
 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6836

ENHANCING IOT SECURITY THROUGH MALWARE
CLASSIFICATION WITH HYBRID DEEP LEARNING MODEL

GENERATIVE ADVERSARIAL NETWORK AND DEEP
BELIEF NETWORK (HCAGAN_DBN)

V.S. JEYALAKSHMI1, KRISHNAN NALLAPERUMAL2
1Research Scholar, Centre for Information Technology and Engineering, Manonmaniam Sundaranar

University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India
2Senior Professor (Retd), Centre for Information Technology and Engineering, Manonmaniam Sundaranar

University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India

E-mail: 1vsjeyalakshmiap@gmail.com, 2krishnan17563@gmail.com

ID 55502 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance
04-09-24 04-09-2024 22-09-2024 26-09-2024

ABSTRACT

IoT has gained popularity as a result of the advancement and promise of smart technologies. The necessity
of IoT technology has been accompanied by an increase in security issues about IoT devices, apps and
infrastructure. Due to the wide range of abilities of IoT devices, dynamic and the constantly changing
environment, enhanced system security measures are challenging and it is risky to only implement the most
fundamental security requirements. The computer system is significantly at risk from malicious software
(Malware). Finding malicious intent in a program is a crucial responsibility for security purpose. Here,
novel method is proposed to detect significantly the previously unidentified threats in a cyber security land
space. A new hybrid model HCAGAN-DBN is developed to classify the malware family efficiently. GAN
architecture has generator and discriminator, the re-sampled output data is transformed into DBN for
malware family classification in a zero short learning. Generative Adversarial Network and Deep Belief
Network based intrusion detection model is proposed in this paper for Malware classification in IoT
environment. The proposed model trained for one-dimensional images which learn and analyzes the
characteristics of the complicated patterns of the Byte files and the Assembly files. Experiments were
carried out with the Microsoft malware Challenge Dataset (MMCD). The outcomes of the evaluation show
that with an average accuracy of 99.83% our HCAGAN_DBN Classifier performs better than traditional
state-of-the-art works.
Keywords: Internet of Things, Generative Adversarial Network, Cyber Security, Malware Analysis, Deep

Belief Network

1. INTRODUCTION

The Internet of Things (IoT) is the largest
digital megatrend that bridges the digital and
physical realms. As people, objects, technology and
the Internet become more interconnected, new
business models and ways for individuals to
interact with other living things around the world
are also emerging [1]. IoT devices are frequently
target by cybercriminals who infiltrate them using
malware, obsolete firmware, weak authentication
and other techniques. This is due to their
sophisticated hardware and software design,

implementations, as well as their lack of security
features and protections.

Due to the industry's swift adoption of IoT
technologies, these threats will keep rising.
Malware is one of the main risks to IoT devices. In
October 2016, the Mirai virus family attacked Dyn,
a prominent US DNS service provider, with one of
the largest and most effective DDoS attacks [2].
The infection, which also targeted other well-
known internet companies like Google, Amazon,
etc., are infected over 1.2 million IoT devices.

Malware can be analyzed using either a
dynamic or static approach. With the dynamic
technique, running files are observed in a regulated

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6837

setting such as an emulator to capture their
behavior [3]. This approach necessitates processing
infected data in a covert manner. Anti-virtual
machine and anti-emulator techniques guard against
some malware types; the virus is altered to function
normally when these conditions are identified. This
alteration shields us from their nefarious actions
[41].

The static approach of malware analysis
reads raw malware bytes to determine the
behavioral (conceived and disclosed) properties of
the raw files, frequently with the aid of some tools
and subject-matter knowledge. The analyst can
examine all the potential malware execution
possibilities that were not visible during the attack
by carefully examining the static code. It is the
greatest way for classifying malware since it gives
analysts a wealth of knowledge about malware [5,
6]. Malware must be categorized into several
classes in order to be detected, as malware
detection algorithms heavily rely on the traits that
each class of malware represents. Families of
malware behave differently and affect a computer
system in different ways.

To increase the detection rate, these
procedures make use of a variety of technologies
and techniques, including heuristics, machine
learning and data analytics. There are several
approaches to malware detection that make use of
the tools and procedures indicated above. Using a
signature-based approach is an effective way to
combat known and related malware variants. It is
unable to locate malware that has not yet been
discovered, though. Behavior-based, heuristic-
based, and model-checking-based malware
detection systems are effective in locating unknown
malware components, but they are not very good at
locating complex malware versions that use
packaging and obfuscation techniques. For
financial benefit, cyber criminals use obfuscated
techniques to create new malware. Here, a novel
hybrid model HCAGAN-DBN is developed to
discover the previously unseen malware with a
promising result.

