
 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7038 

 

A HYBRID CLASSIFIER MODEL - DR-XA FOR DEFECT 
PRIORITIZATION 

1*R.ADLINE FREEDA,2 DR.P.SELVI RAJENDRAN 

 

1*Research scholar, CSE Department, Hindustan University, Padur, 
Chennai, Tamil Nadu, India. 

2Professor, CSE Department, Hindustan University, Padur, Chennai, Tamil Nadu, India. 
1*Corresponding Author Email Id: adlinefreeda2024@gmail.com 

 
 ID55494 Submission  Editorial Screening Conditional Acceptance  Final Revision Acceptance  

04-09-2204 05-09-2024 22-09-2024 05-10-2024 
 

ABSTRACT 
 

 Fault prioritization in software testing involves determining the sequence in which identified faults should 
be addressed. Effective fault prioritization is crucial in software development and testing as it helps allocate 
resources efficiently and ensures that the most critical issues are resolved first. The criteria for prioritization 
may vary so by addressing the most serious flaws promptly and allocating resources effectively, software 
quality can be significantly enhanced. Machine learning algorithms offer powerful tools for fault 
prioritization by leveraging the complexity of the problem and the available data. Common machine-learning 
approaches for prioritization include classifier models such as Decision Trees, Random Forests, and 
XGBoost. This research compares the performance of these different classifier models with the proposed 
DR-XA hybrid prediction model. The DR-XA model, which incorporates advanced techniques for handling 
unbalanced data and improving prediction accuracy, has been evaluated in the context of fault prioritization. 
The experimental analysis demonstrates that the DR-XA hybrid model surpasses existing classifier models 
in prioritization accuracy, achieving superior results compared to current prioritization techniques.  
Keywords: Defect Prioritization, Software Testing, Hybrid classifier model, Prediction, Machine learning. 

1.  INTRODUCTION  
Software engineering is a branch of 

computer science that focuses on creating, testing, 
and maintaining software systems [1]. Software 
engineering requires testing to ensure the program 
performs as intended. Software testing is an 
essential part of software engineering, whereby a 
system or application is assessed to identify and 
fix flaws or issues before end users have access to 
it. Its main objective is to ensure that the program 
runs as intended, satisfies all specifications, and 
produces incredibly high-quality outputs [2][3]. 
More customer happiness, longer-term cost 
savings, and improved product quality are the 
outcomes of effective software testing. Since 
testing is essential to the software development 
life cycle, software engineers who want to build 
robust and dependable software applications must 
be proficient in testing methodologies [4]. Test 
cases and scripts are assembled into test suites 
during testing to execute them one after the other 
or in a big batch.  

A software application's functioning or a 
particular feature is carefully tested using test 

suites. By grouping associated test cases into a 
single unit, they facilitate thorough testing and 
speed up the testing process. It's significant that 
while test suites are essential for identifying and 
organizing test cases [5] [6][7], effective test case 
creation is as crucial. The test cases in a test suite 
should have clear specifications, cover a variety 
of scenarios, and be created to easily recognize 
faults or other issues. It is an essential component 
of software testing processes because it ensures 
that software achieves its quality and functionality 
requirements while boosting productivity and 
maintainability during the testing phase. 

Fault localization and fault detection are 
two essential software testing procedures for 
locating and identifying faults or defects [8]. 
These steps are necessary to guarantee the 
program's reliability and high quality. The process 
of locating and finding defects in an application is 
known as fault detection. It could be coding 
errors; design issues, or deviations from the 
requirements of the software. Fault localization is 
a method for determining a software bug's exact 
location or root cause. It looks for the specific line 
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of code, or module, that is the problem. Effective 
fault detection and localization processes are 
essential for defect fixing in software 
development [9][10] By utilizing automated 
techniques and [10]methods, in particular, to find 
and quickly correct software problems, software 
quality can be improved and development costs 
can be reduced. Thorough documentation and 
close communication between the development 
and testing teams are also essential for efficient 
finding of defects and localization.  

