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ABSTRACT 

Wireless Sensor Networks (WSNs) are crucial for various applications, relying on efficient mechanisms for 
node sensing and data aggregation to optimize energy consumption and prolong network lifetime. Node 
sensing involves collecting data from sensors within each node, covering diverse environmental parameters 
like node location, behavior, and history. In this research we proposed ENSA algorithm for node sensing 
and aggregation. Working at many network levels to reduce data traffic, save energy, and allow in-network 
processing, data aggregation compiles and summaries data from several nodes before transmission. This 
work investigates the Hybrid Energy-Efficient Distributed (HEED) clustering and Compressed 
Aggregation with Correlation (CACC) two main approaches into a new method called Energy-Efficient 
Node Sensing and Aggregation (ENSA). Aiming for balanced energy usage and long-spanning networks, 
HEED uses a clustering-based strategy using residual energy and node proximity to elect cluster heads. 
CACC compresses aggregated data via data correlation between adjacent nodes, therefore lowering 
transmission overhead and guaranteeing data integrity. This work shows the efficiency and advantages of 
ENSA, generated from HEED with CACC, using simulations and analysis. The combined approach 
significantly enhances WSN performance in various application scenarios. It optimizes energy 
consumption, bandwidth utilization, and data integrity, addressing critical challenges in WSNs. The 
investigation of node sensing and aggregation techniques such as HEED with CACC underscores their 
pivotal role in WSNs.  

Keywords: Data Aggregation, Energy Consumption, Network Lifetime, Node Sensing, Wireless Sensor 

Networks 

1. INTRODUCTION 
For environmental monitoring, there 

exist networks of tiny sensor nodes called WSNs 
[[1]]. These nodes can sense their surroundings, 
transmit data wirelessly, and do computations. 
The Internet of Things (IoT), social networks, 
healthcare, and many more have discovered 
WSNs' use [[2]]. After positioning themselves, 
sensor nodes need to gather data from their local 
surroundings and transmit it to the base station 
via the routing topology [[3]]. The sensor nodes 
have energy, computation, and storage 
limitations because of their simplistic design and 
restricted resources [Error! Reference source 
not found.]. Reduce the effect of these 
restrictions is a significant problem for WSNs. 
However, due to the nature of wireless 

transmission, the privacy of sensor data is 
compromised [Error! Reference source not 
found.]. If an attacker were to eavesdrop on 
network traffic, they could simply get the 
fundamental data. Methods for data aggregation 
that preserve privacy were developed in response 
to these concerns [Error! Reference source 
not found.]. 
 Academics and professionals in the 
business have been increasingly interested in 
WSNs during the last several decades [Error! 
Reference source not found.]. Many sensor 
nodes, frequently dispersed throughout a region, 
make up WSNs, which collect useful data. A 
Base Station (BS) receives this data using a 
multi-hop transmission mechanism [Error! 
Reference source not found.]. The source 
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nodes contribute to this transmission. Due to the 
widespread deployment of sensor nodes, their 
sensing ranges overlap, resulting in data that is 
significantly redundant. Heavy energy usage 
from sending all raw data to BS can seriously 
shorten the sensor network's lifespan [Error! 
Reference source not found., [10]]. The 
energy efficiency of data gathering can be 
significantly enhanced by Data Aggregation 
(DA), a process where relaying nodes 
"aggregate" the observed data [Error! 
Reference source not found., Error! 
Reference source not found.]. Because of its 
many energy-saving benefits, DA finds use in 
many different contexts. For example, Ensuring 
its security, however, is far from a rally in the 
recreational area, what with WSNs often being 
set up in hostile or unmanaged environments 
where data can be tampered with during transit 
or even stolen sensor nodes [Error! Reference 
source not found., Error! Bookmark not 
defined.]. Many approaches, including 
encryption, authentication, attack detection, and 
vulnerability analysis, are suggested to provide 
Confidentiality, Integrity, and Availability (CIA) 
in the classical meaning of network security 
[Error! Reference source not found., Error! 
Reference source not found.]. But 
conventional security measures won't work with 
DA on their own since they could clash in a 
WSN [[17]]. To illustrate the point, consider 
encryption: although aggregate procedures need 
the original plaintext, relay nodes are unable to 
access it due to encryption [[18]]. After the two 
nodes have exchanged a sharing key, the 
transmitter encrypts the sensing data. The 
receiver then receives the ciphertext and uses the 
sharing key to decode it. This is a practical 
approach. Because of this, nodes on the network 
cannot see the plaintext [Error! Reference 
source not found.-[1]]. 
 From environmental monitoring to 
industrial automation and healthcare, Wireless 
Sensor Networks (WSNs) have become an 
essential technology [[23], [24]]. WSNs are 
composed of numerous sensor nodes that 
collaborate to gather and transmit data 
wirelessly. These networks rely on efficient 
mechanisms for node sensing and data 
aggregation to optimize energy consumption and 
prolong network lifetime [ [25] - [27]]. 

