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ABSTRACT 

 
The escalating prevalence of cyber threats and malware attacks across multiple platforms in recent years has 
highlighted the need for automated machine learning defense mechanisms. Numerous studies have focused 
on leveraging deep learning to identify malicious JavaScript code, showing promise in improving 
cybersecurity measures. Moreover, advancements in large language models (LLM), particularly generative 
pre-trained transformer-based models like GPT-2/3, have also created opportunities for more effective cyber 
threat prevention. Overall, these developments point to the significant potential of deep learning techniques 
for the efficient training of models and effective detection of threats within JavaScript code. This paper 
proposes a novel deep transfer learning-based model for detecting malicious JavaScript code using 
CodeBERT to improve the detection performance and minimize manual data engineering tasks. Since 
CodeBERT can be fine-tuned to adapt to different downstream tasks, we formulate different approaches 
based on CodeBERT to explore possible scenarios. We then evaluate our approaches on various datasets, and 
compare the performance of our models with previous researches, as well as baseline models, including both 
deep learning and traditional machine learning methods. Experimental results confirm that our CodeBERT-
based model can detect malicious JavaScript code efficiently on various experimental datasets with the F1-
score of 99.3%, which is better or comparable with results of the state-of-the-art proposals. 

Keywords: XSS detection model, malicious JavaScript detection, XSS detection based on deep transfer 
learning, CodeBERT-based XSS detection model 

 
1. INTRODUCTION  

In this section, we first briefly introduce about 
malicious JavaScript code, next is a review of some 
related works and then is paper contributions and 
organization. 

1.1. Overview of Malicious JavaScript Code 
Malicious code poses a significant threat to 

network security. According to the 2019 Internet 
Security Threat Report, there are an average of 142 
million malicious code cyber-attacks daily across 
more than 157 countries and regions worldwide [43]. 
Malicious code is defined as software or code 
designed to inflict harm on entities both online and 
offline, including businesses, individuals, and 
organizations. This paper will concentrate on a 
particular type of malicious code, specifically 
malicious JavaScript (JS), which is commonly 
embedded in webpages. Due to its widespread use, 
JavaScript is a frequent target for malicious activities 
and can be categorized into various types: 

 Drive-by-Download attacks: refers to the 
download of malware to a computer stealthily 
without the user’s knowledge or consent. After 
that, the malware may be executed or installed by 
itself, or by the user unknowingly. Websites that 
contain these kinds of malware can either be 
legitimate websites, or pages that are set up 
specifically to distribute malware. They may 
contain exploit kits that are used to attack 
vulnerabilities. 

 Cross-site scripting (XSS): This is made possible 
by the lack of user input validation and 
sanitization, usually through forms and 
comments. The malicious content is usually put 
in place by a malicious user (attacker), and when 
other users (victims) visit the page, the malicious 
code will be executed on their browser. The code 
can be used to steal cookies, session tokens, or 
other sensitive information, or to perform other 
malicious actions. An example of XSS attack is 
shown in Figure 1. 



 Journal of Theoretical and Applied Information Technology 
30th September 2024. Vol.102. No. 18 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6820 

 

 Cross-Site Request Forgery (CSRF): Instead of 
stealing information like XSS, CSRF tricks the 
users into performing unwanted actions, which 
include changing the user’s email address, 
password, or even transferring funds from their 
bank accounts. 

 Heap spraying attacks: This technique involves 
the attacker filling the memory heap with 
malicious code, and then using a vulnerability to 
execute the code. This technique is often used 
together with other attacks, such as XSS. 

There are also other types of malicious attacks that 
involve JavaScript, such as hidden iframes which 
load JavaScript malware, or “maladvertising” [49], 
which leverages advertising to distribute various 
forms of malware. 

 

Figure 1: The process of a reflected XSS attack [2] 

As malicious code technology has developed, so 
too has technology for combating it. The primary 
defense against malicious code is its detection, which 
aims to analyze software or code features to identify 
its malicious nature. The accuracy of this detection 
is crucial for mitigating the damage caused by 
malicious code. Two primary methods for malicious 
code detection are static and dynamic analysis. Static 
analysis examines software without running it, 
usually by analyzing its source or binary code. 
Dynamic analysis involves executing the software in 
a controlled setting to monitor its behavior. Each 
method has its pros and cons: static analysis is faster 
but may yield false positives, while dynamic analysis 
is more accurate but time-consuming. Often, both are 
used together for improved detection. Still, there is a 
need for a new method that can achieve high 
accuracy while maintaining a low time cost. With the 
advance of artificial intelligence (AI), there have 
been many attempts to apply machine learning to 
malicious code detection. Following this trend of 
applying in security fields as well as to improve the 
detection performance and minimize manual data 
engineering tasks, this paper proposes a novel model 
based on CodeBERT deep transfer learning for 
detecting malicious JavaScript code embedded in 
webpages. 

1.2. Related Works 
Due to the importance of malicious code 

detection, there have been many attempts to apply 
machine learning to this problem from network 
security scholars and experts. The approaches 
outlined in these works often use static or dynamic 
analysis method, or a combination of both, and many 
of them also use machine learning and deep learning 
models to aid the detection. 

Dynamic analysis is a common approach used for 
malicious code detection. Detection systems usually 
extract behavioral features during the execution of 
code, and then use honeypots to simulate the browser 
environment to execute JavaScript code, which 
produce information that can be recorded and 
analyzed to provide details and conclusion regarding 
malicious intention of the code. A honeypot serves 
as a specialized computing resource designed for the 
detection of unauthorized activities and cyber-
attacks. Its primary function is to facilitate the study 
and analysis of the methods and objectives of 
potential attackers. Many studies have proposed the 
usage of honeypot for malware detection [28], such 
as using low and high interaction client honeypots 
[1]. Since code execution is part of dynamic analysis, 
these approaches can be effective against zero-day 
attacks. However, they can also be susceptible to 
infiltration by attackers, which is a major downside 
of honeypot implementations, and can be resource-
intensive. 

Besides dynamic analysis, static analysis is a 
common approach used for malicious code 
detection. Traditionally, security systems use rule-
based approaches and pattern matching [39] to 
prevent malicious attacks, however, these 
approaches have been shown to be ineffective 
against zero-day attacks, as they tend to raise false 
negatives with new classes of malware. On the other 
hand, these methods can also be very lightweight and 
fast, making it possible to integrate them directly in 
the browser [8]. 

