation, energy optimization, load balancing, and
maintaining QoS to minimize downtime and ensure
fast response times [10].

The dynamic nature of cloud computing presents
unique challenges in RM, especially compared to
traditional static data centers. Resource provisioning
and allocation must be adaptable to fluctuating user
demands to avoid violating Service Level
Agreements (SLAs) and ensure customer
satisfaction (Srivastava & Kumar, 2020). The
unpredictability of cloud workloads, driven by
varying application demands, often leads to an
imbalance in resource utilization within data centers
[11]. For instance, studies have shown that average
CPU utilization in data centers is only about 17.76%,
with memory utilization at 77.93%, indicating a
significant underutilization of resources [12]. This
imbalance not only results in inefficient resource
usage but also leads to excessive energy
consumption, contributing to a higher carbon
footprint [13]. Data centers, as reported by the
International Energy Agency (IEA) [14], were
responsible for approximately 1% of global
greenhouse gas emissions in 2020, underscoring the
environmental impact of inefficient resource
management.

To mitigate these challenges, resource
management strategies in cloud computing need to
evolve beyond traditional approaches. Conventional
RM processes, which focus on allocating resources
based on current demand, often lead to under-
provisioning or over-provisioning, where tasks may
be left incomplete due to a lack of resources, or
resources may be wasted, incurring unnecessary
costs [15]. A more effective approach involves
predictive resource management, which uses
historical data to anticipate future workloads and
adjust resource allocation accordingly [16]. This
predictive approach enhances resource efficiency,
reduces latency, and ensures better alignment with
actual resource needs, thereby preventing
underutilization and overutilization [17]. By
accurately forecasting future resource requirements,
cloud providers can optimize resource usage, lower
costs, and reduce the environmental impact,
ultimately achieving a more sustainable and cost-
effective cloud computing environment.

B. Resource Utilization Prediction Techniques

In cloud computing, resource utilization often
faces imbalances that can lead to inefficiencies like
over-provisioning or under-provisioning of
resources. To address these challenges, cloud
resource management increasingly relies on
predictive techniques that leverage historical data to
anticipate future demands. By accurately predicting
future resource usage, cloud environments can

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6382

dynamically allocate resources, optimizing
performance and cost efficiency.

Machine learning (ML), a subfield of artificial
intelligence, plays a crucial role in these predictive
approaches [18]. ML algorithms enable systems to
learn from historical data and improve their
predictions over time, much like how humans learn
from experience [19]. The history of ML dates to the
1950s with Arthur Samuel’s work on checker-
playing programs, which marked the beginning of
computers learning from data [20]. Over the decades,
ML has expanded its influence across various
industries, providing data-driven insights and
enhancing decision-making processes in fields like
healthcare, finance, and education.

ML can be broadly categorized into several
types: supervised, unsupervised, reinforcement, and
semi-supervised learning. Supervised learning is
highly relevant for resource utilization prediction in
cloud environments [21]. In supervised learning,
algorithms are trained on labeled data—input data
paired with the correct output—allowing the model
to learn by comparison and correction [22]. As the
model processes more data, it refines its predictions,
making it increasingly accurate over time [22].
Supervised learning is further divided into
classification, which deals with discrete labels, and
regression, which handles continuous labels like
numerical values [23]. For instance, regression is
commonly used in stock price prediction, where the
data points are continuous and ordered [22].

Unsupervised learning, another key ML
approach, is used when the data lacks labels. Instead,
the model identifies patterns and relationships within
the raw data, making it particularly useful for
clustering tasks where similar data points are
grouped together [22]. While both supervised and
unsupervised learning are powerful, traditional ML
models often assume that data points are independent
of one another, which can be a limitation in certain
contexts [24].

This proceeds to the importance of time series
analysis, particularly in cloud computing
environments where resource usage data is
inherently sequential. Unlike traditional ML models
that treat data points as independent, time series
analysis recognizes the temporal dependencies
between data points [25]. In cloud environments,
resource usage data such as CPU and memory
consumption is collected over time, making time
series analysis an essential tool for capturing patterns
like trends, seasonality, and cyclical variations.

Time series data is unique in that each data point
is influenced by its predecessors, allowing for the
identification of patterns that span across different
time frames [25]. These patterns can include long-

term trends, such as the overall increase or decrease
in resource usage, as well as short-term seasonal
patterns, like the daily fluctuation in resource
demand. Understanding these components is crucial
for accurate prediction and resource management in
cloud environments.

For instance, Recurrent Neural Networks
(RNNs) are a type of ML model designed to handle
sequential data by retaining information from
previous inputs to inform current predictions [26].
This ability to look back at past data makes RNNs
particularly effective for time series forecasting,
where understanding the order of information is key
[26].

In summary, the integration of machine learning,
particularly supervised learning, with time series
analysis offers a robust framework for predicting
resource utilization in cloud environments. By
leveraging the strengths of both approaches, cloud
resource management can proactively anticipate and
respond to fluctuating workloads, ensuring optimal
resource allocation and minimizing inefficiencies.
This combination of predictive techniques and time
series analysis represents a significant advancement
in the ability to manage cloud resources effectively,
aligning with the dynamic and ever-evolving nature
of cloud computing environments.

