
 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6638

EXTRACTING A MULTIDIMENSIONAL CONCEPTUAL
MODEL FROM A DATA LAKE USING AN MDA APPROACH

LAMYA OUKHOUYA1 , ANASS EL HADDADI2, BRAHIM ER-RAHA1, ASMA SBAI3

1ESTIDMA team, National School of Applied Sciences, Agadir, Morocco
2SDIC team, National School of Applied Sciences, Al Hoceima, Morocco

3LBH Laboratory, Faculty of Medicine and Pharmacy, Marrakech, Morocco
E-mail: 1l.oukhouya@uiz.ac.ma, 2a.elhaddadi@uae.ac.ma, 1b.raha@uiz.ac.ma , 3asma.sbai@uca.ac.ma

ID 55342 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance
15-08-24 20-08-2024 11-09-2024 15-09-2024

ABSTRACT

Data warehouse design is based on a thorough analysis of an organization's operational data sources. These
sources are then reorganized into conceptual models to enable multidimensional analyses. However,
extracting a model with a unified multidimensional structure across all of these data sources presents some
difficulties because it is necessary to have full documentation of data sources to perform this task. To
overcome these issues, this article presents an approach to modernizing data warehouses using a data lake as
a source of consolidating data from the organization's operational sources. Our approach begins by extracting
the relational physical model from each data source, which is then integrated into the data lake using a domain
ontology. This ontology helps detect duplicate elements in physical models and merge them into a unified
relational model for the data lake. Finally, from this unified model, we extract the multidimensional
conceptual model. This approach is automated by aligning with the model-driven architecture. We also
validated our contribution with a prototype whose objective is to design a tool for the automatic extraction
of the conceptual model from a data lake consolidating the data sources. Furthermore, a comparison between
our prototype and a manual process carried out by a computer scientist revealed that our prototype simplifies
the extraction task and saves significant time compared to the manual process.
Keywords: Data Warehouse , Data Lake , Multidimensional Model, Metadata , MDA Approach.

1. INTRODUCTION

Facts and dimensions are multidimensional
concepts that captivate decision-makers interests as
they are linked to dynamically unfolding events
within organizations [1]. Typically, these concepts
are modeled as tables in operational data sources.
Thus, one of the main steps in designing a data
warehouse is to detect tables that model facts and
dimensions. However, this task presented by
extracting the multidimensional model from data
sources may require a high level of expertise in
application, and it is often tedious and time-
consuming for designers[2].

These data sources are characterized by
various types of structured as well as unstructured
data whose physical grouping makes it possible to
naturally create the so-called data lakes [3]. The
latter refers to a massive aggregation or grouping of
data preventing heterogeneous data sources from
constituting the information system, thus providing

leaders with a global view of the organization’s data.
These data can be organized according to a
multidimensional data model to support certain
types of decision-making processes. However, no
design techniques exist to map a data lake to a
conceptual schema to design a data warehouses.

Furthermore, the adoption of the data lakes
with data warehouses is part of the modernization
aspect of the latter especially when used as a source
of consolidation for the data warehouse[4]. Indeed,
data warehouses modernization involves
reorganizing and strengthening the infrastructure to
take advantage of the latest technological
advances[5]. This includes adopting the most recent
data storage, processing, and analysis solutions
which are often based on distributed architectures, to
improve scalability, agility, and overall system
performance.

This being the case, our present paper seeks
to address these problems by presenting an
automatic process called ToExtractMD for
extracting a multidimensional model from a data
lake consolidating the operational data sources of

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6639

the organization. This process presents the first part
of a data warehousing project, while [6] presented
the second part aimed at implementing the
multidimensional model on NoSQL and relational
systems.

The information system of the higher
education sector in Morocco is used as a case study.
Indubitably, our approach is stimulated by the
perspective that the digitization of information
systems in Moroccan universities can lead to a more
sophisticated decision-making system, offering the
opportunity to use in-depth analysis to guide the
strategic choices made by leaders. These systems,
such as e-learning management systems (LMS),
MOOCs, Enterprise Resource Planning (ERP), and
business applications all rely on relational databases,
which disperse information, thus creating
information silos. The extraction of value is
therefore compromised, or even nonexistent in some
cases. In addition, data silos lead to data duplication,
reflecting the lack of a data integration approach in
these institutions [7]. Thus, the use of data lakes has
aroused our interest not only as it will allow us to
solve the problems mentioned above, but also
because of the capacity of these systems to store
large quantities of data, sometimes reaching several
terabytes, and for their fast data generation [8]. In
addition, the implementation of analytical processes
requires the creation of data warehouses, where the
use of NoSQL systems becomes necessary due to the
specificity of data from different systems [9].

The objective of this article is to design a
modern decision support system capable of adopting
the most sophisticated approaches in this field.
Specifically, it aims to combine the concepts of data
lake and data warehouse within the same decision-
making architecture. In this article, we present the
first phase, where the data lake is designed as a data
consolidation zone for the data warehouse,
integrating all data sources from a Moroccan
institution or university. From this data lake, a
multidimensional model will be extracted, which
will be used in the process described in work [6] to
design the data warehouse. This approach will
provide decision-makers with a comprehensive view
of university data, enabling the application of
advanced analytical processes, while also
modernizing traditional data warehouse design
methods through the integration of technologies
such as NoSQL systems, which offer the capability
to manage large-scale data.

The remainder of this article is organized as
follows. Section 2 presents a detailed description of
the approach adopted. Section 3 describes a state of
the art of work carried out in this area. Section 4

presents the ToExtratMD process. Section 5
validates our proposition through an
experiment.Section 6 discussion and future work ,
and finally, section 6 includes the general
conclusion.

2. STATE OF THE ART

The design of a data warehouse is first
based on a first level which involves structuring of
data from data sources in the form of a conceptual
data model. In this sense, our problem concerns the
extraction of the multidimensional structure from a
lake consolidating and integrating data sources, and
reorganizing it into a conceptual model. In the
literature, many works propose processes for
integrating data sources into the data lake, while
others propose the implementation of a data lake on
data warehouses.

This article [10] proposes an approach to
aggregate and harmonize relational databases in a
data lake. To do this, the authors propose a semantic
layer on top of the data lake, composed of a global
domain ontology and a set of correspondences
between the entities of the ontology and the data
lake. This semantic layer is designed using the Ontop
tool, which allows relational databases to be exposed
as an RDF graph for querying using SPARQL
queries. These can also be translated into SQL
queries once the matches have been established.
Furthermore, the data lake is implemented in this
approach by the Hadoop ecosystem, while the
ingestion of the relational databases is carried out by
Apache SQOOP. In the same vein, this work [11]
presents an intelligent approach to solve the problem
of integrating data from heterogeneous sources for
their use in analytical processes. To this end, the
authors proposed a hybrid architecture to drive and
orchestrate data from a data lake to a data warehouse.
This architecture is divided into four functional
layers: Acquisition, Exploration, Semantics, and
visualization. The acquisition layer is responsible for
obtaining and importing data from heterogeneous
sources with a view to storing it in the data lake in
raw format. The second layer is exploration in which
data patterns are discovered and grouped based on
metadata, which are redirected to the next layer
(semantic layer) for advanced processing by
machine learning. The third layer is the semantic
layer dedicated to preparing new datasets to create
knowledge. At this layer, the data is cleaned,
normalized and harmonized for schematic reading
whether by a data warehouse or another database
management system (relational or NoSQL). Finally,
the visualization layer allows the integration of data
sets into reports, algorithms and/or simulations to

