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ABSTRACT 

This research introduces a resource utilization prediction tool tailored for dynamic and seasonal workloads 
in cloud environments. Traditional prediction methods often fall short in accuracy due to the constantly 
changing nature of cloud resources and workloads. To address this gap, the research proposes a machine 
learning-centric approach aimed at enhancing prediction accuracy, thereby promoting sustainability, energy 
savings, and improved user experience in line with SDG 7: Affordable and Clean Energy. The approach 
begins with data collection and preprocessing, employing techniques such as Fourier Series and Lag Features 
to capture temporal patterns. Three machine learning models—Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), and Random Forest—are developed, trained, and evaluated using metrics like MAE, 
RMSE, and MAPE. Hyperparameter tuning is conducted to optimize model performance and minimize 
overfitting. The best-performing model, identified as the one-step GRU, is then deployed using Streamlit and 
AWS EC2, with User Acceptance Testing (UAT) ensuring it meets performance standards. This 
comprehensive approach demonstrates significant improvements in prediction accuracy and resource 
management, contributing to more efficient and sustainable cloud computing practices. 
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1. INTRODUCTION 

The rapid growth of the digital age has 
transformed how businesses and individuals interact 
with technology, with cloud computing emerging as 
a critical innovation. Cloud computing offers 
scalable, flexible, and cost-effective solutions, 
allowing access to services like software, platforms, 
and infrastructure on a pay-as-you-go basis [1]. This 
shift has revolutionized commercial strategies and 
fostered digital growth [2]. However, the dynamic 
nature of cloud environments presents unique 
challenges, particularly in resource management [3]. 
Unlike traditional on-premises systems with fixed 
resource allocation, cloud computing requires 
continuous adjustment due to unpredictable user 
demands [4]. This creates a risk of over-
provisioning, leading to wasted resources and 
increased costs, or under-provisioning, which can 
result in poor service quality and unmet service level 

agreements (SLAs) [5]. Therefore, efficient and 
accurate resource utilization prediction is essential 
for optimizing cloud resource allocation, minimizing 
costs, and enhancing environmental sustainability.  

To address these challenges, various resource 
utilization prediction techniques, including statistical 
methods, machine learning models, and deep 
learning architectures, have been developed. 
Traditional methods like ARIMA have limitations in 
handling the non-linear and dynamic nature of cloud 
workloads, necessitating more adaptive and accurate 
approaches [6]. Machine learning models, such as 
weighted quadratic random forests, genetic 
algorithms, and artificial neural networks (ANNs), 
have shown promise in improving prediction 
accuracy, but there is still room for enhancement [7]. 
The complexity of cloud resources, especially with 
the increasing influence of digitalization, demands a 
more dynamic method capable of adapting to real-
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time demands and effectively handling seasonal and 
non-seasonal workload patterns [8]. The evolution of 
cloud computing requires prediction models that can 
accurately forecast resource utilization, particularly 
for CPU usage, to ensure cost-effectiveness, optimal 
service delivery, and user satisfaction.  

The aim of this project is to develop a machine 
learning-based model to optimize cloud resource 
utilization prediction, focusing on accurately 
forecasting dynamic cloud workloads, including 
factors like seasonality and trends. By conducting a 
comparative analysis of various models, the project 
seeks to enhance the accuracy of resource utilization 
predictions, targeting specific performance metrics 
such as Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE). The anticipated 
benefits of this research include significant cost 
savings, improved operational efficiency, and 
enhanced customer satisfaction by ensuring SLAs 
are met and minimizing service disruptions. The 
insights gained from accurate predictions will enable 
businesses to make data-driven decisions, gain a 
competitive edge, and focus on innovation, 
ultimately contributing to sustainable and cost-
effective cloud services. 

2. OVERVIEW OF RESOURCE 

UTILIZATION IN CLOUD COMPUTING 

This section provides a comprehensive overview 
of resource management and utilization in cloud 
computing. It explores the vital factors influencing 
resource consumption, and the challenges 
associated with effective allocation and utilization 
in cloud computing. Furthermore, it explores the 
application of machine learning techniques for 
accurate resource utilization prediction, a vital 
component of modern cloud management practices 

A. Resource Management and Utilization in Cloud 
Computing 

Cloud computing provides a scalable and flexible 
environment where users can access virtualized 
resources like memory, storage, network, and CPU 
on demand. This technology's inherent advantages, 
such as scalability, agility, and cost-effectiveness, 
make it a vital component of modern IT 
infrastructure. However, these benefits come with 
the challenge of managing these resources efficiently 
to satisfy both cloud providers and users. Resource 
management (RM) in cloud computing is crucial in 
this context, involving the acquisition, allocation, 
and monitoring of virtualized resources to ensure 
optimal performance and user satisfaction. Effective 
RM is key to balancing functionality, cost, and 
performance, ensuring the scalability, quality of 
service (QoS), and cost-effectiveness that cloud 
computing promises [9]. It focuses on capacity 

allocation, energy optimization, load balancing, and 
maintaining QoS to minimize downtime and ensure 
fast response times [10].  

