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ABSTRACT 

 
IoT has gained popularity as a result of the advancement and promise of smart technologies. The necessity 
of IoT technology has been accompanied by an increase in security issues about IoT devices, apps and 
infrastructure. Due to the wide range of abilities of IoT devices, dynamic and the constantly changing 
environment, enhanced system security measures are challenging and it is risky to only implement the most 
fundamental security requirements. The computer system is significantly at risk from malicious software 
(Malware). Finding malicious intent in a program is a crucial responsibility for security purpose. Here, 
novel method is proposed to detect significantly the previously unidentified threats in a cyber security land 
space. A new hybrid model HCAGAN-DBN is developed to classify the malware family efficiently. GAN 
architecture has generator and discriminator, the re-sampled output data is transformed into DBN for 
malware family classification in a zero short learning. Generative Adversarial Network and Deep Belief 
Network based intrusion detection model is proposed in this paper for Malware classification in IoT 
environment. The proposed model trained for one-dimensional images which learn and analyzes the 
characteristics of the complicated patterns of the Byte files and the Assembly files. Experiments were 
carried out with the Microsoft malware Challenge Dataset (MMCD). The outcomes of the evaluation show 
that with an average accuracy of 99.83% our HCAGAN_DBN Classifier performs better than traditional 
state-of-the-art works.  
Keywords: Internet of Things, Generative Adversarial Network, Cyber Security, Malware Analysis, Deep 

Belief Network  
 
1. INTRODUCTION 
 

The Internet of Things (IoT) is the largest 
digital megatrend that bridges the digital and 
physical realms. As people, objects, technology and 
the Internet become more interconnected, new 
business models and ways for individuals to 
interact with other living things around the world 
are also emerging [1]. IoT devices are frequently 
target by cybercriminals who infiltrate them using 
malware, obsolete firmware, weak authentication 
and other techniques. This is due to their 
sophisticated hardware and software design, 

implementations, as well as their lack of security 
features and protections. 

Due to the industry's swift adoption of IoT 
technologies, these threats will keep rising. 
Malware is one of the main risks to IoT devices. In 
October 2016, the Mirai virus family attacked Dyn, 
a prominent US DNS service provider, with one of 
the largest and most effective DDoS attacks [2]. 
The infection, which also targeted other well-
known internet companies like Google, Amazon, 
etc., are infected over 1.2 million IoT devices. 

Malware can be analyzed using either a 
dynamic or static approach. With the dynamic 
technique, running files are observed in a regulated 
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setting such as an emulator to capture their 
behavior [3]. This approach necessitates processing 
infected data in a covert manner. Anti-virtual 
machine and anti-emulator techniques guard against 
some malware types; the virus is altered to function 
normally when these conditions are identified. This 
alteration shields us from their nefarious actions 
[41]. 

The static approach of malware analysis 
reads raw malware bytes to determine the 
behavioral (conceived and disclosed) properties of 
the raw files, frequently with the aid of some tools 
and subject-matter knowledge. The analyst can 
examine all the potential malware execution 
possibilities that were not visible during the attack 
by carefully examining the static code. It is the 
greatest way for classifying malware since it gives 
analysts a wealth of knowledge about malware [5, 
6]. Malware must be categorized into several 
classes in order to be detected, as malware 
detection algorithms heavily rely on the traits that 
each class of malware represents. Families of 
malware behave differently and affect a computer 
system in different ways. 

To increase the detection rate, these 
procedures make use of a variety of technologies 
and techniques, including heuristics, machine 
learning and data analytics. There are several 
approaches to malware detection that make use of 
the tools and procedures indicated above. Using a 
signature-based approach is an effective way to 
combat known and related malware variants. It is 
unable to locate malware that has not yet been 
discovered, though. Behavior-based, heuristic-
based, and model-checking-based malware 
detection systems are effective in locating unknown 
malware components, but they are not very good at 
locating complex malware versions that use 
packaging and obfuscation techniques. For 
financial benefit, cyber criminals use obfuscated 
techniques to create new malware. Here, a novel 
hybrid model HCAGAN-DBN is developed to 
discover the previously unseen malware with a 
promising result. 