C. Machine Learning Models

Support Vector Machines (SVMs) are machine
learning models that seek to find an optimal
hyperplane to separate data into distinct categories
with the widest margin [27]. This clear boundary
allows for immediate classification without
calculating probabilities. SVMs are advantageous
for their ability to generalize and avoid overfitting,
particularly when handling non-linear data using the
kernel trick [27]. However, SVMs are
computationally intensive, particularly with large
datasets. In cloud environments, Support Vector
Regression (SVR), a variant of SVM, has been used
to optimize resource allocation [28]. Although SVR
offers accurate predictions and handles both linear
and non-linear data effectively, it also requires
significant computational resources [28].

Random Forest is an ensemble learning model
that combines multiple decision trees to improve
prediction accuracy [29]. It is particularly effective
when dealing with datasets with many features and
fewer data points, offering built-in error estimates
[29]. However, Random Forest struggles to capture
linear relationships within the data [29]. In cloud
computing, Random Forest has been applied to
enhance resource management and has demonstrated
high accuracy in CPU, memory, and disk usage
predictions [29]. Despite its strengths, the integration
of Random Forest into complex systems can be

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6383

challenging, and security concerns in resource
allocation need to be addressed [29].

Long Short-Term Memory (LSTM) networks are
a type of Recurrent Neural Network (RNN) designed
to capture long-term dependencies in sequential data,
such as time series [30]. LSTMs are well-suited for
tasks requiring the retention of past information to
recognize trends and patterns, but they are complex
to implement and require substantial computational
resources [30]. LSTM has been widely used in
forecasting CPU utilization in cloud environments,
showing superior accuracy compared to other
models like ARIMA [28]. However, the complexity
and resource demands of LSTM make it less
interpretable and harder to deploy [28].

Gated Recurrent Unit (GRU) networks are a
more streamlined version of RNNs, designed to
address the vanishing and exploding gradient
problems commonly found in standard RNNs [25].
GRUs use gating mechanisms to selectively retain or
forget information, making them effective at
capturing complex temporal patterns in sequential
data [25]. GRUs have been successfully applied to
cloud resource utilization predictions, demonstrating
strong performance in workload prediction and
energy consumption estimation [25]. Despite their
effectiveness, GRUs, like LSTMs, require
significant computational resources and are complex
to implement [25].

Statistical methods, such as Autoregressive
Integrated Moving Average (ARIMA) and its
seasonal variant SARIMA, are traditional
approaches to time series forecasting [24]. These
methods focus on understanding the underlying
mechanisms generating the data, making them
highly interpretable and useful for capturing linear
trends and seasonality [24]. However, statistical
methods struggle with non-linear data and may
provide inaccurate predictions in such cases [24].
While they are simpler and less prone to overfitting
compared to machine learning models, the need to
select appropriate models for different patterns can
make them less practical in dynamic environments.

3. EXISTING SYSTEMS IN RESOURCE

UTILIZATION IN CLOUD COMPUTING

Nawrocki et al. [26] proposed a dynamic, data-
driven approach for cloud resource utilization
prediction aimed at improving cost-effectiveness and
environmental sustainability. This system adapts
prediction algorithms to the nature of the data,
overcoming the limitations of static methods that
often result in under provisioning or
overprovisioning of resources. By building a
knowledge base from past data and selecting the best
prediction model for each workload, the system

ensures higher accuracy. However, the limited
dataset scope and significant computational
resources required for this approach are potential
drawbacks.

Al-Asaly et al. [27] introduced a deep learning-
based model using Diffusion Convolutional
Recurrent Neural Networks (DCRNN) to address the
challenge of fluctuating workloads in cloud
environments. This model, tested on real-world CPU
usage data from Planet Lab, demonstrated superior
accuracy compared to conventional methods, as
evidenced by lower MAPE and RMSE values. The
DCRNN model effectively captures complex, non-
linear workload patterns and adapts to changes in
workload automatically. However, its dependency
on extensive computational resources and the quality
and quantity of the dataset are limitations.

Anupama et al. [28] proposed a hybrid approach
combining SARIMA and LSTM models to tackle
overprovisioning and under provisioning in cloud
computing. SARIMA is adept at forecasting seasonal
patterns, while LSTM handles non-linear and
complex workloads. Tested on real-world data from
Bitbrains cloud, this approach achieved lower MAE
and MAPE, offering better accuracy and the ability
to cover both seasonal and non-seasonal workloads.
However, the complexity of combining two
techniques and the focus on only CPU and memory
usage are noted drawbacks.

Nashold & Krishnan [29] compared SARIMA
and LSTM models for predicting CPU usage in
cloud environments. Using data from Microsoft
Azure, the study found that SARIMA performed
better for long-term predictions, while LSTM
excelled in short-term forecasts. The research
highlighted that SARIMA struggles with dynamic
data, whereas LSTM is limited in forming long-term
dependencies. Despite some limitations in dataset
scope and model implementation, the study provided
valuable insights into the strengths of each model in
cloud resource prediction.

Borkowski et al. [21] focused on enhancing
cloud resource utilization by predicting resource
needs with Artificial Neural Networks (ANN). Using
data from over 3 million build process records, the
ANN model was trained and validated, showing a
significant reduction in prediction error. The study
demonstrated the effectiveness of ANN in improving
resource management but acknowledged the
limitation of relying heavily on historical data, which
might not always be available.