Approaches that leverage machine learning and 
Deep Learning have been proposed, where Natural 
Language Processing (NLP) techniques are adopted 
into the processing of programming languages. 
There are three commonly recognized levels of 
interpretation of a language: lexical, syntactic and 
semantic [35]. In lexical analysis, a sequence of 
characters is transformed into tokens. Syntactic 
analysis then organizes these tokens into valid 
expressions in the given language, while semantic 
analysis correctly interprets these expressions to 
execute a specific algorithm. With this in mind, there 
are four main approaches to extract features from 
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JavaScript code for machine learning-based 
methods: 

 Adopt natural language: The code snippets are 
considered as natural language text, and as such 
features can be represented as a collection of total 
number of lines, average string length, number of 
eval calls, share of encoded characters, file 
entropies, special functions count, number of 
special symbols, etc. This approach requires 
expert domain knowledge in the field of cyber 
security and an understanding of the 
programming language in question. Moreover, 
this approach is based on the assumption that 
malicious JavaScript will typically use 
obfuscation techniques to hide its true nature, and 
therefore will have different features than benign 
JavaScript [45]. Such an assumption may not 
always be true, as new types of malwares will 
always be developed, and they may not always 
use obfuscation techniques. 

 Using lexical features: Following the lexical 
analysis angle, the code is tokenized into a 
sequence of lexical units, which can be used as 
features. The code will usually need to be 
cleaned by using regular expression rules to 
remove special characters and comments. 
Techniques, such as Doc2Vec and Word2Vec 
are often used to produce vector representation of 
the code, in conjunction with a classifier for 
detection [29][33]. 

 Using syntactic features: In order to associate 
meanings to the tokens to constitute valid 
expressions, other studies have also extracted 
syntactic unit sequence features of abstract 
syntax tree (AST) and used together with NLP 
featurization methods like Doc2Vec/Word2Vec 
to get a better representation of the code structure 
[11][29]. This approach has the benefit of having 
a faster preprocessing step, since with original 
JavaScript, we will need to do some pre-
cleaning. 

 Using semantic features: This approach 
leverages semantic information, which includes 
both AST-based features and other methods, 
such as Program Dependency Graph [42] to 
generate JavaScript semantic slices. 

With the development of large language models 
(LLM), there have been studies that propose the use 
of pre-trained language models in malicious code 
detection, such as GPT-2 [9]. However, GPT-2 is 
primarily designed for natural language (NL) 
understanding and generation tasks, and it does not 
focus specifically on programming languages (PL). 
While the CodeBERT family of language models 

have not been found to be explored in other 
literatures regarding malicious code detection, they 
have been shown to be effective in other 
classification tasks, such as Code Search, which can 
be formulated as a text-code classification scenario 
[21]. Therefore, we are motivated to explore the 
usage of CodeBERT in malicious code detection. 

Although there have been a number of previous 
proposals for malicious code detection using 
traditional machine learning and deep learning 
techniques, there are existing issues for further 
investigations: 
 Approaches based on traditional machine 

learning techniques require the intensive manual 
definition and extraction of classification 
features from datasets. In order to maintain the 
detection performance, this task much be done on 
each type of datasets. 

 Approaches based on deep learning techniques 
usually require large datasets for training to 
construct the detection models. The training 
process may require very high computing 
resources and take a long period of time because 
the detection models usually have to be built 
from the beginning. 

In our approach, we explore the use of deep 
transfer learning techniques to construct our 
detection models. Specifically, we use CodeBERT 
that is a pre-trained model using large corpuses of 
natural languages and programming languages to 
build our malicious JavaScript code detection 
models. CodeBERT can reduce the training time as 
well as to reduce the requirements of computing 
resources because it is a pre-trained model and our 
training process is a type of incremental training on 
the top of CodeBERT. In addition, CodeBERT can 
eliminate the need of the manual definition and 
extraction of classification features from datasets 
because it can process code via some relatively 
simple preprocessing steps. 

1.3. Paper Contributions and Organization 

The contributions of our paper are as follows: 
 Proposes a novel model based on Code-BERT 

deep transfer learning for detecting malicious 
JavaScript code embedded in webpages. 
Different fine-tuning strategies are investigated 
and used to enhance the performance of the 
proposed model; 

 Implements, experiments and evaluates the 
Code-BERT based models against some baseline 
models and previous proposals. Experimental 
results confirm that the proposed Code-BERT 
model outperforms all baseline models in all 
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performance metrics and it has better or 
comparable detection results with previous 
studies. 

The remaining of this paper is organized as 
follows: Section 2 provides background knowledge 
of traditional machine learning and deep learning 
algorithms and architectures used in this study. 
Section 3 describes datasets used in this study, the 
architecture of the proposed model, baseline models 
and used performance metrics. Section 4 present 
experimental setup, implementation, results and 
discussion. Finally, Section 5 gives the conclusion 
and future work of the paper. 

2. BACKGROUND 

2.1. Deep Transfer Learning with CodeBERT 

2.1.1. Deep transfer learning 

One key challenge in applying deep learning to 
practical problems is the lack of large-scale datasets. 
This is especially true for the malicious JS detection 
task, where the number of malicious code samples is 
limited. To address this problem, we propose to use  
deep transfer learning, which is a machine learning 
method that allows the knowledge transfer from one 
domain to another. Furthermore, transfer learning 
operates on the premise that the training data doesn't 
need to have the same distribution as the testing data, 
which helps address the issue of having limited 
training data [44]. 

The definition of deep transfer learning is as 
follows: given a learning task 𝑇𝑡 based on 𝐷𝑡, and a 
related but different learning task 𝑇𝑠 based on 𝐷𝑠, 
where 𝐷𝑠 and 𝐷𝑡 are the source and target domains, 
respectively, deep transfer learning aims to improve 
the learning of the target predictive function 𝑓𝑡(⋅) in 
𝑇𝑡 using the knowledge in 𝐷𝑠 and 𝑇𝑠, where 𝐷𝑠 ≠ 𝐷𝑡 
and/or 𝑇𝑠 ≠ 𝑇𝑡 [44]. Among the various deep transfer 
learning techniques, network-based deep transfer 
learning is the most widely used. It is based on the 
assumption that the source and target domains share 
the same feature space but have different marginal 
probability distributions [31]. Recently, pre-trained 
language models, such as BERT and GPT-3, with 
large amounts of unlabeled data and fine-tuning in 
downstream tasks have made a breakthrough in NLP 
domain [10]. 

Figure 2 illustrates the standard procedure for 
network-based deep transfer learning. Initially, a pre-
trained deep learning model is acquired and set aside 
for fine-tuning, with its weights preserved. 
Subsequently, the final layers of this pre-trained 
model are isolated, and their weights are eliminated. 
It is commonly assumed that a pre-trained model 

consists of two segments: layers embedding general 
knowledge and layers designed for a specific 
upstream task, such as masked language models in 
text processing. The prevailing practice is to reset the 
weights of these task-specific classification layers, 
thereby maintaining the model’s general knowledge 
while enabling its applicability to downstream tasks 
like text classification. Thirdly, the model undergoes 
fine-tuning by ingesting downstream training data, 
which is typically significantly smaller than the 
dataset used for the initial training by several orders 
of magnitude. During this phase, the model learns to 
perform downstream prediction task by leveraging 
knowledge from both the pre-trained model and the 
new training data. Finally, the fine-tuned model 
becomes ready for deployment in downstream 
predictive tasks. 