Deep learning-based approaches are being 
used as a new paradigm in malware detection and 
classification to address the shortcomings of 
existing approaches. But its application in the field 
of cyber security has been lacking, especially when 
it comes to virus detection. The "deep learning" 
subgroup of artificial intelligence is built on ANNs. 
Deep learning (DL) uses multiple hidden layers and 
learns from examples. To enhance model 
performance, a range of DL methods have been 
used recently, such as convolutional neural 

networks (CNN), recurrent neural networks (RNN), 
deep belief networks (DBN) and deep neural 
networks (DNN). There are many advantages to 
deep learning over traditional learning paradigm. 
This paper suggests a unique architecture for 
malware categorization based on hybrid deep 
learning. The present HCAGAN_DBN analyzes 
both byte and asm feature and provides the efficient 
result in detecting the malware families. The byte 
feature is process based on 1D vector instead of 2D 
feature. Since malicious files might have different 
dimensions, a large portion of the original data will 
be lost if the virus picture has fixed width and 
length. In order to preserve as many of the 
malware's original properties as possible, it is 
turned into a square picture with a length equal to 
the file size squared. The malware image is scaled 
to a 128 by 128 matrix so that the texture of the 
image is retained during neural network training. 
The process of converting images has some issues. 
Therefore, the succeeding classification function 
will classify this virus as belonging to a separate 
family. According to the aforementioned study and 
conjecture, the detection outcome may not be 
optimum if the 2D feature of the malware image is 
employed directly for classification. The Microsoft 
malware dataset is used for the evaluation.  

 
2. RELATED WORKS 

Yuan et al [7] proposed MDMC approach 
for byte-level malware classification uses deep 
learning and markov images. Malware binaries are 
transformed into markov images using bytes 
transfer  probability matrices as the core component 
of MDMC. Then, for the classification of markov 
images, a deep convolutional neural network is 
employed. Two malware datasets, the Microsoft 
dataset and the Drebin dataset, are used in the tests. 

Gibert et al. [8] introduce a unique 
malware classification system with a modular 
design that blends hand-engineered features and 
end-to-end components.  The multimodal technique 
learns and combines malware features from many 
information sources, leading to better classification 
performance than classifiers that only accept one 
type of data as input. The Microsoft Malware 
Classification benchmark has been used to assess 
how well our multimodal learning system performs. 

For malware categorization, ömer Aslan 
and Abdullah Asim Yilmaz [9] suggest a 
revolutionary hybrid deep-learning based 
architecture. The DL system receives grayscale 
photos of the malware samples first. The proposed 
method uses the convolution layers of the suggested 
hybrid architecture to extract high-level malware 
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features from malware images after the image 
acquisition portion is complete. Finally, the system 
receives supervised training. In the recommended 
model, a hybrid model is created by combining a 
number of comprehensive deep-learning models 
that rely on a transfer-learning approach. A number 
of hidden layers and the Rectified Linear Unit 
(ReLU) function are used during the 
aforementioned operations. 

Darem et al. [10] provide an adaptive 
learning model to account for the novel malware 
variants. Sequential deep learning and concept drift 
detection are employed in this model. By running 
the programs in a sandbox environment and 
gathering their Application Programming Interface 
(API) traces, virus behaviors were retrieved through 
the use of dynamic analysis. To find the traits that 
varied between malicious variations, the malware 
samples were categorized according to how they 
first manifested. 

In addition, a powerful malware detection 
method is proposed utilizing a deep LSTM model 
by Aiyshwariya Devi and Arunachalam [11] for 
improved IoT device security in edge nodes. 
Contextual features are used in the initial process to 
differentiate between attack and normal nodes 
using a trust value. Following the discovery of 
attack nodes, these are taken into account for 
forecasting the various attacks that might be present 
in the network, with some preprocessing and 
feature extraction techniques being used for 
efficient classification. This malware detection 
method makes use of the Deep LSTM classifier. 
After completing malware detection, the Improved 
Elliptic Curve Cryptography (IECC) technique is 
used to perform prevention. 

Al-Andoli et al. [12] introduced an 
ensemble-based Deep Learning classifier for 
malware detection. Specifically, a stacked ensemble 
learning method is developed, employing five Deep 
Learning basis models and a neural network as a 
Meta model. To train and enhance the DL models, a 
hybrid optimization method based on the BP and 
Particle Swarm Optimization (PSO) algorithms is 
employed. A parallel computing architecture is 
used to increase the ensemble method's scalability 
and effectiveness.  

 
Table 1: Survey on Malware Detection-2023 

 
Author Year Dataset Model Accuracy 
Bhavya 
Dawra 
et al. 

2023 Malimg Transfer 
Learning 

98.04% 

Kwok 2023 Malimg GAN 95.0% 

Taichui 
Osho 
Sharma 
et al. 

