
 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7038

A HYBRID CLASSIFIER MODEL - DR-XA FOR DEFECT
PRIORITIZATION

1*R.ADLINE FREEDA,2 DR.P.SELVI RAJENDRAN

1*Research scholar, CSE Department, Hindustan University, Padur,
Chennai, Tamil Nadu, India.

2Professor, CSE Department, Hindustan University, Padur, Chennai, Tamil Nadu, India.
1*Corresponding Author Email Id: adlinefreeda2024@gmail.com

 ID55494 Submission Editorial Screening Conditional Acceptance Final Revision Acceptance

04-09-2204 05-09-2024 22-09-2024 05-10-2024

ABSTRACT

 Fault prioritization in software testing involves determining the sequence in which identified faults should
be addressed. Effective fault prioritization is crucial in software development and testing as it helps allocate
resources efficiently and ensures that the most critical issues are resolved first. The criteria for prioritization
may vary so by addressing the most serious flaws promptly and allocating resources effectively, software
quality can be significantly enhanced. Machine learning algorithms offer powerful tools for fault
prioritization by leveraging the complexity of the problem and the available data. Common machine-learning
approaches for prioritization include classifier models such as Decision Trees, Random Forests, and
XGBoost. This research compares the performance of these different classifier models with the proposed
DR-XA hybrid prediction model. The DR-XA model, which incorporates advanced techniques for handling
unbalanced data and improving prediction accuracy, has been evaluated in the context of fault prioritization.
The experimental analysis demonstrates that the DR-XA hybrid model surpasses existing classifier models
in prioritization accuracy, achieving superior results compared to current prioritization techniques.
Keywords: Defect Prioritization, Software Testing, Hybrid classifier model, Prediction, Machine learning.

1. INTRODUCTION
Software engineering is a branch of

computer science that focuses on creating, testing,
and maintaining software systems [1]. Software
engineering requires testing to ensure the program
performs as intended. Software testing is an
essential part of software engineering, whereby a
system or application is assessed to identify and
fix flaws or issues before end users have access to
it. Its main objective is to ensure that the program
runs as intended, satisfies all specifications, and
produces incredibly high-quality outputs [2][3].
More customer happiness, longer-term cost
savings, and improved product quality are the
outcomes of effective software testing. Since
testing is essential to the software development
life cycle, software engineers who want to build
robust and dependable software applications must
be proficient in testing methodologies [4]. Test
cases and scripts are assembled into test suites
during testing to execute them one after the other
or in a big batch.

A software application's functioning or a
particular feature is carefully tested using test

suites. By grouping associated test cases into a
single unit, they facilitate thorough testing and
speed up the testing process. It's significant that
while test suites are essential for identifying and
organizing test cases [5] [6][7], effective test case
creation is as crucial. The test cases in a test suite
should have clear specifications, cover a variety
of scenarios, and be created to easily recognize
faults or other issues. It is an essential component
of software testing processes because it ensures
that software achieves its quality and functionality
requirements while boosting productivity and
maintainability during the testing phase.

Fault localization and fault detection are
two essential software testing procedures for
locating and identifying faults or defects [8].
These steps are necessary to guarantee the
program's reliability and high quality. The process
of locating and finding defects in an application is
known as fault detection. It could be coding
errors; design issues, or deviations from the
requirements of the software. Fault localization is
a method for determining a software bug's exact
location or root cause. It looks for the specific line

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7039

of code, or module, that is the problem. Effective
fault detection and localization processes are
essential for defect fixing in software
development [9][10] By utilizing automated
techniques and [10]methods, in particular, to find
and quickly correct software problems, software
quality can be improved and development costs
can be reduced. Thorough documentation and
close communication between the development
and testing teams are also essential for efficient
finding of defects and localization.

Assigning a priority to found faults or
defects in a software application is the practice of
"fault prioritization," also known as "defect
prioritization" [8]. This is a vital step in the
development and testing of software because it
focuses on the most critical issues first. By
arranging faults in order of importance, the
limited resources are used effectively, and the
most critical problems are addressed with priority
[9]. Software testing defect prioritization can be
automated with machine learning approaches.
Based on several variables, including the
problem's severity, the software it affects, and
historical data, they can assist in prioritizing
newly found flaws or concerns in order of
importance. Neutral networks, K-Nearest
Neighbours, Random Forests, Decision Trees,
XGBoost, and Random Forests [10].