The dynamic nature of cloud computing presents 
unique challenges in RM, especially compared to 
traditional static data centers. Resource provisioning 
and allocation must be adaptable to fluctuating user 
demands to avoid violating Service Level 
Agreements (SLAs) and ensure customer 
satisfaction (Srivastava & Kumar, 2020). The 
unpredictability of cloud workloads, driven by 
varying application demands, often leads to an 
imbalance in resource utilization within data centers 
[11]. For instance, studies have shown that average 
CPU utilization in data centers is only about 17.76%, 
with memory utilization at 77.93%, indicating a 
significant underutilization of resources [12]. This 
imbalance not only results in inefficient resource 
usage but also leads to excessive energy 
consumption, contributing to a higher carbon 
footprint [13]. Data centers, as reported by the 
International Energy Agency (IEA) [14], were 
responsible for approximately 1% of global 
greenhouse gas emissions in 2020, underscoring the 
environmental impact of inefficient resource 
management.  

To mitigate these challenges, resource 
management strategies in cloud computing need to 
evolve beyond traditional approaches. Conventional 
RM processes, which focus on allocating resources 
based on current demand, often lead to under-
provisioning or over-provisioning, where tasks may 
be left incomplete due to a lack of resources, or 
resources may be wasted, incurring unnecessary 
costs [15]. A more effective approach involves 
predictive resource management, which uses 
historical data to anticipate future workloads and 
adjust resource allocation accordingly [16]. This 
predictive approach enhances resource efficiency, 
reduces latency, and ensures better alignment with 
actual resource needs, thereby preventing 
underutilization and overutilization [17]. By 
accurately forecasting future resource requirements, 
cloud providers can optimize resource usage, lower 
costs, and reduce the environmental impact, 
ultimately achieving a more sustainable and cost-
effective cloud computing environment. 

B. Resource Utilization Prediction Techniques 

In cloud computing, resource utilization often 
faces imbalances that can lead to inefficiencies like 
over-provisioning or under-provisioning of 
resources. To address these challenges, cloud 
resource management increasingly relies on 
predictive techniques that leverage historical data to 
anticipate future demands. By accurately predicting 
future resource usage, cloud environments can 
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dynamically allocate resources, optimizing 
performance and cost efficiency. 

Machine learning (ML), a subfield of artificial 
intelligence, plays a crucial role in these predictive 
approaches [18]. ML algorithms enable systems to 
learn from historical data and improve their 
predictions over time, much like how humans learn 
from experience [19]. The history of ML dates to the 
1950s with Arthur Samuel’s work on checker-
playing programs, which marked the beginning of 
computers learning from data [20]. Over the decades, 
ML has expanded its influence across various 
industries, providing data-driven insights and 
enhancing decision-making processes in fields like 
healthcare, finance, and education. 

ML can be broadly categorized into several 
types: supervised, unsupervised, reinforcement, and 
semi-supervised learning. Supervised learning is 
highly relevant for resource utilization prediction in 
cloud environments [21]. In supervised learning, 
algorithms are trained on labeled data—input data 
paired with the correct output—allowing the model 
to learn by comparison and correction [22]. As the 
model processes more data, it refines its predictions, 
making it increasingly accurate over time [22]. 
Supervised learning is further divided into 
classification, which deals with discrete labels, and 
regression, which handles continuous labels like 
numerical values [23]. For instance, regression is 
commonly used in stock price prediction, where the 
data points are continuous and ordered [22].  

Unsupervised learning, another key ML 
approach, is used when the data lacks labels. Instead, 
the model identifies patterns and relationships within 
the raw data, making it particularly useful for 
clustering tasks where similar data points are 
grouped together [22]. While both supervised and 
unsupervised learning are powerful, traditional ML 
models often assume that data points are independent 
of one another, which can be a limitation in certain 
contexts [24]. 

This proceeds to the importance of time series 
analysis, particularly in cloud computing 
environments where resource usage data is 
inherently sequential. Unlike traditional ML models 
that treat data points as independent, time series 
analysis recognizes the temporal dependencies 
between data points [25]. In cloud environments, 
resource usage data such as CPU and memory 
consumption is collected over time, making time 
series analysis an essential tool for capturing patterns 
like trends, seasonality, and cyclical variations. 

Time series data is unique in that each data point 
is influenced by its predecessors, allowing for the 
identification of patterns that span across different 
time frames [25]. These patterns can include long-

term trends, such as the overall increase or decrease 
in resource usage, as well as short-term seasonal 
patterns, like the daily fluctuation in resource 
demand. Understanding these components is crucial 
for accurate prediction and resource management in 
cloud environments. 

For instance, Recurrent Neural Networks 
(RNNs) are a type of ML model designed to handle 
sequential data by retaining information from 
previous inputs to inform current predictions [26]. 
This ability to look back at past data makes RNNs 
particularly effective for time series forecasting, 
where understanding the order of information is key 
[26]. 

In summary, the integration of machine learning, 
particularly supervised learning, with time series 
analysis offers a robust framework for predicting 
resource utilization in cloud environments. By 
leveraging the strengths of both approaches, cloud 
resource management can proactively anticipate and 
respond to fluctuating workloads, ensuring optimal 
resource allocation and minimizing inefficiencies. 
This combination of predictive techniques and time 
series analysis represents a significant advancement 
in the ability to manage cloud resources effectively, 
aligning with the dynamic and ever-evolving nature 
of cloud computing environments. 