Valarmathi & Kanaga Suba Raja [22] combined
Ensemble Random Forest (eRF) and LSTM models
to improve CPU utilization prediction accuracy in
cloud environments. Using a dataset from Alibaba,
the study showed that the eRF-LSTM model

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6384

outperformed conventional methods, achieving
enhanced accuracy and reduced training time.
However, the scope was limited to CPU utilization,
leaving out other resources like memory and storage
that could also impact overall cloud resource
management. This approach contributes to the
ongoing research by providing an innovative model
with improved prediction accuracy.

4. EXPERIMENTAL SETUP

This section will define the methodology, data
gathering, and data collection process. A well-
designed setup ensures the validity, reliability, and
reproducibility of the study's findings. This section
will outline the specific procedures and techniques
employed in this research to collect and prepare the
data for subsequent analysis and modeling.

A. Methodology

In developing a resource utilization prediction
system, choosing the right methodology is crucial.
The Waterfall methodology follows a linear, step-
by-step process, moving through phases like
requirement gathering, design, development, testing,
and deployment in sequence [7]. This method is
advantageous for projects with well-defined
requirements, as it encourages clear planning [7].
However, its rigidity can be a drawback when
changes or new insights arise, as revisiting previous
phases is difficult [11].

On the other hand, the agile methodology is more
flexible and iterative, breaking the project into
smaller cycles that allow for continuous feedback
and improvements [5]. This adaptability is
particularly useful for projects that require ongoing
stakeholder input, such as resource utilization
prediction [5]. Agile's iterative process enables early
prototyping and quick issue resolution, though it can
also lead to extended timelines and higher costs due
to the evolving project scope [5].

Given the need for continuous improvement and
stakeholder collaboration in the resource utilization
prediction system, the agile methodology is more
suitable. The development process under Agile
includes phases like requirements gathering, where
stakeholder needs are identified; design, where
appropriate prediction models are selected; and
construction, where the system is developed and
tested iteratively. Deployment and testing occur in
each iteration, with user acceptance testing towards
the end. Finally, feedback from stakeholders is
gathered to refine the system in subsequent
iterations, ensuring it meets user expectations and
operational standards.

B. Data Gathering

The author employed interviews and
observations to gather data and validate user
requirements for a resource utilization prediction
system in cloud environments. Interviews were
conducted with two cloud industry professionals to
gain insights into challenges, unpredictability of
workloads, monitoring processes, and the impact of
predictive tools on cloud resource management
decisions. Key challenges identified include
unpredictable workload spikes, difficulties in
accurate cost and resource estimation during the
design phase, and limitations of current tools in
handling dynamic environments. Auto scaling was
highlighted as a crucial feature for managing sudden
traffic surges, though it primarily reacts rather than
predicts. The professionals emphasized the need for
ongoing monitoring and optimization to prevent over
or under-provisioning.

Observations were used to analyze the training
process of the prediction models. By plotting data
and examining metrics like MAE and MAPE, the
author assessed the impact of different time intervals
on model accuracy. The observations helped identify
patterns such as seasonality, which are crucial for
accurate prediction.

From the analysis, user requirements were
inferred: tools that can accurately predict resource
utilization, particularly in dynamic environments,
and the need for continuous optimization to balance
short-term and long-term resource planning. The
insights gathered underscore the importance of
advanced predictive tools that can differentiate
between regular patterns and fluctuating demands.

C. Data Collection

This research utilizes the dataset titled
"AzureReadings_at_a_timestamp.csv," publicly
available on LeadingIndiaAI's GitHub repository
[10]. Stored in a comma-separated values (CSV)
format, this dataset allows for convenient use by
various software programs.

The data specifically focuses on CPU utilization
metrics gathered from Microsoft Azure, a prominent
cloud provider [10]. These metrics offer a
comprehensive perspective on resource consumption
patterns within virtual machines (VMs) [10].
Designed to capture the dynamic nature of cloud
resources, the dataset is meticulously sampled at a
high frequency of 5 minutes [10]. This granular
sampling interval provides a detailed picture of the
data, enabling researchers to observe even short-term
fluctuations in resource demands [10].

The values within the dataset are not explicitly
labeled as Hertz (Hz) or percentage. However,
considering the presence of values reaching a

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6385

million, it's highly improbable for them to represent
either unit. The most likely scenario is that the values
are scaled. This scaling serves a dual purpose:
protecting sensitive information and ensuring data
usability. Raw CPU utilization data might pose
privacy concerns; therefore, scaling the data
achieves a balance between security and
functionality, as the scaled values still accurately
reflect the underlying trends in the raw data.

5. DESIGN AND IMPLEMENTATION

Effective model development starts on a solid
foundation built through thorough data
understanding and preparation. This section will
focus on preparing the data into a suitable format for
model training and evaluation. An exploratory data
analysis will initiate the process to gain insights into
data characteristics, identify potential issues, and
extract vital features. Furthermore, the data
undergoes preprocessing to handle missing values,
outliers, and inconsistencies, ensuring data quality
and reliability. The reprocessing also applies the
features found throughout EDA. The clean and
prepared dataset proceed to go through model
building that will explore various algorithms and
techniques to develop a robust predictive model

A. Data Understanding

TABLE I. Variables Table

Variables Description

timestamp Timestamp with an interval of 5 minutes

min cpu
This metric indicates the lowest CPU usage recorded
during the five-minute interval, providing information
about potential idle periods or low-demand phases.

max cpu

This metric represents the peak CPU usage observed
within the five-minute interval, providing insights into
the upper bound of resource demand during that
period.

avg cpu
This metric captures the mean CPU utilization across
the entire five-minute interval, offering a
representative value of resource consumption.