 Node sensing involves collecting data 
from sensors within each node, covering diverse 
environmental parameters such as temperature, 
humidity, pressure, and more [[28]]. 
Additionally, node sensing encompasses factors 
like node location, behavior, and historical data, 
providing crucial context for data interpretation 
and decision-making within the network [[29]]. 
Data aggregation plays a pivotal role in WSNs 
by consolidating and summarizing data from 
multiple nodes before transmission [[30]]. This 
aggregation process operates at various network 
levels to minimize data traffic, conserve energy, 
and enable in-network processing [[31]-[33]]. 
Efficient data aggregation strategies are essential 
for reducing transmission overhead, ensuring 
data reliability, and enabling scalable network 
operations [[34]]. 
 Previous literature has identified several 
critical challenges in wireless sensor networks 
(WSNs), including managing energy 
consumption efficiently due to limited battery 
power, optimizing data aggregation techniques 
for data accuracy and reliability while 
minimizing transmission [[35], [36]] overhead, 
ensuring robust security measures and privacy-
preserving techniques against various security 
threats like node replication attacks [[37], [38]], 
unauthorized access, and data tampering, 
addressing scalability concerns as WSNs expand 
to larger deployments and diverse application 
scenarios [[39]-[43]], and achieving real-time 
data processing capabilities without 
compromising energy efficiency [[44], [45]], 
highlighting the need for interdisciplinary 
research efforts across wireless communication 
protocols, data processing algorithms, machine 
learning techniques, and cybersecurity measures 
to enhance WSN performance, reliability, and 
security [[46]-[52]]. 
The main contribution of the paper is: 

 Localization of the sensor nodes 
 Hybrid Energy-Efficient Distributed 

clustering 
 Compressed Aggregation with 

Correlation 
 Clustered Aggregation with Correlated 

Energy Management 
 This paper is organized as follows for 
the rest of it. In Section 2, a number of writers 
discuss different approaches to node sensing and 
aggregation. Section 3 displays the suggested 
model. The investigation's findings are 
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summarized in Section 4. A discussion of the 
outcome and potential future research makes up 
Section 5. 
1.1 Motivation of the Paper 
 The paper aims to motivate the 
exploration of node sensing and data aggregation 
techniques in WSNs by highlighting their pivotal 
role in optimizing energy consumption, 
extending network lifetime, minimizing data 
traffic, conserving energy, enabling in-network 
processing, and ensuring data integrity. It 
focuses on key techniques, HEED with CACC, 
showcasing their effectiveness through 
simulations and analysis to enhance WSN 
performance across various application 
scenarios. 
 
 
2. LITERATURE REVIEW 
  
Boubiche, S. et al. (2018) the volume of data 
generated by big sensors was growing daily. 
They were also increasing in number, diversity, 
and speed. The primary obstacles to large data in 
WSNs were these specifications. Data 
aggregation was a major obstacle in handling 
massive sensor data. In this research, the author 
presented the concept of large data in WSNs. 
The author survived the suggested efforts for 
integrating big data ideas and analytics tools into 
wireless sensor networks and offered a picture on 
them. The author went over the problems with 
massive sensor data and how to classify them, 
and the author also looked at several solutions. 
 Hu, S. et al. (2019) when it comes to 
WSNs, data aggregation was an essential and 
powerful algorithm. The author provides Chain-
Based Data Aggregation (CBDA), a new 
aggregation method, in this work.  This study 
outlines topological improvements that can 
improve data slicing's energy usage. To further 
enhance the protection of data privacy, the 
author also uses the method of false pieces. 
 Merzoug, M. et al. (2019) Spreading 
Aggregation (SA) was a novel serial algorithm 
that the author introduced in this work. Several 
aspects make this in-network data processing 
method appealing. First of all, SA does not need 
any transmissions since it was collision- and 
maintenance-free. Secondly, SA was a path-free 
localized method that gradually moves 
throughout the network by depending only on 
the restricted information of each node. Stated 
differently, a fresh route will be created for every 
query, therefore reducing the susceptibility to 

