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ABSTRACT 

 
Surface electromyographic (sEMG) signals are a non-invasive method for acquiring signals that play a 
fundamental role in the monitoring of prosthetic devices by providing information about human motor 
functions. This leads to the need for accurate classification of sEMG signals, despite variations in signal 
stationarity, the presence of sensor noise, differences between the muscles involved, and the peculiarities of 
each patient. This study focuses on the classification of hand grip postures using sEMG signals acquired from 
amputee patients. Special emphasis is placed on the use of the time-frequency domain for feature extraction, 
using the spectral analysis of the reduced-time Fourier transform (STFT). To carry out this task, a 
classification model based on a convolutional neural network (CNN) is used. The classification method is 
adjusted, trained, and evaluated through three experiments. The first, called "One to One", yields accuracy 
percentages of 90.84%, 91.05%, and 91.13% for spectrograms of 32x32, 64x64, and 128x128 in size, 
respectively. In the second validation, called "All by One", an accuracy of 62.28% is achieved for 
spectrograms of 32x32 pixels. Finally, in the last K-fold cross-validation validation, an average accuracy of 
86.73%, 86.77%, and 87.97% is obtained for spectrograms of 32x32, 64x64, and 128x128 in size, 
respectively. 
Keywords: Electromyography, Hand Gesture, Classification, STFT, CNN. 
 
1. INTRODUCTION 
 

Advancements in robotics and artificial 
intelligence have propelled the creation of 
innovative technologies in fields such as robot-
assisted rehabilitation, biofeedback, ergonomics, 
and neurophysiology. These technologies focus on 
understanding muscular coordination, defined as the 
process in which muscles activate and contract to 
generate force in the joints, whether consciously or 
automatically. Technological progress has 
stimulated the development of signal processing 
techniques, particularly those related to non-periodic 
and transient electromyographic (EMG) signals. 
These techniques find applications in the diagnosis 
of neuromuscular diseases, human-machine 
interaction, gaming experiences, sign language 
detection, virtual reality, exoskeleton design, and 
monitoring devices and systems for individuals with 
amputations, such as myoelectric prosthetics. 

These innovations promise to enhance 
autonomy and the quality of life for individuals with 
upper limb disabilities, opening new perspectives in 
rehabilitation and healthcare. The acquisition and 

processing of EMG signals are crucial in the 
classification of hand grip postures, identifying 
relevant features in muscle contraction patterns. The 
EMG signal preprocessing to eliminate harmonics, 
feature extraction using time windows, and 
transforming the EMG signal into the frequency 
domain through the conventional Fourier transform 
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(FT), extracting features such as magnitude, phase, 
and power spectral density (PSD).  
Figure 1: The schematic visualization of the proposed 
method. 

In this context, the Short-Time Fourier 
Transform (STFT) is employed to represent 
temporal changes in the signal frequency. The STFT 
is generated by shifting a window along the signal 
and calculating the FT at time intervals defined by 
the width of the window, providing a time-frequency 
representation of the EMG signal. Recent research 
has revealed that the STFT offers frequency-related 
features, such as spectral moment, frequency 
centroid, PSD integration, frequency centroid 
variance, average spectral magnitude, autoregressive 
coefficients, and cepstral coefficients, which are 
useful in a multivariable regression model such as a 
Convolutional Neural Network (CNN). 

The architecture of a CNN mimics the visual 
cortex, utilizing hierarchical and modular processing 
layers to learn more complex features from input 
signals. In this research, a comprehensive analysis of 
EMG signals was employed to develop an effective 
methodology for classifying six hand grip postures. 
Processed EMG signals in the time-frequency 
domain using STFT were represented as 
spectrograms, obtained from a database of ten 
amputee patients in Santiago de Cuba. Classification 
was performed using advanced machine learning 
techniques, optimized with Keras Tuner in Python. 

 
2. MATERIALS AND METHODS. 

 
2.1 Obtaining the database. 

 
For data collection, a group consisting of ten 

amputees was formed, encompassing both men and 
women with ages ranging from 25 to 65 years. All 
participants provided their informed written consent 
voluntarily before engaging in the experimental 
procedures. Additionally, a thorough check was 
conducted to ensure the absence of neurological or 
psychiatric conditions in the case of older 
participants. 