This section describes the variables included in
the CSV files and their corresponding descriptions.
The timestamp column will serve as the index for the
dataset. The three main columns will be analyzed
through exploratory data analysis (EDA) to identify
patterns and create new features while removing
unnecessary information.

Before proceeding to model development, a
comprehensive understanding of the data is
important. An exploratory data analysis (EDA) is
critical in uncovering hidden patterns, trends, and
anomalies within the dataset. This examination aims
to extract valuable insights that will inform

subsequent modeling efforts. These are the key steps
that are involved in the EDA:

1. Import Libraries: Essential Python
libraries for data processing, such as Pandas
and Matplotlib, were imported to facilitate
the analysis.

2. Data Loading: The dataset was loaded
using the Pandas library. The 'timestamp'
column was converted to a datetime format
and set as the index to enable time-based
operations. The initial inspection of the
dataset confirmed successful loading and
revealed that the dataset had 8640 rows and
memory usage of approximately 270 KB.

3. Time Series Visualization: A line graph
was plotted to visualize the CPU utilization
metrics ('min_cpu', 'max_cpu', and
'avg_cpu'). The visualization revealed
periodic patterns with daily and weekly
cycles, along with an upward trend in
'avg_cpu' and 'max_cpu'. Occasional
extreme spikes suggested the presence of
anomalies.

4. Statistical Analysis: Descriptive statistics
were generated, showing that the dataset
had high mean values and large standard
deviations, indicating significant variation
in CPU usage. This variability suggested
the presence of dynamic workloads and
potential outliers.

5. Distribution Plots: The distribution of
CPU usage for each column was visualized
using histograms and KDE curves. The
'min_cpu' showed a normal distribution,
while 'max_cpu' and 'avg_cpu' were
slightly right skewed. The 'avg_cpu' was
deemed the most stable and representative
metric for modelling.

6. Correlation Matrix: A correlation matrix
and heatmap were generated, revealing
strong positive correlations between
'min_cpu', 'max_cpu', and 'avg_cpu'. The
high correlation supported the use of
'avg_cpu' for prediction as it effectively
represents overall CPU utilization.

7. Feature Filtering: Based on the analysis,
only the 'avg_cpu' column was selected for
further modeling. The dataset was reloaded,
and unnecessary columns were filtered out.

8. Null Value Check: The dataset was
checked for null values in the 'avg_cpu'
column, and none were found.

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6386

9. Data Shape Verification: The shape of the
dataset was confirmed, ensuring the correct
number of rows and columns were present
after filtering.

10. Anomaly Detection: Anomalies were
detected using the Interquartile Range
(IQR) method. Points above 1.5 million in
'avg_cpu' were identified as outliers and
marked as anomalies.

11. Anomaly Interpolation: The anomalies
were handled by interpolating the missing
values, filling the gaps with estimated
values based on surrounding data points.
The impact of this interpolation was
visualized to ensure the time series
remained consistent.

12. Time Series Decomposition: The time
series was decomposed into trend,
seasonality, and residual components using
multiplicative decomposition. The analysis
revealed a slight upward trend and strong
daily seasonality, which could be useful for
feature engineering.

13. Moving Average Calculation: A moving
average was calculated over a 24-hour
window to smooth out fluctuations. The
trend analysis indicated a non-linear,
polynomial trend, which could be important
for the model to learn.

14. Seasonal Subseries Plot: A seasonal
subseries plot was created to visualize
hourly patterns across different days. The
plot highlighted differences in CPU usage
between weekdays and weekends,
suggesting the influence of business day
effects.

15. Month Season Plot: A monthly seasonal
plot was generated to observe hourly
patterns across the month. This plot
reinforced the presence of distinct hourly
patterns, indicating that incorporating time-
based features could improve model
performance.

16. Period gram Time Series: A period gram
was used to analyse the frequency content
of the data. The dominant frequency was
identified as daily, supporting the earlier
findings of strong daily seasonality.

17. Lag Plot, ACF, and PACF: Lag plots,
along with Autocorrelation Function (ACF)
and Partial Autocorrelation Function
(PACF) analyses, were conducted to
explore the relationship between current
and past values. The analysis determined

that a lag of 36 (equivalent to 3 hours) was
optimal for retaining relevant data while
minimizing decay.

Overall, the EDA provided a comprehensive
understanding of the CPU utilization dataset,
revealing key patterns, correlations, and potential
features for modeling. The insights gained from this
analysis will guide the next steps in model
development and optimization.

B. Data Preprocessing

 The preprocessing of the CPU utilization dataset
involved several carefully considered steps to ensure
the data was ready for modelling. The process began
with importing the necessary libraries for data
manipulation, visualization, and model building,
setting the foundation for the subsequent tasks. The
dataset, containing 'timestamp' and 'avg_cpu'
columns, was then loaded. These specific columns
were chosen because 'avg_cpu' had a strong
correlation with both 'min_cpu' and 'max_cpu,'
making it a suitable representative for CPU
utilization. The timestamp data was parsed into date
time format and set as the index, and the dataset was
resampled to maintain consistent 5-minute intervals,
ensuring uniformity in the time series data.