C. Machine Learning Models 

Support Vector Machines (SVMs) are machine 
learning models that seek to find an optimal 
hyperplane to separate data into distinct categories 
with the widest margin [27]. This clear boundary 
allows for immediate classification without 
calculating probabilities. SVMs are advantageous 
for their ability to generalize and avoid overfitting, 
particularly when handling non-linear data using the 
kernel trick [27]. However, SVMs are 
computationally intensive, particularly with large 
datasets. In cloud environments, Support Vector 
Regression (SVR), a variant of SVM, has been used 
to optimize resource allocation [28]. Although SVR 
offers accurate predictions and handles both linear 
and non-linear data effectively, it also requires 
significant computational resources [28]. 

Random Forest is an ensemble learning model 
that combines multiple decision trees to improve 
prediction accuracy [29]. It is particularly effective 
when dealing with datasets with many features and 
fewer data points, offering built-in error estimates 
[29]. However, Random Forest struggles to capture 
linear relationships within the data [29]. In cloud 
computing, Random Forest has been applied to 
enhance resource management and has demonstrated 
high accuracy in CPU, memory, and disk usage 
predictions [29]. Despite its strengths, the integration 
of Random Forest into complex systems can be 
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challenging, and security concerns in resource 
allocation need to be addressed [29]. 

Long Short-Term Memory (LSTM) networks are 
a type of Recurrent Neural Network (RNN) designed 
to capture long-term dependencies in sequential data, 
such as time series [30]. LSTMs are well-suited for 
tasks requiring the retention of past information to 
recognize trends and patterns, but they are complex 
to implement and require substantial computational 
resources [30]. LSTM has been widely used in 
forecasting CPU utilization in cloud environments, 
showing superior accuracy compared to other 
models like ARIMA [28]. However, the complexity 
and resource demands of LSTM make it less 
interpretable and harder to deploy [28]. 

Gated Recurrent Unit (GRU) networks are a 
more streamlined version of RNNs, designed to 
address the vanishing and exploding gradient 
problems commonly found in standard RNNs [25]. 
GRUs use gating mechanisms to selectively retain or 
forget information, making them effective at 
capturing complex temporal patterns in sequential 
data [25]. GRUs have been successfully applied to 
cloud resource utilization predictions, demonstrating 
strong performance in workload prediction and 
energy consumption estimation [25]. Despite their 
effectiveness, GRUs, like LSTMs, require 
significant computational resources and are complex 
to implement [25]. 

Statistical methods, such as Autoregressive 
Integrated Moving Average (ARIMA) and its 
seasonal variant SARIMA, are traditional 
approaches to time series forecasting [24]. These 
methods focus on understanding the underlying 
mechanisms generating the data, making them 
highly interpretable and useful for capturing linear 
trends and seasonality [24]. However, statistical 
methods struggle with non-linear data and may 
provide inaccurate predictions in such cases [24]. 
While they are simpler and less prone to overfitting 
compared to machine learning models, the need to 
select appropriate models for different patterns can 
make them less practical in dynamic environments. 

3. EXISTING SYSTEMS IN RESOURCE 

UTILIZATION IN CLOUD COMPUTING 

Nawrocki et al. [26] proposed a dynamic, data-
driven approach for cloud resource utilization 
prediction aimed at improving cost-effectiveness and 
environmental sustainability. This system adapts 
prediction algorithms to the nature of the data, 
overcoming the limitations of static methods that 
often result in under provisioning or 
overprovisioning of resources. By building a 
knowledge base from past data and selecting the best 
prediction model for each workload, the system 

ensures higher accuracy. However, the limited 
dataset scope and significant computational 
resources required for this approach are potential 
drawbacks. 

Al-Asaly et al. [27] introduced a deep learning-
based model using Diffusion Convolutional 
Recurrent Neural Networks (DCRNN) to address the 
challenge of fluctuating workloads in cloud 
environments. This model, tested on real-world CPU 
usage data from Planet Lab, demonstrated superior 
accuracy compared to conventional methods, as 
evidenced by lower MAPE and RMSE values. The 
DCRNN model effectively captures complex, non-
linear workload patterns and adapts to changes in 
workload automatically. However, its dependency 
on extensive computational resources and the quality 
and quantity of the dataset are limitations. 

Anupama et al. [28] proposed a hybrid approach 
combining SARIMA and LSTM models to tackle 
overprovisioning and under provisioning in cloud 
computing. SARIMA is adept at forecasting seasonal 
patterns, while LSTM handles non-linear and 
complex workloads. Tested on real-world data from 
Bitbrains cloud, this approach achieved lower MAE 
and MAPE, offering better accuracy and the ability 
to cover both seasonal and non-seasonal workloads. 
However, the complexity of combining two 
techniques and the focus on only CPU and memory 
usage are noted drawbacks. 

Nashold & Krishnan [29] compared SARIMA 
and LSTM models for predicting CPU usage in 
cloud environments. Using data from Microsoft 
Azure, the study found that SARIMA performed 
better for long-term predictions, while LSTM 
excelled in short-term forecasts. The research 
highlighted that SARIMA struggles with dynamic 
data, whereas LSTM is limited in forming long-term 
dependencies. Despite some limitations in dataset 
scope and model implementation, the study provided 
valuable insights into the strengths of each model in 
cloud resource prediction. 

Borkowski et al. [21] focused on enhancing 
cloud resource utilization by predicting resource 
needs with Artificial Neural Networks (ANN). Using 
data from over 3 million build process records, the 
ANN model was trained and validated, showing a 
significant reduction in prediction error. The study 
demonstrated the effectiveness of ANN in improving 
resource management but acknowledged the 
limitation of relying heavily on historical data, which 
might not always be available. 

