
 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6819

A NOVEL MODEL BASED ON DEEP TRANSFER LEARNING
FOR DETECTING MALICIOUS JAVASCRIPT CODE

XUAN DAU HOANG1, THI THU TRANG NINH2, HOANG DUY PHAM3
1,2,3Cybersecurity Lab, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

E-mail: 1dauhx@ptit.edu.vn, 2trangntt2@ptit.edu.vn, 3duyph@ptit.edu.vn

ID 55470 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance
01-09-24 02-09-2024 21-09-2024 24-09-2024

ABSTRACT

The escalating prevalence of cyber threats and malware attacks across multiple platforms in recent years has
highlighted the need for automated machine learning defense mechanisms. Numerous studies have focused
on leveraging deep learning to identify malicious JavaScript code, showing promise in improving
cybersecurity measures. Moreover, advancements in large language models (LLM), particularly generative
pre-trained transformer-based models like GPT-2/3, have also created opportunities for more effective cyber
threat prevention. Overall, these developments point to the significant potential of deep learning techniques
for the efficient training of models and effective detection of threats within JavaScript code. This paper
proposes a novel deep transfer learning-based model for detecting malicious JavaScript code using
CodeBERT to improve the detection performance and minimize manual data engineering tasks. Since
CodeBERT can be fine-tuned to adapt to different downstream tasks, we formulate different approaches
based on CodeBERT to explore possible scenarios. We then evaluate our approaches on various datasets, and
compare the performance of our models with previous researches, as well as baseline models, including both
deep learning and traditional machine learning methods. Experimental results confirm that our CodeBERT-
based model can detect malicious JavaScript code efficiently on various experimental datasets with the F1-
score of 99.3%, which is better or comparable with results of the state-of-the-art proposals.

Keywords: XSS detection model, malicious JavaScript detection, XSS detection based on deep transfer
learning, CodeBERT-based XSS detection model

1. INTRODUCTION

In this section, we first briefly introduce about
malicious JavaScript code, next is a review of some
related works and then is paper contributions and
organization.

1.1. Overview of Malicious JavaScript Code
Malicious code poses a significant threat to

network security. According to the 2019 Internet
Security Threat Report, there are an average of 142
million malicious code cyber-attacks daily across
more than 157 countries and regions worldwide [43].
Malicious code is defined as software or code
designed to inflict harm on entities both online and
offline, including businesses, individuals, and
organizations. This paper will concentrate on a
particular type of malicious code, specifically
malicious JavaScript (JS), which is commonly
embedded in webpages. Due to its widespread use,
JavaScript is a frequent target for malicious activities
and can be categorized into various types:

 Drive-by-Download attacks: refers to the
download of malware to a computer stealthily
without the user’s knowledge or consent. After
that, the malware may be executed or installed by
itself, or by the user unknowingly. Websites that
contain these kinds of malware can either be
legitimate websites, or pages that are set up
specifically to distribute malware. They may
contain exploit kits that are used to attack
vulnerabilities.

 Cross-site scripting (XSS): This is made possible
by the lack of user input validation and
sanitization, usually through forms and
comments. The malicious content is usually put
in place by a malicious user (attacker), and when
other users (victims) visit the page, the malicious
code will be executed on their browser. The code
can be used to steal cookies, session tokens, or
other sensitive information, or to perform other
malicious actions. An example of XSS attack is
shown in Figure 1.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6820

 Cross-Site Request Forgery (CSRF): Instead of
stealing information like XSS, CSRF tricks the
users into performing unwanted actions, which
include changing the user’s email address,
password, or even transferring funds from their
bank accounts.

 Heap spraying attacks: This technique involves
the attacker filling the memory heap with
malicious code, and then using a vulnerability to
execute the code. This technique is often used
together with other attacks, such as XSS.

There are also other types of malicious attacks that
involve JavaScript, such as hidden iframes which
load JavaScript malware, or “maladvertising” [49],
which leverages advertising to distribute various
forms of malware.

Figure 1: The process of a reflected XSS attack [2]

As malicious code technology has developed, so
too has technology for combating it. The primary
defense against malicious code is its detection, which
aims to analyze software or code features to identify
its malicious nature. The accuracy of this detection
is crucial for mitigating the damage caused by
malicious code. Two primary methods for malicious
code detection are static and dynamic analysis. Static
analysis examines software without running it,
usually by analyzing its source or binary code.
Dynamic analysis involves executing the software in
a controlled setting to monitor its behavior. Each
method has its pros and cons: static analysis is faster
but may yield false positives, while dynamic analysis
is more accurate but time-consuming. Often, both are
used together for improved detection. Still, there is a
need for a new method that can achieve high
accuracy while maintaining a low time cost. With the
advance of artificial intelligence (AI), there have
been many attempts to apply machine learning to
malicious code detection. Following this trend of
applying in security fields as well as to improve the
detection performance and minimize manual data
engineering tasks, this paper proposes a novel model
based on CodeBERT deep transfer learning for
detecting malicious JavaScript code embedded in
webpages.

1.2. Related Works
Due to the importance of malicious code

detection, there have been many attempts to apply
machine learning to this problem from network
security scholars and experts. The approaches
outlined in these works often use static or dynamic
analysis method, or a combination of both, and many
of them also use machine learning and deep learning
models to aid the detection.

Dynamic analysis is a common approach used for
malicious code detection. Detection systems usually
extract behavioral features during the execution of
code, and then use honeypots to simulate the browser
environment to execute JavaScript code, which
produce information that can be recorded and
analyzed to provide details and conclusion regarding
malicious intention of the code. A honeypot serves
as a specialized computing resource designed for the
detection of unauthorized activities and cyber-
attacks. Its primary function is to facilitate the study
and analysis of the methods and objectives of
potential attackers. Many studies have proposed the
usage of honeypot for malware detection [28], such
as using low and high interaction client honeypots
[1]. Since code execution is part of dynamic analysis,
these approaches can be effective against zero-day
attacks. However, they can also be susceptible to
infiltration by attackers, which is a major downside
of honeypot implementations, and can be resource-
intensive.

Besides dynamic analysis, static analysis is a
common approach used for malicious code
detection. Traditionally, security systems use rule-
based approaches and pattern matching [39] to
prevent malicious attacks, however, these
approaches have been shown to be ineffective
against zero-day attacks, as they tend to raise false
negatives with new classes of malware. On the other
hand, these methods can also be very lightweight and
fast, making it possible to integrate them directly in
the browser [8].

Approaches that leverage machine learning and
Deep Learning have been proposed, where Natural
Language Processing (NLP) techniques are adopted
into the processing of programming languages.
There are three commonly recognized levels of
interpretation of a language: lexical, syntactic and
semantic [35]. In lexical analysis, a sequence of
characters is transformed into tokens. Syntactic
analysis then organizes these tokens into valid
expressions in the given language, while semantic
analysis correctly interprets these expressions to
execute a specific algorithm. With this in mind, there
are four main approaches to extract features from

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6821

JavaScript code for machine learning-based
methods:

 Adopt natural language: The code snippets are
considered as natural language text, and as such
features can be represented as a collection of total
number of lines, average string length, number of
eval calls, share of encoded characters, file
entropies, special functions count, number of
special symbols, etc. This approach requires
expert domain knowledge in the field of cyber
security and an understanding of the
programming language in question. Moreover,
this approach is based on the assumption that
malicious JavaScript will typically use
obfuscation techniques to hide its true nature, and
therefore will have different features than benign
JavaScript [45]. Such an assumption may not
always be true, as new types of malwares will
always be developed, and they may not always
use obfuscation techniques.

 Using lexical features: Following the lexical
analysis angle, the code is tokenized into a
sequence of lexical units, which can be used as
features. The code will usually need to be
cleaned by using regular expression rules to
remove special characters and comments.
Techniques, such as Doc2Vec and Word2Vec
are often used to produce vector representation of
the code, in conjunction with a classifier for
detection [29][33].