 This paper addresses the critical issue
of software defect prioritization, which is
essential for efficient resource allocation and
timely resolution of software issues. Traditional
methods often fail to provide accurate
prioritization, leading to inefficiencies and
potential delays in the software development
lifecycle.

A few machine learning algorithms that
are commonly employed for assessing fault
prioritization include trees. The major
contributions of this paper include,

 To develop the proposed DR-XA hybrid
prediction model, features from
classifier methods such as Decision
Trees, Random Forests, and XGBoost
were combined.

 To regulate randomly generated actions,
machine learning methods and
functional libraries such as scikit-learn
and NumPy were employed.

 To improve the overall predictive
performance of multiple fault

prioritization base models, the suggested
DR-XA hybrid prediction model was
developed.

 To evaluate and compare the proposed
model's accuracy to that of the
comparative models, measures like
precision, recall, and f1 score were used.

The research on fault prioritization in software
testing is essential for several reasons. In short,
this research plays a crucial role in effectively
managing software quality, cutting costs, using
resources efficiently, and meeting user
expectations in today’s fast-moving development
world. This research makes a valuable
contribution to advancing fault prioritization
techniques, boosting software quality, and
streamlining testing processes throughout the
software development lifecycle.

The rest of the paper is organized as
follows: Section 2 presents the literature review
which examines existing fault prioritization
methods. The proposed methodology in Section 3
describes the proposed model, the prediction
process, the pseudocode, and the evaluation
parameters. The results and discussion in Section
4 present and interpret the findings of the study.
The threats to validity are discussed in Section 5.
Finally, the conclusion and future work is
discussed in section 6.

2. LITERATURE REVIEW
In the software development life cycle

testing an application under test is a vital phase.
The test cases assist the tester in testing all
functionalities of the application to find the
defects [11][12]. Some defects might be crucial
which affects the core functionality of the
application. Such defects are prioritized using the
prioritization techniques. There a various
approaches existing and proposed for defect
prioritization. A few of these approaches are
investigated here:

Tabassum et al. [13] proposed the
development and evaluation which employed four
different classifiers. The random forest model
outperformed the other models with better
accuracy after the models' hyperparameters were
tweaked. The severely unbalanced dataset was
initially generated for the justified classification,
and it was balanced using the SMOTE approach.
For HBR prediction, Wu et al. [14]proposed
"hbrPredictor," which blends interactive machine

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7040

learning with active learning. By employing they
uncertainty sampling, they were able to increase
the diversity and generalizability of training
samples while significantly reducing the number
of bug reports required to train a prediction model.

Uddin et al. [15]surveyed automated bug
prioritization, reviewing publications from 2000
to 2015. Their findings indicated that most
research focused on data classification using
techniques such as Random Forest, Naive Bayes,
Support Vector Machine, k-nearest Neighbors,
and Decision Trees. The survey revealed that the
Eclipse and Mozilla datasets were extensively
utilized, and the three most frequently used
evaluation criteria were F-measure, Precision, and
Recall. This analysis highlighted bug priority
prediction as a classification problem, utilizing
well-known metrics and classifiers as discussed in
their study. Choudhary et al. [16] created priority
prediction models with neural networks and text
categorization approaches. They discovered that
linguistic, temporal, author-related, severity,
product, and component features affect a bug's
priority.

Tian et al.'s [17] machine-learning
technique, DRONE enhances linear regression by
applying a threshold strategy to handle
unbalanced bug reports. Their machine learning-
driven system leverages information from bug
reports to generate priority-level suggestions. The
proposed technique outperformed existing
approaches, demonstrating superior average F-
measure results on a dataset comprising over
100,000 Eclipse bug reports. Goyal et al. [18]
proposed a novel approach for allocating software
bug priority using supervised classification on
clustered bug data. Their approach is based on
research suggesting that categorizing previously
grouped data can significantly improve
performance. It involves clustering the data based
on similarity before classification. It predicts the
severity of software problems which determines
the performance of classifiers when clustering is
performed before classification.

Behl et al. [19] proposed a bug
categorization method aimed at reducing the
effort required to classify and evaluate issue
reports. By utilizing term frequency-inverse
document frequency (TF-IDF) weights along with
Naive Bayes, they introduced a bug mining
technique that effectively distinguishes between
security and non-security issues. This approach

enabled the application of the TF-IDF-based bug
mining tool to enhance classification accuracy.
Kaur and Garg et al. [20] surveyed the clustering
techniques used in software engineering data
mining. It focused on various data mining
techniques relevant to software engineering tasks,
with a particular emphasis on clustering
approaches. They concluded that each clustering
technique is suited to address specific challenges.
Punitha et al. [21] focused on prioritizing parts of
the software enabling developers to concentrate
on locating faulty modules. It aimed to assist
developers through data mining techniques. It has
reduced software development costs and
enhanced software quality.