 Next, the dataset was checked for missing values,
revealing none, which indicated a clean data set.
However, the dataset required further scrutiny for
anomalies. Using the Interquartile Range (IQR)
method, anomalies were identified and flagged in a
new column. These anomalies, likely representing
significant deviations from the norm, were then
addressed by replacing the corresponding 'avg_cpu'
values with NaNs. These missing values were
subsequently interpolated, a method chosen to
smooth out the data while maintaining the integrity
of the time series.

 To capture the underlying trend in the data,
polynomial regression was employed. A new
feature, 'time_numeric,' was created to map each data
point in the time series to a numerical value,
facilitating trend analysis. The resulting trend was
then added to the dataset as a new column.
Reproducibility was ensured by setting a fixed seed
for random operations, a critical step for maintaining
consistency in the results across multiple iterations,
particularly important in machine learning
experimentation.

 Recognizing the presence of periodic patterns in
the data, Fourier series were generated to capture the
seasonality. This step involved creating sine and
cosine components to reflect daily and weekly
cycles, providing the model with additional context
about recurring patterns in the data. Additionally, lag
features were created for the 'avg_cpu' column to

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6387

capture the influence of past values on current
observations. This was informed by prior analysis,
which indicated that lags up to 36 periods could be
relevant. Rows with missing values, resulting from
this lagging process, were removed to maintain data
reliability.

The data was then normalized using
MinMaxScaler, a crucial step for models like GRU
and LSTM, which are sensitive to the scale of input
features. The normalization process scaled the
features to a [0, 1] range, ensuring that all features
contributed equally during the modelling process. To
prepare the data for sequential tasks, a sliding
window of size 50 was created. This allowed the
model to learn patterns and dependencies within the
data over time, by structuring the data into
sequences.

Finally, the dataset was split into training,
validation, and testing sets, with a 70%, 20%, and
10% distribution, respectively. This split was done
for both features and target variables, with 'avg_cpu'
as the target and all other features contributing to the
model's predictions. These pre-processing steps
collectively ensured that the dataset was well-
prepared for effective modelling, with a focus on
capturing trends, seasonality, and temporal
dependencies, while maintaining data integrity and
consistency.

C. Model Building

 The model building process explored three
models: Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), and Random Forest, each
with specific configurations and approaches to
prediction and evaluation.

 The GRU model was first implemented as a
baseline, with no hyper parameter tuning. It
consisted of two GRU layers with 64 and 32 hidden
units, respectively, and a dropout rate of 20% to
prevent overfitting. The final layer was a Dense layer
with one neuron, intended for one-step-ahead
predictions. The model was trained and evaluated
using Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and accuracy metrics.
The baseline performance was strong, prompting
further exploration into multi-step predictions. The
GRU model was then extended to predict 12-time
steps ahead by adjusting the Dense layer to output 12
values. Finally, hyper parameter tuning using
Random Search optimized the GRU model's
performance by adjusting hidden units, dropout
rates, and learning rate, with early stopping
implemented to prevent overfitting.

 The LSTM model followed a similar structure to
the GRU model, with two LSTM layers of 64 and 32
hidden units and a 20% dropout rate. The model was

compiled using the Adam optimizer and a loss
function of Mean Squared Error (MSE). After
training and validation, the LSTM model's
performance was evaluated using the same metrics
as the GRU model. Hyper parameter tuning was also
conducted using Random Search, optimizing the
number of hidden units, dropout rates, and the
optimizer used. The best parameters were
determined to improve the LSTM model's
performance.

The Random Forest model was defined and trained
for regression with an initial configuration of 100
decision trees (n_estimators). The model was
trained, and predictions were made on the training,
validation, and testing sets. Manual hyperparameter
tuning was performed to optimize the model further,
adjusting parameters such as the number of trees,
maximum depth, minimum samples required to split
a node, and minimum samples per leaf. The best-
performing configuration was identified based on
evaluation metrics.

Overall, the model building process included a
thorough exploration of GRU, LSTM, and Random
Forest models. Each model was initially
implemented as a baseline and then optimized
through hyperparameter tuning. The GRU model
demonstrated strong baseline performance, which
was enhanced further for multi-step predictions. The
LSTM and Random Forest models were also fine-
tuned to achieve optimal results, with their
performance evaluated and compared across various
metrics.

6. MODELS RESULT AND DISCUSSION

 The discussion section provides a comprehensive
analysis of the various models used in the research,
focusing on their performance in predicting CPU
utilization. Among the models examined, the Gated
Recurrent Unit (GRU) models, both one-steps ahead
and 12-step ahead, Long Short-Term Memory
(LSTM) models, and Random Forest models were
evaluated based on their Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE),
and accuracy metrics.

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6388

A. Models Evaluation and Comparison

Fig. 1. GRU output line plot.

Fig. 2. GRU learning curves.

Fig. 3. GRU residual analysis.

Fig. 4. GRU metrics outputs.