 Using syntactic features: In order to associate
meanings to the tokens to constitute valid
expressions, other studies have also extracted
syntactic unit sequence features of abstract
syntax tree (AST) and used together with NLP
featurization methods like Doc2Vec/Word2Vec
to get a better representation of the code structure
[11][29]. This approach has the benefit of having
a faster preprocessing step, since with original
JavaScript, we will need to do some pre-
cleaning.

 Using semantic features: This approach
leverages semantic information, which includes
both AST-based features and other methods,
such as Program Dependency Graph [42] to
generate JavaScript semantic slices.

With the development of large language models
(LLM), there have been studies that propose the use
of pre-trained language models in malicious code
detection, such as GPT-2 [9]. However, GPT-2 is
primarily designed for natural language (NL)
understanding and generation tasks, and it does not
focus specifically on programming languages (PL).
While the CodeBERT family of language models

have not been found to be explored in other
literatures regarding malicious code detection, they
have been shown to be effective in other
classification tasks, such as Code Search, which can
be formulated as a text-code classification scenario
[21]. Therefore, we are motivated to explore the
usage of CodeBERT in malicious code detection.

Although there have been a number of previous
proposals for malicious code detection using
traditional machine learning and deep learning
techniques, there are existing issues for further
investigations:
 Approaches based on traditional machine

learning techniques require the intensive manual
definition and extraction of classification
features from datasets. In order to maintain the
detection performance, this task much be done on
each type of datasets.

 Approaches based on deep learning techniques
usually require large datasets for training to
construct the detection models. The training
process may require very high computing
resources and take a long period of time because
the detection models usually have to be built
from the beginning.

In our approach, we explore the use of deep
transfer learning techniques to construct our
detection models. Specifically, we use CodeBERT
that is a pre-trained model using large corpuses of
natural languages and programming languages to
build our malicious JavaScript code detection
models. CodeBERT can reduce the training time as
well as to reduce the requirements of computing
resources because it is a pre-trained model and our
training process is a type of incremental training on
the top of CodeBERT. In addition, CodeBERT can
eliminate the need of the manual definition and
extraction of classification features from datasets
because it can process code via some relatively
simple preprocessing steps.

1.3. Paper Contributions and Organization

The contributions of our paper are as follows:
 Proposes a novel model based on Code-BERT

deep transfer learning for detecting malicious
JavaScript code embedded in webpages.
Different fine-tuning strategies are investigated
and used to enhance the performance of the
proposed model;

 Implements, experiments and evaluates the
Code-BERT based models against some baseline
models and previous proposals. Experimental
results confirm that the proposed Code-BERT
model outperforms all baseline models in all

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6822

performance metrics and it has better or
comparable detection results with previous
studies.

The remaining of this paper is organized as
follows: Section 2 provides background knowledge
of traditional machine learning and deep learning
algorithms and architectures used in this study.
Section 3 describes datasets used in this study, the
architecture of the proposed model, baseline models
and used performance metrics. Section 4 present
experimental setup, implementation, results and
discussion. Finally, Section 5 gives the conclusion
and future work of the paper.

2. BACKGROUND

2.1. Deep Transfer Learning with CodeBERT

2.1.1. Deep transfer learning

One key challenge in applying deep learning to
practical problems is the lack of large-scale datasets.
This is especially true for the malicious JS detection
task, where the number of malicious code samples is
limited. To address this problem, we propose to use
deep transfer learning, which is a machine learning
method that allows the knowledge transfer from one
domain to another. Furthermore, transfer learning
operates on the premise that the training data doesn't
need to have the same distribution as the testing data,
which helps address the issue of having limited
training data [44].

The definition of deep transfer learning is as
follows: given a learning task 𝑇𝑡 based on 𝐷𝑡, and a
related but different learning task 𝑇𝑠 based on 𝐷𝑠,
where 𝐷𝑠 and 𝐷𝑡 are the source and target domains,
respectively, deep transfer learning aims to improve
the learning of the target predictive function 𝑓𝑡(⋅) in
𝑇𝑡 using the knowledge in 𝐷𝑠 and 𝑇𝑠, where 𝐷𝑠 ≠ 𝐷𝑡
and/or 𝑇𝑠 ≠ 𝑇𝑡 [44]. Among the various deep transfer
learning techniques, network-based deep transfer
learning is the most widely used. It is based on the
assumption that the source and target domains share
the same feature space but have different marginal
probability distributions [31]. Recently, pre-trained
language models, such as BERT and GPT-3, with
large amounts of unlabeled data and fine-tuning in
downstream tasks have made a breakthrough in NLP
domain [10].

Figure 2 illustrates the standard procedure for
network-based deep transfer learning. Initially, a pre-
trained deep learning model is acquired and set aside
for fine-tuning, with its weights preserved.
Subsequently, the final layers of this pre-trained
model are isolated, and their weights are eliminated.
It is commonly assumed that a pre-trained model

consists of two segments: layers embedding general
knowledge and layers designed for a specific
upstream task, such as masked language models in
text processing. The prevailing practice is to reset the
weights of these task-specific classification layers,
thereby maintaining the model’s general knowledge
while enabling its applicability to downstream tasks
like text classification. Thirdly, the model undergoes
fine-tuning by ingesting downstream training data,
which is typically significantly smaller than the
dataset used for the initial training by several orders
of magnitude. During this phase, the model learns to
perform downstream prediction task by leveraging
knowledge from both the pre-trained model and the
new training data. Finally, the fine-tuned model
becomes ready for deployment in downstream
predictive tasks.

Figure 2: The typical process of network-based
deep transfer learning.

2.1.2. BERT and CodeBERT
Language models can generally be divided into n-

gram models and neural language models.
Traditional neural approaches, such as Word2Vec
[26], remain popular. BERT (Bidirectional Encoder
Representations from Transformers) advances
natural language pre-training through masked
language modeling and a Transformer-based
framework, leading to significant improvements in
state-of-the-art performance across numerous
natural language processing tasks. BERT is
considered one of the top pre-training models for
downstream applications, particularly since more
advanced models, like GPT-3 [3], are neither open-
source nor readily available.

RoBERTa [23] is a reproduction of BERT that
retains BERT's architecture while introducing an
enhanced pre-training approach. CodeBERT [13],
based on the architecture of BERT and RoBERTa,
specifically RoBERTa-large differs from them by
taking both natural language and source code as
input. Unlike BERT and RoBERTa, which focus on
natural language, CodeBERT is trained on a vast
dataset of code from several programming
languages, such as Python, Java, JavaScript, and
C++. This enables it to capture both the syntactic and
semantic properties of programming languages. By
fine-tuning and adding a classification layer,
CodeBERT can be adapted for classification tasks.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6823

2.1.3. Training mechanism of CodeBERT
a. Masked Language Model (MLM)

Given a NL-PL pair datapoint (𝑥 = 𝑤, 𝑐) as input,
where 𝑤 is a sequence of NL and 𝑐 is a sequence of
PL, it first selects a random set of positions for both
NL and PL to mask out (i.e. 𝑚𝑤 and 𝑚𝑐,
respectively), and then replaces the selected spots
with a specific token (i.e. [𝑀𝐴𝑆𝐾]). As mentioned in
the CodeBERT paper [13], 15% of the tokens from
𝑥 are masked out:

𝑚௜
௪ ∼ unif{1, … , |𝑤|}for 𝑖 = 1 to |𝑤|

𝑚௜
௖ ∼ unif{1, … , |𝑐|}for 𝑖 = 1 to |𝑐|

𝑤masked = REPLACE(𝑤, 𝑚𝑤, <mask>)
𝑥 = 𝑤 + 𝑐

(1)

The objective of MLM is to predict the original
tokens that were masked, and it can be represented
as follows:

𝐿𝑂𝑆𝑆ெ௅ெ() =

෍ − log 𝑝஽భ(𝑥௜|𝑤௠௔௦௞௘ௗ , 𝑐௠௔௦௞௘ௗ)

௜௠ೢ௎௠೎

 (2)

b. Replaced Token Detection (RTD)

The second objective of CodeBERT is replaced
token detection as shown in Figgure 3, which further
uses a large amount of unimodal data, such as codes
without paired natural language texts [13].
Specifically, there are two data generators, a NL
generator 𝑝ீೢand a PL generator 𝑝ீ೎ , both for
generating plausible alternatives for the set of
randomly masked positions.