In recent years, researchers have
explored various approaches to enhance software
defect prediction. Notably, Ramesh et al. [22]
addressed class imbalance problems by
employing advanced computing techniques in [4].
Their hybrid model achieved improved results by
balancing class distribution and mitigating
multicollinearity. Similarly, Mohd et al. [[23]
proposed an S-SVM model specifically designed
for imbalanced datasets, demonstrating the
effectiveness of machine learning techniques in
defect prediction. In Adam et al. [24] introduced
a hybrid approach combining Gaussian Naive
Bayes, Bernoulli Naive Bayes, Random Forest,
and support vector machine (SVM) classifiers.
This ensemble model effectively tackled class
imbalance issues. The work explored a hybrid
statistical tool and artificial neural network
(ANN) approach, outperforming traditional
statistical learning algorithms. Lastly, Mondel et
al.[25]delved into cross-project defect prediction
using a hybrid multiple models transfer approach.
Their work addressed the challenge of insufficient
training data for new projects. Collectively, these
studies contribute valuable insights to the field of
software defect prediction, emphasizing the
importance of hybrid models and tailored
techniques .

3. PROPOSED METHODOLOGY

 This paper introduces a novel hybrid
classifier model, DR-XA, which combines
decision tree, random forest, and XGBoost
algorithms to enhance the prediction accuracy of
defect prioritization. This hybrid approach aims to
leverage the unique strengths of each algorithm:
decision tree for its interpretability, random forest
for its ability to handle overfitting, and XGBoost
for its high predictive performance.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7041

Defect prioritization involves sorting
software defects into priority orders so that the
most critical problems are addressed first. Defects
are assessed based on various criteria, including
severity, frequency, impact on users, commercial
consequences, and difficulty of repair. Common
techniques for prioritizing tasks include the
MoSCoW approach, the Kano model, weighted
scoring, and risk-based prioritization. Effective
defect prioritization requires systematic problem
discovery, evaluation, rating, and communication
among stakeholders to ensure that the most
important defects are resolved promptly and
overall software quality and user satisfaction are
maximized.

In this research, Figure 1 displays the
proposed DR-XA hybrid Classifier model. The
flow chart depicts how defects enter the pre-
processing step, where they are cleaned and
structured. During pre-processing, a large number
of test cases are employed to train the classifier
model. The proposed classifier uses the trained
model to identify defects using defect priority
criteria. Once classified, prediction is done where
the defects are prioritized to address the most
critical issues first, improving software stability
and dependability. This process involves training
the proposed model on the training data using the
testing data to make priority predictions. It then
evaluates the model's performance by calculating
accuracy generating a classification report, and
displaying the results.

Figure 1: DR-XA Hybrid Classifier Model

The proposed approach predicts the
priority as in the below-mentioned steps. The
defects are given as input to the pre-processor in
the order the defects are identified and received
by the fault optimization model.

1. The process begins with loading and
preprocessing the training and testing
data.

2. The Hybrid Classifier Model is trained
on the training data.

3. The testing data (x_test) is used to make
predictions on priority using the

proposed DR-XA Hybrid Classifier
Model.

4. The model's performance is evaluated by
calculating accuracy and generating a
classification report.

5. The results are displayed.
Each step of the proposed approach is

discussed with an illustration. A bug report of
5000 defects for an ATM application with
attributes such as FaultType, Location, Severity,
and Frequency.
A bug report B can be formalized as B=<t,p>
Where ‘t’ is the textual information of ‘B ‘and ‘p’
is the assigned priority to ‘B’ The Hybrid model
Classifier in the proposed approach predicts the
priority as Low, Medium, and High based on the
severity and frequency of occurrence of the bug.
A mapping f could be defined for the bug report
B as shown below
 f: B → X, X∈ {low,
medium, high},
where X is a suggested priority from a priority set
(low, medium, high).
(i) Pre-processing: The data must normally
be cleaned, transformed, and structured for it to be
used effectively for training and evaluation [21].
The level of accuracy and structure of the data has
a major impact on how well the machine learning
models perform, making the preprocessing stage
crucial. Depending on the dataset and the machine
learning models used, the specific tasks required
in preprocessing can change. Figure 2 shows the
Preprocessing happens in the following steps:

Figure 2: Pre-processing stages

(ii) Handling Missing Values: Multiple factors
might cause data to have missing values. Users
choose how to manage these during
preprocessing, whether it be by eliminating the
rows or columns with missing data or by replacing
them using techniques like mean, median, and
mode.