Valarmathi & Kanaga Suba Raja [22] combined 
Ensemble Random Forest (eRF) and LSTM models 
to improve CPU utilization prediction accuracy in 
cloud environments. Using a dataset from Alibaba, 
the study showed that the eRF-LSTM model 
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outperformed conventional methods, achieving 
enhanced accuracy and reduced training time. 
However, the scope was limited to CPU utilization, 
leaving out other resources like memory and storage 
that could also impact overall cloud resource 
management. This approach contributes to the 
ongoing research by providing an innovative model 
with improved prediction accuracy. 

4. EXPERIMENTAL SETUP 

This section will define the methodology, data 
gathering, and data collection process. A well-
designed setup ensures the validity, reliability, and 
reproducibility of the study's findings. This section 
will outline the specific procedures and techniques 
employed in this research to collect and prepare the 
data for subsequent analysis and modeling. 

A. Methodology 

In developing a resource utilization prediction 
system, choosing the right methodology is crucial. 
The Waterfall methodology follows a linear, step-
by-step process, moving through phases like 
requirement gathering, design, development, testing, 
and deployment in sequence [7]. This method is 
advantageous for projects with well-defined 
requirements, as it encourages clear planning [7]. 
However, its rigidity can be a drawback when 
changes or new insights arise, as revisiting previous 
phases is difficult [11]. 

On the other hand, the agile methodology is more 
flexible and iterative, breaking the project into 
smaller cycles that allow for continuous feedback 
and improvements [5]. This adaptability is 
particularly useful for projects that require ongoing 
stakeholder input, such as resource utilization 
prediction [5]. Agile's iterative process enables early 
prototyping and quick issue resolution, though it can 
also lead to extended timelines and higher costs due 
to the evolving project scope [5]. 

Given the need for continuous improvement and 
stakeholder collaboration in the resource utilization 
prediction system, the agile methodology is more 
suitable. The development process under Agile 
includes phases like requirements gathering, where 
stakeholder needs are identified; design, where 
appropriate prediction models are selected; and 
construction, where the system is developed and 
tested iteratively. Deployment and testing occur in 
each iteration, with user acceptance testing towards 
the end. Finally, feedback from stakeholders is 
gathered to refine the system in subsequent 
iterations, ensuring it meets user expectations and 
operational standards. 

B. Data Gathering 

The author employed interviews and 
observations to gather data and validate user 
requirements for a resource utilization prediction 
system in cloud environments. Interviews were 
conducted with two cloud industry professionals to 
gain insights into challenges, unpredictability of 
workloads, monitoring processes, and the impact of 
predictive tools on cloud resource management 
decisions. Key challenges identified include 
unpredictable workload spikes, difficulties in 
accurate cost and resource estimation during the 
design phase, and limitations of current tools in 
handling dynamic environments. Auto scaling was 
highlighted as a crucial feature for managing sudden 
traffic surges, though it primarily reacts rather than 
predicts. The professionals emphasized the need for 
ongoing monitoring and optimization to prevent over 
or under-provisioning. 

Observations were used to analyze the training 
process of the prediction models. By plotting data 
and examining metrics like MAE and MAPE, the 
author assessed the impact of different time intervals 
on model accuracy. The observations helped identify 
patterns such as seasonality, which are crucial for 
accurate prediction. 

From the analysis, user requirements were 
inferred: tools that can accurately predict resource 
utilization, particularly in dynamic environments, 
and the need for continuous optimization to balance 
short-term and long-term resource planning. The 
insights gathered underscore the importance of 
advanced predictive tools that can differentiate 
between regular patterns and fluctuating demands.  

C. Data Collection 

This research utilizes the dataset titled 
"AzureReadings_at_a_timestamp.csv," publicly 
available on LeadingIndiaAI's GitHub repository 
[10]. Stored in a comma-separated values (CSV) 
format, this dataset allows for convenient use by 
various software programs. 

The data specifically focuses on CPU utilization 
metrics gathered from Microsoft Azure, a prominent 
cloud provider [10]. These metrics offer a 
comprehensive perspective on resource consumption 
patterns within virtual machines (VMs) [10]. 
Designed to capture the dynamic nature of cloud 
resources, the dataset is meticulously sampled at a 
high frequency of 5 minutes [10]. This granular 
sampling interval provides a detailed picture of the 
data, enabling researchers to observe even short-term 
fluctuations in resource demands [10]. 

The values within the dataset are not explicitly 
labeled as Hertz (Hz) or percentage. However, 
considering the presence of values reaching a 
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million, it's highly improbable for them to represent 
either unit. The most likely scenario is that the values 
are scaled. This scaling serves a dual purpose: 
protecting sensitive information and ensuring data 
usability. Raw CPU utilization data might pose 
privacy concerns; therefore, scaling the data 
achieves a balance between security and 
functionality, as the scaled values still accurately 
reflect the underlying trends in the raw data.  