Deep learning-based approaches are being
used as a new paradigm in malware detection and
classification to address the shortcomings of
existing approaches. But its application in the field
of cyber security has been lacking, especially when
it comes to virus detection. The "deep learning"
subgroup of artificial intelligence is built on ANNs.
Deep learning (DL) uses multiple hidden layers and
learns from examples. To enhance model
performance, a range of DL methods have been
used recently, such as convolutional neural

networks (CNN), recurrent neural networks (RNN),
deep belief networks (DBN) and deep neural
networks (DNN). There are many advantages to
deep learning over traditional learning paradigm.
This paper suggests a unique architecture for
malware categorization based on hybrid deep
learning. The present HCAGAN_DBN analyzes
both byte and asm feature and provides the efficient
result in detecting the malware families. The byte
feature is process based on 1D vector instead of 2D
feature. Since malicious files might have different
dimensions, a large portion of the original data will
be lost if the virus picture has fixed width and
length. In order to preserve as many of the
malware's original properties as possible, it is
turned into a square picture with a length equal to
the file size squared. The malware image is scaled
to a 128 by 128 matrix so that the texture of the
image is retained during neural network training.
The process of converting images has some issues.
Therefore, the succeeding classification function
will classify this virus as belonging to a separate
family. According to the aforementioned study and
conjecture, the detection outcome may not be
optimum if the 2D feature of the malware image is
employed directly for classification. The Microsoft
malware dataset is used for the evaluation.

2. RELATED WORKS

Yuan et al [7] proposed MDMC approach
for byte-level malware classification uses deep
learning and markov images. Malware binaries are
transformed into markov images using bytes
transfer probability matrices as the core component
of MDMC. Then, for the classification of markov
images, a deep convolutional neural network is
employed. Two malware datasets, the Microsoft
dataset and the Drebin dataset, are used in the tests.

Gibert et al. [8] introduce a unique
malware classification system with a modular
design that blends hand-engineered features and
end-to-end components. The multimodal technique
learns and combines malware features from many
information sources, leading to better classification
performance than classifiers that only accept one
type of data as input. The Microsoft Malware
Classification benchmark has been used to assess
how well our multimodal learning system performs.

For malware categorization, ömer Aslan
and Abdullah Asim Yilmaz [9] suggest a
revolutionary hybrid deep-learning based
architecture. The DL system receives grayscale
photos of the malware samples first. The proposed
method uses the convolution layers of the suggested
hybrid architecture to extract high-level malware

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6838

features from malware images after the image
acquisition portion is complete. Finally, the system
receives supervised training. In the recommended
model, a hybrid model is created by combining a
number of comprehensive deep-learning models
that rely on a transfer-learning approach. A number
of hidden layers and the Rectified Linear Unit
(ReLU) function are used during the
aforementioned operations.

Darem et al. [10] provide an adaptive
learning model to account for the novel malware
variants. Sequential deep learning and concept drift
detection are employed in this model. By running
the programs in a sandbox environment and
gathering their Application Programming Interface
(API) traces, virus behaviors were retrieved through
the use of dynamic analysis. To find the traits that
varied between malicious variations, the malware
samples were categorized according to how they
first manifested.

In addition, a powerful malware detection
method is proposed utilizing a deep LSTM model
by Aiyshwariya Devi and Arunachalam [11] for
improved IoT device security in edge nodes.
Contextual features are used in the initial process to
differentiate between attack and normal nodes
using a trust value. Following the discovery of
attack nodes, these are taken into account for
forecasting the various attacks that might be present
in the network, with some preprocessing and
feature extraction techniques being used for
efficient classification. This malware detection
method makes use of the Deep LSTM classifier.
After completing malware detection, the Improved
Elliptic Curve Cryptography (IECC) technique is
used to perform prevention.

Al-Andoli et al. [12] introduced an
ensemble-based Deep Learning classifier for
malware detection. Specifically, a stacked ensemble
learning method is developed, employing five Deep
Learning basis models and a neural network as a
Meta model. To train and enhance the DL models, a
hybrid optimization method based on the BP and
Particle Swarm Optimization (PSO) algorithms is
employed. A parallel computing architecture is
used to increase the ensemble method's scalability
and effectiveness.