2023 Malimg GAN-
Transfer 
Learning 

99.5% 

Table 1 depicts the survey of malware 
categorization on 2023. From the literature of 
malware classification in 2023, all the authors are 
using deep learning algorithms like Transfer 
learning, GAN, etc., to classify the malware family, 
but the time complexity is not achieved. The 
proposed hybrid model HCAGAN-DBN achieves 
the time complexity and reached a good accuracy of 
99.83%. 

 
3. PROPOSED METHODOLOGY 
 

In this study, HCAGAN_DBN, a novel 
framework is introduced for the detection and 
classification of malware that combines several 
types of characteristics to identify correlations 
across multiple modalities. Our methodology draws 
knowledge from a variety of sources to optimize 
the advantages of several feature types and 
represent the properties of malware executable. To 
properly describe malware features, we suggest a 
basic system made up of end-to-end components 
that combines the advantages of feature engineering 
and deep learning. Figure 1 depicts the proposed 
malware classification framework. 

 
3.1 Microsoft Malware Challenge Dataset 
(MMCD) 

For the Big Data Innovators Gathering 
Challenge from 2015, Microsoft contributed over 
half a terabyte of malicious malware (Ronen et al., 
2018). The dataset is currently publicly available 
and hosted on Kaggle1. The dataset has evolved 
into the de facto standard for assessing machine 
learning methods for the task of classifying 
malware. Each sample in the set is identifiable by a 
hash and its class, an integer corresponding to one 
of the 9 malware families. The set of samples 
comprises 9 different malware families.  

The Dataset contains hexadecimal and 
assembly language source code. The machine code 
is displayed in hexadecimal form in the hex view. 
Each line is made up of a collection of consecutive 
16-byte integers and the memory's starting address 
for the machine codes. One can calculate an 
executable's structural entropy, represent its binary 
content as a grayscale image, extract byte n-grams, 
and more using this kind of representation. 

The symbolic machine code of the 
executable is contained in the assembly language 
source code, together with metadata such basic 
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function calls, memory allocation, and variable 
information. 

 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1: Proposed Malware Classification Model Framework 
  

 
Figure 2: Hexa decimal byte samples 

 
 

Figure 3: Conversion of hexadecimal bytes into 1D 
vector 

 
3.1.1 1D conversion of byte feature 

The malware's binary content is extracted 
from the file header opening and transformed into a 
decimal one-dimensional vector in order to identify 

the malware family. The initial 1024 bytes of the 
infection are transformed by Algorithm 1 into a 
one-dimensional vector that serves as the malware 
sample's malhash byte feature. 

The bytes are extracted from each file and 
converted them into the integer format and stored in 
vector then it is converted to ID vector through 
flatten function. The steps involved in converting 
the bytes to 1D vector is given in algorithm 1.  

Figure 2 depicts a hexadecimal malware 
sample, and Figure 3 depicts the transformation of 
this sample into a decimal 1D vector, for instance, 
'56 8D' is transformed into '86 141'. A security 
analyst cannot retrieve the privacy content of the 
original file in reverse because the 1D conversion 
technique only extracts a portion of the non-
semantic information from the malware header. 
Therefore, by disclosing the tenants' data, this 
technique will not breach their privacy. 

 

Malware  
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Asm feature 

 

Byte feature 

Preprocessing and Feature Extraction 
 
 
 

 

Classification 
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Algorithm 1: Generating 1D vector from bytes Algorithm 1: Generating 1D vector from bytes 
Input: mal_file  
Output: ID vector 
pixelnumer=1024  
f = open(mal_file, ’r’)  
c = f.readlines()  
pixelnumber = []  
w = 16  
for L in content:  
L = L[8:]  
for i in range(0, len(L), 2):  
p = [int(L[i:i + 2],16)] pixelvecr.append(p)  
if len(pixelvec) > pixelnumber :  
break  
onedim = numpy.array(pixelvec).flatten() 
return onedim[0: pixelnumber] 
 

Input: mal_file  
Output: ID vector 
pixelnumer=1024  
f = open(mal_file, ’r’)  
c = f.readlines()  
pixelnumber = []  
w = 16  
for L in content:  
L = L[8:]  
for i in range(0, len(L), 2):  
p = [int(L[i:i + 2],16)] pixelvecr.append(p)  
if len(pixelvec) > pixelnumber :  
break  
onedim = numpy.array(pixelvec).flatten() 
return onedim[0: pixelnumber] 
 

 
3.1.2 Opcode extraction 

The Microsoft PE program format [14] 
consists of sections, section headers, a PE header, a 
DOS header and other data. These parts include the 
import and export capabilities, resource details and 
executable scripts that are crucial indicators of the 
infection. By studying its disassembled codes, 
malware's workflow can be easily comprehended. 