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6640

create different types of information, such as
diagnostics, predictions and prescriptions. In another
article [12], the same authors detail the operation of
the semantic layer presented previously. Indeed, to
integrate the data into the data lake, the authors used
an ontology to resolve the interoperability of data
sources. This approach takes massive data sets as
input and produces an OWL ontology as output.
More precisely, the method consists of wrapping
each data source in a data lake, which will then be
transformed into a local ontology. Afterwards, these
local ontologies are combined into a global OWL
ontology, allowing the visualization layer to
meaningfully leverage information from multiple
data sources to generate statistics and reports. In the
same direction, in this article [13], the authors
present an approach for designing a data warehouse
from a massive data source. The proposed approach
uses a data lake to integrate the different social
media data sources with the aim of designing a
NoSQL data warehouse from the data lake.
 in this work [14],the authors have presented a data
lake architecture for integrating various biomedical
data sources in a single location. This architecture is
based on HDFS storage and apache drill for real-
time data analysis. The aim of this architecture is to
use the data lake for storage and consolidation of the
various data sources, and the data warehouse for
reading and analysis. In the same context , this work
[26] presents an approach for designing a medical
data lake. Specifically, it describes a functional
architecture of the data lake, consisting of multiple
layers, each responsible for a specific task. The first
layer, called ingestion, extracts data from various
medical sources. The storage layer stores the
ingested data in a centralized repository within the
data lake. The transformation layer applies
normalization and data cleansing processes. Finally,
the interaction layer allows users to visualize the
transformed data. Another work [27] proposes the
design of a data lake, this time based on a
technological architecture built around the Hadoop
ecosystem. Storage is handled by HDFS files, while
data and metadata management are ensured by
Apache Hive. Data ingestion is carried out using
Apache Flume and Sqoop. For data processing,
Apache Spark was chosen, along with Apache Kafka
for streaming processing. Finally, task scheduling is
managed by Apache Oozie and Apache Airflow.

The table below summarizes all the work in
relation to these characteristics:

 Multiple data sources (a);
 Integration of data into the data lake (b)
 Extraction of the conceptual model from

data lake (c),

 Automation of the approach(d).

Table 1: Comparative analysis of source integration and
conceptual model extraction processes in a data lake

Article/Ch
aracteristi

cs
(a) (b) (c) (d)

[10] x x

[11] x x

[12] x x x

[13] x x

[14] x x x

[25] x x x

[26] x x x

From this in-depth analysis of this work, we note that
the work [12] resolves the semantic conflicts of the
sources to be integrated by constructing a global
ontology. Likewise, the works [10] and [11] also
used a global ontology obtained by matching the
local ontologies of each data source to be integrated.
Although ontologies are the most appropriate
solution for integrating data into a data lake, using
mappings between local ontologies to design a
global ontology does not ensure maintainability and
scalability because modifying, adding or removing
local ontologies can easily affect other mappings to
the global ontology. The same goes for the approach
used in [12], where the authors used the automatic
knowledge graph for the design of the overall
ontology without introducing business experts as a
manual validation process to resolve the ambiguity
of the terms in their contexts. In our proposal, we
designed a global domain ontology for the data lake
by introducing business experts in the middle of
processing to increase the reliability of our extracted
knowledge model.

In the work [12-13], the authors proposed
architectures for the data lake through which they
can design a data warehouse. however, they did not
mention the proposed approach to designing a data
warehouse from the data lake. Our approach, on the
other hand, integrates data sources into the data lake
and also extracts the multidimensional structure
from it.

Finally, for the automation of the approach,
works [12,14,25-26] automatically integrate data
sources into the data lake without addressing model
or data warehouse design. Our approach is more
comprehensive, automating all these steps while
adhering to a model-driven approach. This includes
the integration of data sources, the extraction of
multidimensional model data, and the automated

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6641

implementation of this model in both NoSQL and
relational systems Presented as the second process in
our project, named ToCreateDWH, and detailed in
the work [6].

As a concluding note, our work addresses
the limitations of the studies presented in this
section. Our approach integrates the data lake as a
source of consolidation for the data warehouse,
allowing the centralization and integration of
heterogeneous data into the lake. We then applied a
semantic layer on top of the data lake to eliminate
semantic conflicts, resulting in a unified data lake
model. Finally, from this unified model, we
extracted a multidimensional model based on the
concepts of facts and dimensions. It is also worth
noting that our approach follows a model-driven
methodology, enabling full automation of the entire
process.

 The next section details the ToExtract
process, explaining our method for data
consolidation in the data lake and the extraction of
the multidimensional model.

3. OVERVIEW OF TOEXTRACTMD
PROCESS

The work presented in this article aims to
extract a multidimensional model from a data lake.
To accomplish this, we defined the ToExtractMD
process, which is responsible for analyzing the
consolidated data sources in the data lake, revealing
their structure to extract a multidimensional
conceptual model. It applies a sequence of
transformations from a set of relational databases
representing the input to the process. First, it extracts
the relational structure, characterized by tables,
columns, primary keys, foreign keys, and records.

At the same time, it reorganizes this
structure in the form of a relational physical model
specific to each data source. Next, ToExtractMD
establishes a semantic layer over the data lake,
whose function is to create mappings between the
different tables, thus leading to a unique relational
model for the data lake. Finally, from the unified
relational physical model, the process performs
transformations to derive the multidimensional
concepts and present them as a multidimensional
conceptual model. Figure 1 illustrates our
ToExtractMD process.

Figure 1: Our ToExtactMD Process

More concretely, our ToExtractMD

process is composed of 3 steps, namely,
DataSource2RelationalModel, Relational-
ModelsMerge, and DataLake2-
MultdimentionalModel, as schown in figure 2 .

Figure 2 : Step of ToExtractMD Process

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6642

The first step DataSource2RelationalModel
is devoted to the extraction of the relational model
of each data source of the information system. To do
this, we used a set of techniques to automate the
process, namely:

 The data dictionary. The data dictionary is

used as a first phase to extract the relational
structure from each database base.

 JAVA methods. We chose the
DatabaseMetadata API methods to access the
data dictionary and manipulate the metadata
stored there.

 The relational model. We consider the CWM
relational metamodel to represent the relational
structure at the logical level.

The second step in the ToExtractTM

process is RelationalModelsMerge. Its role is to
merge relational physical models into a unified
model for the data lake. In this regard, we used a
semantic web approach to align and harmonize data
by applying semantic correspondences between
concepts and relationships allowing for
interoperability between the different relational
models corresponding to the data sources. This
approach includes :
 A domain ontology. We started from a domain

ontology to model knowledge in the university
setting. This ontology named OntoDL is
designed to represent the knowledge and
concepts of systems related to teaching
management and students in academic
institutions, in particular.

 Semantic manipulation tools and interface.
We used the Apache Jena tool and the OWL
API to manipulate the domain ontology and
cross-reference it with the physical models
designed in the previous step to obtain a unified
model.

Finally, ToExtractMD process ends with
the DataLake2MultdimentionalModel step, which
extracts the multidimensional conceptual model
from the unified relational physical model of the
data lake.

ToExtractMD process is automated using a
model-driven approach, which is a development
standard through model manipulation, based on the
separation of business and technical concerns and
automation of transformations[15].

We opted for two levels to carry out our
process, each of which is described by a model:
 The PSM(Platform Specific Model) level. It is

presented by a model specific to the
implementation technology [16]. In our

approach, we use a physical relational model to
describe the logical level which represents the
model extracted from each data source as well
as the unifying model of the data lake.

 The PIM(Platform independent model) level.
It describes a business model specific to the
application while ignoring the technical
aspects[16]. The PIM model represents the
multidimensional conceptual model extracted
from the data lake.