Table 1: Survey on Malware Detection-2023

Author Year Dataset Model Accuracy
Bhavya
Dawra
et al.

2023 Malimg Transfer
Learning

98.04%

Kwok 2023 Malimg GAN 95.0%

Taichui
Osho
Sharma
et al.

2023 Malimg GAN-
Transfer
Learning

99.5%

Table 1 depicts the survey of malware
categorization on 2023. From the literature of
malware classification in 2023, all the authors are
using deep learning algorithms like Transfer
learning, GAN, etc., to classify the malware family,
but the time complexity is not achieved. The
proposed hybrid model HCAGAN-DBN achieves
the time complexity and reached a good accuracy of
99.83%.

3. PROPOSED METHODOLOGY

In this study, HCAGAN_DBN, a novel
framework is introduced for the detection and
classification of malware that combines several
types of characteristics to identify correlations
across multiple modalities. Our methodology draws
knowledge from a variety of sources to optimize
the advantages of several feature types and
represent the properties of malware executable. To
properly describe malware features, we suggest a
basic system made up of end-to-end components
that combines the advantages of feature engineering
and deep learning. Figure 1 depicts the proposed
malware classification framework.

3.1 Microsoft Malware Challenge Dataset
(MMCD)

For the Big Data Innovators Gathering
Challenge from 2015, Microsoft contributed over
half a terabyte of malicious malware (Ronen et al.,
2018). The dataset is currently publicly available
and hosted on Kaggle1. The dataset has evolved
into the de facto standard for assessing machine
learning methods for the task of classifying
malware. Each sample in the set is identifiable by a
hash and its class, an integer corresponding to one
of the 9 malware families. The set of samples
comprises 9 different malware families.

The Dataset contains hexadecimal and
assembly language source code. The machine code
is displayed in hexadecimal form in the hex view.
Each line is made up of a collection of consecutive
16-byte integers and the memory's starting address
for the machine codes. One can calculate an
executable's structural entropy, represent its binary
content as a grayscale image, extract byte n-grams,
and more using this kind of representation.

The symbolic machine code of the
executable is contained in the assembly language
source code, together with metadata such basic

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6839

function calls, memory allocation, and variable
information.

Figure 1: Proposed Malware Classification Model Framework

Figure 2: Hexa decimal byte samples

Figure 3: Conversion of hexadecimal bytes into 1D
vector

3.1.1 1D conversion of byte feature

The malware's binary content is extracted
from the file header opening and transformed into a
decimal one-dimensional vector in order to identify

the malware family. The initial 1024 bytes of the
infection are transformed by Algorithm 1 into a
one-dimensional vector that serves as the malware
sample's malhash byte feature.

The bytes are extracted from each file and
converted them into the integer format and stored in
vector then it is converted to ID vector through
flatten function. The steps involved in converting
the bytes to 1D vector is given in algorithm 1.

Figure 2 depicts a hexadecimal malware
sample, and Figure 3 depicts the transformation of
this sample into a decimal 1D vector, for instance,
'56 8D' is transformed into '86 141'. A security
analyst cannot retrieve the privacy content of the
original file in reverse because the 1D conversion
technique only extracts a portion of the non-
semantic information from the malware header.
Therefore, by disclosing the tenants' data, this
technique will not breach their privacy.

Malware
Dataset

Asm feature

Byte feature

Preprocessing and Feature Extraction

Classification

Malware

Benign

Performance Evaluation

HCAGAN_DBN

Byte – 1D
Vector

Asm - Opcode

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6840

Algorithm 1: Generating 1D vector from bytes Algorithm 1: Generating 1D vector from bytes
Input: mal_file
Output: ID vector
pixelnumer=1024
f = open(mal_file, ’r’)
c = f.readlines()
pixelnumber = []
w = 16
for L in content:
L = L[8:]
for i in range(0, len(L), 2):
p = [int(L[i:i + 2],16)] pixelvecr.append(p)
if len(pixelvec) > pixelnumber :
break
onedim = numpy.array(pixelvec).flatten()
return onedim[0: pixelnumber]

Input: mal_file
Output: ID vector
pixelnumer=1024
f = open(mal_file, ’r’)
c = f.readlines()
pixelnumber = []
w = 16
for L in content:
L = L[8:]
for i in range(0, len(L), 2):
p = [int(L[i:i + 2],16)] pixelvecr.append(p)
if len(pixelvec) > pixelnumber :
break
onedim = numpy.array(pixelvec).flatten()
return onedim[0: pixelnumber]

3.1.2 Opcode extraction

The Microsoft PE program format [14]
consists of sections, section headers, a PE header, a
DOS header and other data. These parts include the
import and export capabilities, resource details and
executable scripts that are crucial indicators of the
infection. By studying its disassembled codes,
malware's workflow can be easily comprehended.