changes in topology and link/node failures. 
Thirdly, SA combines data processing, query 
distribution, and route building much like any 
other serial technique. 
 Patil, V. et al. (2018) these authors 
research presents a novel power-saving 
architecture for sensor nodes based on FPGA 
soft cores. The Field Programmable Gate Arrays 
(FPGA) based power saving methodology was 
presented as conventional power saving methods 
used in COTs based devices lack the necessary 
flexibility, scalability, and power efficiency. This 
suggested solution will control the power and 
remove the OS-related CPU overhead.  
 Ramezanifar, H. et al. (2020) In WSNs 
where many applications and sensors were 
deployed, generating various and heterogeneous 
packets, data aggregation was an effective 
method to conserve energy. Data aggregation 
was more difficult since homogeneity of the data 
was required for combination. The purpose of 
this work was to investigate this disparity by 
introducing packet ID to identify the distinct 
packets generated by the many sensors and 
applications. With the mining pit approach, 
packets with similar properties were gathered as 
much as feasible, purposefully and dynamically 
combined, and then sent to the central node. 
 Shah, K., & Jinwala, D. (2021)Integrity 
and privacy of data were important in linear 
WSNs as violating them has negative 
consequences. For linear WSNs, the author 
therefore provides a light-weight safe data 
aggregation technique. The system looks for data 
integrity and privacy.  
 Zhang, D. et al. (2018) with this 
approach, the network's energy usage can be 
successfully decreased. The sink node was the 
source of sparse seed for the cluster heads. The 
cluster head uses random space sparse 
compressive sensing to provide the relevant 
measurement values within the cluster after 
generating the necessary measurement matrix 
using the sparse seed that was given. 
 Zhu, L. et al. (2017) The author have 
presented an exact analysis on various 
components of remote sensor systems and 
various information conglomeration 
architectures, all of which focus on enhancing 
critical performance metrics, such as system 
lifetime, information idleness, information 
precision, and energy consumption. 
 Alharbi (2024) these authors research 
dissertation focuses on enhancing graph-routing 
algorithms for industrial wireless sensor 
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networks. The methodology likely involves 
developing and testing new routing algorithms 
tailored to industrial settings. Results can include 
improved network efficiency and reliability for 
industrial applications. Advantages could include 
optimized data routing and reduced energy 
consumption. Limitations might involve specific 
applicability to industrial contexts. 
 Al-Heeti et al. (2024) they designed and 
implemented an energy-efficient hybrid data 
aggregation approach for heterogeneous wireless 
sensor networks. The methodology probably 
involved developing algorithms for efficient data 
aggregation across different types of sensors. 
Results likely show improved energy efficiency 
and data transmission in heterogeneous 
networks. Advantages could include better 
resource utilization and enhanced network 
performance. Limitations can involve scalability 
issues with larger networks. 
 Anusha Sowbarnika et al. (2024) these 
authors research focuses on enhancing security 
measures in wireless sensor networks using 
machine learning and clustering techniques for 
node replication attack detection. The 
methodology likely involves training and 
deploying machine learning models for anomaly 
detection. Results can include improved security 
against specific types of attacks. Advantages 
could include early detection of threats and 
enhanced network resilience. Limitations might 
involve potential false positives or model 
adaptability issues. 
 Balaji et al. (2024) they propose a 
hybrid optimal probability-based data 
aggregation approach for wireless sensor 
networks. The methodology probably involves 
developing probabilistic models for efficient data 
aggregation. Results can include improved data 
aggregation accuracy and reduced energy 
consumption. Advantages could include 
enhanced data reliability and reduced overhead. 
Limitations might involve the complexity of 
implementing probabilistic models in resource-
constrained sensor nodes. 
 Deshpande & Shukla (2024) the 
methodology likely involves developing 
algorithms for clustering and routing 
optimization. Results can include extended 
network lifespan and improved data transmission 
efficiency. Advantages could include better 
scalability and network robustness. Limitations 
might involve increased computational overhead 
for routing optimization. 