5. DESIGN AND IMPLEMENTATION 

Effective model development starts on a solid 
foundation built through thorough data 
understanding and preparation. This section will 
focus on preparing the data into a suitable format for 
model training and evaluation. An exploratory data 
analysis will initiate the process to gain insights into 
data characteristics, identify potential issues, and 
extract vital features. Furthermore, the data 
undergoes preprocessing to handle missing values, 
outliers, and inconsistencies, ensuring data quality 
and reliability. The reprocessing also applies the 
features found throughout EDA. The clean and 
prepared dataset proceed to go through model 
building that will explore various algorithms and 
techniques to develop a robust predictive model 

A. Data Understanding 

TABLE I.  Variables Table 

Variables Description 

timestamp Timestamp with an interval of 5 minutes 

min cpu 
This metric indicates the lowest CPU usage recorded 
during the five-minute interval, providing information 
about potential idle periods or low-demand phases. 

max cpu 

This metric represents the peak CPU usage observed 
within the five-minute interval, providing insights into 
the upper bound of resource demand during that 
period. 

avg cpu 
This metric captures the mean CPU utilization across 
the entire five-minute interval, offering a 
representative value of resource consumption. 

 

This section describes the variables included in 
the CSV files and their corresponding descriptions. 
The timestamp column will serve as the index for the 
dataset. The three main columns will be analyzed 
through exploratory data analysis (EDA) to identify 
patterns and create new features while removing 
unnecessary information.  

Before proceeding to model development, a 
comprehensive understanding of the data is 
important. An exploratory data analysis (EDA) is 
critical in uncovering hidden patterns, trends, and 
anomalies within the dataset. This examination aims 
to extract valuable insights that will inform 

subsequent modeling efforts. These are the key steps 
that are involved in the EDA: 

1. Import Libraries: Essential Python 
libraries for data processing, such as Pandas 
and Matplotlib, were imported to facilitate 
the analysis. 

2. Data Loading: The dataset was loaded 
using the Pandas library. The 'timestamp' 
column was converted to a datetime format 
and set as the index to enable time-based 
operations. The initial inspection of the 
dataset confirmed successful loading and 
revealed that the dataset had 8640 rows and 
memory usage of approximately 270 KB. 

3. Time Series Visualization: A line graph 
was plotted to visualize the CPU utilization 
metrics ('min_cpu', 'max_cpu', and 
'avg_cpu'). The visualization revealed 
periodic patterns with daily and weekly 
cycles, along with an upward trend in 
'avg_cpu' and 'max_cpu'. Occasional 
extreme spikes suggested the presence of 
anomalies. 

4. Statistical Analysis: Descriptive statistics 
were generated, showing that the dataset 
had high mean values and large standard 
deviations, indicating significant variation 
in CPU usage. This variability suggested 
the presence of dynamic workloads and 
potential outliers. 

5. Distribution Plots: The distribution of 
CPU usage for each column was visualized 
using histograms and KDE curves. The 
'min_cpu' showed a normal distribution, 
while 'max_cpu' and 'avg_cpu' were 
slightly right skewed. The 'avg_cpu' was 
deemed the most stable and representative 
metric for modelling. 

6. Correlation Matrix: A correlation matrix 
and heatmap were generated, revealing 
strong positive correlations between 
'min_cpu', 'max_cpu', and 'avg_cpu'. The 
high correlation supported the use of 
'avg_cpu' for prediction as it effectively 
represents overall CPU utilization. 

7. Feature Filtering: Based on the analysis, 
only the 'avg_cpu' column was selected for 
further modeling. The dataset was reloaded, 
and unnecessary columns were filtered out. 

8. Null Value Check: The dataset was 
checked for null values in the 'avg_cpu' 
column, and none were found. 
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9. Data Shape Verification: The shape of the 
dataset was confirmed, ensuring the correct 
number of rows and columns were present 
after filtering. 

10. Anomaly Detection: Anomalies were 
detected using the Interquartile Range 
(IQR) method. Points above 1.5 million in 
'avg_cpu' were identified as outliers and 
marked as anomalies. 

11. Anomaly Interpolation: The anomalies 
were handled by interpolating the missing 
values, filling the gaps with estimated 
values based on surrounding data points. 
The impact of this interpolation was 
visualized to ensure the time series 
remained consistent. 

12. Time Series Decomposition: The time 
series was decomposed into trend, 
seasonality, and residual components using 
multiplicative decomposition. The analysis 
revealed a slight upward trend and strong 
daily seasonality, which could be useful for 
feature engineering. 

13. Moving Average Calculation: A moving 
average was calculated over a 24-hour 
window to smooth out fluctuations. The 
trend analysis indicated a non-linear, 
polynomial trend, which could be important 
for the model to learn. 

14. Seasonal Subseries Plot: A seasonal 
subseries plot was created to visualize 
hourly patterns across different days. The 
plot highlighted differences in CPU usage 
between weekdays and weekends, 
suggesting the influence of business day 
effects. 

15. Month Season Plot: A monthly seasonal 
plot was generated to observe hourly 
patterns across the month. This plot 
reinforced the presence of distinct hourly 
patterns, indicating that incorporating time-
based features could improve model 
performance. 

16. Period gram Time Series: A period gram 
was used to analyse the frequency content 
of the data. The dominant frequency was 
identified as daily, supporting the earlier 
findings of strong daily seasonality. 

17. Lag Plot, ACF, and PACF: Lag plots, 
along with Autocorrelation Function (ACF) 
and Partial Autocorrelation Function 
(PACF) analyses, were conducted to 
explore the relationship between current 
and past values. The analysis determined 

that a lag of 36 (equivalent to 3 hours) was 
optimal for retaining relevant data while 
minimizing decay. 