 The final one-step ahead GRU model exhibited
the strongest performance across all evaluation
metrics. This model demonstrated a high degree of
accuracy, especially on the test set, where it achieved
a remarkable 99% accuracy. The analysis suggests
that the model generalizes well to unseen data,
though there is a slight indication of overfitting, as
seen from the comparison between the training and
test set performance. The learning curves and
residual analysis supported this observation,
showing that while the model performed well, there
is still minimal overfitting that might benefit from
further refinement.

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6389

Fig. 5. GRU base 12-steps ahead line plot.

Fig. 6. GRU base 12-steps ahead metrics outputs.

 On the other hand, the base 12-step ahead GRU
model did not perform as well as the one-step model.
It displayed significantly higher error rates and lower
accuracy. The discussion points out that this could be
attributed to the longer sequence length, which
makes capturing long-term patterns more
challenging. Moreover, the preprocessing steps for
the 12-step model were the same as those used for
the one-step model, including window size and lag
features. However, since these models are designed
to capture different sequential lengths—short-term
versus long-term—the preprocessing steps might
need to be reassessed to better accommodate the
needs of a 12-step ahead prediction model.

Fig. 8. GRU final 12-steps ahead line plots.

Fig. 9. GRU final 12-steps ahead metrics outputs.

 After tuning, the 12-step GRU model showed
some improvement, particularly in reducing
overfitting. Despite these enhancements, it still
struggled with handling longer sequences effectively
and continued to exhibit higher error rates compared
to the one-step GRU model. The discussion suggests
that further experimentation with preprocessing and
feature engineering could help improve the
performance of the 12-step model.

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6390

Fig. 10. LSTM base line plots.

Fig. 11. LSTM base metrics outputs.

The base LSTM model performed well on both
the training and test sets, with a slight decrease in
performance on the validation set. Although the
model demonstrated good overall performance, it
exhibited a minor degree of overfitting, as indicated
by the difference in MAE and MAPE between the
training and testing sets. This slight gap suggested
the need for further tuning to enhance the model's
performance.

Fig. 12. LSTM final line plot.

Fig. 13. LSTM final learning curve.

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6391

Fig. 14. LSTM final residual analysis.

Fig. 15. LSTM final metrics outputs.

The final tuned LSTM model showed a very
slight improvement over the base model. Although
there were some changes in the metrics, these
changes were minimal after rounding, and overall,
the model continued to exhibit strong training
performance with reasonable generalization to
unseen data. The learning curve analysis revealed
that while the model learned the data effectively,
there were some fluctuations in the validation loss,
indicating room for improvement, possibly through
the use of regularization techniques. The residual
analysis also highlighted some patterns and clusters
in the validation and test sets, suggesting that further
tuning or feature engineering could enhance the
model's ability to capture these patterns more
effectively.

Fig. 16. Random Forest base Training Set line plot.

Fig. 17. Random Forest base Testing Set line plot.

Fig. 18. Random Forest base metrics outputs.

 The Random Forest model initially showed
strong performance on the training set with very low
MAE and MAPE values. However, there was a
significant gap between the training and

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6392

validation/testing metrics, indicating a severe
overfitting issue. The discussion highlights that this
overfitting could be mitigated through
hyperparameter tuning.

Fig. 19. Random Forest final Training Set line plot.

Fig. 20. Random Forest final Testing Set line plot.

Fig. 21. Random Forest final metrics outputs.

After tuning, the Random Forest model showed
an improved performance with reduced overfitting,
as evidenced by the decreased MAE on the
validation and test sets. Despite this improvement,
the Random Forest model continued to struggle with
handling time series data, showing higher error rates
compared to the GRU and LSTM models. The
discussion suggests that the Random Forest model
may require additional features or more complex
preprocessing steps to better capture the patterns in
the time series data. Additionally, the model's
architecture, which is less suited for sequential data
compared to GRU and LSTM models, might be
inherently limited in its ability to effectively predict
dynamic time series data.

Fig. 22. Tuned model outputs.

 The final comparison across all models clearly
identifies the final one-step GRU model as the
superior performer, with the best generalization to
unseen data and minimal overfitting. The final 12-
step GRU model, while improved from its baseline
version, still fell short in comparison to the one-step
GRU model, particularly in handling long-term
sequences. The final LSTM model came close to the
performance of the one-step GRU model, showing
strong generalization and minimal overfitting, but it
still lagged slightly behind in overall accuracy and
error rates. The Random Forest model, even after
tuning, remained the weakest performer in this study,
likely due to its limitations in handling time series
data as effectively as the GRU and LSTM models.

The final section also compares these models to
those used in other research studies. The models in
this research, particularly the GRU and LSTM
models, demonstrated superior performance, with
lower MAE and MAPE values and higher accuracy
rates compared to models from other studies. This
strong performance is attributed to the specific
dataset, preprocessing, and tuning strategies

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6393

employed in this research, with the final one-step
GRU model emerging as the most effective model
for predicting CPU utilization in this context.

B. Model Deployment

 The model deployment section outlines the steps
taken to deploy the trained machine learning model,
starting with saving the model and scalers, followed
by the deployment process utilizing GitHub,
Streamlit, and AWS EC2. The process begins with
saving the trained TensorFlow model and the
associated scalers. The pickle library is used to save
the model as an HDF5 file. The scalers, which were
used to preprocess the data during training, are also
saved to ensure that any new data in the deployment
phase is processed consistently, thereby maintaining
the reliability of the predictions.