It is noteworthy that this study exclusively 
focused on patients with transradial amputations, 
meaning limb loss below the elbow and the upper 
portion of the wrist. Details about each participant 
involved in the research, such as their age, height, 
weight, gender, level of amputation, time elapsed 
since amputation, and Dash questionnaire results 
(assessing individual health before the procedure), 
are succinctly summarized in Table 1. 

Before the experimental procedures, 
participants received detailed training on the process 
that would be undertaken. Subsequently, sensors 

were calibrated on both the amputated and non-
amputated limbs. This calibration aimed to measure 
the electrical activity of muscles and quantify the 
force and effort required to perform specific tasks in 
both arms. The information obtained from these 
measurements proved crucial in determining the 
resources needed for the classification of postures in 
patients with amputations. 

 
Table 1: Features of Amputated Subjects. 

Patient
s 

Age 
Year

s 

 Heig
ht 

(cm) 

Weig
ht 

(kg) 

Se
x 

Amputatio
n level 

Amputatio
n time 

DAS
H 

Index 

P01 36 
 

1,68 70 M 
10 cm 

from the 
elbow 

1 year 45 

P02 51  1,82 80 M Wrist 30 years 19 

P03 62 
 

1,78 90 M Wrist 36 years 39,16 

P04 26 
 

1,79 68 M 
10 cm 

from the 
elbow 

12 years 20 

P05 60 
 

1,73 77 M Wrist 41 years 26,6 

P06 55 
 

1,75 55 M Wrist 5 years 16,66 

P07 28 
 

1,76 70 M 
10 cm 

from the 
elbow 

9 years 24,16 

P08 48 
 

1,75 72 F Wrist 22 years 20,83 

P09 65 
 

1,65 78 M Wrist 29 years 42,5 

P10 35 
 

1,66 69 M 
10 cm 

from the 
elbow 

2 years 47,5 

 
2.2 Acquisition of EMG Signals. 

Data capture was performed using the MYO 
ARMBAND EMG sensor (Figure 2), developed by 
the Canadian company Thalmic Labs, and is 
available to consumers at an affordable cost. This 
device specializes in reading and recording the 
electrical activity of muscles. The Myo Armband is 
equipped with 8 EMG sensors, like surface 
electrodes, and can non-invasively acquire sEMG 
data at a sampling frequency of 200 Hz. What sets it 
apart from conventional electrodes is its ability to 
provide user comfort without causing muscle 
discomfort, and its placement is easily replicable. 
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Additionally, the sensor has the capability to 
establish wireless communication with other 
electronic devices via Bluetooth. It is also equipped 
with a nine-axis Inertial Measurement Unit (IMU), 
enabling the detection of the position and movement 
of the user's arm. To obtain the myoelectric signals, 
the armband was positioned at 3-5 cm distal to the 
patient's elbow and was pre-calibrated for both 
limbs. 

Figure 2: Acquisition of the EMG signal using the 8-
channel MYO ARMBAND EMG sensor. 

 
During the EMG signal acquisition process, 

patients were instructed to perform six different hand 
grip postures: open hand (class 1), wave in (class 2), 
wave out (class 3), pinch (class 4), fist (class 5), and 
rest position (class 6). The experiment was 
conducted in two sessions, and subjects were asked 
to sit in a comfortable chair with their elbows flexed 
at a 90-degree angle. They were positioned two 
meters away from a screen displaying visual cues 
indicating the posture they should adopt. Data were 
recorded for both the contralateral and amputated 
limbs. For each type of hand posture, data were 
acquired at a sampling frequency of 200 Hz for 30-
second intervals. A one-minute break was included 
between each posture transition, following 
recommendations to reduce or avoid mental and 
physical fatigue [12, 22]. Consequently, a total of 
6000 samples were collected for each posture per 
patient (Figure 3). These data were stored in a 
matrix and subsequently processed on a computer 
for analysis. 

 
 
 
 
 

Figure 3: Six different hand gestures used in the study 
along with their corresponding EMG signals. 
 