The transition between these levels is
carried out following M2M(model to model) [17],
type transformations and we have chosen to use the
general JAVA language to ensure these
transformations. These cover the transition between
the relational physical model PSM and the
multidimensional conceptual model PIM. In
addition, this language is also used to extract the
relational structure and represent it according to the
CWM (Common Warehouse Metamodel)
metamodel . It should be noted that the nature of the
ToExtractMD process is a reverse engineering
process going from the physical level to the
conceptual level.

In the upcoming section, we will detail the
transition between the stages of the ToExtractMD
process, namely, DataSource2RelationalModel,
RelationalModelsMerge and
DataLake2MultdimentionalModel through three
points, the input, the output, and the applied
transformation rules.

4. TOEXTRACMD PROCESS

The ToExtracMD process aims to extract the
conceptual model from the relational data lake
consolidating an organization's data sources. Figure
2 illustrates this process as already described in
Section 3 through a reverse engineering process that
executes a series of transformations, the input of
which is a Physical Relational Model (PSM) and the
output a multidimensional conceptual model (PIM).
The data dictionary holds the role of analyzing the
data source using the metadata to describe it
according to a logical form (PSM model), whereas
the semantic layer is presented by establishing a
domain ontology that represents the embodiment of
the data lake concept in our ToExtactTMD process.
Each model in this approach conforms to its meta-
model. However, we did not use languages
dedicated to transformation between models such as
QVT or ATL. This is explained by the fact that the
calculated measures, access, and manipulation of
metadata in the dictionary as well as the design of
the ontology are not achievable with these
languages. The process uses the JAVA language to

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6643

access the metadata, determine the model, mark it
with multidimensional elements, and deploy it as a
multidimensional conceptual model. All models are
represented in XMI(XML metadata interchange)
format, an OMG standard for exchanging data
models [18].

In the upcoming subsections, we will detail
the ToExtractMD transformation process through
the three major points that we have cited, namely,
designing the relational model of each data source
(DataSource2RelationalModel), merging the
relational models (RelationalModelsMerge), and
finally extracting the multidimensional model
(DataLake2MultdimentionalModel).

4.1. First Step: DataSource2RelationalModel

Transformation
In this section, we will present the

DataSource2RelationalModeltransforma-tion
executed in two tasks, namely, the extraction of the
relational structure from the data source, and the
reorganization of this into a physical relational
model. We start by defining the elements required
for this transformation, by defining the input and
output, as well as the associated transformation rules
for each of these tasks.
4.1.1 Input: Relational data source
The input to our process is a set of relational
databases representing the data sources of the
information system. However, to perform the
DataSource2RelationalModel transformation, the
input to this step must first be able to analyze these
sources. This will be done based on the metadata
stored in the data dictionary. Indeed, in the context
of relational databases, information about data
structure can be extracted using metadata which can
be stored in data dictionaries. Therefore, the latter is
used in our process to designate the structure of the
data, as well as the calculation of measures
attributing to the derivation of the multidimensional
structure.
4.1.2 Output: PSM relational model
In our approach, the PSM model represents the
logical level involving a platform-independent
description. Consequently, the output of this
transformation is a physical model described
according to the relational approach; this is designed
by reference to its metamodel, thus designating the
physical structure of relational databases. For this
reason, we opted for the CWM metamodel to
represent the PSM relational model.

In principle, CWM provides a set of
metamodels that are sufficiently comprehensive to
be able to model an entire data warehouse, including
data sources [19]. We have used a relational

metamodel to represent all aspects of relational
databases, a multidimensional metamodel to
represent commonly used multidimensional data
structures, and an XML metamodel to represent
common metadata describing XML data resources.
In our transformation, our PSM model is represented
by the CWM relational metamodel describing the
data source, mainly the data dictionary according to
the following relational concepts: table, columns,
foreign key, and primary key. Figure 3 illustrates
part of the CWM relational metamodel.

Figure 3: Part of the CWM relational metamodel[20].

4.1.3 DataSource2RelationalModel
transformation rules

In this section, we present the rules for developing
the PSM relational model from the data dictionary.
We will begin our transformation process by
extracting relational elements from the data
dictionary, then this structure will be organized in
our CWM relational model according to the XMI
format. The passage between these elements is
described in the JAVA language.

4.1.3.1 The extraction of relational elements
The process of identifying the relational structure is
based on the DatabaseMetaData JAVA API, which
consists of several classes and methods to facilitate
metadata retrieval [21]. Based on these components,
this API makes it possible to build more generic
applications, capable of adapting to different
databases by dynamically retrieving metadata
information. Table 2 below includes all the
DatabaseMetadata API methods used to extract the
relational structure.
Equally important, the rules used to extract the
relational structure using the metadata of the data
dictionary are represented through two major
processes; the acquisition process and the analysis
process.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6644

Table 2: Methods Utilized from DatabaseMetadata API

Method Meaning/Explanation

getMetaData ()
This method returns database

objects from a connection.

getTables ()

Method that returns all tables

contained in the database. This

method returns a list which is then

scanned to obtain information

about each table.

getColumns ()

A method that retrieves the names

of all the attributes of a given table

defined by the parameter as well

as their characteristics (e.g. name,

type, etc.).

getPrimaryKeys

()

A method that is used to retrieve

the primary key metadata of a

specific table in a database. The

ResultSet class is used by this

method to return the primary key

name, along with a set of related

information, such as the sequence

of primary key columns.

getImportedKey

s ()

A method used to retrieve foreign

key metadata from a specific table

in a database. The ResultSet class

is also used by this method to

extract the names of foreign keys,

parent tables, and child tables.

 The Acquisition Process :
The acquisition process is dedicated to the
preparation of the essential elements to extract the
relational structure by applying a set of treatments.
This process presents an iterative and individual
processing applied to each table in the database
along with its rows to acquire the constituent
elements of the database, namely the tables, primary
keys, foreign key records, and columns. This is
achieved by:
(1) Creating a collection called BD to store table

names and their related information. We used
the method : (Map<String, Table>BD = new
LinkedHashMap<>()) to define this collection.

(2) Retrieving the table name and creating an
instance of the corresponding "Table" object.
We used "resultSet.getString
("TABLE_NAME")" for this task.

(3) Retrieving table columns using the
“metaData.getColumns()” method. Then, for
each column, corresponding "Column" objects
are created.

(4) Retrieving the primary keys of the table using
metaData.getPrimaryKeys(). Then,
corresponding "PrimaryKey" objects are
created.

(5) Retrieving foreign keys using the
metaData.getImportedKeys() method. Then,
corresponding "ForeignKey" objects are
created.

(6) Adding the Table to the collection (MAP) BD,
where the key represents the name of the table
processed, and the value presents the table
containing the different objects created.

 The Analysis Process :
In this process, and following the same approach
used in the acquisition process, each table is
processed individually by applying an iteration on
the rows. The objective, at this stage, is to calculate
a set of measures allowing for the development of
the multidimensional PIM model. These measures
and their definition are represented as follows:
(1) Retrieving the number of rows from the table.

The SQL query “SELECT COUNT(*)” is
executed to obtain this result. Thus, the result
of this query is represented by the V1 measure
used in the rules for developing the PIM model.

(2) Calculating the insertion rate in the table. To
obtain this result, we will combine two SQL
queries, the first of which RQ1 returns the
number of lines newly inserted into the table
“SELECT COUNT (*), MAX(Id)”, and the
second RQ2 presents the number of lines of the
table. The insertion rate is calculated by
dividing RQ1 by RQ2. The result of this
operation presents the V2 measure used in the
development of the PIM model.

(3) Updating the relevant collection based on the
foreign keys encountered. This collection is
used to count the number of foreign keys
pointing to each table, which will be
represented by the V3 measure also used in the
development of the PIM model.