Overall, the EDA provided a comprehensive 
understanding of the CPU utilization dataset, 
revealing key patterns, correlations, and potential 
features for modeling. The insights gained from this 
analysis will guide the next steps in model 
development and optimization. 

B. Data Preprocessing 

 The preprocessing of the CPU utilization dataset 
involved several carefully considered steps to ensure 
the data was ready for modelling. The process began 
with importing the necessary libraries for data 
manipulation, visualization, and model building, 
setting the foundation for the subsequent tasks. The 
dataset, containing 'timestamp' and 'avg_cpu' 
columns, was then loaded. These specific columns 
were chosen because 'avg_cpu' had a strong 
correlation with both 'min_cpu' and 'max_cpu,' 
making it a suitable representative for CPU 
utilization. The timestamp data was parsed into date 
time format and set as the index, and the dataset was 
resampled to maintain consistent 5-minute intervals, 
ensuring uniformity in the time series data. 

 Next, the dataset was checked for missing values, 
revealing none, which indicated a clean data set. 
However, the dataset required further scrutiny for 
anomalies. Using the Interquartile Range (IQR) 
method, anomalies were identified and flagged in a 
new column. These anomalies, likely representing 
significant deviations from the norm, were then 
addressed by replacing the corresponding 'avg_cpu' 
values with NaNs. These missing values were 
subsequently interpolated, a method chosen to 
smooth out the data while maintaining the integrity 
of the time series. 

 To capture the underlying trend in the data, 
polynomial regression was employed. A new 
feature, 'time_numeric,' was created to map each data 
point in the time series to a numerical value, 
facilitating trend analysis. The resulting trend was 
then added to the dataset as a new column. 
Reproducibility was ensured by setting a fixed seed 
for random operations, a critical step for maintaining 
consistency in the results across multiple iterations, 
particularly important in machine learning 
experimentation. 

 Recognizing the presence of periodic patterns in 
the data, Fourier series were generated to capture the 
seasonality. This step involved creating sine and 
cosine components to reflect daily and weekly 
cycles, providing the model with additional context 
about recurring patterns in the data. Additionally, lag 
features were created for the 'avg_cpu' column to 
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capture the influence of past values on current 
observations. This was informed by prior analysis, 
which indicated that lags up to 36 periods could be 
relevant. Rows with missing values, resulting from 
this lagging process, were removed to maintain data 
reliability. 

The data was then normalized using 
MinMaxScaler, a crucial step for models like GRU 
and LSTM, which are sensitive to the scale of input 
features. The normalization process scaled the 
features to a [0, 1] range, ensuring that all features 
contributed equally during the modelling process. To 
prepare the data for sequential tasks, a sliding 
window of size 50 was created. This allowed the 
model to learn patterns and dependencies within the 
data over time, by structuring the data into 
sequences. 

Finally, the dataset was split into training, 
validation, and testing sets, with a 70%, 20%, and 
10% distribution, respectively. This split was done 
for both features and target variables, with 'avg_cpu' 
as the target and all other features contributing to the 
model's predictions. These pre-processing steps 
collectively ensured that the dataset was well-
prepared for effective modelling, with a focus on 
capturing trends, seasonality, and temporal 
dependencies, while maintaining data integrity and 
consistency. 

C. Model Building 

 The model building process explored three 
models: Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), and Random Forest, each 
with specific configurations and approaches to 
prediction and evaluation. 

 The GRU model was first implemented as a 
baseline, with no hyper parameter tuning. It 
consisted of two GRU layers with 64 and 32 hidden 
units, respectively, and a dropout rate of 20% to 
prevent overfitting. The final layer was a Dense layer 
with one neuron, intended for one-step-ahead 
predictions. The model was trained and evaluated 
using Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and accuracy metrics. 
The baseline performance was strong, prompting 
further exploration into multi-step predictions. The 
GRU model was then extended to predict 12-time 
steps ahead by adjusting the Dense layer to output 12 
values. Finally, hyper parameter tuning using 
Random Search optimized the GRU model's 
performance by adjusting hidden units, dropout 
rates, and learning rate, with early stopping 
implemented to prevent overfitting. 

 The LSTM model followed a similar structure to 
the GRU model, with two LSTM layers of 64 and 32 
hidden units and a 20% dropout rate. The model was 

compiled using the Adam optimizer and a loss 
function of Mean Squared Error (MSE). After 
training and validation, the LSTM model's 
performance was evaluated using the same metrics 
as the GRU model. Hyper parameter tuning was also 
conducted using Random Search, optimizing the 
number of hidden units, dropout rates, and the 
optimizer used. The best parameters were 
determined to improve the LSTM model's 
performance. 

The Random Forest model was defined and trained 
for regression with an initial configuration of 100 
decision trees (n_estimators). The model was 
trained, and predictions were made on the training, 
validation, and testing sets. Manual hyperparameter 
tuning was performed to optimize the model further, 
adjusting parameters such as the number of trees, 
maximum depth, minimum samples required to split 
a node, and minimum samples per leaf. The best-
performing configuration was identified based on 
evaluation metrics. 

Overall, the model building process included a 
thorough exploration of GRU, LSTM, and Random 
Forest models. Each model was initially 
implemented as a baseline and then optimized 
through hyperparameter tuning. The GRU model 
demonstrated strong baseline performance, which 
was enhanced further for multi-step predictions. The 
LSTM and Random Forest models were also fine-
tuned to achieve optimal results, with their 
performance evaluated and compared across various 
metrics. 