𝑤పതതത ∼ 𝑝ீೢ(𝑤𝑖|𝑤masked) for 𝑖 ∈ 𝑚𝑤

𝑐పഥ ∼ 𝑝ீ೎(𝑐𝑖|𝑐masked) for 𝑖 ∈ 𝑚𝑐

𝑤corrupt = REPLACE(𝑤, 𝑚𝑤, 𝑤ഥ)

𝑐corrupt = REPLACE(𝑐, 𝑚𝑐, 𝑐̅)

𝑥corrupt = 𝑤corrupt + 𝑐corrupt

(3)

Figure 3: Illustration of replaced token detection [13].

The discriminator is trained to classify whether a given word is the original one or not, making it a binary
classification task. The loss function for RTD, with respect to the discriminator parameterized by 𝜃, is defined
as follows:

𝐿𝑂𝑆𝑆ோ்஽() = ෍ (𝑖) log 𝑝஽మ(𝑥௖௢௥௥௨௣௧ , 𝑖) + [1 − (𝑖)][1 − 𝑙𝑜𝑔𝑝஽మ([𝑥௖௢௥௥௨௣௧], 𝑖)]

|௪ା|௖|

௜ୀଵ

(𝑖) = ൜ 1 𝑖𝑓 𝑥௜
௖௢௥௥௨௣௧

= 𝑥௜

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6824

where 𝑝𝐷2 is the discriminator that predicts the probability of the 𝑖-th word being original, and 𝛿(𝑖) is the
indicator function.

There are several ways to implement the
generators, and CodeBERT has implemented two 𝑛-
gram language models with bidirectional contexts,
one for NL and one for PL, and learn them from
corresponding unimodal datapoints, respectively.

The final loss function is given by:

𝑚𝑖𝑛𝜃 LOSSMLM(𝜃) + LOSSRTD(𝜃) (5)

2.2. Baseline Models

In this section, we provide a brief overview of
several baseline models used for comparing the
performance of CodeBERT-based models. These
baselines include models built on Bi-LSTM as well
as traditional machine learning methods like
Random Forest (RF), Support Vector Machine
(SVM), and Logistic Regression (LR). Bi-LSTM,
RF, SVM, and LR were chosen because they are
among the most widely-used and effective models
for text classification in natural language processing
tasks [13][29][30].

2.2.1. Bi-LSTM

Long Short-Term Memory (LSTM) is a form of
recurrent neural network (RNN) that excels at
learning long-term dependencies. It is widely applied
in natural language processing (NLP) tasks such as
text classification, machine translation, and speech
recognition. Bidirectional Long Short-Term
Memory (Bi-LSTM) [37] is a enhanced version of
the Long Short-Term Memory architecture [18].

LSTM is specifically designed to address the
vanishing gradient issue found in traditional RNNs,
which hinders their ability to learn long-term
dependencies. This issue arises when the gradient of
the loss function with respect to the network's
parameters diminishes to near zero, causing the
network to stop learning effectively. LSTM
overcomes this challenge by introducing a memory
cell capable of retaining information over extended
periods. This memory cell consists of three gates: the
input gate, output gate, and forget gate. The input
gate regulates the information entering the memory
cell, the output gate manages the information leaving
the cell, and the forget gate determines what
information should be discarded. These gates are
controlled by sigmoid activation functions, which
produce values between 0 and 1, allowing the LSTM
to effectively manage long-term dependencies.

2.2.2. Random Forest

Random Forest [4] is an ensemble learning
technique that creates numerous decision trees
during training and produces a final output based on
the majority class (in classification) or the average
prediction (in regression) of the individual trees. It
extends the bagging method by generating a large set
of uncorrelated trees and then averaging their
predictions. Random Forest is a highly accurate and
versatile method suitable for both classification and
regression tasks. This algorithm is widely used
across various domains, including image
classification, text classification, and speech
recognition. The margin function in a random forest
quantifies how much the average number of votes for
the correct class at 𝑋, 𝑌 exceeds the average votes for
any other class, and it is defined as follows:

 𝑚𝑔(𝑋, 𝑌) =
 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌) − 𝑚𝑎𝑥𝑗≠𝑌 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑗) (6)

where 𝐼(⋅) is the indicator function. A larger
margin indicates greater confidence in the
classification. The generalization error is expressed
as:

𝑃𝐸∗ = 𝑃𝑋,𝑌 (𝑚𝑔(𝑋, 𝑌) < 0) (7)

2.2.3. Support Vector Machine

Support Vector Machine (SVM) [7], introduced in
1995, is a supervised machine learning algorithm
mainly used for classification, although it can also be
adapted for regression tasks. Its primary objective is
to identify a hyperplane that optimally divides data
points from different classes within a feature space.
Given a training dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛,
𝑦𝑛), where 𝑥𝑖 ∈ ℝ𝑑 is a feature vector and 𝑦𝑖 ∈ {−1,
1} is the corresponding label, the objective is to find
the hyperplane defined as w ⋅ x + 𝑏 = 0 that
maximizes the margin between classes. The
optimization problem can be formally stated as:

 minimize =
ଵ

ଶ
 ‖w‖2

 (8)

subject to 𝑦𝑖(w ⋅ 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1, … , 𝑛 (9)

The dual form of this problem introduces
Lagrange multipliers 𝛼𝑖 and leads to a quadratic
programming problem. The decision function for a
new data point 𝑥 is 𝑓(𝑥) = sign(∑ α௜y௜x௜

௡
௜ୀଵ ⋅ x + 𝑏),

where 𝛼𝑖 are the solutions of the dual problem.
Kernel functions can be employed to map data to a
higher-dimensional space, enabling SVM to handle
non-linearly separable data.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6825

2.2.4. Logistic Regression

Logistic Regression [19] is a supervised machine
learning algorithm primarily used for binary
classification tasks. Given a set of training data (𝑥1,
𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 ∈ ℝ𝑑 is a feature
vector and 𝑦𝑖 ∈ {0, 1} is the binary label, the
algorithm models the probability that 𝑦𝑖 = 1 as a
logistic function of a linear combination of the
features. The model can be mathematically
expressed as:

 𝑃(𝑦𝑖 = 1|𝑥𝑖) =
ଵ

ଵା௘ష(ೢ⋅ೣ೔శ್) (10)

where w ∈ ℝ𝑑 are the feature weights and 𝑏 ∈ ℝ is
the bias term. The objective is to find w and 𝑏 that
minimize the log-likelihood:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ෍[𝑦௜ log൫𝑃(𝑦௜ = 1|𝑥௜)൯ + (1

௡

௜ୀଵ

− 𝑦௜) log (1 − 𝑃(𝑦௜ = 1|𝑥௜))]

(11)

The model parameters are usually estimated
through techniques such as maximum likelihood
estimation (MLE), and regularization methods like
L1 or L2 regularization can also be applied.

3. THE PROPOSED MODEL FOR
DETECTING MALICIOUS JAVASCRIPT
CODE

In this section, we first present the datasets and
how they are established and processed. Next, we
explain the overall architecture of the proposed
model that is used for malicious JavaScript code
detection.