(4) Identifying the numeric attributes of the table
and returning them as a sum in the V4 measure
which will be used in the development of the
PIM model.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6645

4.1.3.2 Representation of extracted elements
according to a relational model

Once the elements of the relational database are
identified and the measures are calculated, the next
step is to represent these elements according to a
relational PSM model. To do this, we chose the XMI
format to represent the relational structure according
to the CWM relational metamodel presented in the
previous section. The choice of the XMI standard is
justified by the fact that it provides a standard
structure for representing the elements of a model,
such as classes, associations, properties, and
constraints. More formally, the representation of the
relational elements acquired in the previous level in
XMI format following the CWM metamodel is
carried out in three actions :

(1) Action 1: Initialization of the constructor
with the data structure (Map <String, Table>
tables) designed at the previous level. This
collection contains the names of the
relational database tables, each associated
with its elements.

(2) Action 2: Conversion to XMI file,
involving the use of the JAXB library to
convert each table to an XMI file. This action
is defined by a method taking as input the path
of the file where it will be saved.

(3) Action 3: Conversion to XMI character
string for all tables to represent the content in
the XMI file.

After extracting and representing our physical
relational models, the next step will be to integrate
and merge them into the data lake. This process will
be thoroughly explained in the next section

4.2. Second Step: RelationalModelsMerge
Transformation

In this section, we present the second
RelationalModelsMerge transformation of the
ToExtractMD process, based on merging relational
models extracted from data sources and consolidated
into the data lake. To do this, we will present the
input, output, and associated transformation rules.
4.2.1 Input: Ontology and relational models
The input of this operation is the set of relational
models generated in the
DataSource2RelationalModel step. These models
are characterized by a relational structure consisting
of tables, columns, foreign keys, and primary keys,
according to the CWM relational metamodel
presented in Section 4.1.2 (Figure 3).
Additionally, given the objective of this step
RelationalModelsMerge and to set up a semantic
layer to solve the semantic problems in the database
consolidated in the data lake, a domain ontology is

also used as input in combination with relational
models. The domain ontology we used is specific to
the higher education sector. More specifically, it is
dedicated to course and student management within
academic institutions. Ontology is designed
according to the "METHONTOLOGY" approach
[22], and implemented manually.
METHONTOLOGY is an ontology development
method that allows to represent a domain in a formal
and structured way. This method is designed to
guide designers through the stages of the
development process, from the specification of
requirements to the creation of the ontological
structure and documentation [22]. We designed our
OntoDL ontology following 4 major phases of this
approach, namely, Preparation, Specification,
Conceptualization, Validation, and Implementation.
After executing the first three phases of this
approach, we obtained the result presented in table 3
describing the concepts, properties, and
relationships of our OntoDL ontology.

Table 3 : concepts, properties and relationships for the

OntoDL ontology

Concept Properties Relationships

Student

Student
number, ID,
Family name,
First name,
Email, Date of
birth,
Baccalaureate :
stream,grade
obtained or
mention and
year, ,address.

A student takes one
or many exams

A student has
registered

A student is
supervised by one
or more professors
A student is
enrolled in one or
more
modules/subjects

A student takes one
or more courses
A student is
enrolled in a
discipline

Professor

Number, ID,
Family name,
First name,
Email, Status,
phone number,
birth date.

A professor teaches
one or many
subjects
A professor
supervises one or
many students
A professor designs
one or many exams

A teacher is
assigned a specialty
or discipline

Subject
Course number,
name, hours,
description

A course is taught
by one or many
professors

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6646

A course belongs to
one discipline or
degree

A course is taken by
one or more
students

Module

Module
number, name,
hours,
description

A module consists
of one or more
subjects/courses
A module is
assigned to a course

Evaluation

Exam number ,
Name , Grade

Une évaluation est
rédigé par un
enseignant
An exam is related
to a grade

An exam is taken by
one student
An exam is related
to one course

Registratio
n

Number, date
of registration,

semester

A registration is
made by a student

Registration is valid
for one academic
year

Course

Course number,
course name,
Description,
level , Hours,

Room , learning
objectives

A course is attended
by one or more
students
A course is taught
by one or more
instructors
A course is
evaluated by one or
more assessments

Results
Results Code,

grades, average

A result is
calculated from an
exam
A result is obtained
by a student

Discipline
Discipline

Code, Name

A discipline is
linked to a degree
A discipline
includes modules

Degree
Degree Code,

Name

A degree has a
particular specialty
or discipline

Academic
year

Year Code,
year, Month,

Day

One academic year
includes one
registration

For the last implementation phase, so that our
ontology is concretely manipulated with the formal
language OWL, we chose the protected tool for the

implementation. Figure 4 shows the OntoDL
ontology on the protégé tool.
4.2.2 Output: A Relational Unified Model for

the Data Lake
The output of this transformation corresponds to a
unified relational model that presents the notion of
«data lake». Its structure therefore follows a
relational organization, which is in agreement with
the CWM metamodel . This is because this model is
created by merging the physical relational models
generated by executing the
DataSource2RelationalModel transformation.
4.2.3 Merging rules

In this section, we present the merging rules
adopted to unify relational models of data sources
into a unified consolidated model in the data lake.
Specifically, this transformation aims to use the
ontology we designed OntoDL to detect equivalent
elements in PSM models, eliminating semantic
conflicts and reducing data redundancy, and end
with the unified relational model for the data lake in
XMI file format.
Thus, our merging approach is composed of 4 major
steps, namely: Loading, Reasoning, comparison and
deployment.
 Data Loading Phase: From each data source,

represented by its physical relational model,
we started extracting the tables and columns,
then stored them in separate lists, listDB1 and
listDB2. Then, OntoDL is loaded from the
OWL file using the OWLAPI library. This
allows it to be stored in memory according to
a data structure, making it easier to access and
manipulate concepts, classes, properties and
relationships efficiently.

 Equivalent Classes Identification Phase
(Reasoning): In this step, we will identify the
similar or equivalent classes in the first PSM
relational model and ontology. More
concretely, using the OWL API reasoner, we
will browse the tables extracted for the first list
(corresponds to the first relational model =
listDB1) loaded in the previous step. Thus, for
each table, we will perform reasoning on the
ontology to identify equivalent classes in the
ontology that match the semantics of the table.
Then, equivalent classes are obtained using the
OWLAPI reasoner using the subclass,
superclass, and equivalent class search
operations. Finally, the names of the equivalent
classes are retrieved from their full URI and
stored in a “HashMap” type variable.

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6647

 Comparison and Storage of Correspondence

Phase: Once the names of the tables are
retrieved and stored, we compare them with the
tables extracted from the second list
(corresponds to the second relational model =
listDB2) loaded from the second relational
model in the first step. Using the names of the
equivalent classes detected and stored
previously, we compare each table in listBD1
with the tables in listDB2. Once a similarity is
detected, a match between the two models is
identified. Thus, this match is recorded in a
“HashMap” type structure under the name
“HashMapTAB”, where the keys are the table
names of the listDB1 and the values are sets of
matching table names from the DB2 list.
Finally, for each table stored in
“HashMapTAB”, we proceed to detect
identical columns, following the same principle
used for detecting similar tables.