Handling Missing
Values
Data

Transformation

Data Splitting

Handling
Imbalanced Data

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7042

(iii) Data Transformation: Features can need
to be scaled to be on the same scale, for example,
by applying Z-score normalization or Min-Max
scaling [16]. For algorithms like SVM or k-NN
that are sensitive to the scale of the input
characteristics, this is especially crucial.
(iv) Data Splitting: The data is separated into
sets for training, testing, and sometimes
validation to evaluate the model's performance on
untested data,
(v) Handling Imbalanced Data: To balance
the target variable classes, techniques like
undersampling, oversampling, or the Synthetic
Minority Over-sampling Technique (SMOTE)
are used if one class has significantly fewer
samples than the others.
(vi) Training: Training a machine learning
model is the first stage in developing predictive
systems. The model's ability to generalize to
novel, untested data, the chosen technique, and
the precision of the training data are all important
factors in determining how well a machine
learning application performs.
3.1 Proposed DR-XA Hybrid Classifier
Model

This model is developed by combining
the features of the Decision tree classifier,
Random Forest, and XGBoost. The efficient
hyperparameters from the existing models such as
n_estimator from XGBoost and random_state
from all the classifiers is considered. In ensemble
learning techniques, like Random Forest and
Gradient Boosting, the n_estimators
hyperparameter is frequently employed. The
number of base estimators (individual models or
trees) to include in the ensemble is determined by
this parameter. The ensemble's performance and
behavior are strongly influenced by the value of
n_estimators. In the proposed hybrid classifier
model the value of n_estimator is set to 100.

In most of the machine learning
algorithms and functions libraries like scikit-learn
and NumPy, the random_state argument is a
frequent input. It is used to regulate how
randomly generated or reproducible certain
actions are, particularly when randomness is a
component of the algorithm [26]. The goal of
using this hybrid technique is to improve overall
predictive performance by utilizing the
advantages of various base models. This model is
trained with the training data for better predictions.
3.2 Prediction

The prediction process in the DR-XA
model utilizes a hybrid approach, combining
decision tree, random forest, and XGBoost

algorithms to accurately determine the priority of
software defects. This multi-algorithmic
integration ensures robust prediction performance
by leveraging the strengths of each individual
model. By synthesizing the outputs from decision
tree's simple interpretability, random forest's
ability to handle overfitting, and XGBoost's
superior predictive power, DR-XA achieves a
more reliable and precise prioritization of
software defects, enhancing the overall software
quality management process.
3.3 Pseudocode for DR-XA Hybrid
Classifier
#Import the necessary libraries
 #Import scikit-leam libraries
#Load and preprocess training and testing
data
x_train, y_train_classification =
load_and_preprocess_training_data()
x_test, y_test_classification =
load_and_preprocess_testing_data()
#Create a list of base models
base_estimators = [] (decision tree', create
decision_tree_model()),
(random_forest, create_random_forest_model()),
(xgboost, create_xgboost_model())
#Specify the meta-classifier
meta_classifier = create_meta_classifier()
#Create the Stacked Classification model
stacked_classifier=StackingClassifier(base_estim
ators=base_estimators,final_estimator-
meta_classifier)
#Train the stacked classifier on the training
data
stacked_classifier.fit(x_train,
y_train_classification)
#Make predictions using the stacked classifier
on the test data y_pred_stacked_classification =
stacked_classifier.predict(x_test)
#Evaluate the stacked classification model
Accuracy_stacked_classification=calculate_accu
racy (y_test_classification,
y_pred_stacked_classification)
report_stacked_classification-
generate_classification_report(y_test_classificati
on, y_pred_stacked_classification)
#Display the accuracy and classification report
print("Accuracy (Stacked Classification):",
accuracy_stacked_classification)
print("Classification Report (Stacked
Classification):")
print(report_stacked_classification)