Assigning a priority to found faults or 
defects in a software application is the practice of 
"fault prioritization," also known as "defect 
prioritization" [8]. This is a vital step in the 
development and testing of software because it 
focuses on the most critical issues first. By 
arranging faults in order of importance, the 
limited resources are used effectively, and the 
most critical problems are addressed with priority 
[9]. Software testing defect prioritization can be 
automated with machine learning approaches. 
Based on several variables, including the 
problem's severity, the software it affects, and 
historical data, they can assist in prioritizing 
newly found flaws or concerns in order of 
importance. Neutral networks, K-Nearest 
Neighbours, Random Forests, Decision Trees, 
XGBoost, and Random Forests [10].  

   This paper addresses the critical issue 
of software defect prioritization, which is 
essential for efficient resource allocation and 
timely resolution of software issues. Traditional 
methods often fail to provide accurate 
prioritization, leading to inefficiencies and 
potential delays in the software development 
lifecycle.  

A few machine learning algorithms that 
are commonly employed for assessing fault 
prioritization include trees. The major 
contributions of this paper include, 

 To develop the proposed DR-XA hybrid 
prediction model, features from 
classifier methods such as Decision 
Trees, Random Forests, and XGBoost 
were combined. 

 To regulate randomly generated actions, 
machine learning methods and 
functional libraries such as scikit-learn 
and NumPy were employed. 

 To improve the overall predictive 
performance of multiple fault 

prioritization base models, the suggested 
DR-XA hybrid prediction model was 
developed. 

 To evaluate and compare the proposed 
model's accuracy to that of the 
comparative models, measures like 
precision, recall, and f1 score were used. 

The research on fault prioritization in software 
testing is essential for several reasons. In short, 
this research plays a crucial role in effectively 
managing software quality, cutting costs, using 
resources efficiently, and meeting user 
expectations in today’s fast-moving development 
world. This research makes a valuable 
contribution to advancing fault prioritization 
techniques, boosting software quality, and 
streamlining testing processes throughout the 
software development lifecycle. 

The rest of the paper is organized as 
follows: Section 2 presents the literature review 
which examines existing fault prioritization 
methods. The proposed methodology in Section 3 
describes the proposed model, the prediction 
process, the pseudocode, and the evaluation 
parameters. The results and discussion in Section 
4 present and interpret the findings of the study. 
The threats to validity are discussed in Section 5. 
Finally, the conclusion and future work is 
discussed in section 6. 

2.  LITERATURE REVIEW 
In the software development life cycle 

testing an application under test is a vital phase. 
The test cases assist the tester in testing all 
functionalities of the application to find the 
defects [11][12]. Some defects might be crucial 
which affects the core functionality of the 
application. Such defects are prioritized using the 
prioritization techniques. There a various 
approaches existing and proposed for defect 
prioritization. A few of these approaches are 
investigated here: 

Tabassum et al. [13] proposed the 
development and evaluation which employed four 
different classifiers. The random forest model 
outperformed the other models with better 
accuracy after the models' hyperparameters were 
tweaked. The severely unbalanced dataset was 
initially generated for the justified classification, 
and it was balanced using the SMOTE approach. 
For HBR prediction, Wu et al. [14]proposed 
"hbrPredictor," which blends interactive machine 
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learning with active learning. By employing they 
uncertainty sampling, they were able to increase 
the diversity and generalizability of training 
samples while significantly reducing the number 
of bug reports required to train a prediction model. 

Uddin et al. [15]surveyed automated bug 
prioritization, reviewing publications from 2000 
to 2015. Their findings indicated that most 
research focused on data classification using 
techniques such as Random Forest, Naive Bayes, 
Support Vector Machine, k-nearest Neighbors, 
and Decision Trees. The survey revealed that the 
Eclipse and Mozilla datasets were extensively 
utilized, and the three most frequently used 
evaluation criteria were F-measure, Precision, and 
Recall. This analysis highlighted bug priority 
prediction as a classification problem, utilizing 
well-known metrics and classifiers as discussed in 
their study. Choudhary et al. [16] created priority 
prediction models with neural networks and text 
categorization approaches. They discovered that 
linguistic, temporal, author-related, severity, 
product, and component features affect a bug's 
priority. 