 Unified XMI Model Deployment: After all
matches were collected in HashMapTAB, we
organize them according to the XMI
formalism. To do this, we started to define the
structure of the XMI file ,and since working
with relational models, the structure will also
follow a relational organization, that is, a
relational model according to the CWM
metamodel used in the first step of the ExtrctTo
process. Then, using the elements of the
«HashMapTAB», we will follow the
correspondences that we have defined, which

 implies the creation of the elements of the XMI

models, described by the tables in the first
place, followed by their column. Finally, we
added non-equivalent tables in the XMI model.
These tables are detected by a comparison of
each ListeDB1 and ListeDB2 list with the
structure defined in the XMI model to verify
whether there is a match or not. If a match is
detected, it means it is equivalent to an XMI
model table. Otherwise, the table is declared
not equivalent. In other words, the non-
equivalent tables are those that have no match
in the «HashMapTAB» structure. The columns
of these tables are identified and mapped in the
XMI model according to its attributes.

After presenting the process used to design the
unified relational model for the data lake, in the next
section, we will define the
DataLake2MultdimentionalModel transformation to
extract the PIM multidimensional conceptual model
of the data lake.

4.3. Third Step: DataLake2-
MultdimentionalModel transformation

In this section, we introduce
DataLake2MultdimentionalModel, the third and last
transformation of the ExtractMD process. The
multidimensional conceptual model will be derived
from the data lake. Thus, the input to this stage is the
unifying PSM relational model, while the output is
presented by the PIM multidimensional conceptual
model. In what follows, we will describe these two

Figure 4 : OntoDL designed with protégé tool

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6648

models in detail, including the transformation rules
to move from one model to the other.
4.3.1 Output: The multidimensional conceptual

model
The output of the
DataLake2MultdimentionalModel transformation
is a conceptual model of a data warehouse. This
conceptual level is typically used to define a
technology-independent description of the
multidimensional data warehouse. Although there
is no standardized model for designing a data
warehouse [23] constellation models are
commonly recognized to represent
multidimensional databases [24]. In this sense, we
will use a constellation model at the PIM
conceptual level, from which the data is structured
according to a set of facts corresponding to the
subjects of analysis, and a set of hierarchical
dimensions constituting the axes of analysis. In
what follows, we will formalize the concepts in
our conceptual model. Figure 5 presents the PIM
conceptual metamodel used.

Figure 5: PIM Conceptual Metamodel

4.3.1.1 DataLake2MultdimentionalModel
transformation rules

After obtaining the relational model of the data
sources and the set of corresponding measures, a
conceptual representation of the Multidimensional
Model must be derived from the PIM model. This
derivation process consists of two operations:
marking the PSM model and deriving the
multidimensional conceptual model from the
marked PSM.

 Physical model marked with
multidimensional elements:

Model marking is a technique used to reduce the
complexity of transformations between models. In
this step, our process marks each element of the
physical model previously obtained by the
appropriate concept of the multidimensional model,
in accordance with the conceptual metamodel PIM
described in section 4.3.1 (Figure 5). The marking is
carried out by adding a prefix to the names of the
elements of the PIM model.
Table 4 describes the correspondence between the
marks and elements of the PSM relational model.
This operation is ensured automatically by our
process based on the measurements obtained in the
process of extracting relational elements presented
in section 4.1.3.1, as well as complementary rules
ensuring the detection of multidimensional
elements, namely, identification of facts,
identification of dimensions, identification of
measures, detection of hierarchies (represented by
bases containing dimension attributes).

Table 4 : The marks used in the Relational model PSM

Prefix
Relational
Elements

Multidimensional
element

Fact_ Table Fact
Dim_ Table Dimension
Base_ Table Base

Measure_ Column Measure
ID_ PrimaryKey IdentifyingAttributes
DA_ Column DimensionAttributes

Identification of facts. A fact is a table that
represents the logical relationship between several
business concepts, including their numerical
measures intended to support the decision-making
process. A fact and its measures can be detected
from a data source according to the variables
calculated in the previous section. Thus, a table is
marked as done in the physical relational model if
and only if all of the following conditions are
satisfied :

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6649

o A fact table is the largest table among all the
tables in the data source. This condition is
verified with the variable (measures) V1.

o A fact table is the most updated table among the
others because it reflects the dynamics of the
commercial process (or business process). This
condition is checked with the variable V2.

o A fact table is the table with the largest number
of foreign keys. This condition is checked with
the variable V3.

o A fact table is the table with the largest number
of numeric columns. This condition is checked
with the variable V4.

To reinforce the aforementioned conditions, we
proposed other complementary rules to verify the
detected facts. They are described as follows :
o A fact table cannot have empty values.
o Numeric columns in a fact table must be foreign

keys representing the primary keys of other
tables. This condition can reinforce the result of
the V3 variable because in certain cases, we can
have a table satisfying the 3 conditions, the result
of the last of which does not cover any business
aspect relating to the decision-making process.

Identification of measures. A fact table is
identified by two types of columns, columns that
correspond to foreign keys or columns that indicate
measures. Measures are analysis values applied by
the decision process. A column is marked as a
measure if it is numeric and not a foreign key.

Identification of dimensions. The dimension
represents the axis of analysis of the facts. It thus
determines the relevant measures for the decision-
making process. A table detected and marked as
dimension, if its primary key is a foreign key in a
table marked as done.

Identification of bases. Any tables that have not
been marked as facts or dimensions are marked as
bases.

Identification of dimension attributes. The
columns of each table marked as a Dimension or as
a Base can be considered either dimension
identifiers or dimension attributes. A column is
marked as IdentifyingAttributes if it is a primary
key. Otherwise, it is considered a
DimensionAttributes. It is important to note that the
OptionalAttributes attribute is manually set at the
end of the transformation, so the user has the option
to modify any of the DimensionAttributes with this
attribute ; this is because there is no way to know if

a column can be considered, at transformation time,
as a dimension attribute or just an additional
attribute for a given column.

 Deployment of the PIM Conceptual Model:
Once the PSM physical model marked with

the multidimensional elements is obtained, we can
continue to execute our process to achieve the
multidimensional conceptual structure.
o Acquisition of facts and dimensions. From

the marked PSM relational model, we can
easily deduce our elements, with each table
marked as 'Fact_' translated to 'Fact', as well as
for dimensions that are inferred from tables
marked with the 'Dim_' prefix. By applying the
same principle, we can obtain both the
measures and the attributes of the dimensions.

o Acquisition of hierarchies. A hierarchy
organizes attributes based on the granularity it
presents. In our model, the BASE provides the
finest levels of dimension granularity.
However, a dimension is attached directly to a
single hierarchy, which involves creating a
BASE bearing the name of the dimension
while remaining attached to it when translated
to the PIM. On the other hand, from an
identified dimension, we can face situations
where hierarchies are translated according to
the type of aggregation. This is detected using
the foreign key existing in the tables marked as
BASE, which is translated in the PIM model by
the "rollup" relationship connecting the two
BASE .

5. DESCRIPTION OF THE DS2MD
PROTOTYPE : EXTRACTION OF A
MULTIDIMENSIONAL MODEL FROM A
DATA LAKE CONSOLIDATING DATA
SOURCES

This section aims to present a prototype
that we designed to test our contributions in the field
of data warehousing. This prototype called DS2MD
offers all the mechanisms to consolidate data
sources in a data lake and to extract a
multidimensional conceptual model from it.

In what follows we will present the
architecture of our prototype in section 5.1, followed
by the implementation of ToExtractMD processes in
section 5.2, then, an experiment to test the reliability
of our proposal is shown in section 5.3.

5.1 The architecture of our prototype

The main objective of our system is to
extract the multidimensional conceptual model from

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6650

a relational data lake consolidating the data sources
constituting an organization's information system.
This system brings together two main components :
the user interface, and the ToExtractMD module.
The tool allows the user to extract the physical
relational model from each operational database of
an information system, then integrate them into the
data lake in order to have a unified model for the
latter. Finally, the system transforms this model into
a multidimensional model. Our tool offers each
transformation of model outputs presented with the
XMI format. Figure 6 illustrates the architecture of
our system. The implementation of the
ToextractMD module will be detailed in the
following sections.