3.1. Dataset Collection

Our datasets consist of benign and malicious
JavaScript codes obtained from various external
sources, totaling to 110,985 JavaScript code
samples. First of all, we crawl the top 2,000 URLs
ranked by Alexa and are able to collect 32,854 code
samples from these URLs. We also cross-check
these URLs with an URLs dataset from Kaggle [40]
to make sure that the URLs are indeed non-
malicious. These JavaScript codes are labelled as
benign since they are extracted from top website
URLs ranked by Alexa. After that, we collect data
from various Github repositories, including the
Petrak’s dataset of 39,450 JavaScript malware
samples [32], which have been used and cited in
several studies [30]. We also collect data from other
datasets, including [16], [47], [50] and [41]. The
details of the collected datasets are shown in
Table 1.

As seen in Table 1, the total size of the data is
almost 8GB, which has proven to be a challenge for
data processing and model training. Due to a
limitation in time and hardware, we only use 20,515
for the experiments, which are randomly sampled
from the original datasets. The distribution of the
samples per class is shown in Table 2.

An example of malicious and benign code can be
found in Table 3. As seen in this table, the malicious
code attempts to embed an iframe from an external
website into the current web page. While the code is
not inherently malicious, the iframe is set to be
extremely small (width="11" height="1"), which
essentially makes it invisible or barely visible to the
user. Moreover, the iframe source uses HTTP, which
is less secure than HTTPS. This could make the
content susceptible to man-in-the-middle attacks. In
contrast, the benign JavaScript sample is a simple
function that inverts the theme of the web page. The
function takes in a theme as an argument and returns
the inverted theme. The function is not malicious and
does not contain any malicious code.

Table 1. Datasets used in this study

Source
No. of
benign
samples

No. of
malicious
samples

Total
size

Top 2000 Alexa URLs 32,854 0 3.3 GB

Petrak, 2017 [32] 0 39,450 4.5 GB

He, 2018 [16] 1,292 381 3.1 MB

Tsukerman, 2019 [47] 1891 1476 19.3 MB

ZZN0508, 2022 [50] 8,079 8,500 919.1 MB

Singh, 2017 [41] 0 8,062 55.9 MB

Table 2. Distribution of classes of JavaScript snippets

Class
No. of

samples
Pro-

portion
Average length

by character

Benign 9,551 46.5% 71,464

Malicious 10,964 53.5% 55,399

Table 3. Examples of malicious and benign JavaScript

(a) Benign code sample

export const themes = {
night: 'night',
default: 'default'
};
export const invertTheme = currentTheme
=> !currentTheme ||
currentTheme === themes.default ?
themes.night : themes.default;

(b) Malicious code sample

document.write(
'<center>' +

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6826

'<iframe width="11" height="1" ' +
'src="http://laghzesh.rzb.ir" ' +
'style="border: 0px;" ' +
'frameborder="0" ' + 'scrolling="auto">'+
'</iframe>'

);

3.2. Preprocessing

Since the data is code snippets, minimal
preprocessing is required. However, there are some
steps that need to be taken to make the data suitable
for input of the model. First of all, the collected data
samples are checked to remove any duplication
because they are gathered from multiple sources. We
do this by calculating the MD5 hash of each code
snippet and check for duplicates by setting the hash
as the file name. After that, we use the Esprima
package [17] to make sure that the code snippet is
valid and can be parsed. This is done by checking if
the code snippet can be parsed into an AST. If the
code snippet cannot be parsed, it is removed from the
dataset. Additionally, code comments are deleted,
and any white spaces at the beginning and end of the
source code are removed.

3.3. The Architecture of the Proposed Detection
Model

Figure 4 illustrates the architecture of the
proposed CodeBERT-based detection model, which

follows a five-step process. In step A, different types
of inputs (unimodal or bimodal) are selected,
affecting the input data components. Step B involves
tokenizing the source code into tokens according to
the Backus Normal Form (BNF) grammar rules. In
step C, the tokens are either truncated or further
processed to prevent information loss from
excessively long code. In step D, the data is input
into the pre-trained CodeBERT model, which is then
fine-tuned for the classification task. Lastly, step E
involves evaluating the detection model using a
separate test dataset. We explored various input
strategies and post-tokenization processing methods,
resulting in four fine-tuning approaches for
CodeBERT, as detailed in Table 4.

Table 4. Four methods for fine-tuning CodeBERT
used in the proposed model

Input strategies Post-tokenization methods

Unimodal (PL) Truncation

Unimodal (PL) Segmentation + Average

Bimodal (NL-PL) Truncation

Bimodal (NL-PL) Segmentation + Average

Figure 4: Architecture of the Proposed Detection Model Based on CodeBERT

3.3.1. Choosing model input

Since CodeBERT can be used for various
downstream tasks, we can choose different strategies
for prediction. Generally, we can classify
downstream tasks based on the input and output,
which can either be Natural Language (NL) or
Programming Language (PL). For example, the
input can be the JavaScript code snippet (PL), or a
pair of a sentence and a code snippet (NL-PL). Since
our task is to detect malicious JavaScript, we can
choose two different strategies based on the types of
inputs, as shown in Figure 5:

 Unimodal Input (PL only): This is the most
straightforward strategy, where we take in code
as input and predict 0 for benign and 1 for
malicious.

 Bimodal Input (Input is NL-PL pair): Also called
sentence-based strategy. We can frame the task
as either a sentence-based matching or a
keyword-based matching task. For this task, a
trained model must determine if a code snippet
responds to a specific natural language query,
which can be framed as a binary classification
problem [21]. For example, we can provide the
model with a NL-PL pair of a sentence and a

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6827

code snippet, and the model will predict if the
sentence matches the code. Similarly, we provide
the model with a NL-PL pair of a list of keywords
(“malicious”, “harmful”, “malware”) and a code
snippet, and the model will predict if the
keywords match the code. This means that the
labels become 1 for a matching pair, and 0 for a
non-matching pair. For this report, we will only
focus on the sentence-based strategy. For this
study, the following sentences are used as pairing
with the codes and assigned to the code randomly
with a 50% chance for each class:
+ To denote a malicious code sample:

“javascript perform malicious actions to trick
users, steal data from users, or otherwise
cause harm”;

+ To denote a benign code sample: “javascript
perform normal, non-harmful actions”.

 Figure 5:Code (PL) and Text+Code (NL-PL) approach

3.3.2. Tokenization

The CodeBERT tokenizer takes the input string
(code or code+text) and convert it into a sequence of
tokens that the model can understand. These tokens
are subsequently mapped to unique integers (IDs),
based on a pre-established vocabulary, and may
undergo additional processing such as the addition of
special tokens (e.g., [CLS], [SEP]). During
tokenization, the tokenizer will split the input into
smaller pieces, called tokens. These tokens could be
as small as a single character or as long as a word.
For example, considering the benign JavaScript
example in Table 3.(a), the output of the tokenizer is:

['<s>', 'Ċ', 'export', 'Ġconst',
'Ġthemes', 'Ġ=', 'Ġ{', 'Ċ', 'Ġ',
'Ġnight', ':', "Ġ'", 'night', "',", 'Ċ',
'Ġ', 'Ġdefault', ':', "Ġ'", 'default',
"'", 'Ċ', '};', 'Ċ', 'Ċ', 'export',
'Ġconst', 'Ġin', 'vert', 'Theme', 'Ġ=',
'Ġcurrent', 'Theme', 'Ġ=>', 'Ċ', 'Ġ',
'Ġ!', 'current', 'Theme', 'Ġ||', 'Ċ',
'Ġ', 'Ġcurrent', 'Theme', 'Ġ===',
'Ġthemes', '.', 'default', 'Ġ?', 'Ċ',
'Ġ', 'Ġthemes', '.', 'night', 'Ġ:', 'Ċ',

'Ġ', 'Ġthemes', '.', 'default', ';', 'Ċ',
'</s>']

The tokens can be understood as follows:
 Special characters like <s> and </s>: These

are start and end tokens, respectively. They
indicate the beginning and end of a sequence.