3.4 Evaluation Parameters

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7043

Often employed assessment measures in
classification tasks are precision, recall, and F1
score. Especially in instances of binary
classification, where there are positive and
negative classes, they offer insights into several
facets of a model's output. The outline and
equations (Eq. 1-3) of each metric are stated
below:

 Precision: The precision measure is the
ratio of the model's total number of
accurate predictions to the true positive
predictions. The precision of the positive
predictions is measured by it.
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௨ ௦௧௩௦

்௨ ௦௧௩௦ା௦ ௦௧௩௦

(1)
 Recall: Recall is the ratio between true

positive predictions and real positive
cases in the dataset. The model's ability
to explain each positive example is
evaluated.
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒
௦௧௩௦

்௨ ௦௧௩௦ା ௧௩௦

(2)
When a model has a high recall rate, it
can accurately identify a significant
percentage of true positive
occurrences[27]. Recall becomes critical
when the cost of false negatives is high.

 F1 Score: We refer to the F1 score as the
harmonic mean of recall and precision.
Because false positives and false
negatives are taken into consideration,
recall and precision are balanced.
 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
௦×ோ

௦ ା ோ

(3)

4. RESULTS AND DISCUSSION

The implementation of the DR-XA

model demonstrated significant improvements in
the accuracy and reliability of defect prioritization
compared to traditional methods. Experimental
results showed that DR-XA outperformed
individual classifiers and other hybrid models in
terms of prediction accuracy, thus validating the
effectiveness of the proposed approach. The
integration of these algorithms provided a
comprehensive and robust solution for the
prioritization of software defects, marking a
notable advancement in the field.

To evaluate the performance of the
proposed model which is stacked with the features
of Decision tree classifier, Random Forest, and
XGBoost. The hybrid approach is also compared
with the performance of mentioned algorithms.
We had considered 5000 defects as test cases for
an ATM application. Each test case includes the
following data such as fault type, Location
severity, and frequency. The accuracy of the
Decision tree classifier, Random Forest,
XGBoost, and the stacked model is evaluated for
assigning priority for the defects using metrics
such as precision, recall, and f1 score. Table 1
shows the data of performance metrics for each
model. The comparison of classifier models based
on precision, recall, and f1-score is shown in
Figures 3, 4, and 5 respectively.

Table 1: Result Summary for Defect Prioritization

Classificati
on Model

Priorit
y

Precisi
on

Reca
ll

f1-
scor

e

Decision
tree

classifier

0 0.81 0.56 0.66

1 0.86 0.88 0.87

2 0.87 0.93 0.90

Random
Forest

0 0.75 0.62 0.68

1 0.85 0.88 0.87

2 0.90 0.92 0.91

XGBoost

0 0.75 0.62 0.67

1 0.85 0.87 0.86

2 0.89 0.91 0.90

DR-XA
Hybrid

Classifier
model

(Proposed)

0 0.82 0.63 0.69

1 0.88 0.86 0.87

2 0.88 0.93 0.91

The information obtained from the
above Table 1 shows the priorities assigned to the
defects as (0,1,2). The accuracy of the priorities
assigned is measured using metrics such as
precision, recall, and f1_score. The table shows
that the DR-XA hybrid classifier model performs
well as the performance parameters for priorities
0,1 and 2 are better compared to other existing
approaches. The precision metric for priority ‘0’
is 0.82, for priority ‘1’ is 0.88, and for priority ‘2’
is .88 in the DR-XA classifier model. The recall
metric is the priorities (0,1,2) under each classifier
model is analyzed and the Decision tree and DR-
XA classifier models output the same recall value

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7044

under priority ‘2’. The f1_score is also calculated
and the random forest and DR-XA classifiers
perform the same as 0.91 for priority ‘2’. The
Graphical representation is shown for the
performance metrics of classifier models
considered for comparison.

Figure 3: Precision comparison of classifier models

Figure 4: Recall comparison of classifier models

Figure 5: F1_score comparison of classifier models

Table 2: Statistical analysis of DR-XA over other
approaches

Statist
ical

Analy
sis

Decisi
on

tree
classifi

er

Rand
om

Fores
t

XGBo
ost

DR-
XA

Hybrid
Classifi

er
(Propo

sed)