5.2 The implementation of ToExtractMD

Module

The purpose of this module is to extract the
multidimensional model from a set of relational
databases centralized in a data lake. The input is a
relational database set, while the output is a
multidimensional conceptual model. In addition,
ToExtractMD includes a data integration phase in
the data lake, allowing the merging of databases
ingested into the data lake. Figure 7 shows the
ToExtractTM module with three consecutive sub-
modules.

Figure 6: Architecture of DS2ML Prototype.

The first submodule is

DataSource2RelationalModel presenting the input
to the ToExtractMD module. Its role consists of
extracting the physical relational model PSM from
the relational database. The transformation executed
by this submodule presented in section 4.1 is
described in the JAVA language where Figure 8
presents an extract of this code.

Figure 7 : ToExtractMD module

The second submodule is

RelationalModelsMerge, which allows for merging
the relational models obtained previously into a
unified relational model for the data lake. Figure 9
presents an extract of the transformations presented
in the section 4.2 is described in the JAVA language.

The last submodule is
DataLake2MultdimentionalModel. It represents the
output of the ToExtractMD module, which relies on
extracting the multidimensional model from the
unified relational model. Thus, the figure 10
presents the JAVA code describing the
transformations executed by this submodule
presented in subsection 4.3. All of these
transformations allow us to describe the models
under the XMI format.

Figure 8 : Part of Java script used to extract relational

Model PSM from the data dictionary

………………………
int k = 0;//incrementation
Map<String,Table> tables = new LinkedHashMap<>();
Connection con = DriverManager.getConnection(url,login,password);
DatabaseMetaData metaData = con.getMetaData();
Map<String,Integer> inDegrees = new HashMap<>();
ResultSet resultSet = metaData.getTables(database, null, null, new
String[]{"TABLE"});
while(resultSet.next()) {
String tableName = resultSet.getString("TABLE_NAME");
Table table = new Table(tableName);
Statement st =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSe
t.CONCUR_UPDATABLE);
ResultSet rs = st.executeQuery("SELECT COUNT(*) FROM " +
database + "."+tableName);
 rs.next();
 int rowCount = rs.getInt(1);
 table.setLineCount(rowCount);
 ResultSet columns = metaData.getColumns(database, null,
tableName,null);
 while(columns.next()){
 String columnName = columns.getString("COLUMN_NAME");
 String columnType = columns.getString("TYPE_NAME");
 Column column = new Column(columnName,columnType);
 table.addColumn(column);}
 ResultSet primaryKeys = metaData.getPrimaryKeys(database, null,
tableName);
 while(primaryKeys.next()){
………………………………………………

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6651

import org.apache.jena.ontology.OntModel;
import org.apache.jena.query.*;
import org.apache.jena.rdf.model.ModelFactory;
import org.apache.jena.util.FileManager;
import javax.xml.xpath.*;
…………………………………
 public static NodeList fetch(String file,String xpathCustom) throws
Exception { XPath xpath = XPathFactory.newInstance().newXPath();
 InputSource xml = new
InputSource("src/main/resources/"+file+".xmi");
 String result = (String) xpath.evaluate(xpathCustom, xml,
XPathConstants.STRING);
 XPathExpression expr = xpath.compile(xpathCustom);
 return (NodeList)expr.evaluate(xml, XPathConstants.NODESET);}
private static void fnc2() throws Exception {
 NodeList tablesDb1=fetch("bd_estudiantine","//tables");
 NodeList tablesDb2=fetch("sysensaf","//tables");
 OWLOntologyManager manager =
OWLManager.createOWLOntologyManager();
 OWLOntology ontology =
manager.loadOntologyFromOntologyDocument(new
File("src/main/resources/Student_Activities_1.owl"));
 HashMap<String, HashSet<String>> tabcleHash=new HashMap<>();
 for (int i = 0; i < tablesDb1.getLength(); i++) { String node1 =
tablesDb1.item(i).getAttributes().getNamedItem("TName").getTextContent
();
 node1 = node1.substring(0, 1).toUpperCase() + node1.substring(1);
 tabcleHash.put(node1,new HashSet<>()); IRI iri =
IRI.create("http://www.semanticweb.org/lamyaoukhouya/ontologies/2023/
6/Learning#"+node1);
OWLClass style = manager.getOWLDataFactory() .getOWLClass(iri);
OWLReasonerFactory reasonerFactory = new
StructuralReasonerFactory(); OWLReasoner reasoner =
reasonerFactory.createReasoner(ontology;
NodeSet<OWLClass> subClasses = reasoner. getSubClasses(style, true);
NodeSet<OWLClass> superClasses = reasoner.getSuperClasses(style,
true);Node<OWLClass> equivClasses =
reasoner.getEquivalentClasses(style);
Set<OWLClass> classes = subClasses.getFlattened();
classes.addAll(superClasses.getFlattened());
classes.addAll(equivClasses.getEntities());
Set<String>names=classes.stream().map(Object::toString).collect(Collecto
rs.toSet());
names=names.stream().map(w->w.substring(w.indexOf("#") + 1,
w.length() -1)).collect(Collectors.toSet());
 System.out.println("-------- "+node1+" --------");
 System.out.print("OWL equivalents : "); names.forEach(w-
>System.out.print(w +" "));
 System.out.println();
 System.out.println(names);
 System.out.print("Compare to : ");
 for (int j = 0; j < tablesDb2.getLength(); j++) { String node2 =
tablesDb2.item(j).getAttributes().getNamedItem("TName").getTextContent
();
<http://www.semanticweb.org/lamyaoukhouya/ontologies/2023/6/Learning
#%s> . " +,"?propertyrdfs:range}
 private static void fnc3(HashMap<String,HashSet<String>> tabSet){
……………………

Figure 9 : Part of the Java script to build the unified
relational model PSM for the data lake

import java.io.StringWriter;
import java.sql.SQLException;
import java.util.*;
public class ModelMultidimensionalMarque
{ModelRelationnelMarque model;
private List<Dimension> dimensionList;
private List<Fact> factList;
publicModelMultidimensionalMarque(ModelRelationnelMarque
model) { this.model = model;
dimensionList = new ArrayList<>();
factList = new ArrayList<>();
int i = 0;
for (Table fac : model.getFactTables()) {Fact fact = new Fact();
fact.setName(fac.getName().split("FACT_")[1]);fact.setIndice(i);
for (Column column : fac.getColumns()){
if (column.getName().startsWith("MEASURE_")){
Measures measures = new Measures();
measures.setName(column.getName().split("MEASURE_")[1]);
measures.setType(column.getType());

fact.getMeasuresList().add(measures);}}
factList.add(fact);
i++;} i = 0;
for (Table dim : model.getDimensionTables()){
Dimension dimension = new Dimension();
dimension.setName(dim.getName().split("DIM_")[1]);
dimension.setIndice(i); Base basedim = new Base();
basedim.setIndice(0);
basedim.setName(dim.getName().split("DIM_")[1]);
for (Column column : dim.getColumns()){
Dimentionattribut dimentionattribut = new Dimentionattribut
(column.getName(), column.getType());
basedim.getDimentionattributs().add(dimentionattribut);}
for (PrimaryKey primaryKey : dim.getPrimaryKeys()){
ID_att id_att = new ID_att(primaryKey.getName(),
primaryKey.getType());
basedim.getId_atts().add(id_att);}
dimension.getBases().add(basedim);
this.getBases_1(dimension, dim, 1, 0);
this.getBases_2(dimension, dim);
fact.setHasDemension(fact.getHasDemension() + "//
for (Base base : dimension.getBases()){
measures.setBase(measures.getBase() + "//@dimension." +
dimension.getIndice() + "/@base." + base.getIndice());}}}}}}
k++;}
dimension.setAffectedTo(affected.toString());
dimensionList.add(dimension);
i++;}
…..