First, the essential features of the
deconstructed virus are extracted, including file
size, opcode line count and information entropy.
Figure 4 displays a sample of the
0AguvpOCcaf2myVDYFGb.asm file's dissected
code segment. In this example, the address
information, comments, opcodes[17], registers and
parameters are all included in the assembly code.

Table 2 displays the characteristics were
taken from assembly code. The study of samples
revealed that different types of assembly files have
varying file formats. It is necessary to locate the
actual code section contents because certain
disassembled executable code sections do not begin
with ".text".

3.2 Classification Model- HCAGAN_DBN

The deep belief network (DBN), which
was first put forth by Hinton [15], is one of the
most well-known deep learning techniques. This
algorithm picks up new information quickly and
can find the perfect parameters faster than the
others. The essential elements of a conventional
DBN are a restricted Boltzmann machine (RBM)-
based unsupervised learning module and a logistic
regression layer [16].

The Restricted Boltzmann Machine
(RBM), a well-known stochastic neural network,
builds a deep belief network (DBN) by layer-wise

training. A layer of hidden Boolean neurons and a
layer of binary-valued neurons are both present in
the RBM. Despite being between the layers, the
connections between the neurons in the same layer
are not symmetric or bidirectional.

A layer-wise configuration learns a
probability distribution between the two levels
based on the energy function of the configuration,
which is specified in Eq. (1). The probability
distribution is thus expressed by the following
equation (2).

𝐸𝑓(𝑎, 𝑏)

= − ෍ 𝑥௠𝑎௠

௭ೌ

௠ୀଵ

− ෍ 𝑦௡𝑏௡ − ෍ ෍ 𝑏௡𝑊௡,௠𝑎௠ (1)

௭್

௡ୀଵ

௭ೌ

௠ୀଵ

௭್

௡ୀଵ

𝑝𝑑 =
𝑒ିா௙(௔,௕)

∑ ∑ 𝑒ିா௙(௖,௕)
௕௖

 (2)

The weight matrices that separate the

hidden layer from the visible layer are 𝑎௠ and 𝑏௡,
the biases for the two layers are 𝑥௠ and 𝑦௡, and the
number of neurons in the visible layer is 𝑊௡,௠, the
number of Boolean hidden neurons in the hidden
layer is 𝑏௡.

The activation probability functions are
then represented in an equation (3) and (4).

𝑝𝑑(𝑎௠ = 1|𝑏) = 𝑠𝑖𝑔 ቌ𝑥௠ + ෍ 𝑊௡,௠𝑏௡

௜್

௡ୀଵ

ቍ (3)

𝑝𝑑(𝑏௡ = 1|𝑎) = 𝑠𝑖𝑔 ቌ𝑦௡ + ෍ 𝑊௡,௠𝑎௠

௜ೌ

௠ୀଵ

ቍ (4)

Additionally, sig() is used to represent the

logistic sigmoid function. Since the weight matrices
and layer biases can be trained unsupervised, the
pre-training principles support this. A single hidden
restricted Boltzmann machine (RBM) cannot
capture the peculiarities of the data. A deep belief
network (DBN), which is created by stacking layers
of RMBs in a hierarchical fashion and concluding
with a logistic regression layer, may gradually
extract deep characteristics from the input dataset.
The first RBM of the DBN is pre-trained as an
independent RBM using the training data as inputs.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6841

Figure 4: Assembly source code sample (0AguvpOCcaf2myVDYFGb.asm)

Table 2: Extracted Features Description

Extracted Feature

Description

Basic File entropy, line count and size

Section count Line count for each file's top ten parts

Opcode count Top 100 opcodes in every asm file

Opcode n_gram In the disassembled files, there are a lot of common system
call functions.