Mean 0.8425
0.800
833

0.815
833

0.8007
23

Media
n

0.855 0.875 0.87 0.843

Standa
rd

Deviat
ion

0.0506
548

0.145
506

0.105
525

0.0496
3

Minim
um

0.75 0.56 0.66 0.54

Maxim
um

0.9 0.93 0.91 0.891

Table 2 shows the statistical analysis of

the classifier models to evaluate their
performance and accuracy of the classifier
models. A standard deviation (std-dev), mean,
median, max, and min statistical analysis were
performed, and the results were compared with
methodologies such as Decision tree, Random
Forest, XGBoost, and Hybrid Classifier model
and shown in Table 2. The standard deviation is
used to measure variability from the mean value.
The lower standard deviation indicates a lower
deviation from the mean value. The DR-XA
attains the lowest std-dev as 0.04963 of all the
other approaches. Similarly, all the other
measures like mean, median min, and max also
attain lower values as mean=0.800,
median=0.843, min=0.54, and max=0.891, which
exhibits higher accuracy with low error.

Table 3: Accuracy Comparison of classifier models

Classification Model Accuracy
Decision tree classifier 0.843

Random forest 0.855

XGBoost 0.859

DR-XA Hybrid Classifier
Model (Proposed)

0.866

Table 3 compares the accuracy of four distinct
classifier models for fault prioritization: Decision
Tree, Random Forest, XGBoost, and the proposed

0
0.2
0.4
0.6
0.8

1

Decision
tree

classifier

Random
forest

Xboost Hybrid
Classifier

model

P
re

ci
si

on

Prioritization techniques
0 1 2

0

0.2

0.4

0.6

0.8

1

Decision
tree

classifier

Random
forest

Xboost Hybrid
Classifier

model

R
ec

al
l

Prioritization Techniques
0 1 2

0

0.2

0.4

0.6

0.8

1

Decision
tree

classifier

Random
forest

Xboost Hybrid
Classifier

model

f1
_s

co
re

Prioritization Techniques
0 1 2

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7045

model. The Decision Tree Classifier has the
lowest accuracy of all four models, at 0.843. The
Random Forest model performs somewhat better,
with an accuracy of 0.855. The XGBoost model
performs even better, with an accuracy of 0.859.
However, the proposed Hybrid Classifier Model
exceeds all of them, with the greatest accuracy of
0.866. In terms of fault prioritization, the
proposed model's higher accuracy indicates that it
is the most successful in appropriately identifying
and prioritizing failures. Its greater performance
suggests a stronger ability to differentiate defects,
resulting in more reliable prioritization.

The conclusions on fault prioritization in software
testing are well-supported by several key points.
First, the research builds on existing methods and
incorporates machine learning techniques,
making it more relevant to the field. Experimental
results comparing the new DR-XA hybrid model
with traditional classifiers add credibility to the
findings. Using evaluation metrics like precision,
recall, and F1 score offers a solid, objective way
to measure performance. The study also tackles
real-world challenges, focusing on better resource
allocation and improved software quality. By
acknowledging future research possibilities and
limitations, the study further strengthens the
validity of its conclusions. Finally, these factors
underscore the significance and potential impact
of the research on both theory and practice in
software testing.

Figure 6: Accuracy comparison of classifier models

5. THREATS TO VALIDITY

Validity in implementation protocols is
difficult to ensure because it is a goal rather than
a guarantee [28], [29]. Validity analyses (VAs)
seek to identify possible risks, discuss them, and
choose the best course of action. In this context,
threat validity analysis entails assessing a variety

of metrics, including accuracy, precision, recall,
and F1 score. Table 3 shows an accuracy
comparison of the classifier models utilized in this
research. Figure 6 provides a visual representation
of the accuracy comparison across different
models. The analysis of these measures aids in
understanding the resilience and reliability of the
proposed models for fault prioritization [30].

6. CONCLUSION AND FUTURE WORK
Fault prioritization in software testing faces
several challenges that can limit its effectiveness.
One key issue is the dependence on historical data,
which might not accurately predict future fault
patterns, especially in fast-changing software
environments. Additionally, existing models
often struggle with unbalanced data, where some
fault types are underrepresented, affecting the
accuracy of prioritization. However, there is
significant potential for improvement. Integrating
machine learning techniques can enhance
predictive capabilities by analyzing fault patterns,
while hybrid models that combine different
prioritization approaches could offer more robust
solutions. This research introduces a DR-XA
hybrid prediction model designed to effectively
predict defect priorities, using a dataset of 5,000
defects from an ATM application. By comparing
the performance of Decision Trees, Random
Forests, and XGBoost, this work found that this
DR-XA hybrid model delivers significantly better
accuracy. Evaluating the model using precision,
recall, and F1 scores, we determined that the DR-
XA Hybrid Classifier Model is the best option for
accurate fault prioritization, resulting in more
efficient defect management and improved
software quality. Incorporating real-time data
from ongoing development processes can help
make prioritization more adaptive. Additionally,
research into multi-objective optimization
techniques could help balance priorities like code
coverage and execution time, improving fault
detection while reducing resource use.
Addressing these limitations will be crucial for
advancing fault prioritization in software testing.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7046