Figure 10 : part of JAVA script for marking and
transforming a relational model PSM into a

multidimensional conceptual model PIM

5.3 Validation and experimentation of the
ToExtractMD module:

The objective of this section is to show how
to use the DSToMD system to automate the
extraction of the multidimensional model from a
data lake consolidating the operational sources of an
organization. More precisely, this section presents
an experiment on the transformations carried out by
the ToExtractMD process through a case study of
two computer applications forming part of the
information system of one of the institutions of Ibn
Zohr University. We will begin with the presentation
of these two applications, followed by the validation
of our proposals by comparing the result of our
automatic prototype with a manual process carried
out by an experienced computer scientist. This
validation will be carried out on the execution time
to recover the PIM conceptual model, as well as for
the authenticity of the two results of the automatic
and manual process compared to the models
obtained at the level of each transformation of the
ToExtractMD process.

5.3.1 Presentation of Ibn Zohr University
Information System Applications:

 Application 1 : ERP student affairs
management:

The first application is an ERP dedicated to the
organization and management of students and

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6652

courses. This ERP is centralized at the information
system of Ibn Zohr University, managing through a
single database, all students from 22 institutions,
which implies a volume of data reaching several
terabytes. Furthermore, the major objective of this
application is to offer institutions complete
management of student registrations and records,
from registration to the getting of their diplomas.

 Application 2 : Learning management system
LMS

Concerning the second application of the
information system, we chose a LMS platform to
facilitate interaction with students. This tool also
uses a single relational database for the
centralization of data, mainly a relational database
per institution, from which we chose only one to
carry out this experiment. The features
characterizing this LMS include managing student
registrations and admission, curriculum
management, and evaluation management.
5.3.2 Automatic Process
The two applications we have just presented have
different objectives. The first one manages the
curriculum of the student from his first registration
in the university until the delivery of his diploma,
while the second creates a centralized space for
interaction between teachers, students and
administration, and manages the academic
monitoring of the student.

Despite this difference in purpose between the two
applications, we can see that the features are similar
on the one hand, and complementary on the other.
Therefore, we used our tool on both applications to
validate our approach.We started by entering the
URIs of the two relational databases. Thus, by
clicking on the «DS2RDM» button, we were able to
extract the relational physical structure for each
database presented in XMI format. This result
describes the first step
DataSource2RelationalToExtract module, which
provides an output physical PSM model for each
data source in XMI format. This follows the CWM
relational metamodel also presented in the same
chapter. Figure 11((A) and 11(B)) shows extracts for
the two PSM physical models of the two XMI
format databases generated by our system.
After that, we executed the second
RelationalModelsMerge step of the same module,
by clicking on the "RDM2Merge" button, which
merges the two PSMs and creates a unified relational
model for the data lake.This operation displays all
new merged tables, as well as the remaining tables
in both databases. At this stage, the user intervenes
to name the new tables created and to choose the
tables intended to constitute the unified model. Once
this model was designed, by clicking on the
"DL2MD" button presenting the last step of this
module, we proceeded to extract the
multidimensional conceptual PIM model from the
unified PSM relational model representing the data
lake.

 (A) (B)

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6653

5.3.3 Manual Process
The manual process experience is designed by an IT
professional who clearly knows how to implement
and manipulate databases, as well as data
warehouses. However, he has no idea about the
structure of these two databases. This user profile
was not chosen at random; we want to be credible
and reliable when comparing the execution time of
the two processes, knowing that our system has the
ability to extract the relational structure from any
relational data source. First, the computer scientist
applied his process of extracting the relational model
from each database. He began by analyzing the data,
establishing the structure of the data, identifying
entities and relationships between them, and
determining the attributes associated with each
entity. He then merged these models by comparing
the table names to detect similarities.

Then, for each of the similar tables, he examined the
columns to identify which were similar and which
were not. On this basis, he decided which tables and
columns to merge. Then, using the previous
concepts, he designed a relational model for each
database, identifying the main tables, determining
their primary and foreign keys and their attributes.
Next, we assigned the same rules we used to extract
the multidimensional elements to the computer
scientist. This way, the user's business needs do not
interfere with the design, which is based on the
analysis of the data source.
Figure 12(A) and 12 (B) successively illustrates the
two models designed by the computer scientist, as
well as the final result presented by the
multidimensional conceptual model.

Figure 11 : (A)PSM physical models DB1 ; (B) PSM physical model DB2 ; (C) PSM model
unifier ; (D) PIM multidimensional Conceptual Model

 (C) (D)

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6654

(A)

(B)

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6655

(C)

(D)

Figure 12: (A) Relational Model for Application 1 ;(B) Relational Model for Application 2 ; (C)
Relational Merge Model ; (D) Multidimensional model

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6656

5.3.4 Evaluation of the results
To compare the results obtained, we used the criteria
relating to the quality of the result and the
transformation execution time between the manual
process and our automated process.

 Model Quality:
The goal is to determine the quality of physical data
structures, both in the generated source code as well
as the resulting guidelines. In other words, we aim
to evaluate the adequacy of all transformations
involved in the process of extracting relational
models, their merge into unified models, and the
transformation of these into multidimensional
models for implementation on one of the physical
models for one of the relational or NoSQL families.
Regarding the process carried out by the computer
scientist, the result he obtained manually was
compared to all the phases of our automated process,
namely, the relational model extracted from the data
source, the unified model, the multidimensional
model designed and the physical model obtained
with its translation into CQL code. Both results are
identical. We should also mention that the merged
model is not identical to our model, as each of us
assigned different names to the merger tables during
the merge process.

 The transformation time:
Likewise, we compared the time required for our
automated process with the time taken by the
computer scientist to obtain an equivalent result
manually.
For an almost identical result (relational model
unified model + multidimensional model physical
model with code), the time to complete the process
was significantly reduced. In other words, model
transformations performed with our process save
significant time compared to the manual process, as
shown in table 5.

Table 5 : Execution times of different phases for manual

and automatic process

Process
The Phases of Transformation

(1) (2) (3)
Total

Duration

Manual 8h 1h 30min 9h30min

Automatic 3min 1min 5min 9min

(1) Extraction of the relational model
(2) Model merge
(3) Extraction of the multidimensional model

We can note that the time saved between

the manual and automated processes increases with
the complexity of the relational database that
constitutes the entry point of both processes.

6. Discussion and Future Work

This work falls within the framework of
designing decision support systems by utilizing
innovative concepts to modernize traditional
approaches to data warehouse design and manage
massive data. We have adopted the concept of a data
lake for consolidating data from heterogeneous
sources. To optimize this approach, we integrated a
semantic layer on top of the data lake, which allows
for the resolution of semantic conflicts and the
development of a unified model. This unified model
is then used to extract the conceptual model of the
data warehouse.

This work represents a fundamental first
step in the development of lakehouse architectures,
which combine the concepts of data lakes and data
warehouses. This combination addresses the
limitations of each individual approach. As data
management needs evolve, lakehouse architectures
have emerged to leverage the benefits of data lakes
while providing analytical and structured
management capabilities similar to those of data
warehouses. This fusion optimizes analytical
performance while retaining the flexibility of the
data lake.

For future work, we plan to migrate to a
lakehouse architecture while integrating the concept
of data mesh. This migration aims to combine the
advantages of both approaches to create a more
robust and adaptable solution. The data mesh
introduces decentralized data management, where
each team treats data as a product and takes
responsibility for its quality and governance. By
integrating data mesh with our lakehouse
architecture, we will enhance the flexibility and
scalability of our system, enabling a more distributed
and collaborative management of data.