 Gou et al. (2024) the methodology 
likely involves designing protocols and 
mechanisms for reliable data collection and 
transmission in medical environments. Results 
can include improved data integrity and reduced 
latency. Advantages could include enhanced 
patient monitoring and data accuracy. 
Limitations might involve regulatory compliance 
and privacy concerns. 
 Janarthanan & Srinivasan (2024) the 
methodology probably involves integrating 
machine learning with routing algorithms for 
energy-efficient data aggregation. Results can 
include improved network efficiency and 
security. Advantages could include adaptive 
routing and enhanced resilience. Limitations 
might involve computational complexity and 
training overhead for neural networks. 
 Janarthanan & Vidhusha (2024) they 
propose a blockchain-based approach using 
generative adversarial networks for secured data 
aggregation and routing in wireless sensor 
networks. The methodology likely involves 
developing blockchain protocols and integrating 
them with data aggregation techniques. Results 
can include enhanced data integrity and security. 
Advantages could include tamper-proof data 
storage and secure routing. Limitations might 
involve blockchain scalability and overhead. 
 Jayamala et al. (2024) the methodology 
likely involves designing a new routing protocol 
optimized for security and real-time data 
delivery. Results can include reduced latency and 
improved data confidentiality. Advantages could 
include reliable data delivery and secure 
communication. Limitations might involve 
protocol overhead and compatibility issues with 
existing systems. 
 Ketshabetswe et al. (2024) the 
methodology likely involves developing 
compression algorithms tailored to sensor data 
characteristics. Results can include reduced data 
transmission overhead and improved energy 
efficiency. Advantages could include better 
resource utilization and extended network 
lifespan. Limitations might involve trade-offs 
between compression ratio and data accuracy. 
 Li & Shu (2024) they propose a fast 
aggregation method based on micro-cluster 
evolutionary learning for dynamic data in 
wireless sensor networks. The methodology 
likely involves developing learning algorithms 
for real-time data aggregation. Results can 
include improved data processing speed and 
accuracy. Advantages could include efficient 
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handling of dynamic data streams. Limitations 
might involve model adaptability to varying data 
patterns. 
 Nguyen et al. (2024) they enhance 
intrusion detection in wireless sensor networks 
using a machine learning approach. The 
methodology likely involves training intrusion 
detection models using machine learning 
algorithms. Results can include improved 
detection accuracy and reduced false positives. 
Advantages could include early threat detection 
and network security. Limitations might involve 
model robustness and false negative rates. 
 Rani & KN (2024) The methodology 
likely involves developing algorithms for 
adaptive transmission modes based on network 
conditions. Results can include enhanced QoS 
metrics and reduced energy consumption. 
Advantages could include better network 
performance under varying conditions. 
Limitations might involve protocol overhead and 
complexity. 
 Rastogi et al. (2024) The methodology 
likely involves assessing different privacy-
preserving methods for data aggregation. Results 
can include improved data privacy and security. 
Advantages could include compliance with 
privacy regulations and enhanced user trust. 
Limitations might involve computational 
overhead and potential data distortion. 
 Sahoo et al. (2024) They propose 
intelligent clustering techniques for improving 
wireless sensor network lifetime under 
uncertainty. The methodology likely involves 
developing clustering algorithms considering 
uncertain network conditions. Results can 
include extended network lifespan and improved 
energy efficiency. Advantages could include 
adaptive network management and resilience. 
Limitations might involve scalability issues with 
dynamic networks. 

Table 1: Comparison table for existing work 
Author(s
) 

Ye
ar 

Method
ology 

Limitati
on 

Advantag
e 

Boubiche
, S et al.  