 ‘Ċ’ and ‘Ġ’ Prefixes: Special characters used to
indicate a new line (‘Ċ’) or a space (‘Ġ’). They
capture the code’s formatting, which can be
syntactically significant in some programming
languages.

 Keywords and Variable Names: Elements like
export, const, themes, night,
default, invertTheme, and
currentTheme are preserved as they are.
These are recognizable constructs that are
important for understanding the code’s
semantics.

 Operators and Punctuation: Characters like ‘=’,
‘{’, ‘}’, ‘:’, ‘?’, etc., are also treated as individual
tokens.

 Code Splicing: Some tokens, like current and
Theme, are examples of the tokenizer breaking
down composite identifiers into parts that are
more common and easier for the model to
generalize across different contexts.

If a token is missing from the vocabulary file, an
unknown token (, ,) will be used.

This paper employs two preprocessing patterns,
aligning with the two input strategies outlined in
Section 3.3.1. The first preprocessing approach (for
unimodal input) adds a marker at both the start and
end of the code. The second approach (for bimodal
input) includes an additional marker to distinguish
between the source code and the declarative
sentence. The code, once preprocessed, is then
prepared for tokenization.

3.3.3. Post-tokenization processing

As shown in Section 3.1, the average length by
character count of the code snippets is quite high,
which would be a challenge for the CodeBERT to
learn from, since CodeBERT only supports a
maximum length of 512 tokens. Therefore, we need
to process the data further to make it suitable for the
model. We propose two methods to handle long code
snippets:
 Truncation: Simply truncate the code snippet to

512 tokens. This is the simplest method, but it
could lead to loss of information;

 Aggregation: Split the code snippet into smaller
segments and feed them into CodeBERT to get

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6828

their representations. After that, we can
aggregate the representations to get a global
representation of the code snippet. This method
is more complex, but it can preserve more
information. The method is illustrated in
Figure 6. Given a sequence of tokens T(C) = {t1,
t2,…,tn}, with n being the number of tokens, we
can perform the following steps:
+ Segmentation: The tokenized sequence 𝑇(𝐶)

is split into 𝐾 segments, each of size 𝐿 or less.
In this case, we choose 𝐿 = 512 and 𝐾 = ⌈

௡

௅
 ⌉.

Sk = t(k-1)L+1, t(k-1)L+2,…, tmin(kL, N),
 k = 1, 2,…, K (12)

+ CodeBERT Transformation: Each segment Sk
is then fed into CodeBERT to get its
representation f(Sk).

+ Aggregation: Finally, all the segment
representations are aggregated to get a global
representation G. This is done by taking the
average:

 𝐺 =
ଵ

௄
 ෌ 𝑓(𝑆௞)

௄

௞ୀଵ
 (13)

For this study, the Truncation method and
Segmentation by average method are used.

 Figure 6: Process to handle long code snippets

3.3.4. Fine-tuning CodeBERT

Fine-tuning CodeBERT with the JavaScript
dataset involves performing incremental training on
the original CodeBERT framework. As outlined in
Section 2.1.3, we can select either MLM or RTD as
the fine-tuning objectives. For the purposes of this
paper, we will use MLM. The data is split into three
distinct subsets: training, validation, and testing. The
validation set is utilized throughout training to assess
the model's performance at each epoch.

As outlined in Section 3.3.1, corresponding to the
two input strategies, we have two fine-tuning

methods, unimodal data (PL only) and bimodal data
(NL-PL).

a. Unimodal input

A classification layer is added on top of the pre-
trained CodeBERT model. Consider CodeBERT as
a function F that maps an input sequence (the input
IDs) to a latent space z, with being the model
parameters, which can be denoted as follows:

z = F(x; ) (14)

The resultant z contains the features learned by
CodeBERT, encapsulated in a final layer of the
transformer architecture. These features are then
linearly mapped to a set of logits l via a classification
layer, where W is the weight matrix b and is the bias
term.

l = Wz + b (15)

These logits l can be normalized using the softmax
function  to produce a probability distribution p
over the two classes, benign and malicious.

𝑝 =  (𝑙) =
௘೗

∑ ௘೎
೗

೎ ಴
 (16)

Since the labeled data y is provided, the cross-
entropy loss L can be calculated as follows:

𝐿 = ∑ 𝑦௖ 𝑙𝑜𝑔 𝑝௖௖ ஼ (17)

The loss L is then backpropagated through the
network to update the model parameters  and W,
which would fine-tune CodeBERT to the JavaScript
dataset for the malicious JavaScript detection task.

b. Bimodal input

For NL-PL input, the NL-PL pair is concatenated
and goes through the CodeBERT encoder to extract
meaningful representations from both code snippets
and natural language descriptions. The combined
feature vector of the NL-PL pair Zcomb is then passed
through a Multi-Layer Perceptron (MLP) with
parameter W and sigmoid activation function  to
map the combined latent space to the binary output
space Y:

logiti = MLP(𝑍௖௢௠௕೔
; W) (18)

 P(Yi = 1 | 𝑍௖௢௠௕೔
; W) = (logiti) (19)

The model is trained by minimizing the Binary
Cross-Entropy (BCE) loss ℒ between the predicted
probabilities and the true labels yi:

 ℒ = −
ଵ

௡
 ∑ 𝑦௜

௡
௜ୀଵ log(P(Yi = 1 | 𝑍௖௢௠௕೔

; W)) +

 (1 - 𝑦௜) log(1 - P(Yi = 1 | 𝑍௖௢௠௕೔
; W)) (20)

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6829

Finally, a thresholding operation is applied to the
output probabilities to obtain binary predictions:

 𝑦పෝ = ൜
 1 𝑖𝑓 𝑃(𝑌𝑖 = 1 | 𝑍௖௢௠௕೔

; 𝑊) > 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

This approach leverages the powerful
representation learning ability of the transformer
encoder to map both code and natural language into
a common latent space and learns a discriminative
function in this latent space to perform the matching
classification task.

3.4. Setting up Baseline Models

In this section, we present the process to set up the
baseline models for comparison as presented in
Section 2.2.

3.4.1. Extracting syntactic features

To process data for Bi-LSTM, we first extract
syntactic features from the JavaScript code samples.
An abstract syntax tree (AST) serves as a tree-based
model of a program’s abstract syntactic structure. It
transforms source code written in a specific
programming language into a tree, where each node
corresponds to a statement from the source code.
ASTs are widely used for tasks like code checking,
analysis, and conversion. For instance, before
executing JavaScript code, a browser converts it into
an AST using a JavaScript parser. The AST plays a
pivotal role in semantic analysis and is instrumental
for static program analysis methods.

In this study, we employ Esprima and its Python
port [17] to convert JavaScript source code into an
AST. Esprima is a high-performance JavaScript
parser that takes a program written as a string and
outputs an AST. It generates 69 distinct node types,
including Program, Statement, Expression,
Declaration, and Pattern type nodes. Different code
segments are mapped to various node types, also
known as syntactic units. Using Esprima, we parse a
given JavaScript code sample into an AST, which we
then traverse depth-first to produce sequences of
syntactic units. The sequences are then used as input
to our deep learning model, particularly for Bi-
LSTM architecture, since CodeBERT doesn’t
require sequences of syntactic units as the input.

Consider the following JavaScript code snippet
that can be converted to an AST tree as shown in
Figure 7:

function init() {
 console.log('hello world');
}
init();

After isolating the sequences of syntactic units,
these sequences are classified using text
classification techniques. To be compatible with our
model, the sequence undergoes a conversion into
word vectors. Given that JavaScript syntactic units
of the same category, such as declaration class and
expression class, share similar affixes, it is believed
that the internal semantic structure of these units
should be considered during word vector training.
Therefore, this paper proposes to use the FastText
model [3] for training sequences of syntactic units.
FastText serves as an advanced extension of the
Word2Vec model [26]. Unlike Word2Vec, which
overlooks the internal structure of words, FastText
incorporates sub-word information. It represents
each word as a bag of character-level n-grams, and
the word vector for a given word is linked with each
of its constituent n-grams.