 

Figure 2:  The typical process of network-based  
deep transfer learning. 

2.1.2. BERT and CodeBERT 
Language models can generally be divided into n-

gram models and neural language models. 
Traditional neural approaches, such as Word2Vec 
[26], remain popular. BERT (Bidirectional Encoder 
Representations from Transformers) advances 
natural language pre-training through masked 
language modeling and a Transformer-based 
framework, leading to significant improvements in 
state-of-the-art performance across numerous 
natural language processing tasks. BERT is 
considered one of the top pre-training models for 
downstream applications, particularly since more 
advanced models, like GPT-3 [3], are neither open-
source nor readily available. 

RoBERTa [23] is a reproduction of BERT that 
retains BERT's architecture while introducing an 
enhanced pre-training approach. CodeBERT [13], 
based on the architecture of BERT and RoBERTa, 
specifically RoBERTa-large differs from them by 
taking both natural language and source code as 
input. Unlike BERT and RoBERTa, which focus on 
natural language, CodeBERT is trained on a vast 
dataset of code from several programming 
languages, such as Python, Java, JavaScript, and 
C++. This enables it to capture both the syntactic and 
semantic properties of programming languages. By 
fine-tuning and adding a classification layer, 
CodeBERT can be adapted for classification tasks. 
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2.1.3. Training mechanism of CodeBERT 
a. Masked Language Model (MLM) 

Given a NL-PL pair datapoint (𝑥 = 𝑤, 𝑐) as input, 
where 𝑤 is a sequence of NL and 𝑐 is a sequence of 
PL, it first selects a random set of positions for both 
NL and PL to mask out (i.e. 𝑚𝑤 and 𝑚𝑐, 
respectively), and then replaces the selected spots 
with a specific token (i.e. [𝑀𝐴𝑆𝐾]). As mentioned in 
the CodeBERT paper [13], 15% of the tokens from 
𝑥 are masked out: 

𝑚௜
௪ ∼ unif{1, … , |𝑤|}for 𝑖 = 1 to |𝑤| 

𝑚௜
௖ ∼ unif{1, … , |𝑐|}for 𝑖 = 1 to |𝑐| 

𝑤masked = REPLACE(𝑤, 𝑚𝑤, <mask>) 
𝑥 = 𝑤 + 𝑐 

(1) 

The objective of MLM is to predict the original 
tokens that were masked, and it can be represented 
as follows: 

𝐿𝑂𝑆𝑆ெ௅ெ() = 

෍ − log 𝑝஽భ(𝑥௜|𝑤௠௔௦௞௘ௗ , 𝑐௠௔௦௞௘ௗ)

௜௠ೢ௎௠೎ 

 (2) 

b. Replaced Token Detection (RTD) 

The second objective of CodeBERT is replaced 
token detection as shown in Figgure 3, which further 
uses a large amount of unimodal data, such as codes 
without paired natural language texts [13]. 
Specifically, there are two data generators, a NL 
generator 𝑝ீೢand a PL generator 𝑝ீ೎ , both for 
generating plausible alternatives for the set of 
randomly masked positions. 

𝑤పതതത ∼ 𝑝ீೢ(𝑤𝑖|𝑤masked) for 𝑖 ∈ 𝑚𝑤 

𝑐పഥ ∼ 𝑝ீ೎(𝑐𝑖|𝑐masked) for 𝑖 ∈ 𝑚𝑐 

𝑤corrupt = REPLACE(𝑤, 𝑚𝑤, 𝑤ഥ) 

𝑐corrupt = REPLACE(𝑐, 𝑚𝑐, 𝑐̅) 

𝑥corrupt = 𝑤corrupt + 𝑐corrupt 

 

 

(3) 

 

 

Figure 3: Illustration of replaced token detection [13]. 

The discriminator is trained to classify whether a given word is the original one or not, making it a binary 
classification task. The loss function for RTD, with respect to the discriminator parameterized by 𝜃, is defined 
as follows: 

𝐿𝑂𝑆𝑆ோ்஽() = ෍ (𝑖) log 𝑝஽మ(𝑥௖௢௥௥௨௣௧ , 𝑖) + [1 − (𝑖)][1 − 𝑙𝑜𝑔𝑝஽మ([𝑥௖௢௥௥௨௣௧], 𝑖)]

|௪ା|௖|

௜ୀଵ

 

(𝑖) = ൜ 1   𝑖𝑓 𝑥௜
௖௢௥௥௨௣௧

=  𝑥௜                             

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
 

(4) 
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where 𝑝𝐷2 is the discriminator that predicts the probability of the 𝑖-th word being original, and 𝛿(𝑖) is the 
indicator function. 

There are several ways to implement the 
generators, and CodeBERT has implemented two 𝑛-
gram language models with bidirectional contexts, 
one for NL and one for PL, and learn them from 
corresponding unimodal datapoints, respectively.  

 

The final loss function is given by: 

𝑚𝑖𝑛𝜃 LOSSMLM(𝜃) + LOSSRTD(𝜃) (5) 

2.2. Baseline Models 

In this section, we provide a brief overview of 
several baseline models used for comparing the 
performance of CodeBERT-based models. These 
baselines include models built on Bi-LSTM as well 
as traditional machine learning methods like 
Random Forest (RF), Support Vector Machine 
(SVM), and Logistic Regression (LR). Bi-LSTM, 
RF, SVM, and LR were chosen because they are 
among the most widely-used and effective models 
for text classification in natural language processing 
tasks [13][29][30]. 

2.2.1. Bi-LSTM 

Long Short-Term Memory (LSTM) is a form of 
recurrent neural network (RNN) that excels at 
learning long-term dependencies. It is widely applied 
in natural language processing (NLP) tasks such as 
text classification, machine translation, and speech 
recognition. Bidirectional Long Short-Term 
Memory (Bi-LSTM) [37] is a enhanced version of 
the Long Short-Term Memory architecture [18]. 