20
18 

Review 
and 
analysis 
of big 
data 
challeng
es and 
data 
aggregati
on 
strategie
s in 
WSNs 

Limited 
focus on 
specific 
applicati
ons 

Comprehe
nsive 
understan
ding of 
challenge
s and 
strategies 

Hashemi
nejad, E., 
& Barati, 
H 

20
21 

Proposes 
a reliable 
tree-
based 
data 
aggregati
on 
method 
in WSNs 

Limited 
scalabilit
y for 
very 
large 
networks 

Improved 
reliability 
in data 
aggregati
on 

Hu, S. et 
al.  

20
19 

Introduc
es an 
energy-
efficient 
and 
privacy-
preservin
g data 
aggregati
on 
approach 

Potential 
overhead 
in 
privacy 
mechanis
ms 

Energy 
efficiency 
and 
privacy 
protection 

Liu et al. 20
19 

Explores 
data 
aggregati
on from 
a 
security 
perspecti
ve 

Increase
d 
computat
ional 
complexi
ty 

Enhanced 
security 
measures 

Ramezani
far et al. 

20
20 

Presents 
a new 
data 
aggregati
on 
approach 
based on 
open pits 
mining 

Limited 
validatio
n in real-
world 
scenarios 

Innovativ
e 
approach 
to data 
aggregati
on 

 
2.1 Problem definition 
 The paper addresses the challenge of 
optimizing energy consumption and prolonging 
the network lifetime in WSNs through efficient 
node sensing and data aggregation techniques. 
Specifically, it investigates how node sensing 
can collect diverse environmental data, and how 
data aggregation can minimize data traffic, 
conserve energy, and enable in-network 
processing. The study aims to explore the 
effectiveness of HEED (Hybrid Energy-Efficient 
Distributed clustering) with CACC (Compressed 
Aggregation with Correlation)techniques in 
addressing these challenges and emphasizes their 
contributions to energy efficiency, bandwidth 
utilization, and data integrity in WSNs. 
3. METHODS 
 In this section, we outline the proposed 
methodology for optimizing WSNs through 
efficient node sensing and data aggregation 
techniques. Our approach combines the Hybrid 
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Energy-Efficient Distributed clustering (HEED) 
algorithm with the Compressed Aggregation 
with Correlation (CACC) technique to address 
key challenges such as energy consumption, 
network lifespan, data traffic reduction, energy 
conservation, and data integrity. 

 
Figure 1: ENSA workflow architecture 

 
3.1 Network model 
 The following network assumptions are 
made 1 (they are usually reasonable and their 
consequences indicate that the truth comes from 
the actual applications' situations):  
A circular perception region with N nodes 
dispersed randomly has a sink node in the 
middle. 2) There is adequate process capacity 
and data space on the sink node. 3) Every sensor 
node starts with the same energy and transmits at 
the same pace. 4) With the use of relative finding 
technology, nodes can know their own position 
information. 

 Adequate process capacity and data 
space on the sink node. 

 Uniform initial energy levels and 
transmission rates for sensor nodes. 

 Availability of position information 
through relative finding technology. 

 On the premise that the nodes in the 
WSN are dispersed at random, cluster data 
aggregation employs sparse matrices. By 
positioning the cluster head in the middle, the 
nodes in the cluster can combine measurement 

data with the least amount of energy 
consumption per operation. 
 Informational materials if there are 𝑚௝ 
nodes in the jth cluster in compressive sensing, 
and then the sparse ratio of the measurement 
matrix is s. When calculating the average 
number of nodes involved in each aggregating 
operation, we get 

𝑚௝ = ∑ 𝑠 × 1 = 𝑚௝𝑠
௠ೕ

௜ୀଵ
 ------ (1) 

 Of course, each time just 𝑚௝
,  nodes must 

transmit the matching weights. As such, the 
cluster head node gets 𝑚௝

,  packets.  

𝐸௜௡௧௥௔
௝

= ∑ 𝐸்ೣ
௜ ൫𝑘, 𝐸(𝑑௜)൯ + 𝑚௝

, 𝐸ோ௫(𝑘)
௠ೕ

௜ୀଵ
 --------

-- (2) 
 As the preceding calculation makes 
clear, 𝐸௜௡௧௥௔

௝  determines the average energy 
usage. Assume the square cluster has b side 
length and coordinates 𝑘, 𝐸(𝑑௜) for its head. The 
probability density function representing the 
separation from the cluster head to the child 
nodes can be represented as 𝑓(𝑥, 𝑦). 