DATA AVAILABILITY STATEMENT
Not Applicable

REFERENCES
[1] P. Terdchanakul, H. Hata, P. Phannachitta,

and K. Matsumoto, ‘Bug or not? Bug Report
classification using N-gram IDF’, in
Proceedings - 2017 IEEE International
Conference on Software Maintenance and
Evolution, ICSME 2017, Institute of
Electrical and Electronics Engineers Inc.,
Nov. 2017, pp. 534–538. doi:
10.1109/ICSME.2017.14.

[2] C. Beyer, G. Krempl, and V. Lemaire, ‘How
to select information that matters: A
comparative study on active learning
strategies for classification’, in ACM
International Conference Proceeding Series,
Association for Computing Machinery, Oct.
2015. doi: 10.1145/2809563.2809594.

[3] F. Farooq and A. Nadeem, ‘A Fault Based
Approach to Test Case Prioritization’, in
Proceedings - 2017 International Conference
on Frontiers of Information Technology, FIT
2017, Institute of Electrical and Electronics
Engineers Inc., Jul. 2017, pp. 52–57. doi:
10.1109/FIT.2017.00017.

[4] S. Biswas, A. Bansal, P. Mitra, and R. Mall,
‘Fault-Based Regression Test Case
Prioritization’, IEEE Trans Reliab, Sep. 2022,
doi: 10.1109/TR.2022.3205483.

[5] Ra. Freeda and D. Rajendran, ‘An Overview
of Efficient Regression testing prioritization
techniques based on Genetic algorithm’.

[6] A. Gonzalez-Sanchez, É. Piel, R. Abreu, H. G.
Gross, and A. J. C. Van Gemund, ‘Prioritizing
tests for software fault diagnosis’, in Software
- Practice and Experience, Sep. 2011, pp.
1105–1129. doi: 10.1002/spe.1065.

[7] H. A. Alsattar, A. A. Zaidan, and B. B. Zaidan,
‘Novel meta-heuristic bald eagle search
optimisation algorithm’, Artif Intell Rev, vol.
53, no. 3, pp. 2237–2264, Mar. 2020, doi:
10.1007/s10462-019-09732-5.

[8] S. Singhal, N. Jatana, A. F. Subahi, C. Gupta,
O. I. Khalaf, and Y. Alotaibi, ‘Fault Coverage-
Based Test Case Prioritization and Selection
Using African Buffalo Optimization’,
Computers, Materials and Continua, vol. 74,
no. 3, pp. 6755–6774, 2023, doi:
10.32604/cmc.2023.032308.

[9] R. Mukherjee and K. S. Patnaik, ‘A survey on
different approaches for software test case

prioritization’, Nov. 01, 2021, King Saud bin
Abdulaziz University. doi:
10.1016/j.jksuci.2018.09.005.

[10] S. Nayak, C. Kumar, and S. Tripathi,
‘Enhancing Efficiency of the Test Case
Prioritization Technique by Improving the
Rate of Fault Detection’, Arab J Sci Eng, vol.
42, no. 8, pp. 3307–3323, Aug. 2017, doi:
10.1007/s13369-017-2466-6.

[11] S. Asim, A. Shah, Z. Sultan, R. Abbas, S. N.
Bhatti, and S. Asim, ‘Analytical Review on
Test Cases Prioritization Techniques: An
Empirical Study’, 2017. [Online]. Available:
www.ijacsa.thesai.org

[12] C. Ni, X. Xia, D. Lo, X. Chen, and Q. Gu,
‘Revisiting Supervised and Unsupervised
Methods for Effort-Aware Cross-Project
Defect Prediction’.

[13] N. Tabassum, A. Namoun, T. Alyas, A.
Tufail, M. Taqi, and K. H. Kim,
‘Classification of Bugs in Cloud Computing
Applications Using Machine Learning
Techniques’, Applied Sciences (Switzerland),
vol. 13, no. 5, Mar. 2023, doi:
10.3390/app13052880.