LSTM is specifically designed to address the 
vanishing gradient issue found in traditional RNNs, 
which hinders their ability to learn long-term 
dependencies. This issue arises when the gradient of 
the loss function with respect to the network's 
parameters diminishes to near zero, causing the 
network to stop learning effectively. LSTM 
overcomes this challenge by introducing a memory 
cell capable of retaining information over extended 
periods. This memory cell consists of three gates: the 
input gate, output gate, and forget gate. The input 
gate regulates the information entering the memory 
cell, the output gate manages the information leaving 
the cell, and the forget gate determines what 
information should be discarded. These gates are 
controlled by sigmoid activation functions, which 
produce values between 0 and 1, allowing the LSTM 
to effectively manage long-term dependencies.  

2.2.2. Random Forest 

Random Forest [4] is an ensemble learning 
technique that creates numerous decision trees 
during training and produces a final output based on 
the majority class (in classification) or the average 
prediction (in regression) of the individual trees. It 
extends the bagging method by generating a large set 
of uncorrelated trees and then averaging their 
predictions. Random Forest is a highly accurate and 
versatile method suitable for both classification and 
regression tasks. This algorithm is widely used 
across various domains, including image 
classification, text classification, and speech 
recognition. The margin function in a random forest 
quantifies how much the average number of votes for 
the correct class at 𝑋, 𝑌 exceeds the average votes for 
any other class, and it is defined as follows: 

 𝑚𝑔(𝑋, 𝑌 ) =  
     𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌 ) − 𝑚𝑎𝑥𝑗≠𝑌 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑗)   (6) 

where 𝐼(⋅) is the indicator function. A larger 
margin indicates greater confidence in the 
classification. The generalization error is expressed 
as: 

𝑃𝐸∗ = 𝑃𝑋,𝑌 (𝑚𝑔(𝑋, 𝑌 ) < 0)     (7) 

2.2.3. Support Vector Machine 

Support Vector Machine (SVM) [7], introduced in 
1995, is a supervised machine learning algorithm 
mainly used for classification, although it can also be 
adapted for regression tasks. Its primary objective is 
to identify a hyperplane that optimally divides data 
points from different classes within a feature space. 
Given a training dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 
𝑦𝑛), where 𝑥𝑖 ∈ ℝ𝑑 is a feature vector and 𝑦𝑖 ∈ {−1, 
1} is the corresponding label, the objective is to find 
the hyperplane defined as w ⋅ x + 𝑏 = 0 that 
maximizes the margin between classes. The 
optimization problem can be formally stated as: 

            minimize = 
ଵ

ଶ
 ‖w‖2

                    (8) 

subject to 𝑦𝑖(w ⋅ 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1, … , 𝑛 (9) 

The dual form of this problem introduces 
Lagrange multipliers 𝛼𝑖 and leads to a quadratic 
programming problem. The decision function for a 
new data point 𝑥 is 𝑓(𝑥) = sign(∑ α௜y௜x௜

௡
௜ୀଵ  ⋅ x + 𝑏), 

where 𝛼𝑖 are the solutions of the dual problem. 
Kernel functions can be employed to map data to a 
higher-dimensional space, enabling SVM to handle 
non-linearly separable data. 
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2.2.4. Logistic Regression 

Logistic Regression [19] is a supervised machine 
learning algorithm primarily used for binary 
classification tasks. Given a set of training data (𝑥1, 
𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 ∈ ℝ𝑑 is a feature 
vector and 𝑦𝑖 ∈ {0, 1} is the binary label, the 
algorithm models the probability that 𝑦𝑖 = 1 as a 
logistic function of a linear combination of the 
features. The model can be mathematically 
expressed as: 

     𝑃(𝑦𝑖 = 1|𝑥𝑖) = 
ଵ

ଵା௘ష(ೢ⋅ೣ೔శ್)   (10) 

where w ∈ ℝ𝑑 are the feature weights and 𝑏 ∈ ℝ is 
the bias term. The objective is to find w and 𝑏 that 
minimize the log-likelihood: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ෍[𝑦௜ log൫𝑃(𝑦௜ = 1|𝑥௜)൯ + (1

௡

௜ୀଵ

− 𝑦௜) log (1 − 𝑃(𝑦௜ = 1|𝑥௜))] 

(11) 

The model parameters are usually estimated 
through techniques such as maximum likelihood 
estimation (MLE), and regularization methods like 
L1 or L2 regularization can also be applied. 

3. THE PROPOSED MODEL FOR 
DETECTING MALICIOUS JAVASCRIPT 
CODE 

In this section, we first present the datasets and 
how they are established and processed. Next, we 
explain the overall architecture of the proposed 
model that is used for malicious JavaScript code 
detection. 

3.1. Dataset Collection 

Our datasets consist of benign and malicious 
JavaScript codes obtained from various external 
sources, totaling to 110,985 JavaScript code 
samples. First of all, we crawl the top 2,000 URLs 
ranked by Alexa and are able to collect 32,854 code 
samples from these URLs. We also cross-check 
these URLs with an URLs dataset from Kaggle [40] 
to make sure that the URLs are indeed non-
malicious. These JavaScript codes are labelled as 
benign since they are extracted from top website 
URLs ranked by Alexa. After that, we collect data 
from various Github repositories, including the 
Petrak’s dataset of 39,450 JavaScript malware 
samples [32], which have been used and cited in 
several studies [30]. We also collect data from other 
datasets, including [16], [47], [50] and [41]. The 
details of the collected datasets are shown in  
Table 1. 

As seen in Table 1, the total size of the data is 
almost 8GB, which has proven to be a challenge for 
data processing and model training. Due to a 
limitation in time and hardware, we only use 20,515 
for the experiments, which are randomly sampled 
from the original datasets. The distribution of the 
samples per class is shown in Table 2. 

An example of malicious and benign code can be 
found in Table 3. As seen in this table, the malicious 
code attempts to embed an iframe from an external 
website into the current web page. While the code is 
not inherently malicious, the iframe is set to be 
extremely small (width="11" height="1"), which 
essentially makes it invisible or barely visible to the 
user. Moreover, the iframe source uses HTTP, which 
is less secure than HTTPS. This could make the 
content susceptible to man-in-the-middle attacks. In 
contrast, the benign JavaScript sample is a simple 
function that inverts the theme of the web page. The 
function takes in a theme as an argument and returns 
the inverted theme. The function is not malicious and 
does not contain any malicious code. 