Tian et al.'s [17]  machine-learning 
technique, DRONE enhances linear regression by 
applying a threshold strategy to handle 
unbalanced bug reports. Their machine learning-
driven system leverages information from bug 
reports to generate priority-level suggestions. The 
proposed technique outperformed existing 
approaches, demonstrating superior average F-
measure results on a dataset comprising over 
100,000 Eclipse bug reports. Goyal et al. [18] 
proposed a novel approach for allocating software 
bug priority using supervised classification on 
clustered bug data. Their approach is based on 
research suggesting that categorizing previously 
grouped data can significantly improve 
performance. It involves clustering the data based 
on similarity before classification. It predicts the 
severity of software problems which determines 
the performance of classifiers when clustering is 
performed before classification. 

Behl et al. [19] proposed a bug 
categorization method aimed at reducing the 
effort required to classify and evaluate issue 
reports. By utilizing term frequency-inverse 
document frequency (TF-IDF) weights along with 
Naive Bayes, they introduced a bug mining 
technique that effectively distinguishes between 
security and non-security issues. This approach 

enabled the application of the TF-IDF-based bug 
mining tool to enhance classification accuracy.  
Kaur and Garg et al. [20] surveyed the clustering 
techniques used in software engineering data 
mining. It focused on various data mining 
techniques relevant to software engineering tasks, 
with a particular emphasis on clustering 
approaches. They concluded that each clustering 
technique is suited to address specific challenges. 
Punitha et al. [21] focused on prioritizing parts of 
the software enabling developers to concentrate 
on locating faulty modules. It aimed to assist 
developers through data mining techniques. It has 
reduced software development costs and 
enhanced software quality.  

In recent years, researchers have 
explored various approaches to enhance software 
defect prediction. Notably, Ramesh et al. [22] 
addressed class imbalance problems by 
employing advanced computing techniques in [4]. 
Their hybrid model achieved improved results by 
balancing class distribution and mitigating 
multicollinearity. Similarly, Mohd et al. [[23] 
proposed an S-SVM model specifically designed 
for imbalanced datasets, demonstrating the 
effectiveness of machine learning techniques in 
defect prediction. In Adam et al. [24] introduced 
a hybrid approach combining Gaussian Naive 
Bayes, Bernoulli Naive Bayes, Random Forest, 
and support vector machine (SVM) classifiers. 
This ensemble model effectively tackled class 
imbalance issues. The work explored a hybrid 
statistical tool and artificial neural network 
(ANN) approach, outperforming traditional 
statistical learning algorithms. Lastly, Mondel et 
al.[25]delved into cross-project defect prediction 
using a hybrid multiple models transfer approach. 
Their work addressed the challenge of insufficient 
training data for new projects. Collectively, these 
studies contribute valuable insights to the field of 
software defect prediction, emphasizing the 
importance of hybrid models and tailored 
techniques . 
  
3.  PROPOSED METHODOLOGY 

   This paper introduces a novel hybrid 
classifier model, DR-XA, which combines 
decision tree, random forest, and XGBoost 
algorithms to enhance the prediction accuracy of 
defect prioritization. This hybrid approach aims to 
leverage the unique strengths of each algorithm: 
decision tree for its interpretability, random forest 
for its ability to handle overfitting, and XGBoost 
for its high predictive performance. 
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Defect prioritization involves sorting 
software defects into priority orders so that the 
most critical problems are addressed first. Defects 
are assessed based on various criteria, including 
severity, frequency, impact on users, commercial 
consequences, and difficulty of repair. Common 
techniques for prioritizing tasks include the 
MoSCoW approach, the Kano model, weighted 
scoring, and risk-based prioritization. Effective 
defect prioritization requires systematic problem 
discovery, evaluation, rating, and communication 
among stakeholders to ensure that the most 
important defects are resolved promptly and 
overall software quality and user satisfaction are 
maximized. 