Stdcall count Statistics on the quantity of frequently used system call
operations in disassembled files

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6842

Figure 5: Architecture of GAN Network

Once the first RBM's weight matrix and

bias settings are established, the output of the first
RBM is selected to serve as the input for the second
RBM. The hidden layers of the first two RBMs are
then trained repeatedly using the same procedure,
acting as a new RBM. The final phase entails
layering an all-encompassing predictor (such a
layer for logistic regression) on top of the network
and training it under close supervision. After
applying the aforementioned stages, the back-
propagation (BP) approach is utilized for fine
tuning to slightly change the parameters of the
entire trained network.

GAN learns to produce new data from
training sets that are similar to the training sets.
Figure 5 depicts the GAN architecture. It has two
crucial parts, a generator (G) and a discriminator
(D). The discriminator is a model used to categorize
instances as real (from the domain) or fake
(created), whereas the generator is a model used to
generate new convincing examples from the
problem domain.

Using a generator network, a sample of
data that resembles genuine data is produced
immediately. Conversely, its rival, the
discriminator network, is able to distinguish
between samples derived from the generator
framework and samples derived from actual data.
Models for classification serve as the discriminator.
The objective function of the GAN design is in Eq.
(5), as stated in (Uddin, 2019).

𝑎𝑟𝑔
min
𝐺𝑚

𝑚𝑎𝑥
𝐷𝑚

𝑃(𝐷𝑚, 𝐺𝑚) =

𝐸௜~௞೏ೌ೟ೌ(௜)ൣlog൫𝐷𝑚(𝑖)൯൧ + 𝐸௔~௞ೌ(௔) ቂlog ቀ1 −

𝐷𝑚൫𝐺𝑚(𝑎)൯ቁቃ (5)

where 𝐷𝑚(𝑖)stands for the discriminator

function. The likelihood that the input vector
designated as 𝑖 is from the training dataset is the
output of this function. The 𝐷𝑚(𝑖) function returns
a value between 0 and 1 when given an input of 𝑖.

Similar to this, 𝐺𝑚(𝑎)is a generator
function that, based on the z (noise vector),
produces a matrix with the same dimensions as x.
The distribution of chances of samples is
represented as 𝑘ௗ௔௧௔(𝑖) and is taken from the
training dataset. 𝑘௔(𝑎) stands for the sample
distribution of chances from a noise generator.

The expectation function, abbreviated as
𝐸(.), which is produced by the log-loss function as
a positive class. In Eq. (6), the log loss function is
defined.

𝐸(𝑠| 𝑟)

=
−1

𝐿
෍(𝑟௫(log 𝑠௫) + (1 − 𝑟௫)(1 − 𝑠௫)) (6)

௅

௫ୀଵ

The estimation is shown as 𝑠௫ where the

actual data is shown as 𝑟௫. The log function is
employed when the model's response is anticipated
to be 0 or 1. According to the probability
distribution 𝑠(𝑖), 𝐸(𝑓(𝑖)) of the given function 𝑓(𝑖)

 Discriminator

Real Data

Generator

(G) loss (D) loss Generator
Input

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6843

is expressed as in Eq. (7), when x is taken from
𝑠(𝑖).

𝐸௜~௦(𝑓(𝑖)) න 𝑠(𝑖)𝑓(𝑖)𝑑𝑥 (7)

In Eq. (5), there are two loops, such as

𝑚𝑖𝑛ீெ 𝑃(𝑑𝑚, 𝑔𝑚) and 𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚).
Maximizing the right side through discriminator
parameter tweaking is the goal of
𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚). The objective function
represented by Equation (5) has two loops that
stand for 𝑚𝑎𝑥஽ெ𝑃(𝑑𝑚, 𝑔𝑚) and
𝑚𝑖𝑛ீெ𝑃(𝑑𝑚, 𝑔𝑚). The goal of 𝑚𝑖𝑛ீெ𝑃(𝑑𝑚, 𝑔𝑚)
is to minimize by adjusting the generator's
parameters.

4. EXPERIMENTAL RESULT

 The experiment using the proposed model
on MMCD data is evaluated with respect to four
significant metrics such as accuracy and f-measure,
precision and recall. On a system with an Intel Core
i7-7700k CPU, Hard Disk: 512GB, and 64 GB of
RAM, we installed the suggested framework. The
multimodal neural network algorithm must be
accelerated by GPUs. Tensorflow and Python have
been used to implement the ML algorithm and
framework modules.