Table 1. Datasets used in this study 

Source 
No. of  
benign 
samples 

No. of  
malicious 
samples 

Total 
size 

Top 2000 Alexa URLs 32,854 0 3.3 GB 

Petrak, 2017 [32] 0 39,450 4.5 GB 

He, 2018 [16] 1,292 381 3.1 MB 

Tsukerman, 2019 [47] 1891 1476 19.3 MB 

ZZN0508, 2022 [50] 8,079 8,500 919.1 MB 

Singh, 2017 [41] 0 8,062 55.9 MB 

Table 2. Distribution of classes of JavaScript snippets 
 

Class 
No. of  

samples 
Pro-

portion 
Average length  

by character 

Benign 9,551 46.5% 71,464 

Malicious 10,964 53.5% 55,399 

Table 3. Examples of malicious and benign JavaScript 

(a) Benign code sample 

export const themes = { 
night: 'night', 
default: 'default' 
}; 
export const invertTheme = currentTheme 
=> !currentTheme || 
currentTheme === themes.default ? 
themes.night : themes.default; 

(b) Malicious code sample 

document.write(  
'<center>' +  
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'<iframe width="11" height="1" ' + 
'src="http://laghzesh.rzb.ir" ' + 
'style="border: 0px;" ' +  
'frameborder="0" ' + 'scrolling="auto">'+ 
'</iframe>'  

); 

 

3.2. Preprocessing 

Since the data is code snippets, minimal 
preprocessing is required. However, there are some 
steps that need to be taken to make the data suitable 
for input of the model. First of all, the collected data 
samples are checked to remove any duplication 
because they are gathered from multiple sources. We 
do this by calculating the MD5 hash of each code 
snippet and check for duplicates by setting the hash 
as the file name. After that, we use the Esprima 
package [17] to make sure that the code snippet is 
valid and can be parsed. This is done by checking if 
the code snippet can be parsed into an AST. If the 
code snippet cannot be parsed, it is removed from the 
dataset. Additionally, code comments are deleted, 
and any white spaces at the beginning and end of the 
source code are removed. 

3.3. The Architecture of the Proposed Detection 
Model 

Figure 4 illustrates the architecture of the 
proposed CodeBERT-based detection model, which 

follows a five-step process. In step A, different types 
of inputs (unimodal or bimodal) are selected, 
affecting the input data components. Step B involves 
tokenizing the source code into tokens according to 
the Backus Normal Form (BNF) grammar rules. In 
step C, the tokens are either truncated or further 
processed to prevent information loss from 
excessively long code. In step D, the data is input 
into the pre-trained CodeBERT model, which is then 
fine-tuned for the classification task. Lastly, step E 
involves evaluating the detection model using a 
separate test dataset. We explored various input 
strategies and post-tokenization processing methods, 
resulting in four fine-tuning approaches for 
CodeBERT, as detailed in Table 4. 

Table 4. Four methods for fine-tuning CodeBERT  
used in the proposed model 

 
Input strategies Post-tokenization methods 

Unimodal (PL) Truncation 

Unimodal (PL) Segmentation + Average 

Bimodal (NL-PL) Truncation 

Bimodal (NL-PL) Segmentation + Average 

 

 

Figure 4: Architecture of the Proposed Detection Model Based on CodeBERT

3.3.1. Choosing model input 

Since CodeBERT can be used for various 
downstream tasks, we can choose different strategies 
for prediction. Generally, we can classify 
downstream tasks based on the input and output, 
which can either be Natural Language (NL) or 
Programming Language (PL). For example, the 
input can be the JavaScript code snippet (PL), or a 
pair of a sentence and a code snippet (NL-PL). Since 
our task is to detect malicious JavaScript, we can 
choose two different strategies based on the types of 
inputs, as shown in Figure 5: 

 Unimodal Input (PL only): This is the most 
straightforward strategy, where we take in code 
as input and predict 0 for benign and 1 for 
malicious. 

 Bimodal Input (Input is NL-PL pair): Also called 
sentence-based strategy. We can frame the task 
as either a sentence-based matching or a 
keyword-based matching task. For this task, a 
trained model must determine if a code snippet 
responds to a specific natural language query, 
which can be framed as a binary classification 
problem [21]. For example, we can provide the 
model with a NL-PL pair of a sentence and a 
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code snippet, and the model will predict if the 
sentence matches the code. Similarly, we provide 
the model with a NL-PL pair of a list of keywords 
(“malicious”, “harmful”, “malware”) and a code 
snippet, and the model will predict if the 
keywords match the code. This means that the 
labels become 1 for a matching pair, and 0 for a 
non-matching pair. For this report, we will only 
focus on the sentence-based strategy. For this 
study, the following sentences are used as pairing 
with the codes and assigned to the code randomly 
with a 50% chance for each class: 
+ To denote a malicious code sample: 

“javascript perform malicious actions to trick 
users, steal data from users, or otherwise 
cause harm”; 

+ To denote a benign code sample: “javascript 
perform normal, non-harmful actions”. 

 

 Figure 5:Code (PL) and Text+Code (NL-PL) approach 
 
3.3.2. Tokenization 

The CodeBERT tokenizer takes the input string 
(code or code+text) and convert it into a sequence of 
tokens that the model can understand. These tokens 
are subsequently mapped to unique integers (IDs), 
based on a pre-established vocabulary, and may 
undergo additional processing such as the addition of 
special tokens (e.g., [CLS], [SEP]). During 
tokenization, the tokenizer will split the input into 
smaller pieces, called tokens. These tokens could be 
as small as a single character or as long as a word. 
For example, considering the benign JavaScript 
example in Table 3.(a), the output of the tokenizer is: 
 
['<s>', 'Ċ', 'export', 'Ġconst', 
'Ġthemes', 'Ġ=', 'Ġ{', 'Ċ', 'Ġ', 
'Ġnight', ':', "Ġ'", 'night', "',", 'Ċ', 
'Ġ', 'Ġdefault', ':', "Ġ'", 'default', 
"'", 'Ċ', '};', 'Ċ', 'Ċ', 'export', 
'Ġconst', 'Ġin', 'vert', 'Theme', 'Ġ=', 
'Ġcurrent', 'Theme', 'Ġ=>', 'Ċ', 'Ġ', 
'Ġ!', 'current', 'Theme', 'Ġ||', 'Ċ', 
'Ġ', 'Ġcurrent', 'Theme', 'Ġ===', 
'Ġthemes', '.', 'default', 'Ġ?', 'Ċ', 
'Ġ', 'Ġthemes', '.', 'night', 'Ġ:', 'Ċ', 

'Ġ', 'Ġthemes', '.', 'default', ';', 'Ċ', 
'</s>'] 

The tokens can be understood as follows: 
 Special characters like <s> and </s>: These 

are start and end tokens, respectively. They 
indicate the beginning and end of a sequence.  

 ‘Ċ’ and ‘Ġ’ Prefixes: Special characters used to 
indicate a new line (‘Ċ’) or a space (‘Ġ’). They 
capture the code’s formatting, which can be 
syntactically significant in some programming 
languages.  

 Keywords and Variable Names: Elements like 
export, const, themes, night, 
default, invertTheme, and 
currentTheme are preserved as they are. 
These are recognizable constructs that are 
important for understanding the code’s 
semantics.  