2.3 Signal Preprocessing. 

During signal acquisition, it was observed that 
various harmonics overlapped with the signal, 
affecting its fidelity and subsequent feature 
extraction, and consequently, the diagnosis of the 
EMG signals. Chowdhury and colleagues mention 
that the most common noises present in EMG signals 
include electromagnetic interference from electronic 
devices, electrode movements during data capture, 
leading to unwanted artifacts in the signal, and 
finally, the intrinsic resistance of muscle motor units 
to movement, generating inherent instability in the 
signal. To counteract these unwanted effects, the 
original signals obtained underwent a filtering 
process using digital bandpass filters, with cutoff 
frequencies ranging from 20 to 500 Hz. This filtering 
process was performed using MATLAB software, 
allowing the selective removal of unwanted 
components and the preservation of relevant 
information in the EMG signals. 

 
2.4 EMG Signal Segmentation. 

After applying the signal filtering process 
(Figure 4a), it was deemed essential to employ 
segmentation or windowing techniques to properly 
extract the required features. In this context, the 
decision was made to use the overlapped 
segmentation technique, which involves shifting a 
new segment over the current segment with an 
overlap smaller than the segment size. As a result, 
the signal was divided into segments of 300 ms 
(Figure 4b), of which 150 ms (Figure 4c) 
overlapped, following the guidelines recommended 
by [2, 13]. This strategy allowed for the generation 
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of a more extensive dataset for the deep training of 
the method while providing additional information 
about the EMG signal at the exact moment of muscle 
contraction. The application of this segmentation 
technique led to the collection of a total of 312 
samples for each posture from each of the 10 patients 
involved in the study. 

Figure 4a: Pure EMG signal in the time domain. Open 
hand of Patient 10. 

Figure 4b: Fig 4b. Segmentation N°1 - 300 ms EMG signal 
in the time domain. Channel 1 - Open Hand - Patient 10. 

Figure 4c: Segmentation N°2 - 300 ms EMG signal in the 
time domain, with 150 ms overlap. Channel 1 - Open Hand 
– Patient 10. 

 
2.5 Short Time Fourier Transform 

The time-frequency representation (TFR) maps 
a one-dimensional time signal onto a two-
dimensional frequency and time signal. TFR is 
widely used to analyze, synthesize, and accurately 
modify results of non-stationary signals, as it 
considers both frequency and time. The Short-Time 
Fourier Transform (STFT) is the basic form of TFR, 
generating narrow segments of long-distance signals 
(1). Sufficiently narrow segments appear as 
stationary, and the Fourier Transform (FT) is taken 
for each segment (Figure 5). Each FT displays the 

spectral details of the signal at a different time cut, 
providing a simultaneous estimation of frequency 
and time [20,21]. The STFT of the EMG signal 
provides significant information about muscular 
activity during a task [15,16]. The generalized 
formula for STFT is: 

 

𝑆𝑇𝐹𝑇௫(𝑡, 𝜔) =  න 𝑥(𝜏 − 𝑡)𝑒ିଶగ௙ 𝑑𝜏       (1)
ஶ

ିஶ

 

 
Where 𝑥(𝜏) is the signal, 𝜔(𝜏 − 𝑡)  is the 

observation window, and the variable t slides the 
window over the signal, 𝑥(𝜏). 

Figure 5: FT Patient 10 - Open Hand Segment 01. 
Frequency details of the signal at a different time cut. 

 
A spectrogram is essentially the magnitude 

squared of the Short-Time Fourier Transform 
(STFT), providing a representation of the power and 
energy distribution of a signal in terms of frequency 
at a specific moment (2). In both the case of the 
spectrogram and the STFT, a balance is struck 
between frequency-based and time-based 
perspectives of a signal. The accuracy of the 
representation in the time and frequency domain can 
be adjusted by the window size [8,9]. The 
mathematical expression for the spectrogram is 
defined as: 

 

𝑆𝑇𝐹𝑇௫(𝑡, 𝜔) =  ቤන 𝑥(𝜏)𝜔(𝜏 − 𝑡)𝑒ିଶగ௙ఛ
ஶ

ିஶ

ቤ

ଶ

𝑑𝜏   (2) 

 
However, it is important to note that the analysis 

window function plays a crucial role in the Short-
Time Fourier Transform (STFT). If this window has 
a longer duration in time, it is equivalent to a narrow-
bandpass filter in frequency, implying a more 
detailed sampling in the frequency domain. In this 
situation, the STFT could preserve subtle variations 
in frequency, although it tends to smooth out rapid 
changes in the time domain through averaging. On 
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the other hand, if the window is shorter, rapid 
variations in time are retained, but the detection of 
rapid changes in frequency is limited. 
Figure 6: Segmented EMG Signal vs Segmented EMG 
Signal with Hanning. 