The next phase of deployment involves the actual
implementation of the model using Streamlit, a tool
that enables the creation of a user-friendly web
application. The deployment code is designed to load
the saved model and scalers, process the input data,
and make predictions. Users can upload a CSV file
containing historical CPU usage data, which the
application will preprocess, detect anomalies, and
perform feature engineering on before making
predictions using the pre-trained model. The
application then displays the first five rows of the
input data, the predicted values, a plot of the
prediction, and provides advice to the administrator
based on the predicted CPU usage.

The final step connects the application to the
AWS cloud by creating an EC2 instance. The EC2
instance is configured with Ubuntu, and a security
group is set up to allow SSH, HTTP, and HTTPS
access. Additionally, port 8501, which is used by the
Streamlit application, is opened. The deployment
process continues with connecting to the instance via
Putty, where several commands are executed to
update and upgrade system packages, install
necessary tools, clone the GitHub repository, and
install Python along with the required dependencies.
The application is then launched using Streamlit by
running the application script.

Once the application is running, it can be
accessed through a web browser using the public IP
address of the EC2 instance with port 8501. The user
interface allows administrators to upload CSV files,
process the data, and receive predictions along with
visualizations and actionable advice, ensuring
effective monitoring and management of CPU
utilization.

7. CONCLUSION

The present research successfully achieved its
primary objectives of comparing machine learning
models for CPU utilization prediction, surpassing the

accuracy of existing studies, and incorporating
multiple time series components to enhance
predictive performance. The comparative analysis of
GRU, LSTM, and Random Forest models yielded
valuable insights into model selection and
optimization.

The developed system, capable of predicting
CPU utilization based on historical data, offers
practical benefits for cloud administrators. By
anticipating resource demands, organizations can
optimize resource allocation, minimize over-
provisioning and under-provisioning, and enhance
overall operational efficiency. Accurate prediction
contributes to cost savings, improved service level
agreements, and reduced environmental impact.

While the research yielded promising results,
several limitations must be acknowledged. The sole
focus on CPU utilization limits the model's
generalizability to complex cloud environments
where multiple resources interact. Incorporating
additional resource metrics, such as memory and
disk usage, is necessary to capture the intricate
relationships between different resource types.

Furthermore, the study primarily concentrated on
short-term prediction, leaving room for
improvement in long-term forecasting. The
development of models capable of accurately
predicting resource utilization over extended periods
requires further investigation into complex temporal
patterns and their impact on prediction accuracy.

The availability of a limited dataset spanning
only one month posed challenges in capturing long-
term trends and seasonal variations. A more
extensive dataset encompassing multiple years
would provide a richer foundation for model
development and evaluation.

To address the limitations and advance the field
of cloud resource utilization prediction, several
recommendations are proposed. Future research
should prioritize the development of multivariate
models that consider the interdependencies between
various cloud resources. This would enhance the
model's ability to capture the holistic behaviour of
cloud systems.

Additionally, exploring advanced time series
modeling techniques and feature engineering
approaches is crucial for improving long-term
prediction accuracy. Investigating the impact of
different time scales, such as hourly, daily, and
weekly patterns, on model performance can provide
valuable insights. Expanding the dataset to cover a
longer duration is essential for capturing the full
spectrum of temporal variations and trends in cloud
resource utilization. This would enable the
development of more robust and reliable prediction

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6394

models. By addressing these recommendations,
future research can contribute to the development of
sophisticated and accurate cloud resource utilization
prediction systems, enabling organizations to
optimize their cloud operations and achieve greater
efficiency and sustainability.

ACKNOWLEDGMENT

This work was supported by the Deanship of
Scientific Research, Vice Presidency for Graduate
Studies and Scientific Research, King Faisal
University, Saudi Arabia (Grant No. KFU241776)

REFERENCES

[1]. Anupama, K. C., Shivakumar, B. R., &
Nagaraja, R. (2021). Resource Utilization
Prediction in Cloud Computing using Hybrid
Model. International Journal of Advanced
Computer Science and Applications, 12(4),
373–381.
https://doi.org/10.14569/IJACSA.2021.012044
7

[2]. Anushuya, G., Gopikaa, K., Gokul, S., &
Keerthika, P. (2018). Resource Management in
Cloud Computing using SVM with GA and
PSO. www.ijert.org

[3]. Ashraf Zargar, S. (2021). Introduction to
Sequence Learning Models: RNN, LSTM,
GRU.
https://doi.org/10.13140/RG.2.2.36370.99522

[4]. Awad, M., & Khanna, R. (2015a). Efficient
learning machines: Theories, concepts, and
applications for engineers and system
designers. In Efficient Learning Machines:
Theories, Concepts, and Applications for
Engineers and System Designers.
https://doi.org/10.1007/978-1-4302-5990-9

[5]. Awad, M., & Khanna, R. (2015b). Support
Vector Machines for Classification. In Efficient
Learning Machines.
https://doi.org/10.1007/978-1-4302-5990-9_3

[6]. Barker, J. (2020). Machine learning in M4:
What makes a good unstructured model? In
International Journal of Forecasting (Vol. 36,
Issue 1).
https://doi.org/10.1016/j.ijforecast.2019.06.00
1