4.1 Bytes based result analysis and comparison

Table 3: Performance Result based on 1D Vector

M
od

el
s

P
re

ci
si

on

R
ec

al
l

F
 m

ea
su

re

A
cc

ur
ac

y

DBN

98

98.50

97.96

98.47

GAN

98.97

98.08

99.02

98.99

HCAGAN_DBN

99.07

99.12

99.46

99.61

The test results in Table 3 demonstrate that

the 1D feature is superior to the 2D feature and that
HCAGAN_DBN has a greater detection impact
than DBN and GAN. The suggested 1D byte
feature-based byte classifier achieves accuracy of

99.61%. The comparison result with other deep
learning model like DBN and GAN and the
graphical representation is shown in figure 6, 7 and
figure 8.

Figure 6: Performance Comparison with DBN,

GAN and Proposed HCAGAN_DBN

Figure 7: Performance Evaluation Result of
Proposed Model for Byte Feature

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6844

Figure 1: Accuracy Comparison of HCAGAN_DBN
with different iterations

4.2 Opcode Based Result Analysis and
Comparison

Sections lines, opcodes, stdcalls and n-
grams are among the features retrieved from the
training dataset. Table 4 provides the asm features'
findings. The result is compared with other deep
learning model like DBN and GAN and the
graphical representation is shown in figure 9 and
figure 10.

Table 4: Opcode Based Result Analysis

M
od

el
s

P
re

ci
si

on

R
ec

al
l

F
 m

ea
su

re

A
cc

ur
ac

y

DBN

97.82

98.3

97.64

97.76

GAN

98.12

98.7

99

97.92

HCAGAN_DBN

99.2

99.72

99.23

99.47

Figure 9: Performance Evaluation Result of
Proposed Model

Figure 10: Accuracy comparison of
HCAGAN_DBN with different iterations

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6845

Figure 11: Accuracy Comparison with
Existing models in Literature

We compared various related study

findings with our findings, which are depicted in
figure 11, in order to assess the efficacy of our
methodology. They can be directly compared
because the majority of studies in the literature used
the same Microsoft malware dataset as we did.

Due to the increase of unknown malware
volume needs the requirement of new hybrid deep
learning algorithm for malware categorization.
Hybrid deep learning algorithm provides more
accuracy than simple deep learning algorithm.
Hybrid algorithm achieves time complexity. Key
contribution of our work is the utilization of a new
hybrid model HCAGAN-DBN for classifying
malware family with good performance result than
the existing deep learning algorithms. New
innovative layers are applied in the model to avoid
over fitting. Analysis revealed that the asm
classifier's 99.47% detection accuracy was higher
than that of the other models in figure 11. The 1D
vector feature achieved 99.61% accuracy which is
higher than the approach.

5. CONCLUSION

 An innovative deep learning
approach for malware detection is put forth in this
study. Experiments were used to confirm its
performance. HCAGAN_DBN model was
suggested in this study to categorize malware
samples into malware families. The Microsoft
Malware dataset was utilized to train the models
using both conventional and hybrid deep learning
techniques. To examine the malware feature, three
different deep learning models such as GAN, DBN
and HCAGAN-DBN are applied. HCAGAN-DBN
shows the best performing classifier supporting in
the outgoing efforts to combat the ever-growing
threat land space. In the first phase the byte feature
is extracted to 1D vector instead of converting gray
scale image. Similarly the opcode is extracted from
the asm feature and fed into the HCAGAN_DBN
that perform well on both feature and achieved
99.61% and 99.47% accuracy respectively. Our
study demonstrates multimodal deep learning for
malware categorization. The proposed multimodal
technique learns and mixes malware attributes from
two information sources, improving classification
performance when compared to classifiers that
accept only one type of data as input. The
improvement in the performance metrics highlights
the impact of the proposed model in the area of
malware analysis. Overall, HCAGAN-DBN offers
considerable advancements in automatic detection
of malware.

6. LIMITATIONS AND FUTURE WORK

 The drawback of the work is not using of
dynamic features. The model is applied with only
one benchmark MMCC – BIG15 dataset and not
with the two or more as well as real time datasets.
Our future enhancement work is to analyze the
malware with a real time datasets.

Conflicts of Interest

The authors declare that they have no
conflict of interest.

Funding Statement

 No funds, grants or other support was
received.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6846

AUTHOR CONTRIBUTIONS

 Formal Analysis and Investigation: V.S.
Jeyalakshmi, Conceptualization: V.S.Jeyalakshmi
and Krishnan Nallaperumal, Resources:
V.S.Jeyalakshmi, Validation: Krishnan
Nallaperumal, Methodology: V.S.Jeyalakshmi,
Writing Original Manuscript: V.S.Jeyalakshmi and
Krishnan Nallaperumal, Supervision: Krishnan
Nallaperumal.