 Figure 7: Example of an AST tree

3.4.2. Extracting natural language features

To set up the baseline models using traditional
machine learning algorithms, we treat JavaScript
code as natural language text and build features
based on the text as suggested in previous literatures
[47]. The details of the features are shown in
Table 5.

Table 5. Features used for the machine learning models

Index Description
1 Length of the code snippet

2 Count of spaces

3 Combined count of open and close parenthesis

4 Count of slash characters (“/”)

5 Count of plus characters (“+”)

6 Count of dot characters (“.”)

7 Count of comma characters (“,”)

8 Count of semicolon characters (“;”)

9 Count of alphanumeric characters

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6830

10 Count of numeric characters

11 Ratio of spaces to code length

12 Ratio of alphanumeric characters to code length

13 Ratio of numeric characters to code length

14 Ratio of parenthesis to code length

15 Ratio of slash characters to code length

16 Ratio of plus characters to code length

17 Ratio of dot characters to code length

18 Ratio of comma characters to code length

19 Ratio of semicolon characters to code length

20
Count of specific string operations (substring, charAt,
split, concat, slice, substr)

21 Ratio of specific string operations to code length.

22
Count of specific encoding operations (escape,
unescape, string, fromCharCode)

23 Ratio of specific encoding operations to code length

24
Count of URL redirection functions (setTimeout,
location.reload, location.replace, document.URL,
document.location, document.referrer)

25 Ratio of URL redirection functions to code length

26
Count of specific functions (eval, setTime, setInterval,
ActiveXObject, createElement, document.write,
document.writeln, document.replaceChildren)

27 Ratio of specific functions to code length

3.5. Evaluation Metrics

Since the task of malicious code detection belongs
to the class of binary classification problems, the
four metrics, including Accuracy, Precision, Recall
and F1-score are used to evaluate the performance of
the detection models:

- Accuracy (Acc): the ratio of the number of
correctly classified samples to the total number of
samples. It is defined as:

𝐴𝑐𝑐 =
்௉ା்ே

்௉ା்ேାி௉ାி
 (22)

- Precision (Pre): the ratio of the number of
malicious code samples correctly classified as
malicious to total number of samples classified as
malicious. It is defined as:

𝑃𝑟𝑒 =
்௉

்௉ାி௉
 (23)

- Recall (Rec): the ratio of the number of
malicious code samples correctly classified as
malicious to the total number of malicious code
samples. It is defined as:

𝑅𝑒𝑐 =
்௉

்௉ାிே
 (24)

- F1-score (F1): the harmonic mean of precision
and recall. It is defined as:

𝐹1 =
ଶ்௉

ଶ்௉ାி௉ାிே
 (25)

where, TP, FP, FN and TN are elements of the
confusion matrix given in Table 6.

Table 6. TP, FP, FN and TN in the confusion matrix

 Actual Class
 Malicious Legitimate

Predicted
Class

Malicious TP (True
Positives)

FP (False
Positives)

Legitimate FN (False
Negatives)

TN (True
Negatives)

4. EXPERIMENTS AND RESULTS

4.1. Experiment Setup

The experiments for both CodeBERT-based
approaches and the baseline models are run on a
machine running Ubuntu 20.04.2 LTS with Python
3.10.11 and CUDA 11.7.

The raw datasets are saved in the file system as
separate code snippets and organized into directories
based on their labels (“benign” or “malicious”).
However, to make it easier to work with, we also
save the result after sampling and preprocessing into
parquet format, which is much smaller in terms of
data size.

To fine-tune CodeBERT, the same
hyperparameters are used across all methods. The
models are trained with 20 epochs. For the baseline
models, 5-fold cross-validation is used to evaluate
the models. The results are averaged across the 5
folds.

4.2. Experimental Results

In this section, the results of the experiments are
presented. The experiments are conducted on the
datasets described in Section 3.1. First, results
produced by the proposed model based on
CodeBERT are shown and comparison between
different input and post-tokenization methods are
analyzed. Then, results generated by baseline models
are presented and compared with those produced by
proposed model based on CodeBERT results.

Table 7 shows the results of detection models
based on CodeBERT using different fine-tuning
strategies of input and post-tokenization methods.
Generally, all strategies perform well over all
evaluation metrics. The best performing strategy is
bimodal input with truncation, followed by unimodal
input with truncation, with a difference of ± ~6%.
Notably, the Segmentation + Average approaches
with both types of input have a significant drop off
compared to the truncation method, which is not in

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6831

line with the previous hypothesis that the
segmentation method would improve the results.

Table 8 shows the performance comparison of
baseline models for malicious JavaScript detection.
Among the baseline models, the best performing
model is the model based on Random Forest with NL
features, which has an accuracy of 98.2% and F1
score of 95.1%. The deep learning approach with Bi-
LSTM and syntactic features using ASTs performs
worse than Random Forest and SVM by about 1% in
terms of accuracy, however it has the highest
precision, recall and F1-score among all baseline
models. The worst performing model is the model
based on Logistic Regression with NL features,
which has an accuracy of 92.5% and F1 score of
92.7%.

Table 9 compares the detection performance of
previous studies with this study. In general, the
approach proposed in this study has better or better
comparable detection results with previous studies.
Specifically, our proposed detection model
outperforms proposals in [9], [29], [33] and [42] in
all performance metrics. Our model also has
comparable detection results with proposals in [11],
[30] and [45]. Among these, the approach based on
Boosted Decision Tree and natural language features
[45] perform better with a reported F1-score of
99.7%, which is slightly higher than the best result
of this study by 0.4%.

Table 7. Comparison of malicious JavaScript detection
results of models based on CodeBERT using different

fine-tuning strategies

Input
strategies

Post-tokeniza-
tion method

Acc
(%)

Pre
(%)

Rec
(%)

F1
(%)

Bimodal
(NL-PL)

Truncation 99.3 99.1 99.5 99.3

Unimodal
(PL)

Truncation 93.1 93.6 93.4 93.1

Bimodal
(NL-PL)

Segmentation +
Average

86.3 87.1 84.4 85.7

Unimodal
(PL)

Segmentation +
Average

86.4 86.8 86.7 86.7

Table 8. Performance comparison of baseline models
for malicious JavaScript detection

Model
Featurization
method

Acc
(%)

Pre
(%)

Rec
(%)

F1
(%)

Random
Forest

NL features 98.2 97.3 93.0 95.1

SVM NL features 98.0 97.3 92.0 94.6

Bi-LSTM
Syntactic
features

97.1 97.4 97.1 97.2

Logistic
Regression

NL features 92.5 92.9 92.5 92.7

Table 9. Performance comparison of the proposed model
with other studies

Models Papers

Acc
(%)

Pre
(%)

Rec
(%)

F1
(%)

Fine-tuned
CodeBERT

This study
(Best result)

99.3 99.1 99.5 99.3

BDT + NL
Tellenbach et.
al. (2016) [45]

 99.6 98.7 99.7

Bi-LSTM-
Attention+
syntactic

Fang et. al.
(2020) [11]

99.3 99.4 99.3 99.3

SVM +
syntactic

Ndichu et. al.
(2019) [30]

 99.0 99.0 99.0

Bi-LSTM +
semantic

Song et. al.
(2020) [42]

97.7 98.6 97.9 98.2

Bi-LSTM-
CNN + lexical

Phung et. al.
(2021) [33]

97.1 97.4 97.1 97.2

SVM + lexical
Ndichu et. al.
(2018) [29]

 89.0 90.0 89.0

Fine-tuned
GPT-2

Demirci et. al.
(2022) [9]

85.4 82.6 89.7 86.0

4.3. Discussion

From the results give in Tables 7, 8 and 9, there
are several notable points of discussions:

 Between the two strategies for model input,
which are bimodal and unimodal, bimodal input
(NL-PL) perform better than unimodal input
(PL) by approximate 6%. This can be explained
as bimodal input containing more information
than unimodal input, while CodeBERT is also
pre-trained with a large corpus of natural
language input and can understand the concept of
malicious versus benign code.