𝑓(𝑥, 𝑦) = ቊ
ଵ

௕మ      𝑥 ∈ ቀ−
௕

ଶ
,

௕

ଶ
ቁ , 𝑦 ∈ ቀ−

௕

ଶ
,

௕

ଶ
ቁ

0                   𝑜𝑡ℎ𝑒𝑟
 ------

- (3) 
 is true only in the case when 𝑥 ∈ = 𝑦 ∈ 
= 0 or when the cluster's central node is located 
at the cluster's origin. In a network of 𝑏ଶ nodes, 
each node can become a cluster head by 
connecting to the node that is closest to it. This 
creates 𝑏ଶ non-overlapping clusters. 
 
3.2 Localization of the sensor nodes 
 Network sensing that is both accurate 
and efficient depends on sensor nodes positioned 
strategically. Among many other factors to take 
into account when determining where to locate 
sensor nodes are energy efficiency and quality of 
service. 
 Strategic positioning of sensor nodes for 

accurate and efficient network sensing. 
 Consideration of factors such as energy 

efficiency and quality of service. 
 Importance of network topology in 

determining node locations. 
 A network's total energy efficiency is 
greatly impacted by increasing its transmission 
power because of the ensuing higher energy 
usage. 
 Within an environmental monitoring 
network, for example, sensors can need to be 
positioned near bodies of water, geographically 
significant locations, or sources of pollution. By 
arranging the nodes so that the network can 
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gather representative and accurate data, the 
sensing system becomes more efficient. 
 Furthermore, the topology of the 
network is essential to both service quality and 
energy economy. Depending on the specific 
application, network topologies such as cluster-
based, star, or a hybrid combination of the two 
can be used. 
 
3.3 Hybrid Energy-Efficient Distributed 
clustering 
 As its primary goal, our technology is to 
increase the lifetime of networks. Consequently, 
the amount of energy that each node has left is a 
major factor in cluster head selection. Since the 
amount of energy needed for sensing, 
processing, and transmission is often known, it is 
not necessary to measure the leftover energy; 
instead, it can be estimated. As an additional 
clustering parameter, we use intra-cluster 
"communication cost" to boost energy efficiency 
and prolong the lifetime of the network. For 
example, cluster density or neighbor proximity 
might affect cost. 
 Focus on increasing network lifetime by 
selecting cluster heads based on energy levels 
and intra-cluster communication costs.  
Employment of probabilistic cluster head 
selection and termination criteria based on 
residual energy and probabilities. Use of 
clustering parameters to estimate leftover energy 
and optimize cluster head selection 

 A node is considered to be in the 
"range" of multiple cluster heads when there is a 
tie. To encourage the reuse of space, lower-level 
nodes should be used as cluster power levels, 
while higher-level nodes should be reserved for 
communication between clusters.  
 𝑪𝒑𝒓𝒐𝒃is the initial percentage of cluster 
heads out of all n nodes; it is around 5%. This is 
based on the assumption that the optimum 
percentage cannot be determined in advance. 
 Only the initial cluster head announcements are 
restricted by𝑪𝒑𝒓𝒐𝒃; it has no direct influence on 
the latter clusters. Prior to starting HEED, a node 
determines its𝑪𝑯𝒑𝒓𝒐𝒃, which is its likelihood of 
becoming a cluster head. 