 
This balance between time and frequency is 

known as the uncertainty principle. The spectrogram 
allows visualizing the location in both time and 
frequency simultaneously, which is particularly 
useful in detecting sudden changes in rhythmic 
patterns present in biomedical signals (Figure 7). For 
the research, the decision was made to use a Hanning 
window with a size of 128, as this choice optimally 
suited the model in question (Figure 6). 

Figure 7: STFT Spectrogram - Patient 10 - Segment 01 
Open Hand. 

 
2.6 Dataset of Images 

The original dataset comprised 312 
spectrograms for each posture of each patient, with 
an image size of 434x343 pixels. This image size 
could incur high computational costs when training 
and validating the proposed Convolutional Neural 
Network (CNN) model. Given that the ultimate 
application of this methodology targets low-cost 
robotic prosthetics, using images with the original 
size would not be practical. Therefore, before 
proceeding with the training and validation of the 
model, the images were resized into three different 
groups (32x32, 64x64, 128x128). This allowed the 

creation of three different datasets with the aim of 
significantly reducing the number of network 
parameters, thereby achieving low latency and lower 
energy consumption. 

 
2.7 Dataset of Augmentation 

It is crucial that the dataset used to train, test, 
and validate a Convolutional Neural Network 
(CNN) is sufficiently diverse to avoid overfitting 
issues. Overfitting can lead to low generalization 
capacity and, consequently, low accuracy in 
predictions due to a lack of variability in the training 
data. Additionally, an insufficiently diverse dataset 
could make the model highly sensitive to the training 
data. To mitigate these issues, data augmentation 
techniques were implemented to enhance the 
generalization capacity of the CNN and reduce the 
risk of overfitting. As a result of these techniques, 
1560 additional images were generated for each 
hand grip posture, in addition to the original 312 
images. This means that 11,232 images were 
obtained per patient, constituting a reasonably sized 
dataset for evaluating the proposed model. 

 
2.8 Convolutional Neural Network 

The Convolutional Neural Network (CNN) 
stands out as one of the most effective deep learning 
methods for high-dimensional image classification. 
By using spectrograms as inputs, the manual feature 
extraction process is simplified, as this type of 
algorithm offers automatic feature extraction using 
the concept of a deep neural network [13]. 
Essentially, a CNN consists of three main layers. The 
convolutional layer is responsible for applying a set 
of filters to the input image. During training, the 
image convolves with each filter, generating a 
feature map that highlights regions of the image 
important for the classification task. Convolution 
occurs by matrix multiplication between the filter 
and the region of the input image, moving across it. 
This way, the convolutional layer can automatically 
learn representative features of the image [12], [13]. 
It then proceeds to the max-pooling layer, where the 
maximum values in a specific region of the input 
image are selected, creating a new feature map with 
reduced resolution. This operation is known as non-
linear subsampling, where the input dimension is 
reduced, but the most important features of the 
image are retained [11]. 

Finally, there is the fully connected layer, whose 
main function is to classify the input images through 
a vector multiplication of the features extracted from 
the convolutional and pooling layers, stored in a 
weight matrix that the network learned during 
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training. Next, a non-linear activation function is 
applied, determining the final output of the network 
[7]. In this way, the convolutional and max-pooling 
layers are responsible for extracting features from 
the images so that the fully connected layer can 
handle the classification. 

 
2.9 Structure of the proposed CNN 

For the model creation, a hyperparameter tuning 
process was carried out, which is done before 
training the network as it plays a crucial role in 
determining the architecture and behavior of the 
model [14]. To perform this tuning, the Keras Tuner 
library in Python was implemented. This library 
trains and evaluates various models containing 
different combinations of hyperparameters, 
ultimately providing the model with the best 
performance. In this case, variations were made in 
kernel sizes, the number of convolutions, dropout 
layers, dense layers, and the learning rate. 