In this research, Figure 1 displays the 
proposed DR-XA hybrid Classifier model. The 
flow chart depicts how defects enter the pre-
processing step, where they are cleaned and 
structured. During pre-processing, a large number 
of test cases are employed to train the classifier 
model. The proposed classifier uses the trained 
model to identify defects using defect priority 
criteria. Once classified, prediction is done where 
the defects are prioritized to address the most 
critical issues first, improving software stability 
and dependability. This process involves training 
the proposed model on the training data using the 
testing data to make priority predictions. It then 
evaluates the model's performance by calculating 
accuracy generating a classification report, and 
displaying the results. 

 
Figure 1: DR-XA Hybrid Classifier Model 

The proposed approach predicts the 
priority as in the below-mentioned steps. The 
defects are given as input to the pre-processor in 
the order the defects are identified and received 
by the fault optimization model. 

1. The process begins with loading and 
preprocessing the training and testing 
data. 

2. The Hybrid Classifier Model is trained 
on the training data. 

3. The testing data (x_test) is used to make 
predictions on priority using the 

proposed DR-XA Hybrid Classifier 
Model. 

4. The model's performance is evaluated by 
calculating accuracy and generating a 
classification report. 

5. The results are displayed. 
Each step of the proposed approach is 

discussed with an illustration. A bug report of 
5000 defects for an ATM application with 
attributes such as FaultType, Location, Severity, 
and Frequency. 
A bug report B can be formalized as B=<t,p>  
Where ‘t’ is the textual information of ‘B ‘and ‘p’ 
is the assigned priority to ‘B’ The Hybrid model 
Classifier in the proposed approach predicts the 
priority as Low, Medium, and High based on the 
severity and frequency of occurrence of the bug. 
A mapping f could be defined for the bug report 
B as shown below 
                f: B → X,   X∈ {low, 
medium, high},  
where X is a suggested priority from a priority set 
(low, medium, high). 
(i) Pre-processing: The data must normally 
be cleaned, transformed, and structured for it to be 
used effectively for training and evaluation [21]. 
The level of accuracy and structure of the data has 
a major impact on how well the machine learning 
models perform, making the preprocessing stage 
crucial. Depending on the dataset and the machine 
learning models used, the specific tasks required 
in preprocessing can change. Figure 2 shows the 
Preprocessing happens in the following steps: 

 

 
Figure 2: Pre-processing stages 

(ii)        Handling Missing Values: Multiple factors 
might cause data to have missing values. Users 
choose how to manage these during 
preprocessing, whether it be by eliminating the 
rows or columns with missing data or by replacing 
them using techniques like mean, median, and 
mode. 

Handling Missing 
Values
Data 

Transformation

Data Splitting

Handling 
Imbalanced Data
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(iii)       Data Transformation: Features can need 
to be scaled to be on the same scale, for example, 
by applying Z-score normalization or Min-Max 
scaling [16]. For algorithms like SVM or k-NN 
that are sensitive to the scale of the input 
characteristics, this is especially crucial. 
(iv) Data Splitting: The data is separated into 
sets for training, testing, and sometimes 
validation to evaluate the model's performance on 
untested data, 
(v)        Handling Imbalanced Data: To balance 
the target variable classes, techniques like 
undersampling, oversampling, or the Synthetic 
Minority Over-sampling Technique (SMOTE) 
are used if one class has significantly fewer 
samples than the others. 
(vi) Training: Training a machine learning 
model is the first stage in developing predictive 
systems. The model's ability to generalize to 
novel, untested data, the chosen technique, and 
the precision of the training data are all important 
factors in determining how well a machine 
learning application performs. 
3.1  Proposed DR-XA Hybrid Classifier 
Model 

This model is developed by combining 
the features of the Decision tree classifier, 
Random Forest, and XGBoost. The efficient 
hyperparameters from the existing models such as 
n_estimator from XGBoost and random_state 
from all the classifiers is considered. In ensemble 
learning techniques, like Random Forest and 
Gradient Boosting, the n_estimators 
hyperparameter is frequently employed. The 
number of base estimators (individual models or 
trees) to include in the ensemble is determined by 
this parameter. The ensemble's performance and 
behavior are strongly influenced by the value of 
n_estimators. In the proposed hybrid classifier 
model the value of n_estimator is set to 100. 