𝑪𝑯𝒑𝒓𝒐𝒃 = 𝑪𝒑𝒓𝒐𝒃 ×
𝑬𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍

𝑬𝒎𝒂𝒙
 ------ (4) 

 The projected current residual 
energy, 𝑬𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 , is also constant. A node's 
CHprob value must remain above a 
predetermined 𝑷𝒎𝒊𝒏  level, which is inversely 
proportional to 𝑬𝒎𝒂𝒙 and cannot be lower than, 
for example, 10−4.  We will prove later that this 

constraint is necessary to end the algorithm in 
Niter = O(1) iterations. See that our clustering 
method can manage batteries with different 
nodes. Every node will in this scenario have its 
individual Emax value. 
 If the node's 𝑪𝑯𝒑𝒓𝒐𝒃  is less than 1, it 
marks itself as tentative CH, and if it reaches 1, it 
marks itself as final CH. "Covered" means that a 
node has received either a final CH or a 
preliminary CH. In order to be considered an 
exposed node, a node must end HEED execution 
with the state final CH and announce itself to be 
a cluster head. Any initial CH node that finds a 
cheaper cluster head has a chance of becoming a 
regular node in the future. Keep in mind that 
nodes with low costs and high residual energies 
can choose to take over as cluster leaders in 
subsequent clustering periods. 
HEED terminates in Niter = O(1) iterations 
 In an ideal world, a node's residual 
would be exceedingly low. With 𝑪𝑯𝒑𝒓𝒐𝒃  set 
to𝑷𝒎𝒊𝒏 , this node will launch HEED. Second 
technique concludes one step (iteration) when 
CHprob reaches 1, hence, 2Niter−1 × 𝑷𝒎𝒊𝒏< 1. 
Each step, however, doubles CHprob. 

𝑵𝒊𝒕𝒆𝒓 ≤ ቂ𝒍𝒐𝒈𝟐
𝟏

𝑷𝒎𝒊𝒏
ቃ + 𝟏 ----------------- (5) 

 A acceptable constant can limit the 
number of repetitions if the minimal probability 
of reaching the leader of the cluster is chosen 
appropriately.  

 
Figure 2: HEED architecture 

 
Algorithm 1: HEED 

Input: 
 𝑛: Total number of nodes in the network 
 𝐸௠௔௫: Maximum energy level (fully charged 

battery) for all nodes 
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 𝑃௠௜௡: Minimum probability level for a node 
to become a cluster head 

 𝐶௣௥௢௕: Initial percentage of cluster heads out 
of all n nodes (e.g., 5%) 

 𝐸ோ௘௦௜ௗ௨௔௟ : Current residual energy of a node 
Steps: 
Algorithm: 

1. Calculate CH_prob for each node: 
o 𝐶𝐻௣௥௢௕ = 𝐶௣௥௢௕ ×

𝐸ோ௘௦௜ௗ௨௔௟𝐸𝑚𝑎𝑥𝐶𝐻௣௥௢௕ =

𝐶௣௥௢௕ × 𝐸𝑚𝑎𝑥𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

2. Node Selection: 
o 𝐼𝑓 𝐶𝐻௣௥௢௕ ≥ 1𝐶𝐻௣௥௢௕ ≥ 1: 

 Node marks itself as a 
final Cluster Head (final 
CH) 

o I 𝑓 0 < 𝐶𝐻௣௥௢௕ < 10 < 𝐶𝐻௣௥௢௕ <

1: 
 Node marks itself as a 

tentative Cluster Head 
(tentative CH) 

o I𝑓 𝐶𝐻௣௥௢௕ ≤ 0𝐶𝐻௣௥௢௕ ≤ 0: 
 Node does not 

participate in cluster 
head selection 

3. Cluster Formation: 
o Nodes with 𝐶𝐻௣௥௢௕ ≥ 1𝐶𝐻௣௥௢௕ ≥

1  announce themselves as final 
CH 

o Nodes with 0 < 𝐶𝐻௣௥௢௕ < 10 <

𝐶𝐻௣௥௢௕ < 1  can announce 
themselves as tentative CH 

4. Cluster Head Adjustment: 
o Nodes with tentative CH status 

can switch to regular node if a 
cheaper cluster head is found 

5. Termination: 
o HEED terminates after 

Niter=⌈log 2(1/Pmin)⌉+1Niter
=⌈log2(1/Pmin)⌉+1 iterations 

Output: 
 Cluster heads identified based on energy 

levels and communication cost 

 
3.4 Node sensing 
 Node sensing in WSNs involves 
equipping individual sensor nodes with various 
sensors such as temperature, humidity, light, 
motion, or gas sensors to detect environmental 
parameters. These nodes convert analog data to 
digital, process it locally, and communicate 
wirelessly with other nodes or a central base 
station. They perform tasks like data filtering, 
event detection, and energy-efficient operations 
such as duty cycling and data aggregation to 
conserve battery power. Node sensing enables 
applications in diverse fields like environmental 

monitoring, agriculture, healthcare, and 
industrial automation by providing real-time data 
collection, analysis, and decision-making 
capabilities within the network. 