First, the essential features of the 
deconstructed virus are extracted, including file 
size, opcode line count and information entropy. 
Figure 4 displays a sample of the 
0AguvpOCcaf2myVDYFGb.asm file's dissected 
code segment. In this example, the address 
information, comments, opcodes[17], registers and 
parameters are all included in the assembly code.  

Table 2 displays the characteristics were 
taken from assembly code. The study of samples 
revealed that different types of assembly files have 
varying file formats. It is necessary to locate the 
actual code section contents because certain 
disassembled executable code sections do not begin 
with ".text". 

 
3.2 Classification Model- HCAGAN_DBN 

The deep belief network (DBN), which 
was first put forth by Hinton [15], is one of the 
most well-known deep learning techniques. This 
algorithm picks up new information quickly and  
can find the perfect parameters faster than the 
others. The essential elements of a conventional 
DBN are a restricted Boltzmann machine (RBM)-
based unsupervised learning module and a logistic 
regression layer [16]. 

The Restricted Boltzmann Machine 
(RBM), a well-known stochastic neural network, 
builds a deep belief network (DBN) by layer-wise 

training. A layer of hidden Boolean neurons and a 
layer of binary-valued neurons are both present in 
the RBM. Despite being between the layers, the 
connections between the neurons in the same layer 
are not symmetric or bidirectional. 

A layer-wise configuration learns a 
probability distribution between the two levels 
based on the energy function of the configuration, 
which is specified in Eq. (1). The probability 
distribution is thus expressed by the following 
equation (2). 

 
𝐸𝑓(𝑎, 𝑏)

= − ෍ 𝑥௠𝑎௠

௭ೌ

௠ୀଵ

− ෍ 𝑦௡𝑏௡ − ෍ ෍ 𝑏௡𝑊௡,௠𝑎௠                                 (1)

௭್

௡ୀଵ

௭ೌ

௠ୀଵ

௭್

௡ୀଵ

 

 

𝑝𝑑 =
𝑒ିா௙(௔,௕)

∑ ∑ 𝑒ିா௙(௖,௕)
௕௖

                                           (2) 

 
The weight matrices that separate the 

hidden layer from the visible layer are 𝑎௠ and 𝑏௡, 
the biases for the two layers are 𝑥௠ and 𝑦௡, and the 
number of neurons in the visible layer is 𝑊௡,௠, the 
number of Boolean hidden neurons in the hidden 
layer is 𝑏௡.  

The activation probability functions are 
then represented in an equation (3) and (4). 

 

𝑝𝑑(𝑎௠ = 1|𝑏) = 𝑠𝑖𝑔 ቌ𝑥௠ + ෍ 𝑊௡,௠𝑏௡

௜್

௡ୀଵ

ቍ  (3) 

𝑝𝑑(𝑏௡ = 1|𝑎) = 𝑠𝑖𝑔 ቌ𝑦௡ + ෍ 𝑊௡,௠𝑎௠

௜ೌ

௠ୀଵ

ቍ  (4) 

 
Additionally, sig() is used to represent the 

logistic sigmoid function. Since the weight matrices 
and layer biases can be trained unsupervised, the 
pre-training principles support this. A single hidden 
restricted Boltzmann machine (RBM) cannot 
capture the peculiarities of the data. A deep belief 
network (DBN), which is created by stacking layers 
of RMBs in a hierarchical fashion and concluding 
with a logistic regression layer, may gradually 
extract deep characteristics from the input dataset. 
The first RBM of the DBN is pre-trained as an 
independent RBM using the training data as inputs. 
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Figure 4: Assembly source code sample (0AguvpOCcaf2myVDYFGb.asm) 
 

 
 
 

Table 2: Extracted Features Description 
 

 
 
 
 
 
 
 

 
Extracted Feature 
 

 
Description 

Basic  File entropy, line count and size 

Section count  Line count for each file's top ten parts 

Opcode count  Top 100 opcodes in every  asm file 

Opcode n_gram  In the disassembled files, there are a lot of common system 
call functions. 