REFERENCES:

[1] Kumar, Sachin, Prayag Tiwari, and
Mikhail Zymbler, "Internet of Things is a
revolutionary approach for future
technology enhancement: a
review" Journal of Big data 6, no. 1, 2019,
pp. 1-21.

[2] G. Kambourakis, C. Kolias, and A.
Stavrou, “The mirai botnet and the iot
zombie armies” In MILCOM 2017-2017
IEEE Military Communications
Conference (MILCOM), IEEE, October
2017, pp. 267-272.

[3] O. P. Samantray, and S. N. Tripathy, ”An
efficient hybrid approach for malware
detection using frequent opcodes and API
call sequences”, In Computational
Intelligence: Select Proceedings of InCITe
, Singapore: Springer Nature Singapore,
2022-2023, pp. 727-735.

[4] M.A. Abdullah, Y. Yu, K. Adu, Y. Imrana,
X. Wang, and J. Cai, “HCL-Classifier:
CNN and LSTM based hybrid malware
classifier for Internet of Things (IoT)”,
 Future Generation Computer
Systems, 142, 2023, pp. 41-58.

[5] J. Singh, and K.K.K. Senapati, “ Malware
Analysis and Classification”, In Malware
Analysis and Intrusion Detection in Cyber-
Physical Systems, 2023, IGI Global, pp.
42-63.

[6] T. Sarath, K. Brindha, and S.S.
Senthilkumar, “Malware Forensics
Analysis and Detection in Cyber Physical
Systems”, In Malware Analysis and
Intrusion Detection in Cyber-Physical
Systems, IGI Global, 2023, pp. 238-262.

[7] Yuan, Baoguo, Junfeng Wang, Dong Liu,
Wen Guo, Peng Wu, and Xuhua Bao.
"Byte-level malware classification based
on markov images and deep
learning", Computers & Security, 92,
2020, p. 101740.

[8] D. Gibert, C. Mateu, and J. Planes, ”
HYDRA: A multimodal deep learning
framework for malware
classification”, Computers & Security, 95,
2020, p.101873.

[9] Ö. Aslan, and A. A. Yilmaz, “A new
malware classification framework based
on deep learning algorithms”, IEEE
Access, 9, 2021, pp. 87936-87951.

[10] A. A. Darem, F. A. Ghaleb, A. A. Al-
Hashmi, J.H. Abawajy, S.M. Alanazi, and
A.Y. Al-Rezami, “An adaptive behavioral-
based incremental batch learning malware
variants detection model using concept
drift detection and sequential deep
learning”, IEEE Access, 9, 2021, pp.
97180-97196.

[11] R. Devi, Aiyshwariya, and A. R.
Arunachalam. "Enhancement of IoT
device security using an Improved Elliptic
Curve Cryptography algorithm and
malware detection utilizing deep LSTM",
High-Confidence Computing 3, no. 2,
2023, p. 100117.

[12] M. N. Al-Andoli, K. S. Sim, S. C. Tan, P.
Y. Goh, and C. P. Lim, “An Ensemble-
Based Parallel Deep Learning Classifier
with PSO-BP Optimization for Malware
Detection”, IEEE Access, 2023.

[13] R. Ronen, M. Radu, C. Feuerstein, E.
Yom-Tov, M. Ahmadi, “Microsoft
malware classification challenge”, 2018.

[14] Microsoft Corporation. Microsoft Portable
Executable and Common Object File
Format Specification. Revision 9.3 –
December 29, 2015. [Available:
http://www. microsoft.com/whdc/ system/
platform/firmware/PECOFF.mspx].

[15] A. R. Mohamed, G. Dahl, and G. Hinton,
“Deep belief networks for phone
recognition”, In Nips workshop on deep
learning for speech recognition and

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6847

related applications, Vol. 1, No. 9,
December 2009, p. 39.

[16] T. Li, J. Zhang, and Y. Zhang,
“Classification of hyper-spectral image
based on deep belief networks”, In 2014
IEEE international conference on image
processing (ICIP), IEEE, October, 2014,
pp. 5132-5136.

[17] S. Jeon, and J. Moon, “Malware –detection
method with a convolutional recurrent
neural network using opcode sequences”,
Information Sciences, 535, 2020, pp.1-15.