[7]. Barroso, L. A., & Hölzle, U. (2009). The
datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis
Lectures on Computer Architecture, 6.
https://doi.org/10.2200/S00193ED1V01Y2009
05CAC006

[8]. Borkowski, M., Schulte, S., & Hochreiner, C.
(2016). Predicting cloud resource utilization.
Proceedings - 9th IEEE/ACM International

Conference on Utility and Cloud Computing,
UCC 2016.
https://doi.org/10.1145/2996890.2996907

[9]. Chandy, A. (2019). SMART RESOURCE
USAGE PREDICTION USING CLOUD
COMPUTING FOR MASSIVE DATA
PROCESSING SYSTEMS. Journal of
Information Technology and Digital World,
01(02), 108–118.
https://doi.org/10.36548/jitdw.2019.2.006

[10]. Chen, J., & Wang, Y. (2018). A resource
demand prediction method based on EEMD in
cloud computing. Procedia Computer Science,
131.
https://doi.org/10.1016/j.procs.2018.04.193

[11]. Cutler, A., Cutler, D. R., & Stevens, J. R.
(2012). Random forests. In Ensemble Machine
Learning: Methods and Applications.
https://doi.org/10.1007/9781441993267_5

[12]. Emmert-Streib, F., & Dehmer, M. (2022).
Taxonomy of machine learning paradigms: A
data-centric perspective. In Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery (Vol. 12, Issue 5).
https://doi.org/10.1002/widm.1470

[13]. Javatpoint. (2024). Agile Software
Development Life Cycle (SDLC).
https://www.javatpoint.com/agile-sdlc

[14]. Khan, T., Tian, W., Ilager, S., & Buyya, R.
(2022). Workload forecasting and energy state
estimation in cloud data centres: ML-centric
approach. Future Generation Computer
Systems, 128.
https://doi.org/10.1016/j.future.2021.10.019

[15]. Khan, T., Tian, W., Zhou, G., Ilager, S.,
Gong, M., & Buyya, R. (2022). Machine
learning (ML)-centric resource management in
cloud computing: A review and future
directions. In Journal of Network and Computer
Applications (Vol. 204).
https://doi.org/10.1016/j.jnca.2022.103405

[16]. Kumar, J., Singh, A. K., & Buyya, R.
(2021). Self-directed learning based workload
forecasting model for cloud resource
management. Information Sciences, 543.
https://doi.org/10.1016/j.ins.2020.07.012

[17]. LeadingIndiaAI. (2020). Prediction-of-
Dynamic-Cloud-Resources-Provisioning-for-
Workflow. GitHub. Retrieved August 20, 2024,
from
https://github.com/LeadingIndiaAI/Prediction-
of-Dynamic-Cloud-Resources-Provisioning-for-
Workflow/blob/master/AzureReadings_at_a_ti
mestamp.csv

 Journal of Theoretical and Applied Information Technology
15th September 2024. Vol.102. No. 17

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6395

[18]. Lipton, Z. C. (2015). A Critical Review of
Recurrent Neural Networks for Sequence
Learning.
https://www.researchgate.net/publication/2776
03865

[19]. Lutkevich, B. (2024). Waterfall Model.
https://www.techtarget.com/searchsoftwarequa
lity/definition/waterfall-model

[20]. Nasteski, V. (2017). An overview of the
supervised machine learning methods.
HORIZONS.B, 4.
https://doi.org/10.20544/horizons.b.04.1.17.p0
5

[21]. Pascanu, R., Mikolov, T., & Bengio, Y.
(2013). On the difficulty of training recurrent
neural networks. 30th International Conference
on Machine Learning, ICML 2013, PART 3.

[22]. Rana, A., & Tanwar, G. (n.d.).
Exemplifying Practical issues of Resource
Management in Cloud Computing.
www.ijert.org

[23]. Shyam, R., & Singh, R. (2021). A
Taxonomy of Machine Learning Techniques.
Advancements in Robotics, 8(3).

[24]. Spiliotis, E. (2023). Time Series
Forecasting with Statistical, Machine Learning,
and Deep Learning Methods: Past, Present, and
Future (pp. 49–75).
https://doi.org/10.1007/978-3-031-35879-1_3

[25]. Spiliotis, E. (2023). Time Series
Forecasting with Statistical, Machine
Learning, and Deep Learning Methods: Past,
Present, and Future (pp. 49–75).
https://doi.org/10.1007/978-3-031-35879-1_3

[26]. Srivastava, A., & Kumar, N. (2020).
Resource management techniques in cloud
computing: A state of art. ICIC Express Letters,
14(9).
https://doi.org/10.24507/icicel.14.09.909

[27]. Utmal, M. (2021). Taxonomy on Machine
Learning Algorithms. International Journal of
Recent Development in Engineering and
Technology Website: Www.Ijrdet.Com, 10(8).

[28]. Van Houdt, G., Mosquera, C., & Nápoles,
G. (2020). A review on the long short-term
memory model. Artificial Intelligence Review,
53(8). https://doi.org/10.1007/s10462-020-
09838-1

[29]. Velicer, W. F., & Molenaar, P. C. (2012).
Time Series Analysis for Psychological
Research. In Handbook of Psychology, Second
Edition.
https://doi.org/10.1002/9781118133880.hop20
2022