 The results from the Segmentation + Average
approaches used in the post-tokenization step
(Accuracy about 86%) are significantly worse
than the truncation method, which has an
accuracy from 96% to 99%. This goes against the
hypothesis outlined in Section 3.3.3, where it is
expected that the segmentation method would be
able to retain the global representation of the
JavaScript code and avoid information loss from
truncation. The reason for this drop-off can
potentially come from the complicated
implementation of the method, as this
implementation is experimental in nature, since
this has not been explored in other literature.

 CodeBERT-based models perform better than
the baseline models, including both deep
learning and traditional machine learning
algorithms. This is expected, since CodeBERT is
a state-of-the-art model for code representation
learning, and it is able to capture the semantic
and syntactic information from the code. The

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6832

results from the baseline models are comparable
with other studies, which shows that the dataset
used in this study is representative of the
problem.

The proposed best CodeBERT-based model
performs better or comparable with previous studies,
which shows that the CodeBERT deep transfer
learning is the appropriate selection for constructing
models to detect malicious JavaScript code
embedded in webpages.

5. CONCLUSION

This paper proposes a novel model based on
Code-BERT deep transfer learning for detecting
malicious JavaScript code embedded in webpages.
The proposed Code-BERT model outperforms all
baseline models in all performance metrics,
including models based on traditional machine
learning and deep learning techniques. Furthermore,
proposed model has better or comparable detection
results with previous studies. Specifically, the best
proposed Code-BERT-based model has F1-score of
99.3%, which is among the top performance of the
state-of-the-art proposals for the detection of
malicious JavaScript code. In addition, because
Code-BERT a pre-trained model, the Code-BERT-
based detection model has less inference time due to
its minimal need for preprocessing. This points to the
potential of using CodeBERT-based model for
malicious JavaScript code detection in real
production environment.

Although our CodeBERT-based detection model
outperforms many previous studies, it is noted that
the proposed model has some limitations as follows:
(1) CodeBERT only accept 512 tokens as its input so
more preprocessing tasks need to be done for post-
tokenization step and (2) there are other pre-trained
models, such as GraphCodeBERT and uniXcoder
that may perform better than CodeBERT. These
issues are future tasks to be carried out:

 Data preprocessing: For the post-tokenization
step, it is possible to get the global representation
by processing the JavaScript code through a
Recurrent Neural Network (RNN). An RNN is a
useful choice for aggregating code segments into
a global representation since it can capture the
sequence information essential for understanding
code, as code segments are not independent of
each other, while also maintaining contextual
information from earlier segments, creating a
more comprehensive global representation.
Moreover, the current method used in this study
(Segmentation + Average) has shown to be not

effective, and we hope to improve this further in
the future.

 Selection of pre-trained model: Other pre-trained
language models that focus on programming
language besides Code-BERT have been
released and can be used for fine-tuning for
malicious JavaScript code detection, such as
GraphCodeBERT [14] and uniXcoder [15].
Particularly, uniXcoder considers multi-modal
contents like code comment and AST to enhance
code representation. This can potentially help
with cutting down training and inference time, as
well as improving the performance of the model.
Moreover, only MLM objective is used in this
paper, and as such other objectives like RTD can
be explored.

ACKNOWLEDGMENT

The authors deeply thank the Cyber Security Lab,
Posts and Telecommunications Institute of
Technology, Hanoi, Vietnam for the great assistance
in fulfilling this project.

REFRENCES

[1] OWASP Project, https://owasp.org, last
accessed 2020/09/20.

[2] Alosefer, Y., Rana, O. (2010). Honeyware: A
web-based low interaction client honeypot.
2010 Third International Conference on
Software Testing, Verification, and Validation
Workshops, Paris, France, 2010, pp. 410-417,
doi: 10.1109/ICSTW.2010.41.

[3] AVI Networks (2024), Cross Site Scripting,
https://avinetworks.com/glossary/cross-site-
scripting/.

[4] Bojanowski, P., Grave, E., Joulin, A., Mikolov,
T. (2017). Enriching word vectors with
subword information. Transactions of the
Association for Computational Linguistics
5:135–146. https://arxiv.org/abs/1607.04606.

[5] Breiman, L. (2001). Random forests. Machine
Learning 45(1):5–32. https://doi.org/10.1023/
A:1010933404324.

[6] Brown, T., Mann, B., Ryder, N., et al. (2020).
Language models are few-shot learners.
NIPS'20: Proceedings of the 34th International
Conference on Neural Information Processing
Systems. In: Advances in neural information
processing systems 33:1877–1901.

[7] Choi, Y., Kim, T., Choi, S., Lee, C. (2009).
Automatic Detection for JavaScript
Obfuscation Attacks in Web Pages through
String Pattern Analysis. In: Lee, Yh., Kim, Th.,

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6833

Fang, Wc., Ślęzak, D. (eds) Future Generation
Information Technology. FGIT 2009. Lecture
Notes in Computer Science, vol 5899.
Springer, Berlin, Heidelberg. https://doi.org/
10.1007/978-3-642-10509-8_19.

[8] Cortes, C., Vapnik, V. (1995). Support-vector
networks. Machine Learning 20:273–297.
https://doi.org/10.1007/BF00994018.

[9] Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.
(2011). ZOZZLE: Fast and precise in-browser
JavaScript malware detection. 20th USENIX
Security Symposium. https://www.usenix.org/
conference/usenix-security-11/zozzle-fast-
and-precise-browser-javascript-malware-
detection.

[10] Demirci, D., Sahin, N., Sirlanci, M., Acarturk,
C. (2022). Static malware detection using
stacked BiLSTM and GPT-2. IEEE Access
10:1–1. https://doi.org/10.1109/ACCESS.
2022.3179384.

[11] Devlin, J., Chang, M.W., Lee, K., Toutanova,
K. (2018). Bert: Pre-training of deep
bidirectional transformers for language
understanding. https://arxiv.org/abs/1810.
04805.

[12] Fang, Y., Huang, C., Su, Y., Qiu, Y. (2020).
Detecting malicious JavaScript code based on
semantic analysis. Computers & Security
93:101764. https://doi.org/10.1016/j.cose.2
020.101764

[13] Fass, A., Krawczyk, R.P., Backes, M., Stock, B.
(2018). JAST: Fully Syntactic Detection of
Malicious (Obfuscated) JavaScript. In:
Giuffrida, C., Bardin, S., Blanc, G. (eds)
Detection of Intrusions and Malware, and
Vulnerability Assessment. DIMVA 2018.
Lecture Notes in Computer Science(), vol
10885. Springer, Cham. https://doi.org/
10.1007/978-3-319-93411-2_14.

[14] Feng, Z., Guo, D., Tang, D., et al. (2020).
CodeBERT: A pre-trained model for
programming and natural languages. Findings
of the Association for Computational
Linguistics: EMNLP 2020. https://doi.org/
10.18653/v1/2020.findings-emnlp.139.

[15] Guo, D., Ren, S., Lu, S., et al. (2021).
GraphCodeBERT: Pre-training code
representations with data flow.
https://arxiv.org/abs/2009.08366.

[16] Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M.,
Yin, J. (2022). UniXcoder: Unified cross-
modal pre-training for code representation.
https://arxiv.org/abs/2203.03850.

[17] He, X., Xu, L., Cha, C. (2018). Malicious
JavaScript code detection based on hybrid
analysis. In: 2018 25th Asia-pacific software
engineering conference (APSEC). pp 365–374.
https://doi.org/10.1109/APSEC.2018.00051.