[14] X. Wu, W. Zheng, X. Chen, Y. Zhao, T. Yu,
and D. Mu, ‘Improving high-impact bug
report prediction with combination of
interactive machine learning and active
learning’, Inf Softw Technol, vol. 133, May
2021, doi: 10.1016/j.infsof.2021.106530.

[15] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem,
and H. Shah, ‘A survey on bug prioritization’,
Artif Intell Rev, vol. 47, no. 2, pp. 145–180,
Feb. 2017, doi: 10.1007/s10462-016-9478-6.

[16] P. A. Choudhary and S. Singh, ‘Neural
Network Based Bug Priority Prediction Model
using Text Classification Techniques’,
International Journal of Advanced Research in
Computer Science, vol. 8, no. 5, [Online].
Available: www.ijarcs.info

[17] Y. Tian, D. Lo, and C. Sun, ‘DRONE:
Predicting priority of reported bugs by multi-
factor analysis’, in IEEE International
Conference on Software Maintenance, ICSM,
2013, pp. 200–209. doi:
10.1109/ICSM.2013.31.

[18] J. Kacprzyk, ‘Advances in Intelligent Systems
and Computing Volume 320 Series editor’.
[Online]. Available:
http://www.springer.com/series/11156

[19] Behl Diksha ; Handa Sahil ;Arora Anuja;, A
Bug Mining Tool to Identify and Analyze
Security Bugs using Naive Bayes and TF-IDF.

 Journal of Theoretical and Applied Information Technology
15th October 2024. Vol.102. No. 19

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7047

Institute of Electrical and Electronics
Engineers, 2014.

[20] M. Kaur, S. K. Garg, M. Gobindgarh, and F.
Sahib, ‘Survey on Clustering Techniques in
Data Mining for Software Engineering’, 2014.

[21] K. Punitha and S. Chitra, ‘Software Defect
Prediction Using Software Metrics-A survey’.
[Online]. Available:
http://www.softwaretestingtimes.com

[22] R. Ponnala and C. R. K. Reddy, ‘Software
Defect Prediction using Machine Learning
Algorithms: Current State of the Art’.
[Online]. Available:
www.solidstatetechnology.us

[23] M. Mustaqeem and T. Siddiqui, ‘A hybrid
software defects prediction model for
imbalance datasets using machine learning
techniques: (S-SVM model)’, Journal of
Autonomous Intelligence, vol. 6, no. 1, pp. 1–
19, 2023, doi: 10.32629/jai.v6i1.559.

[24] H. Adam, A. Muhammad, and A. A. Aboaba,
‘Design of a Hybrid Machine Learning Base-
Classifiers for Software Defect Prediction’,
International Journal of Innovative Research
and Development, Oct. 2022, doi:
10.24940/ijird/2022/v11/i10/oct22020.

[25] S. Mondal and R. Nasre, ‘Hansie: Hybrid and
consensus regression test prioritization’,
Journal of Systems and Software, vol. 172,
Feb. 2021, doi: 10.1016/j.jss.2020.110850.

[26] A. S. Yaraghi, M. Bagherzadeh, N. Kahani,
and L. Briand, ‘Scalable and Accurate Test
Case Prioritization in Continuous Integration
Contexts’, Sep. 2021, doi:
10.1109/TSE.2022.3184842.

[27] N. Gupta, A. Sharma, and M. K. Pachariya,
‘Multi-objective test suite optimization for
detection and localization of software faults’,
Journal of King Saud University - Computer
and Information Sciences, vol. 34, no. 6, pp.
2897–2909, Jun. 2022, doi:
10.1016/j.jksuci.2020.01.009.

[28] M. G. Epitropakis, S. Yoo, M. Harman, and E.
K. Burke, ‘Empirical evaluation of Pareto
efficient multi-objective regression test case
prioritisation’, in 2015 International
Symposium on Software Testing and
Analysis, ISSTA 2015 - Proceedings,
Association for Computing Machinery, Inc,
Jul. 2015, pp. 234–245. doi:
10.1145/2771783.2771788.

[29] S. Yoo and M. Harman, ‘Regression testing
minimization, selection and prioritization: a
survey’, Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67–120, Mar.
2012, doi: 10.1002/stvr.430.

[30] Grattan, N., da Costa, D. A., & Stanger, N.
(2024). The need for more informative defect
prediction: A systematic literature
review. Information and Software
Technology, 107456.