 Operators and Punctuation: Characters like ‘=’, 
‘{’, ‘}’, ‘:’, ‘?’, etc., are also treated as individual 
tokens.  

 Code Splicing: Some tokens, like current and 
Theme, are examples of the tokenizer breaking 
down composite identifiers into parts that are 
more common and easier for the model to 
generalize across different contexts.  

If a token is missing from the vocabulary file, an 
unknown token (, ,) will be used.  

This paper employs two preprocessing patterns, 
aligning with the two input strategies outlined in 
Section 3.3.1. The first preprocessing approach (for 
unimodal input) adds a marker at both the start and 
end of the code. The second approach (for bimodal 
input) includes an additional marker to distinguish 
between the source code and the declarative 
sentence. The code, once preprocessed, is then 
prepared for tokenization. 

3.3.3. Post-tokenization processing 

As shown in Section 3.1, the average length by 
character count of the code snippets is quite high, 
which would be a challenge for the CodeBERT to 
learn from, since CodeBERT only supports a 
maximum length of 512 tokens. Therefore, we need 
to process the data further to make it suitable for the 
model. We propose two methods to handle long code 
snippets:  
 Truncation: Simply truncate the code snippet to 

512 tokens. This is the simplest method, but it 
could lead to loss of information;  

 Aggregation: Split the code snippet into smaller 
segments and feed them into CodeBERT to get 
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their representations. After that, we can 
aggregate the representations to get a global 
representation of the code snippet. This method 
is more complex, but it can preserve more 
information. The method is illustrated in  
Figure  6. Given a sequence of tokens T(C) = {t1, 
t2,…,tn}, with n being the number of tokens, we 
can perform the following steps:  
+ Segmentation: The tokenized sequence 𝑇(𝐶) 

is split into 𝐾 segments, each of size 𝐿 or less. 
In this case, we choose 𝐿 = 512 and 𝐾 = ⌈ 

௡

௅
 ⌉. 

Sk = t(k-1)L+1, t(k-1)L+2,…, tmin(kL, N),  
                                    k = 1, 2,…, K   (12) 

+ CodeBERT Transformation: Each segment Sk 
is then fed into CodeBERT to get its 
representation f(Sk). 

+ Aggregation: Finally, all the segment 
representations are aggregated to get a global 
representation G. This is done by taking the 
average: 

   𝐺 =
ଵ

௄
 ෌ 𝑓(𝑆௞)

௄

௞ୀଵ
                   (13) 

For this study, the Truncation method and 
Segmentation by average method are used. 

 

 Figure 6: Process to handle long code snippets 

3.3.4. Fine-tuning CodeBERT 

Fine-tuning CodeBERT with the JavaScript 
dataset involves performing incremental training on 
the original CodeBERT framework. As outlined in 
Section 2.1.3, we can select either MLM or RTD as 
the fine-tuning objectives. For the purposes of this 
paper, we will use MLM. The data is split into three 
distinct subsets: training, validation, and testing. The 
validation set is utilized throughout training to assess 
the model's performance at each epoch. 

As outlined in Section 3.3.1, corresponding to the 
two input strategies, we have two fine-tuning 

methods, unimodal data (PL only) and bimodal data 
(NL-PL). 

a. Unimodal input 

A classification layer is added on top of the pre-
trained CodeBERT model. Consider CodeBERT as 
a function F that maps an input sequence (the input 
IDs) to a latent space z, with being the model 
parameters, which can be denoted as follows: 

z = F(x; )   (14) 

The resultant z contains the features learned by 
CodeBERT, encapsulated in a final layer of the 
transformer architecture. These features are then 
linearly mapped to a set of logits l via a classification 
layer, where W is the weight matrix b and is the bias 
term. 

l = Wz + b   (15) 

These logits l can be normalized using the softmax 
function  to produce a probability distribution p 
over the two classes, benign and malicious. 

𝑝 =  (𝑙) =
௘೗

∑  ௘೎
೗

೎ ಴
  (16) 

Since the labeled data y is provided, the cross-
entropy loss L can be calculated as follows: 

𝐿 = ∑ 𝑦௖  𝑙𝑜𝑔 𝑝௖௖ ஼   (17) 

The loss L is then backpropagated through the 
network to update the model parameters  and W, 
which would fine-tune CodeBERT to the JavaScript 
dataset for the malicious JavaScript detection task. 

b. Bimodal input 

For NL-PL input, the NL-PL pair is concatenated 
and goes through the CodeBERT encoder to extract 
meaningful representations from both code snippets 
and natural language descriptions. The combined 
feature vector of the NL-PL pair Zcomb is then passed 
through a Multi-Layer Perceptron (MLP) with 
parameter W and sigmoid activation function  to 
map the combined latent space to the binary output 
space Y: 

logiti = MLP(𝑍௖௢௠௕೔
; W)   (18) 

 P(Yi = 1 | 𝑍௖௢௠௕೔
; W) = (logiti)  (19) 

The model is trained by minimizing the Binary 
Cross-Entropy (BCE) loss ℒ between the predicted 
probabilities and the true labels yi: 

 ℒ = −
ଵ

௡
 ∑ 𝑦௜

௡
௜ୀଵ log(P(Yi = 1 | 𝑍௖௢௠௕೔

; W)) +  

   (1 - 𝑦௜) log(1 - P(Yi = 1 | 𝑍௖௢௠௕೔
; W))         (20)   
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Finally, a thresholding operation is applied to the 
output probabilities to obtain binary predictions: 

 𝑦పෝ  = ൜
 1   𝑖𝑓 𝑃(𝑌𝑖 =  1 | 𝑍௖௢௠௕೔

;  𝑊) > 0.5

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
     (21) 

This approach leverages the powerful 
representation learning ability of the transformer 
encoder to map both code and natural language into 
a common latent space and learns a discriminative 
function in this latent space to perform the matching 
classification task. 

3.4. Setting up Baseline Models 

In this section, we present the process to set up the 
baseline models for comparison as presented in 
Section 2.2. 

3.4.1. Extracting syntactic features 

To process data for Bi-LSTM, we first extract 
syntactic features from the JavaScript code samples. 
An abstract syntax tree (AST) serves as a tree-based 
model of a program’s abstract syntactic structure. It 
transforms source code written in a specific 
programming language into a tree, where each node 
corresponds to a statement from the source code. 
ASTs are widely used for tasks like code checking, 
analysis, and conversion. For instance, before 
executing JavaScript code, a browser converts it into 
an AST using a JavaScript parser. The AST plays a 
pivotal role in semantic analysis and is instrumental 
for static program analysis methods. 