After completing the tuning process, the best 
CNN model obtained consists of 4 convolutional 
layers with 64,56, 40, and 8 features respectively. 
These layers use a 3x3 kernel, and a dropout layer 
with a value of 0.2 is included to prevent overfitting. 
The activation function applied is ReLU (Rectified 
Linear Unit). Additionally, a 2x2 max-pooling layer 
is incorporated. Finally, there is the "flatten" layer 
responsible for transforming the previous layer into 
a one-dimensional dimension, allowing 
classification through the fully connected layer. The 
activation of the last layer is done using the SoftMax 
function (Figure 8). 

Figure 8: Structure of the proposed CNN. 
 

3. RESULTS 
 

3.1 “One to One” Approaches. 

The initial validation of the model was carried 
out following the "One to one" methodology. This 

technique allows the network to learn from the 
spectrograms of each patient individually. In other 
words, a unique model is created for each patient, 
enabling the model to identify specific 
characteristics of each patient. This results in high 
accuracy in classifying hand grip postures. 
Following this methodology, the datasets for each 
patient contained a total of 11,232 images, of which 
10% was used to evaluate the final model 
performance, another 10% to validate the model at 
each training epoch, and the remaining 80% was 
used for training. Table 2 shows the metrics accuracy 
percentage obtained by each patient in the 
classification of different postures, varying 
according to the size of the input images. 

 
Table 2: Accuracy Score “One to One” Approaches. 

 
It is noteworthy that the models generated from 

the dataset of patient 01 (Figure 9) achieved a higher 
accuracy percentage. This is evident in their 
respective confusion matrices. These matrices 
display the class to which the images belong and the 
percentage of images that the model classified as 
belonging to that class. It is important to recall that 
class 1 corresponds to posture 1, which is "open 
hand," and so forth. 

Figure 9: Confusion Matrix Patient 01. Spectrogram 
32x32 pixels 
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3.2 “All to One” Approaches 

The second training of the neural network was 
validated using the "All to one" methodology. To 
apply this methodology, it was necessary to train the 
model with the dataset that included all patients. 
Subsequently, the model was evaluated with each 
patient to obtain the average accuracy percentage. 
However, since the network is trained with data from 
all patients, it learns only the general characteristics 
and not the specific ones of each patient. This results 
in a decrease in its ability to correctly classify 
postures in each patient. To carry out this training, a 
dataset containing a total of 112,230 spectrograms 
from all patients was implemented, divided into their 
respective classes (postures). Twenty percent of the 
data was used to evaluate the accuracy of the final 
model, another 20% to validate the model at each 
training epoch, and the remaining 60% was used for 
the training process. 

According to the data in Table 3, it can be 
observed that the best patient in this validation was 
patient 04 (Fig 10). Unlike the "One to One" 
validation, the proposed model faces difficulties in 
classifying different classes in the "All to One" 
validation. However, when evaluating the model 
trained with each patient's dataset, the confusion 
matrix shows a high degree of accuracy in Classes 2 
(Open Hand), 5 (Fist), and 6 (Rest). 

 
Table 3: Metrics “All to One” Approaches 

Metrics - 32x32 

Patient 
Accuracy 

Score 
F1 

Score 
Recall 
Score 

Precision 
Score 

P01 66,36 66,36 66,81 67,44 

P02 47,49 47,49 47,73 48,68 

P03 57,28 57,28 57,16 56,19 

P04 68,71 68,71 68,46 70,5 

P05 65,55 65,55 65,96 65,92 

P06 59,81 59,81 59,38 61,86 

P07 66,84 66,84 66,82 69,21 

P08 60,97 60,97 61,32 63,08 

P09 62,57 62,57 62,54 61,7 

P10 67,25 67,25 67,56 68,61 

Average 62,283 62,283 62,374 63,319 

 
 
 
 
 
 
 

Figure 10: Confusion Matrix Patient 04. 
Spectrogram 32x32 pixels. 