6. MODELS RESULT AND DISCUSSION 

 The discussion section provides a comprehensive 
analysis of the various models used in the research, 
focusing on their performance in predicting CPU 
utilization. Among the models examined, the Gated 
Recurrent Unit (GRU) models, both one-steps ahead 
and 12-step ahead, Long Short-Term Memory 
(LSTM) models, and Random Forest models were 
evaluated based on their Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), 
and accuracy metrics. 
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A. Models Evaluation and Comparison 

 
Fig. 1. GRU output line plot. 

 

 
Fig. 2. GRU learning curves. 

 

 
Fig. 3. GRU residual analysis. 

 

 
Fig. 4. GRU metrics outputs. 

 
 The final one-step ahead GRU model exhibited 
the strongest performance across all evaluation 
metrics. This model demonstrated a high degree of 
accuracy, especially on the test set, where it achieved 
a remarkable 99% accuracy. The analysis suggests 
that the model generalizes well to unseen data, 
though there is a slight indication of overfitting, as 
seen from the comparison between the training and 
test set performance. The learning curves and 
residual analysis supported this observation, 
showing that while the model performed well, there 
is still minimal overfitting that might benefit from 
further refinement. 
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Fig. 5. GRU base 12-steps ahead line plot. 

 

 
Fig. 6. GRU base 12-steps ahead metrics outputs. 

 

 On the other hand, the base 12-step ahead GRU 
model did not perform as well as the one-step model. 
It displayed significantly higher error rates and lower 
accuracy. The discussion points out that this could be 
attributed to the longer sequence length, which 
makes capturing long-term patterns more 
challenging. Moreover, the preprocessing steps for 
the 12-step model were the same as those used for 
the one-step model, including window size and lag 
features. However, since these models are designed 
to capture different sequential lengths—short-term 
versus long-term—the preprocessing steps might 
need to be reassessed to better accommodate the 
needs of a 12-step ahead prediction model. 

 
Fig. 8. GRU final 12-steps ahead line plots. 

 

 
Fig. 9. GRU final 12-steps ahead metrics outputs. 

 

 After tuning, the 12-step GRU model showed 
some improvement, particularly in reducing 
overfitting. Despite these enhancements, it still 
struggled with handling longer sequences effectively 
and continued to exhibit higher error rates compared 
to the one-step GRU model. The discussion suggests 
that further experimentation with preprocessing and 
feature engineering could help improve the 
performance of the 12-step model. 
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Fig. 10. LSTM base line plots. 
 

 
Fig. 11. LSTM base metrics outputs. 

 

The base LSTM model performed well on both 
the training and test sets, with a slight decrease in 
performance on the validation set. Although the 
model demonstrated good overall performance, it 
exhibited a minor degree of overfitting, as indicated 
by the difference in MAE and MAPE between the 
training and testing sets. This slight gap suggested 
the need for further tuning to enhance the model's 
performance. 

 
Fig. 12. LSTM final line plot. 

 

 
Fig. 13. LSTM final learning curve. 
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Fig. 14. LSTM final residual analysis. 

 

 
Fig. 15. LSTM final metrics outputs. 

 

The final tuned LSTM model showed a very 
slight improvement over the base model. Although 
there were some changes in the metrics, these 
changes were minimal after rounding, and overall, 
the model continued to exhibit strong training 
performance with reasonable generalization to 
unseen data. The learning curve analysis revealed 
that while the model learned the data effectively, 
there were some fluctuations in the validation loss, 
indicating room for improvement, possibly through 
the use of regularization techniques. The residual 
analysis also highlighted some patterns and clusters 
in the validation and test sets, suggesting that further 
tuning or feature engineering could enhance the 
model's ability to capture these patterns more 
effectively. 

 

Fig. 16. Random Forest base Training Set line plot. 
 

 

Fig. 17. Random Forest base Testing Set line plot. 
 

 

Fig. 18. Random Forest base metrics outputs. 
 

 The Random Forest model initially showed 
strong performance on the training set with very low 
MAE and MAPE values. However, there was a 
significant gap between the training and 
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validation/testing metrics, indicating a severe 
overfitting issue. The discussion highlights that this 
overfitting could be mitigated through 
hyperparameter tuning. 

 
Fig. 19. Random Forest final Training Set line plot. 

 

 
Fig. 20. Random Forest final Testing Set line plot. 

 

 
Fig. 21. Random Forest final metrics outputs. 

 

After tuning, the Random Forest model showed 
an improved performance with reduced overfitting, 
as evidenced by the decreased MAE on the 
validation and test sets. Despite this improvement, 
the Random Forest model continued to struggle with 
handling time series data, showing higher error rates 
compared to the GRU and LSTM models. The 
discussion suggests that the Random Forest model 
may require additional features or more complex 
preprocessing steps to better capture the patterns in 
the time series data. Additionally, the model's 
architecture, which is less suited for sequential data 
compared to GRU and LSTM models, might be 
inherently limited in its ability to effectively predict 
dynamic time series data. 

 

 
Fig. 22. Tuned model outputs. 