In this study, we employ Esprima and its Python 
port [17] to convert JavaScript source code into an 
AST. Esprima is a high-performance JavaScript 
parser that takes a program written as a string and 
outputs an AST. It generates 69 distinct node types, 
including Program, Statement, Expression, 
Declaration, and Pattern type nodes. Different code 
segments are mapped to various node types, also 
known as syntactic units. Using Esprima, we parse a 
given JavaScript code sample into an AST, which we 
then traverse depth-first to produce sequences of 
syntactic units. The sequences are then used as input 
to our deep learning model, particularly for Bi-
LSTM architecture, since CodeBERT doesn’t 
require sequences of syntactic units as the input. 

Consider the following JavaScript code snippet 
that can be converted to an AST tree as shown in 
Figure 7: 

function init() { 
   console.log('hello world'); 
} 
init(); 

After isolating the sequences of syntactic units, 
these sequences are classified using text 
classification techniques. To be compatible with our 
model, the sequence undergoes a conversion into 
word vectors. Given that JavaScript syntactic units 
of the same category, such as declaration class and 
expression class, share similar affixes, it is believed 
that the internal semantic structure of these units 
should be considered during word vector training. 
Therefore, this paper proposes to use the FastText 
model [3] for training sequences of syntactic units. 
FastText serves as an advanced extension of the 
Word2Vec model [26]. Unlike Word2Vec, which 
overlooks the internal structure of words, FastText 
incorporates sub-word information. It represents 
each word as a bag of character-level n-grams, and 
the word vector for a given word is linked with each 
of its constituent n-grams. 

 

 Figure 7: Example of an AST tree 

3.4.2. Extracting natural language features 

To set up the baseline models using traditional 
machine learning algorithms, we treat JavaScript 
code as natural language text and build features 
based on the text as suggested in previous literatures 
[47]. The details of the features are shown in  
Table 5. 

Table 5. Features used for the machine learning models 
 

Index Description 
1 Length of the code snippet 

2 Count of spaces 

3 Combined count of open and close parenthesis 

4 Count of slash characters (“/”) 

5 Count of plus characters (“+”) 

6 Count of dot characters (“.”) 

7 Count of comma characters (“,”) 

8 Count of semicolon characters (“;”) 

9 Count of alphanumeric characters 
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10 Count of numeric characters 

11 Ratio of spaces to code length 

12 Ratio of alphanumeric characters to code length 

13 Ratio of numeric characters to code length 

14 Ratio of parenthesis to code length 

15 Ratio of slash characters to code length 

16 Ratio of plus characters to code length 

17 Ratio of dot characters to code length 

18 Ratio of comma characters to code length 

19 Ratio of semicolon characters to code length 

20 
Count of specific string operations (substring, charAt, 
split, concat, slice, substr) 

21 Ratio of specific string operations to code length. 

22 
Count of specific encoding operations (escape, 
unescape, string, fromCharCode) 

23 Ratio of specific encoding operations to code length 

24 
Count of URL redirection functions (setTimeout, 
location.reload, location.replace, document.URL, 
document.location, document.referrer) 

25 Ratio of URL redirection functions to code length 

26 
Count of specific functions (eval, setTime, setInterval, 
ActiveXObject, createElement, document.write, 
document.writeln, document.replaceChildren) 

27 Ratio of specific functions to code length 

3.5. Evaluation Metrics 

Since the task of malicious code detection belongs 
to the class of binary classification problems, the 
four metrics, including Accuracy, Precision, Recall 
and F1-score are used to evaluate the performance of 
the detection models: 

- Accuracy (Acc): the ratio of the number of 
correctly classified samples to the total number of 
samples. It is defined as: 

𝐴𝑐𝑐 =
்௉ା்ே

்௉ା்ேାி௉ାி
  (22) 

- Precision (Pre): the ratio of the number of 
malicious code samples correctly classified as 
malicious to total number of samples classified as 
malicious. It is defined as: 

𝑃𝑟𝑒 =
்௉

்௉ାி௉
   (23) 

- Recall (Rec): the ratio of the number of 
malicious code samples correctly classified as 
malicious to the total number of malicious code 
samples. It is defined as: 

𝑅𝑒𝑐 =
்௉

்௉ାிே
   (24) 

- F1-score (F1): the harmonic mean of precision 
and recall. It is defined as: 

𝐹1 =
ଶ்௉

ଶ்௉ାி௉ାிே
   (25) 

where, TP, FP, FN and TN are elements of the 
confusion matrix given in Table 6. 

Table 6. TP, FP, FN and TN in the confusion matrix 

  Actual Class 
  Malicious Legitimate 

Predicted  
Class 

Malicious TP (True 
Positives) 

FP (False 
Positives) 

Legitimate FN (False 
Negatives) 

TN (True 
Negatives) 

4. EXPERIMENTS AND RESULTS 

4.1. Experiment Setup  

The experiments for both CodeBERT-based 
approaches and the baseline models are run on a 
machine running Ubuntu 20.04.2 LTS with Python 
3.10.11 and CUDA 11.7.  

The raw datasets are saved in the file system as 
separate code snippets and organized into directories 
based on their labels (“benign” or “malicious”). 
However, to make it easier to work with, we also 
save the result after sampling and preprocessing into 
parquet format, which is much smaller in terms of 
data size. 

To fine-tune CodeBERT, the same 
hyperparameters are used across all methods. The 
models are trained with 20 epochs. For the baseline 
models, 5-fold cross-validation is used to evaluate 
the models. The results are averaged across the 5 
folds. 

4.2. Experimental Results 

In this section, the results of the experiments are 
presented. The experiments are conducted on the 
datasets described in Section 3.1. First, results 
produced by the proposed model based on 
CodeBERT are shown and comparison between 
different input and post-tokenization methods are 
analyzed. Then, results generated by baseline models 
are presented and compared with those produced by 
proposed model based on CodeBERT results. 

Table 7 shows the results of detection models 
based on CodeBERT using different fine-tuning 
strategies of input and post-tokenization methods. 
Generally, all strategies perform well over all 
evaluation metrics. The best performing strategy is 
bimodal input with truncation, followed by unimodal 
input with truncation, with a difference of ± ~6%. 
Notably, the Segmentation + Average approaches 
with both types of input have a significant drop off 
compared to the truncation method, which is not in 
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line with the previous hypothesis that the 
segmentation method would improve the results. 

Table 8 shows the performance comparison of 
baseline models for malicious JavaScript detection. 
Among the baseline models, the best performing 
model is the model based on Random Forest with NL 
features, which has an accuracy of 98.2% and F1 
score of 95.1%. The deep learning approach with Bi-
LSTM and syntactic features using ASTs performs 
worse than Random Forest and SVM by about 1% in 
terms of accuracy, however it has the highest 
precision, recall and F1-score among all baseline 
models. The worst performing model is the model 
based on Logistic Regression with NL features, 
which has an accuracy of 92.5% and F1 score of 
92.7%. 