 
 

3.3 “K-fold Cross Validation” Approaches 

Cross-validation is a fundamental technique in 
the field of machine learning, playing a crucial role 
in model evaluation and hyperparameter selection. 
This methodology is based on the premise that a 
model should be able to generalize well to unseen 
data. To achieve this, cross-validation divides the 
dataset into multiple folds, and in each iteration, it 
trains the model on a subset of the data and evaluates 
it on another subset (for this research, it was 
performed with 5 folds). This strategy provides a 
more accurate estimate of the model's performance 
and helps prevent overfitting, allowing data 
scientists and machine learning engineers to assess 
the performance of their models more reliably. 

Following this methodology, the datasets for 
each patient contained a total of 11,232 images. Of 
these, 10% was used to evaluate the final model 
performance, another 10% to validate the model at 
each training epoch, and the remaining 80% was 
used for the training process. It is relevant to mention 
that in each iteration, the model was trained with 5 
subsets of data and evaluated using the same number 
of subsets. Table 4 presents the average accuracy 
percentage obtained by each patient in the 
classification of different postures, varying 
according to the size of the input images. 

 
 
 
 
 
 
 



 Journal of Theoretical and Applied Information Technology 
30th September 2024. Vol.102. No. 18 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6584 

 

Table 4: Metrics “K-fold cross validation” Approaches 

 
4. ANALYSIS 

 
In the "One to One" validation, where individual 

models are created for each patient, the superior 
performance of patient 01 suggests that tailoring the 
model to the specific characteristics of each patient 
enhances its ability to classify handgrip postures 
accurately. This personalized approach allows the 
model to capture patient-specific nuances and 
variations in muscle activity patterns, resulting in a 
higher level of precision. The training process, 
focused exclusively on one patient's data, facilitates 
the model's adaptation to the unique features of that 
individual's muscular responses. 

Conversely, in the "All to One" validation, 
where a single model is trained on a dataset 
combining samples from all patients, the model 
lacks the capacity to discern patient-specific 
intricacies. Training on a heterogeneous dataset, 
which amalgamates various patient characteristics, 
may lead to a generalized model that struggles to 
perform optimally for individual patients. The 
compromise in model specificity may be evident in 
the reduced accuracy observed, especially for 
patients with distinct muscle activation patterns. 

The "K-fold Cross Validation" serves as a 
valuable augmentation to these methodologies by 
providing a more robust evaluation. By dividing the 
dataset into multiple folds and iteratively training 
and validating the model on different subsets, this 
approach ensures a comprehensive assessment 
across various scenarios. This technique guards 
against overfitting by assessing the model's 
performance on unseen data, enhancing its 
generalization capability (Figure 11). 

 
 
 
 
 
 
 
 
 

Figure 11: Confusion Matrix Patient 01. Spectrograms 
128x128 pixels 

 
The observed performance variations 

underscore the importance of a nuanced model 
evaluation strategy. While "One to One" may excel 
in capturing individual patient characteristics, it 
might lack the broader generalization seen in "All to 
One." The "K-fold Cross Validation" strikes a 
balance, offering a more complete understanding of 
the model's adaptability and performance across 
diverse scenarios. Further exploration and 
refinement of these methodologies could lead to 
enhanced model performance tailored to individual 
patient needs. 

 
5. CONCLUSION 
 

The study introduces the development of a 
methodology capable of classifying EMG signals 
captured by the MYO armband sensor. These signals 
were transformed into spectrograms using the Short-
Time Fourier Transform (STFT). A convolutional 
neural network comprising 58,974 parameters was 
trained with the aim of future implementation on a 
microcontroller for a robotic prosthesis. After 
validating the methodology through the "One to 
One" method, an average accuracy percentage of 
90.84%, 91.05%, and 91.13% was achieved for 
spectrograms of 32x32, 64x64, and 128x128, 
respectively. 

In the second validation using the "All by One" 
method, a result of 62.28% accuracy was obtained 
for 32x32 spectrograms. This demonstrates that 
training a unique model for each patient allows the 
network to identify specific characteristics of each 
posture, leading to better classification. However, 
when generalizing the model to all patients, the 
network fails to capture these specific features, 
resulting in suboptimal classification. 