 

 The final comparison across all models clearly 
identifies the final one-step GRU model as the 
superior performer, with the best generalization to 
unseen data and minimal overfitting. The final 12-
step GRU model, while improved from its baseline 
version, still fell short in comparison to the one-step 
GRU model, particularly in handling long-term 
sequences. The final LSTM model came close to the 
performance of the one-step GRU model, showing 
strong generalization and minimal overfitting, but it 
still lagged slightly behind in overall accuracy and 
error rates. The Random Forest model, even after 
tuning, remained the weakest performer in this study, 
likely due to its limitations in handling time series 
data as effectively as the GRU and LSTM models. 

The final section also compares these models to 
those used in other research studies. The models in 
this research, particularly the GRU and LSTM 
models, demonstrated superior performance, with 
lower MAE and MAPE values and higher accuracy 
rates compared to models from other studies. This 
strong performance is attributed to the specific 
dataset, preprocessing, and tuning strategies 



 Journal of Theoretical and Applied Information Technology 
15th September 2024. Vol.102. No. 17 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6393 

 

employed in this research, with the final one-step 
GRU model emerging as the most effective model 
for predicting CPU utilization in this context. 

B. Model Deployment 

 The model deployment section outlines the steps 
taken to deploy the trained machine learning model, 
starting with saving the model and scalers, followed 
by the deployment process utilizing GitHub, 
Streamlit, and AWS EC2. The process begins with 
saving the trained TensorFlow model and the 
associated scalers. The pickle library is used to save 
the model as an HDF5 file. The scalers, which were 
used to preprocess the data during training, are also 
saved to ensure that any new data in the deployment 
phase is processed consistently, thereby maintaining 
the reliability of the predictions. 

The next phase of deployment involves the actual 
implementation of the model using Streamlit, a tool 
that enables the creation of a user-friendly web 
application. The deployment code is designed to load 
the saved model and scalers, process the input data, 
and make predictions. Users can upload a CSV file 
containing historical CPU usage data, which the 
application will preprocess, detect anomalies, and 
perform feature engineering on before making 
predictions using the pre-trained model. The 
application then displays the first five rows of the 
input data, the predicted values, a plot of the 
prediction, and provides advice to the administrator 
based on the predicted CPU usage. 

The final step connects the application to the 
AWS cloud by creating an EC2 instance. The EC2 
instance is configured with Ubuntu, and a security 
group is set up to allow SSH, HTTP, and HTTPS 
access. Additionally, port 8501, which is used by the 
Streamlit application, is opened. The deployment 
process continues with connecting to the instance via 
Putty, where several commands are executed to 
update and upgrade system packages, install 
necessary tools, clone the GitHub repository, and 
install Python along with the required dependencies. 
The application is then launched using Streamlit by 
running the application script. 

Once the application is running, it can be 
accessed through a web browser using the public IP 
address of the EC2 instance with port 8501. The user 
interface allows administrators to upload CSV files, 
process the data, and receive predictions along with 
visualizations and actionable advice, ensuring 
effective monitoring and management of CPU 
utilization. 

7. CONCLUSION 

The present research successfully achieved its 
primary objectives of comparing machine learning 
models for CPU utilization prediction, surpassing the 

accuracy of existing studies, and incorporating 
multiple time series components to enhance 
predictive performance. The comparative analysis of 
GRU, LSTM, and Random Forest models yielded 
valuable insights into model selection and 
optimization. 

The developed system, capable of predicting 
CPU utilization based on historical data, offers 
practical benefits for cloud administrators. By 
anticipating resource demands, organizations can 
optimize resource allocation, minimize over-
provisioning and under-provisioning, and enhance 
overall operational efficiency. Accurate prediction 
contributes to cost savings, improved service level 
agreements, and reduced environmental impact. 

While the research yielded promising results, 
several limitations must be acknowledged. The sole 
focus on CPU utilization limits the model's 
generalizability to complex cloud environments 
where multiple resources interact. Incorporating 
additional resource metrics, such as memory and 
disk usage, is necessary to capture the intricate 
relationships between different resource types. 

Furthermore, the study primarily concentrated on 
short-term prediction, leaving room for 
improvement in long-term forecasting. The 
development of models capable of accurately 
predicting resource utilization over extended periods 
requires further investigation into complex temporal 
patterns and their impact on prediction accuracy. 

The availability of a limited dataset spanning 
only one month posed challenges in capturing long-
term trends and seasonal variations. A more 
extensive dataset encompassing multiple years 
would provide a richer foundation for model 
development and evaluation. 

To address the limitations and advance the field 
of cloud resource utilization prediction, several 
recommendations are proposed. Future research 
should prioritize the development of multivariate 
models that consider the interdependencies between 
various cloud resources. This would enhance the 
model's ability to capture the holistic behaviour of 
cloud systems. 

Additionally, exploring advanced time series 
modeling techniques and feature engineering 
approaches is crucial for improving long-term 
prediction accuracy. Investigating the impact of 
different time scales, such as hourly, daily, and 
weekly patterns, on model performance can provide 
valuable insights. Expanding the dataset to cover a 
longer duration is essential for capturing the full 
spectrum of temporal variations and trends in cloud 
resource utilization. This would enable the 
development of more robust and reliable prediction 



 Journal of Theoretical and Applied Information Technology 
15th September 2024. Vol.102. No. 17 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6394 

 

models. By addressing these recommendations, 
future research can contribute to the development of 
sophisticated and accurate cloud resource utilization 
prediction systems, enabling organizations to 
optimize their cloud operations and achieve greater 
efficiency and sustainability. 
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