7. CONCLUSION :

In this paper, we presented an automated
approach for extracting a multidimensional model
from a data lake consolidating relational data
sources. To do this, we proposed a process called
ToExtractMD, consisting of three steps :
DataSource2RelationalModel, RelationalModels-
Merge, and DataLake2MultidimensionalModel.

The first step is to extract the PSM physical
model from each database using the metadata stored
in the data dictionary. The second step merges the
previously extracted PSM models into a single
physical model through the use of an ontology
specific to the field of higher education, resulting in
the PSM model of the data lake. Finally, the third

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6657

step allows us to extract the conceptual PIM model
from the unified PSM model.

In our future endeavors, we plan to migrate
to a lakehouse architecture while expanding the
variety of data integrated into the data lake by
incorporating heterogeneous data sources from the
university information system. Additionally, we aim
to integrate the data mesh concept to enable
decentralized data management, treating data as a
product with clear ownership and governance. To
extract the conceptual model from this diverse data
lake, we will establish a metadata management
system to facilitate the detection of
multidimensional structures. This approach will
combine the strengths of the data lake, lakehouse,
and data mesh to enhance our data management and
analysis capabilities.

REFERENCES:

[1] INMON, William H. Building the data

warehouse. John wiley & sons, 2005.
[2] ROMERO, Oscar et ABELLÓ, Alberto. A

survey of multidimensional modeling
methodologies. International Journal of Data
Warehousing and Mining (IJDWM), 2009, vol.
5, no 2, p. 1-23

[3] OUKHOUYA, Lamya,EL HADADDI, Anass,
ER-RAHA, Brahim, et al. A generic metadata
management model for heterogeneous sources
in a data warehouse. In : E3S Web of
Conferences. EDP Sciences, 2021. p. 01069.

[4] NAMBIAR, Athira et MUNDRA, Divyansh.
An overview of data warehouse and data lake in
modern enterprise data management. Big data
and cognitive computing, 2022, vol. 6, no 4, p.
132.

[5] OUKHOUYA, Lamya, EL HADDADI, Anass,
ER-RAHA, Brahim, et al. A Proposed Big Data
Architecture Using Data Lakes for Education
Systems. In : International Conference on
Networking, Intelligent Systems and Security.
Cham : Springer International Publishing, 2022.
p. 53-62

[6] OUKHOUYA, LAMYA, EL HADDADI,
ANASS, ER-RAHA, BRAHIM, et
al. Automating Data Warehouse Design With
MDA Approach Using NoSQL and Relational
Systems. Journal of Theoretical and Applied
Information Technology, 2023, vol. 101, no 23

[7] SHAHROKNI, Ali et SÖDERBERG, Jan.
Beyond Information Silos Challenges in
Integrating Industrial Model-based Data. In
: BigMDE@ STAF. 2015. p. 63-72.

[8] WIBOWO, Merlinda, SULAIMAN, Sarina, et
SHAMSUDDIN, Siti Mariyam. Machine
learning in data lake for combining data silos. In
: Data Mining and Big Data: Second
International Conference, DMBD 2017,
Fukuoka, Japan, July 27–August 1, 2017,
Proceedings 2. Springer International
Publishing, 2017. p. 294-306.

[9] OUKHOUYA, Lamya, HADDADI, Anass El,
ER-RAHA, Brahim, et al. Designing Hybrid
Storage Architectures with RDBMS and
NoSQL Systems: A Survey. In : International
Conference on Advanced Intelligent Systems
for Sustainable Development. Cham : Springer
Nature Switzerland, 2022. p. 332-343.

[10] SCHWADE, Florian et SCHUBERT, Petra. A
semantic data lake for harmonizing data from
cross-platform digital workspaces using
ontology-based data access. 2020.

[11] KACHAOUI, Jabrane et BELANGOUR,
Abdessamad. From single architectural design
to a reference conceptual meta-model: an
intelligent data lake for new data
insights. International Journal, 2020, vol. 8, no
4, p. 1460-1465.

[12] KACHAOUI, Jabrane, LARIOUI, Jihane, et
BELANGOUR, Abdessamad. Towards an
ontology proposal model in data lake for real-
time COVID-19 cases prevention. 2020.

[13] DABBÈCHI, Hichem, HADDAR, Nahla
Zaaboub, ELGHAZEL, Haytham, et al. Social
media data integration: From data lake to nosql
data warehouse. In : International Conference
on Intelligent Systems Design and Applications.
Cham : Springer International Publishing, 2020.
p. 701-710.

[14] KATHIRAVELU, Pradeeban et SHARMA,
Ashish. A dynamic data warehousing platform
for creating and accessing biomedical data
lakes. In : Second International Workshop,
DMAH 2016, Held at VLDB 2016, New Delhi,
India, September 9, 2016, Revised Selected
Papers 2. Springer International Publishing,
2017. p. 101-120.

[15] BLANC, Xavier et SALVATORI,
Olivier. MDA en action: Ingénierie logicielle
guidée par les modèles. Editions Eyrolles, 2011.

[16] MAZÓN, Jose-Norberto et TRUJILLO, Juan.
An MDA approach for the development of data
warehouses. Decision Support Systems, 2008,
vol. 45, no 1, p. 41-58.

[17] MIAO, Gao, HONGXING, Liu, SONGYU,
Xie, et al. Research on user interface
transformation method based on MDA. In

 Journal of Theoretical and Applied Information Technology
30th September 2024. Vol.102. No. 18

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6658

: 2017 16th International Symposium on
Distributed Computing and Applications to
Business, Engineering and Science (DCABES).
IEEE, 2017. p. 150-153.

[18] JECKLE, Mario. OMG’s XML Metadata
Interchange Format XMI. XML4BPM 2004,
2004, p. 25.

[19] MEDINA, Enrique et TRUJILLO, Juan.
Metamodel (CWM). In : Advances in Databases
and Information Systems: 6th East European
Conference, ADBIS 2002, Bratislava, Slovakia,
September 8-11, 2002, Proceedings. Springer,
2003. p. 232

[20] MAZON, Jose-Norberto, TRUJILLO, Juan,
SERRANO, Manuel, et al. Applying MDA to
the development of data warehouses. In
: Proceedings of the 8th ACM international
workshop on Data warehousing and OLAP.
2005. p. 57-66.

[21] ROCHA, Leonardo, VALE, Fernando,
CIRILO, Elder, et al. A framework for
migrating relational datasets to
NoSQL. Procedia Computer Science, 2015, vol.
51, p. 2593-2602.

[22] JONES, Dean, BENCH-CAPON, Trevor, et
VISSER, Pepijn. Methodologies for ontology
development. 1998

[23] SEN, Arun et SINHA, Atish P. A comparison of
data warehousing
methodologies. Communications of the ACM,
2005, vol. 48, no 3, p. 79-84.

[24] GOLFARELLI, Matteo, RIZZI, Stefano, et
VRDOLJAK, Boris. Data warehouse design
from XML sources. In : Proceedings of the 4th
ACM International Workshop on Data
Warehousing and OLAP. 2001. p. 40-47.

[25] MANCO, Carlo, DOLCI, Tommaso,
AZZALINI, Fabio, et al.HEALER: A Data
Lake Architecture for Healthcare. In
: EDBT/ICDT Workshops. 2023.

[26] BENJELLOUN, Sarah, EL AISSI, Mohamed El
Mehdi, LAKHRISSI, Younes, et al. Data lake
architecture for smart fish farming data-driven
strategy. Applied System Innovation, 2023, vol.
6, no 1, p. 8.