In most of the machine learning 
algorithms and functions libraries like scikit-learn 
and NumPy, the random_state argument is a 
frequent input. It is used to regulate how 
randomly generated or reproducible certain 
actions are, particularly when randomness is a 
component of the algorithm [26]. The goal of 
using this hybrid technique is to improve overall 
predictive performance by utilizing the 
advantages of various base models. This model is 
trained with the training data for better predictions. 
3.2  Prediction 

The prediction process in the DR-XA 
model utilizes a hybrid approach, combining 
decision tree, random forest, and XGBoost 

algorithms to accurately determine the priority of 
software defects. This multi-algorithmic 
integration ensures robust prediction performance 
by leveraging the strengths of each individual 
model. By synthesizing the outputs from decision 
tree's simple interpretability, random forest's 
ability to handle overfitting, and XGBoost's 
superior predictive power, DR-XA achieves a 
more reliable and precise prioritization of 
software defects, enhancing the overall software 
quality management process. 
3.3  Pseudocode for DR-XA Hybrid 
Classifier 
#Import the necessary libraries 
 #Import scikit-leam libraries 
#Load and preprocess training and testing 
data 
x_train, y_train_classification = 
load_and_preprocess_training_data()  
x_test, y_test_classification = 
load_and_preprocess_testing_data() 
#Create a list of base models  
base_estimators = [] (decision tree', create 
decision_tree_model()),  
(random_forest, create_random_forest_model()), 
(xgboost, create_xgboost_model()) 
#Specify the meta-classifier 
meta_classifier = create_meta_classifier() 
#Create the Stacked Classification model  
stacked_classifier=StackingClassifier(base_estim
ators=base_estimators,final_estimator-
meta_classifier) 
#Train the stacked classifier on the training 
data 
stacked_classifier.fit(x_train, 
y_train_classification) 
#Make predictions using the stacked classifier 
on the test data y_pred_stacked_classification = 
stacked_classifier.predict(x_test) 
#Evaluate the stacked classification model 
Accuracy_stacked_classification=calculate_accu
racy (y_test_classification, 
y_pred_stacked_classification)  
report_stacked_classification-
generate_classification_report(y_test_classificati
on, y_pred_stacked_classification) 
#Display the accuracy and classification report 
print("Accuracy (Stacked Classification):", 
accuracy_stacked_classification)  
print("Classification Report (Stacked 
Classification):") 
print(report_stacked_classification) 
  
3.4  Evaluation Parameters 
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Often employed assessment measures in 
classification tasks are precision, recall, and F1 
score. Especially in instances of binary 
classification, where there are positive and 
negative classes, they offer insights into several 
facets of a model's output. The outline and 
equations (Eq. 1-3) of each metric are stated 
below: 

 Precision: The precision measure is the 
ratio of the model's total number of 
accurate predictions to the true positive 
predictions. The precision of the positive 
predictions is measured by it. 
             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௨ ௦௧௩௦

்௨ ௦௧௩௦ା௦  ௦௧௩௦
                                

(1) 
 Recall: Recall is the ratio between true 

positive predictions and real positive 
cases in the dataset. The model's ability 
to explain each positive example is 
evaluated. 
             𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒
௦௧௩௦

்௨ ௦௧௩௦ା  ௧௩௦
                             

(2) 
When a model has a high recall rate, it 
can accurately identify a significant 
percentage of true positive 
occurrences[27]. Recall becomes critical 
when the cost of false negatives is high. 

 F1 Score: We refer to the F1 score as the 
harmonic mean of recall and precision. 
Because false positives and false 
negatives are taken into consideration, 
recall and precision are balanced. 
         𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
௦×ோ

௦ ା ோ
                                                   

(3) 
 

4.  RESULTS AND DISCUSSION 
 
The implementation of the DR-XA 

model demonstrated significant improvements in 
the accuracy and reliability of defect prioritization 
compared to traditional methods. Experimental 
results showed that DR-XA outperformed 
individual classifiers and other hybrid models in 
terms of prediction accuracy, thus validating the 
effectiveness of the proposed approach. The 
integration of these algorithms provided a 
comprehensive and robust solution for the 
prioritization of software defects, marking a 
notable advancement in the field. 