Table 9 compares the detection performance of 
previous studies with this study. In general, the 
approach proposed in this study has better or better 
comparable detection results with previous studies. 
Specifically, our proposed detection model 
outperforms proposals in [9], [29], [33] and [42] in 
all performance metrics. Our model also has 
comparable detection results with proposals in [11], 
[30] and [45]. Among these, the approach based on 
Boosted Decision Tree and natural language features 
[45] perform better with a reported F1-score of 
99.7%, which is slightly higher than the best result 
of this study by 0.4%. 

Table 7. Comparison of malicious JavaScript detection 
results of models based on CodeBERT using different  

fine-tuning strategies 

Input  
strategies  

Post-tokeniza- 
tion method 

Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

Bimodal  
(NL-PL) 

Truncation 99.3 99.1 99.5 99.3 

Unimodal 
(PL) 

Truncation 93.1 93.6 93.4 93.1 

Bimodal  
(NL-PL) 

Segmentation + 
Average 

86.3 87.1 84.4 85.7 

Unimodal 
(PL) 

Segmentation + 
Average 

86.4 86.8 86.7 86.7 

Table 8. Performance comparison of baseline models  
for malicious JavaScript detection 

Model 
Featurization 
method 

Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

Random 
Forest 

NL features 98.2 97.3 93.0 95.1 

SVM NL features 98.0 97.3 92.0 94.6 

Bi-LSTM 
Syntactic 
features 

97.1 97.4 97.1 97.2 

Logistic 
Regression 

NL features 92.5 92.9 92.5 92.7 

Table 9. Performance comparison of the proposed model  
with other studies 

 
Models Papers 

Acc 
(%) 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

Fine-tuned 
CodeBERT 

This study 
(Best result) 

99.3 99.1 99.5 99.3 

BDT + NL 
Tellenbach et. 
al. (2016) [45] 

 99.6 98.7 99.7 

Bi-LSTM-
Attention+ 
syntactic 

Fang et. al. 
(2020) [11] 

99.3 99.4 99.3 99.3 

SVM + 
syntactic 

Ndichu et. al. 
(2019) [30] 

 99.0 99.0 99.0 

Bi-LSTM + 
semantic 

Song et. al. 
(2020) [42] 

97.7 98.6 97.9 98.2 

Bi-LSTM- 
CNN + lexical 

Phung et. al. 
(2021) [33] 

97.1 97.4 97.1 97.2 

SVM + lexical 
Ndichu et. al. 
(2018) [29] 

 89.0 90.0 89.0 

Fine-tuned 
GPT-2 

Demirci et. al. 
(2022) [9] 

85.4 82.6 89.7 86.0 

4.3. Discussion 

From the results give in Tables 7, 8 and 9, there 
are several notable points of discussions: 

 Between the two strategies for model input, 
which are bimodal and unimodal, bimodal input 
(NL-PL) perform better than unimodal input 
(PL) by approximate 6%. This can be explained 
as bimodal input containing more information 
than unimodal input, while CodeBERT is also 
pre-trained with a large corpus of natural 
language input and can understand the concept of 
malicious versus benign code. 

 The results from the Segmentation + Average 
approaches used in the post-tokenization step 
(Accuracy about 86%) are significantly worse 
than the truncation method, which has an 
accuracy from 96% to 99%. This goes against the 
hypothesis outlined in Section 3.3.3, where it is 
expected that the segmentation method would be 
able to retain the global representation of the 
JavaScript code and avoid information loss from 
truncation. The reason for this drop-off can 
potentially come from the complicated 
implementation of the method, as this 
implementation is experimental in nature, since 
this has not been explored in other literature. 

 CodeBERT-based models perform better than 
the baseline models, including both deep 
learning and traditional machine learning 
algorithms. This is expected, since CodeBERT is 
a state-of-the-art model for code representation 
learning, and it is able to capture the semantic 
and syntactic information from the code. The 
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results from the baseline models are comparable 
with other studies, which shows that the dataset 
used in this study is representative of the 
problem. 

The proposed best CodeBERT-based model 
performs better or comparable with previous studies, 
which shows that the CodeBERT deep transfer 
learning is the appropriate selection for constructing 
models to detect malicious JavaScript code 
embedded in webpages. 

5. CONCLUSION 

This paper proposes a novel model based on 
Code-BERT deep transfer learning for detecting 
malicious JavaScript code embedded in webpages. 
The proposed Code-BERT model outperforms all 
baseline models in all performance metrics, 
including models based on traditional machine 
learning and deep learning techniques. Furthermore, 
proposed model has better or comparable detection 
results with previous studies. Specifically, the best 
proposed Code-BERT-based model has F1-score of 
99.3%, which is among the top performance of the 
state-of-the-art proposals for the detection of 
malicious JavaScript code. In addition, because 
Code-BERT a pre-trained model, the Code-BERT-
based detection model has less inference time due to 
its minimal need for preprocessing. This points to the 
potential of using CodeBERT-based model for 
malicious JavaScript code detection in real 
production environment. 

Although our CodeBERT-based detection model 
outperforms many previous studies, it is noted that 
the proposed model has some limitations as follows: 
(1) CodeBERT only accept 512 tokens as its input so 
more preprocessing tasks need to be done for post-
tokenization step and (2) there are other pre-trained 
models, such as GraphCodeBERT and uniXcoder 
that may perform better than CodeBERT. These 
issues are future tasks to be carried out: 

 Data preprocessing: For the post-tokenization 
step, it is possible to get the global representation 
by processing the JavaScript code through a 
Recurrent Neural Network (RNN). An RNN is a 
useful choice for aggregating code segments into 
a global representation since it can capture the 
sequence information essential for understanding 
code, as code segments are not independent of 
each other, while also maintaining contextual 
information from earlier segments, creating a 
more comprehensive global representation. 
Moreover, the current method used in this study 
(Segmentation + Average) has shown to be not 

effective, and we hope to improve this further in 
the future. 

 Selection of pre-trained model: Other pre-trained 
language models that focus on programming 
language besides Code-BERT have been 
released and can be used for fine-tuning for 
malicious JavaScript code detection, such as 
GraphCodeBERT [14] and uniXcoder [15]. 
Particularly, uniXcoder considers multi-modal 
contents like code comment and AST to enhance 
code representation. This can potentially help 
with cutting down training and inference time, as 
well as improving the performance of the model. 
Moreover, only MLM objective is used in this 
paper, and as such other objectives like RTD can 
be explored. 
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