[18] Hidayat, A. (2018). ECMAScript parsing
infrastructure for multipurpose analysis.
https://esprima.org/doc/.

[19] Hochreiter, S., Schmidhuber, J. (1997). Long
short-term memory. Neural computation
9(8):1735–1780. https://doi.org/10.1162/
neco.1997.9.8.1735.

[20] Hosmer, Jr. D.W., Lemeshow, S., Sturdivant,
R.X. (2013). Applied logistic regression. John
Wiley & Sons. DOI:10.1002/9781118548387.

[21] Huang, J., Tang, D., Shou, L., et al. (2021).
CoSQA: 20,000+ web queries for code search
and question answering. In: Proceedings of the
59th Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing.
DOI: 10.18653/v1/2021.acl-long.442.

[22] Husain, H., Wu, H.H., Gazit, T., Allamanis, M.,
Brockschmidt, M. (2019). Codesearchnet
challenge: Evaluating the state of semantic
code search. https://arxiv.org/abs/1909.09436.

[23] Kim, H.G., Kim, D.J., Cho, S.J., Park, M.J.,
Park, M.Y. (2012). Efficient detection of
malicious web pages using high-interaction
client honeypots. Journal of Information
Science and Engineering 28:911–924.
https://doi.org/10.6688/JISE.2012.28.5.6.

[24] Liu, Y., Ott, M., Goyal, N., et al. (2019).
Roberta: A robustly optimized bert pretraining
approach. https://arxiv.org/abs/1907.11692.

[25] Lu, S., Guo, D., Ren, S., et al. (2021).
CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation.
https://arxiv.org/abs/2102.04664.

[26] Merkel, D. (2014). Docker: Lightweight linux
containers for consistent development and
deployment. Linux Journal, Vol. 2014. Issue
239. https://dl.acm.org/doi/10.5555/2600239.
2600241.

[27] Mikolov, T., Sutskever, I., Chen, K., Corrado,
G., Dean, J. (2013). Distributed representations
of words and phrases and their
compositionality. NIPS'13: Proceedings of the
26th International Conference on Neural
Information Processing Systems.
https://arxiv.org/abs/1310.4546.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6834

[28] Nagarjun, P., Ahamad, S.S. (2020). Cross-site
scripting research: A review. International
Journal of Advanced Computer Science and
Applications(IJACSA), Volume 11, Issue 4,
2020. https://doi.org/10.14569/IJACSA.2020.
0110481.

[29] Nawrocki, M., Wählisch, M., Schmidt, T.C.,
Keil, C., Schönfelder, J. (2016). A survey on
honeypot software and data analysis.
https://arxiv.org/abs/1608.06249.

[30] Ndichu, S., Ozawa, S., Misu, T., Okada, K.
(2018). A machine learning approach to
malicious JavaScript detection using fixed
length vector representation. In: 2018
international joint conference on neural
networks (IJCNN). pp 1–8.
https://doi.org/10.1109/IJCNN.2018.8489414.

[31] Ndichu, S., Kim, S., Ozawa, S., Misu, T.,
Makishima, K. (2019). A machine learning
approach to detection of JavaScript-based
attacks using AST features and paragraph
vectors. Applied Soft Computing 84:105721.
https://doi.org/10.1016/j.asoc.2019.105721.

[32] Pan, S.J., Yang, Q. (2010). A survey on transfer
learning. IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 10, pp.
1345-1359, Oct. 2010, doi: 10.1109/TKDE.
2009.191.

[33] Petrak, H. (2017). Javascript malware
collection. https://github.com/HynekPetrak/
javascript-malware-collection.

[34] Phung, N.M., Mimura, M. (2021). Detection of
malicious javascript on an imbalanced dataset.
Internet of Things 13:100357.
https://doi.org/10.1016/j.iot.2021.100357.

[35] Ramirez, S. (2018). FastAPI.
https://github.com/tiangolo.

[36] Rivoira, S., Torasso, P. (1982). The lexical,
syntactic and semantic processing of a speech
recognition system. International Journal of
Man-Machine Studies 16(1):39–63.
https://doi.org/10.1016/S0020-7373(82)
80071-0.

[37] Schölkopf, B., Smola, A.J. (2002). Learning
with kernels: Support vector machines,
regularization, optimization, and beyond. MIT
press. https://doi.org/10.7551/mitpress/4175.
001.0001.

[38] Schuster, M., Paliwal, K. (1997). Bidirectional
recurrent neural networks. IEEE Transactions
on Signal Processing 45:2673–2681.
https://doi.org/10.1109/78.650093.

[39] Seshagiri, P., Vazhayil, A., Sriram, P. (2016).
AMA: Static code analysis of web page for the
detection of malicious scripts. Procedia
Computer Science 93:768–773.
https://doi.org/10.1016/j.procs.2016.07.291.

[40] Shen, V.R.L., Wei, C.S., Juang, T.T.Y. (2018).
Javascript malware detection using a high-
level fuzzy petri net. In: International
Conference on Machine Learning and
Cybernetics (ICMLC), Chengdu, China, 2018,
pp. 511-514, doi: 10.1109/ICMLC.2018.
8527036.

[41] Siddhartha, M. (2021). Malicious URLs
dataset. Kaggle. https://www.kaggle.com/
datasets/ sid321axn/malicious-urls-dataset.

[42] Singh, A.K., Goyal, N. (2017). MalCrawler: A
Crawler for Seeking and Crawling Malicious
Websites. In: Krishnan, P., Radha Krishna, P.,
Parida, L. (eds) Distributed Computing and
Internet Technology. ICDCIT 2017. Lecture
Notes in Computer Science(), vol 10109.
Springer, Cham. https://doi.org/10.1007/978-
3-319-50472-8_17

[43] Song, X., Chen, C., Cui, B., Fu, J. (2020).
Malicious JavaScript detection based on
bidirectional LSTM model. Applied Sciences
10 (10). https://doi.org/10.3390/app10103440.

[44] Symantec (2019). Internet security threat report
2019. https://docs.broadcom.com/doc/istr-24-
executive-summary-en.

[45] Tan, C., Sun, F., Kong, T., Zhang, W., Yang,
C., Liu, C. (2018). A Survey on Deep Transfer
Learning. In: Kůrková, V., Manolopoulos, Y.,
Hammer, B., Iliadis, L., Maglogiannis, I. (eds)
Artificial Neural Networks and Machine
Learning – ICANN 2018. ICANN 2018.
Lecture Notes in Computer Science(), vol
11141. Springer, Cham. https://doi.org/
10.1007/978-3-030-01424-7_27.

[46] Tellenbach, B., Paganoni, S., Rennhard, M.
(2016). Detecting obfuscated JavaScripts from
known and unknown obfuscators using
machine learning. International Journal on
Advances in Security 9(3/4):196–206.
https://doi.org/10.21256/zhaw-1537.

[47] Torrey, L., Shavlik, J. (2010). Transfer
learning. In: Handbook of research on machine
learning applications and trends: Algorithms,
methods, and techniques. IGI global, pp 242–
264.

[48] Tsukerman, E. (2019). Machine learning for
cybersecurity cookbook. Packt Publishing.
https://github.com/PacktPublishing/Machine-

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6835

Learning-for-Cybersecurity-
Cookbook/tree/master/Chapter03.

[49] Van Houdt, G., Mosquera, C., Nápoles, G.
(2020). A review on the long short-term
memory model. Artif Intell Rev 53(8):5929–
5955. https://doi.org/10.1007/s10462-020-
09838-1.

[50] Xing, X., Meng, W., Lee. B., et al. (2015).
Understanding malvertising through ad-
injecting browser extensions. In: WWW '15:
Proceedings of the 24th International
Conference on World Wide WebMay 2015,
pages 1286–1295. https://doi.org/10.1145/
2736277.2741630.

[51] ZZN0508 (2022). JavaScript datasets.
https://github.com/ZZN0508/JavaScript_Data
sets.