Nevertheless, the K-Fold Cross-Validation was 
employed, proving useful in determining how the 
model would generalize to new and unseen data. 
This is crucial for preventing overfitting and 
measuring the model's generalization capacity in 
different situations, yielding an average accuracy 
percentage of 86.73%, 86.77%, and 87.97% for 
spectrograms of 32x32, 64x64, and 128x128, 
respectively. 

Further, another validation method called 
Transfer Learning is contemplated. This involves 
utilizing a pre-trained neural network on a large and 
general dataset (such as ImageNet or ResNet) and 
fine-tuning it for a specific image classification task 
on a smaller and more specific dataset. This 
approach aims to demonstrate the feasibility of 



 Journal of Theoretical and Applied Information Technology 
30th September 2024. Vol.102. No. 18 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6585 

 

implementing these methodologies in a myoelectric 
robotic prosthesis. 
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Table 2: Accuracy Score “One to One” Approaches. 
 

32x32 64x64 128x128 

Patient 
Accuracy 

Score 
F1 

Score 
Recall 
Score 

Precision 
Score 

Accuracy 
Score 

F1 
Score 

Recall 
Score 

Precision 
Score 

Accuracy 
Score 

F1 
Score 

Recall 
Score 

Precision 
Score 

P01 94,13 94,13 94,29 94,21 93,33 93,33 93,45 93,44 94,48 94,48 94,59 94,52 

P02 84,34 84,34 84,34 84,57 85,14 85,14 85,18 85,23 87,46 87,46 87,42 87,34 

P03 87,1 87,1 86,93 86,91 87,46 87,46 87,32 87,34 87,81 87,81 87,89 88,01 

P04 95,02 95,02 95,04 95,06 92,88 92,88 92,86 92,99 92,44 92,44 92,3 92,6 

P05 90,57 90,57 90,45 90,38 90,57 90,57 90,39 90,34 92,44 92,44 92,54 92,49 

P06 92,79 92,79 92,76 92,74 91,55 91,55 91,71 91,6 91,1 91,1 91,11 91,35 

P07 94,13 94,13 94,25 94,23 93,51 93,51 93,56 93,67 93,42 93,42 93,49 93,49 

P08 90,57 90,57 90,64 90,53 91,37 91,37 91,43 91,31 90,48 90,48 90,46 90,55 

P09 89,23 89,23 89,15 89,08 91,99 91,99 91,84 92 90,04 90,04 89,89 90,26 

P10 90,57 90,57 90,65 90,7 92,7 92,7 92,73 92,79 91,64 91,64 91,55 91,56 

Average 90,845 90,845 90,85 90,841 91,05 91,05 91,047 91,071 91,131 91,131 91,124 91,217 

 
 
 

Table 4: Metrics “K-fold cross validation” Approaches 
 

32x32 64x64 128x128 

Patient 
Average 
Accuracy 

Train 

Average 
Accuracy 

Test 

Average 
Accuracy 
Validation 

Average 
Accuracy 

Train 

Average 
Accuracy 

Test 

Average 
Accuracy 
Validation 

Average 
Accuracy 

Train 

Average 
Accuracy 

Test 

Average 
Accuracy 
Validation 

P01 98,5 91,01 91,01 99,52 91,99 92,23 99,65 92,7 91,97 

P02 94,07 78,82 78,15 98,64 82,11 83,03 99,06 82,56 82,05 

P03 96,03 80,42 80,16 98,3 80,42 82,81 98,37 81,13 83,01 

P04 98,06 90,21 89,83 98,78 90,3 90,07 99,5 89,67 90,66 

P05 98,46 88,61 88,64 99,45 90,03 89,18 99,58 89,59 89,54 

P06 98,41 89,85 88,72 99,44 90,65 87,99 99,47 87,72 88,4 

P07 98,99 91,19 91,19 86,89 79,35 80,77 99,7 90,39 91,41 

P08 98,21 88,07 86,44 99,33 87,54 86,17 99,65 86,56 86,62 

P09 98,29 83,62 85,77 99,26 86,2 87,29 99,39 86,74 86,84 

P10 99,13 89,05 87,46 99,21 90,03 88,18 99,54 87,54 89,29 

Average 97,815 87,085 86,737 97,882 86,862 86,772 99,391 87,46 87,979 

 
 