Stdcall count Statistics on the quantity of frequently used system call 
operations in disassembled files 
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Figure 5: Architecture of GAN Network 

 
Once the first RBM's weight matrix and 

bias settings are established, the output of the first 
RBM is selected to serve as the input for the second 
RBM. The hidden layers of the first two RBMs are 
then trained repeatedly using the same procedure, 
acting as a new RBM. The final phase entails 
layering an all-encompassing predictor (such a 
layer for logistic regression) on top of the network 
and training it under close supervision. After 
applying the aforementioned stages, the back-
propagation (BP) approach is utilized for fine 
tuning to slightly change the parameters of the 
entire trained network. 

GAN learns to produce new data from 
training sets that are similar to the training sets. 
Figure 5 depicts the GAN architecture. It has two 
crucial parts, a generator (G) and a discriminator 
(D). The discriminator is a model used to categorize 
instances as real (from the domain) or fake 
(created), whereas the generator is a model used to 
generate new convincing examples from the 
problem domain. 

Using a generator network, a sample of 
data that resembles genuine data is produced 
immediately. Conversely, its rival, the 
discriminator network, is able to distinguish 
between samples derived from the generator 
framework and samples derived from actual data. 
Models for classification serve as the discriminator. 
The objective function of the GAN design is in Eq. 
(5), as stated in (Uddin, 2019). 
 

𝑎𝑟𝑔 
min
𝐺𝑚

𝑚𝑎𝑥
𝐷𝑚

𝑃(𝐷𝑚, 𝐺𝑚) =

𝐸௜~௞೏ೌ೟ೌ(௜)ൣlog൫𝐷𝑚(𝑖)൯൧ + 𝐸௔~௞ೌ(௔) ቂlog ቀ1 −

𝐷𝑚൫𝐺𝑚(𝑎)൯ቁቃ                                                    (5) 

 
where 𝐷𝑚(𝑖)stands for the discriminator 

function. The likelihood that the input vector 
designated as 𝑖 is from the training dataset is the 
output of this function. The 𝐷𝑚(𝑖) function returns 
a value between 0 and 1 when given an input of 𝑖.  

Similar to this, 𝐺𝑚(𝑎)is a generator 
function that, based on the z (noise vector), 
produces a matrix with the same dimensions as x. 
The distribution of chances of samples is 
represented as 𝑘ௗ௔௧௔(𝑖) and is taken from the 
training dataset. 𝑘௔(𝑎) stands for the sample 
distribution of chances from a noise generator. 

The expectation function, abbreviated as 
𝐸(. ), which is produced by the log-loss function as 
a positive class. In Eq. (6), the log loss function is 
defined. 

 
𝐸(𝑠| 𝑟) 

=
−1

𝐿
෍(𝑟௫(log 𝑠௫) + (1 − 𝑟௫)(1 − 𝑠௫))    (6)

௅

௫ୀଵ

 

 
The estimation is shown as 𝑠௫ where the 

actual data is shown as 𝑟௫. The log function is 
employed when the model's response is anticipated 
to be 0 or 1. According to the probability 
distribution 𝑠(𝑖), 𝐸(𝑓(𝑖)) of the given function 𝑓(𝑖) 

 Discriminator 

Real Data 

Generator 

(G) loss (D) loss Generator 
Input  
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is expressed as in Eq. (7), when x is taken from 
𝑠(𝑖).  

 

𝐸௜~௦(𝑓(𝑖)) න 𝑠(𝑖)𝑓(𝑖)𝑑𝑥                                (7) 

 
In Eq. (5), there are two loops, such as 

𝑚𝑖𝑛ீெ 𝑃(𝑑𝑚, 𝑔𝑚) and 𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚). 
Maximizing the right side through discriminator 
parameter tweaking is the goal of 
𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚). The objective function 
represented by Equation (5) has two loops that 
stand for 𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚) and 
𝑚𝑖𝑛ீெ𝑃(𝑑𝑚, 𝑔𝑚). The goal of  𝑚𝑖𝑛ீெ𝑃(𝑑𝑚, 𝑔𝑚) 
is to minimize by adjusting the generator's 
parameters. 

 
4. EXPERIMENTAL RESULT 
 
 The experiment using the proposed model 
on MMCD data is evaluated with respect to four 
significant metrics such as accuracy and f-measure, 
precision and recall. On a system with an Intel Core 
i7-7700k CPU, Hard Disk: 512GB, and 64 GB of 
RAM, we installed the suggested framework. The 
multimodal neural network algorithm must be 
accelerated by GPUs. Tensorflow and Python have 
been used to implement the ML algorithm and 
framework modules. 
  