To evaluate the performance of the 
proposed model which is stacked with the features 
of Decision tree classifier, Random Forest, and 
XGBoost. The hybrid approach is also compared 
with the performance of mentioned algorithms. 
We had considered 5000 defects as test cases for 
an ATM application. Each test case includes the 
following data such as fault type, Location 
severity, and frequency. The accuracy of the 
Decision tree classifier, Random Forest, 
XGBoost, and the stacked model is evaluated for 
assigning priority for the defects using metrics 
such as precision, recall, and f1 score. Table 1 
shows the data of performance metrics for each 
model. The comparison of classifier models based 
on precision, recall, and f1-score is shown in 
Figures 3, 4, and 5 respectively. 

Table 1: Result Summary for Defect Prioritization 

Classificati
on Model 

Priorit
y 

Precisi
on 

Reca
ll 

f1-
scor

e 

Decision 
tree 

classifier 

0 0.81 0.56 0.66 

1 0.86 0.88 0.87 

2 0.87 0.93 0.90 

Random 
Forest 

0 0.75 0.62 0.68 

1 0.85 0.88 0.87 

2 0.90 0.92 0.91 

XGBoost 

0 0.75 0.62 0.67 

1 0.85 0.87 0.86 

2 0.89 0.91 0.90 

DR-XA 
Hybrid 

Classifier 
model 

(Proposed) 

0 0.82 0.63 0.69 

1 0.88 0.86 0.87 

2 0.88 0.93 0.91 

  

The information obtained from the 
above Table 1 shows the priorities assigned to the 
defects as (0,1,2). The accuracy of the priorities 
assigned is measured using metrics such as 
precision, recall, and f1_score. The table shows 
that the DR-XA hybrid classifier model performs 
well as the performance parameters for priorities 
0,1 and 2 are better compared to other existing 
approaches. The precision metric for priority ‘0’ 
is 0.82, for priority ‘1’ is 0.88, and for priority ‘2’ 
is .88 in the DR-XA classifier model. The recall 
metric is the priorities (0,1,2) under each classifier 
model is analyzed and the Decision tree and DR-
XA classifier models output the same recall value 
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under priority ‘2’. The f1_score is also calculated 
and the random forest and DR-XA classifiers 
perform the same as 0.91 for priority ‘2’. The 
Graphical representation is shown for the 
performance metrics of classifier models 
considered for comparison.  

 
Figure 3: Precision comparison of classifier models 

 
Figure 4: Recall comparison of classifier models 

 
Figure 5: F1_score comparison of classifier models 

Table 2: Statistical analysis of DR-XA over other 
approaches 

Statist
ical 

Analy
sis 

Decisi
on 

tree 
classifi

er 

Rand
om 

Fores
t 

XGBo
ost 

DR-
XA 

Hybrid 
Classifi

er 
(Propo

sed) 

Mean 0.8425 
0.800
833 

0.815
833 

0.8007
23 

Media
n 

0.855 0.875 0.87 0.843 

Standa
rd 

Deviat
ion 

0.0506
548 

0.145
506 

0.105
525 

0.0496
3 

Minim
um 

0.75 0.56 0.66 0.54 

Maxim
um 

0.9 0.93 0.91 0.891 

  
Table 2 shows the statistical analysis of 

the classifier models to evaluate their 
performance and accuracy of the classifier 
models. A standard deviation (std-dev), mean, 
median, max, and min statistical analysis were 
performed, and the results were compared with 
methodologies such as Decision tree, Random 
Forest, XGBoost, and Hybrid Classifier model 
and shown in Table 2. The standard deviation is 
used to measure variability from the mean value. 
The lower standard deviation indicates a lower 
deviation from the mean value. The DR-XA 
attains the lowest std-dev as 0.04963 of all the 
other approaches. Similarly, all the other 
measures like mean, median min, and max also 
attain lower values as mean=0.800, 
median=0.843, min=0.54, and max=0.891, which 
exhibits higher accuracy with low error.  