4.1 Bytes based result analysis and comparison 
 

 
Table 3: Performance Result based on 1D Vector 

 

M
od

el
s 

P
re

ci
si

on
 

R
ec

al
l 

F
 m

ea
su

re
 

A
cc

ur
ac

y 

 
DBN 
 

 
98 

 
98.50 

 
97.96 

 
98.47 

 
GAN 
 

 
98.97 

 
98.08 

 
99.02 

 
98.99 

 
HCAGAN_DBN 
 

 
99.07 

 
99.12 

 
99.46 

 
99.61 

 
The test results in Table 3 demonstrate that 

the 1D feature is superior to the 2D feature and that 
HCAGAN_DBN has a greater detection impact 
than DBN and GAN. The suggested 1D byte 
feature-based byte classifier achieves accuracy of 

99.61%. The comparison result with other deep 
learning model like DBN and GAN and the 
graphical representation is shown in figure 6, 7 and 
figure 8. 

 

 

 
Figure 6: Performance Comparison with DBN, 

GAN and Proposed HCAGAN_DBN 
 

 
 

Figure 7: Performance Evaluation Result of 
Proposed Model for Byte Feature 
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Figure 1: Accuracy Comparison of HCAGAN_DBN 
with different iterations 

 
4.2 Opcode Based Result Analysis and 
Comparison 

Sections lines, opcodes, stdcalls and n-
grams are among the features retrieved from the 
training dataset. Table 4 provides the asm features' 
findings. The result is compared with other deep 
learning model like DBN and GAN and the 
graphical representation is shown in figure 9 and 
figure 10. 

 
Table 4: Opcode Based Result Analysis 
 

M
od

el
s 

P
re

ci
si

on
 

R
ec

al
l 

F
 m

ea
su

re
 

A
cc

ur
ac

y 

 
DBN  
 

 
97.82 

 
98.3 

 
97.64 

 
97.76 

 
GAN 
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99.47 

 

 
 

Figure 9: Performance Evaluation Result of 
Proposed Model 

 

 
 

Figure 10: Accuracy comparison of 
HCAGAN_DBN with different iterations 
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Figure 11: Accuracy Comparison with 
Existing models in Literature 

 
We compared various related study 

findings with our findings, which are depicted in 
figure 11, in order to assess the efficacy of our 
methodology. They can be directly compared 
because the majority of studies in the literature used 
the same Microsoft malware dataset as we did.  

Due to the increase of unknown malware 
volume needs the requirement of new hybrid deep 
learning algorithm for malware categorization. 
Hybrid deep learning algorithm provides more 
accuracy than simple deep learning algorithm. 
Hybrid algorithm achieves time complexity. Key 
contribution of our work is the utilization of a new 
hybrid model HCAGAN-DBN for classifying 
malware family with good performance result than 
the existing deep learning algorithms. New 
innovative layers are applied in the model to avoid 
over fitting. Analysis revealed that the asm 
classifier's 99.47% detection accuracy was higher 
than that of the other models in figure 11. The 1D 
vector feature achieved 99.61% accuracy which is 
higher than the approach. 
 
 
 

 

5. CONCLUSION 
 

            An innovative deep learning 
approach for malware detection is put forth in this 
study. Experiments were used to confirm its 
performance. HCAGAN_DBN model was 
suggested in this study to categorize malware 
samples into malware families. The Microsoft 
Malware dataset was utilized to train the models 
using both conventional and hybrid deep learning 
techniques. To examine the malware feature, three 
different deep learning models such as GAN, DBN 
and HCAGAN-DBN are applied. HCAGAN-DBN 
shows the best performing classifier supporting in 
the outgoing efforts to combat the ever-growing 
threat land space. In the first phase the byte feature 
is extracted to 1D vector instead of converting gray 
scale image. Similarly the opcode is extracted from 
the asm feature and fed into the HCAGAN_DBN 
that perform well on both feature and achieved 
99.61% and 99.47% accuracy respectively. Our 
study demonstrates multimodal deep learning for 
malware categorization. The proposed multimodal 
technique learns and mixes malware attributes from 
two information sources, improving classification 
performance when compared to classifiers that 
accept only one type of data as input. The 
improvement in the performance metrics highlights 
the impact of the proposed model in the area of 
malware analysis. Overall, HCAGAN-DBN offers 
considerable advancements in automatic detection 
of malware. 
 
6. LIMITATIONS AND FUTURE WORK 
 
             The drawback of the work is not using of 
dynamic features. The model is applied with only 
one benchmark MMCC – BIG15 dataset and not 
with the two or more as well as real time datasets. 
Our future enhancement work is to analyze the 
malware with a real time datasets. 
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