Table 3: Accuracy Comparison of classifier models 

Classification Model Accuracy 
Decision tree classifier 0.843 

Random forest 0.855 

XGBoost 0.859 

DR-XA Hybrid Classifier 
Model (Proposed) 

0.866 

  

Table 3 compares the accuracy of four distinct 
classifier models for fault prioritization: Decision 
Tree, Random Forest, XGBoost, and the proposed 

0
0.2
0.4
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1
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Xboost Hybrid
Classifier
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P
re
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Prioritization techniques
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1
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tree
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Classifier
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R
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f1
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model. The Decision Tree Classifier has the 
lowest accuracy of all four models, at 0.843. The 
Random Forest model performs somewhat better, 
with an accuracy of 0.855. The XGBoost model 
performs even better, with an accuracy of 0.859. 
However, the proposed Hybrid Classifier Model 
exceeds all of them, with the greatest accuracy of 
0.866. In terms of fault prioritization, the 
proposed model's higher accuracy indicates that it 
is the most successful in appropriately identifying 
and prioritizing failures. Its greater performance 
suggests a stronger ability to differentiate defects, 
resulting in more reliable prioritization.  

The conclusions on fault prioritization in software 
testing are well-supported by several key points. 
First, the research builds on existing methods and 
incorporates machine learning techniques, 
making it more relevant to the field. Experimental 
results comparing the new DR-XA hybrid model 
with traditional classifiers add credibility to the 
findings. Using evaluation metrics like precision, 
recall, and F1 score offers a solid, objective way 
to measure performance. The study also tackles 
real-world challenges, focusing on better resource 
allocation and improved software quality. By 
acknowledging future research possibilities and 
limitations, the study further strengthens the 
validity of its conclusions. Finally, these factors 
underscore the significance and potential impact 
of the research on both theory and practice in 
software testing. 

 
Figure 6: Accuracy comparison of classifier models 

 
5.  THREATS TO VALIDITY 

 

Validity in implementation protocols is 
difficult to ensure because it is a goal rather than 
a guarantee [28], [29]. Validity analyses (VAs) 
seek to identify possible risks, discuss them, and 
choose the best course of action. In this context, 
threat validity analysis entails assessing a variety 

of metrics, including accuracy, precision, recall, 
and F1 score. Table 3 shows an accuracy 
comparison of the classifier models utilized in this 
research. Figure 6 provides a visual representation 
of the accuracy comparison across different 
models. The analysis of these measures aids in 
understanding the resilience and reliability of the 
proposed models for fault prioritization [30]. 

6.  CONCLUSION AND FUTURE WORK 
Fault prioritization in software testing faces 
several challenges that can limit its effectiveness. 
One key issue is the dependence on historical data, 
which might not accurately predict future fault 
patterns, especially in fast-changing software 
environments. Additionally, existing models 
often struggle with unbalanced data, where some 
fault types are underrepresented, affecting the 
accuracy of prioritization. However, there is 
significant potential for improvement. Integrating 
machine learning techniques can enhance 
predictive capabilities by analyzing fault patterns, 
while hybrid models that combine different 
prioritization approaches could offer more robust 
solutions. This research introduces a DR-XA 
hybrid prediction model designed to effectively 
predict defect priorities, using a dataset of 5,000 
defects from an ATM application. By comparing 
the performance of Decision Trees, Random 
Forests, and XGBoost, this work found that this 
DR-XA hybrid model delivers significantly better 
accuracy. Evaluating the model using precision, 
recall, and F1 scores, we determined that the DR-
XA Hybrid Classifier Model is the best option for 
accurate fault prioritization, resulting in more 
efficient defect management and improved 
software quality. Incorporating real-time data 
from ongoing development processes can help 
make prioritization more adaptive. Additionally, 
research into multi-objective optimization 
techniques could help balance priorities like code 
coverage and execution time, improving fault 
detection while reducing resource use. 
Addressing these limitations will be crucial for 
advancing fault prioritization in software testing. 
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