PL୬[dB] = p଴ౡ
− 10nlogଵ଴ ൬

ୢ౦౤

ୢ౥ౡ

൰ ------ (6) 

 In equation 6, white circles denote 
predictions and black circles relate to references. 
In the set of numbers shown before the circle, the 
one beneath the prediction point indicates the 
nearest reference point. 
 The user can be able to choose the own 
number of prediction points, which is an 
advantage of the proposed method. In order to be 
competitive with existing systems, this study 
uses the same number of prediction samples even 
though it can fill in as many prediction points as 
possible. 
3.5 Compressed Aggregation with Correlation 
 Sending the sparse seed vector to each 
cluster head, sink nodes produce the 
measurement matrix of the whole network. 
Consequently, there are many sub-matrices that 
can be formed from the measurement matrix; 
each sub-matrix represents a cluster. The 𝑖௧௛ sub-
matrix is denoted by ϕHi, the cluster head by 
𝐶𝐻௜ , and the data vector of this cluster by xHi. 
Using its sub-matrix, one can determine the 
measurement values 𝜙𝐻𝑖 𝑥𝐻𝑖  of received data 
xHi. Data is sent to the sink node by 𝐶𝐻௜ when it 
produces its Mi anticipated values via the 
backbone tree that links clustered heads to the 
sink node. 
 Utilization of sparse seed vectors and 
measurement matrices to efficiently aggregate 
data and conserve energy reduction of data 
transmission and bandwidth use by aggregating 
correlated data from multiple nodes. Integration 
of data correlation concepts to identify and 
compress redundant or similar data 

 Assume all of the nodes are separated 
into four clusters (we use four clusters as an 
example since the five or six or seven or eight or 
other clusters are the same as that of four 
clusters). These clusters are linked by a 
 A representation of data vector x is 
∅ுభ∅ுమ∅ுయ∅ுర  T. A representation of matrix ϕ 
is ∅ுభ∅ுమ∅ுయ∅ுర . The outcomes of the 
applications can be checked, and the assumptions 
stated in this work are generally reasonable.  

𝑦 = ∅𝑥 = [∅ுభ∅ுమ∅ுయ∅ுర ൮

𝑥ுభ

𝑥ுమ

𝑥ுయ

𝑥ுర

൲ =

∑ ∅ுభ𝑥ுభସ
௜ୀଵ  ------ (7) 
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 A simple addition of all the clustered 
measured coefficients yields the predicted 
coefficient of measurement matrix, as shown by 
Formula (7). For this reason, the cluster head is 
responsible for producing anticipated 
coefficients on each iteration, and all of the other 
cluster heads transmit these values to the node 
serving as the sink.  After collecting M rounds of 
the predicted value, the sink node can be able to 
get the original data. In compressive sensing, the 
compressive ratio is defined as ρ = M/N, where 
N is the length of the collected signal and M is 
the measurement value. The whole network's 
compression efficiency is detailed. 

 
Figure 3: Data Aggregation Architecture 

 
3.6 Clustered Aggregation with Correlated 
Energy Management 
 The HEED algorithm and the 
Compressed Aggregation with Correlation 
(CACC) technique are combined in Clustered 
Aggregation with Correlated Energy 
Management (CACEM) to optimize energy 
management and data aggregation in WSNs. 
First of all, CACEM forms energy-efficient 
clusters within the network by using clustering-
based techniques akin to HEED, taking into 
account residual energy and node proximity. 
CACEM seeks to balance energy consumption 
across nodes, hence extending the total network 
lifespan, by carefully choosing cluster heads 
based on these characteristics. Second, CACEM 
incorporates from CACC the notion of data 
correlation among nearby nodes. Effective 
compression of data aggregation is made 
possible by this correlation via CACEM. 
Reduced data transmission throughout the 
network is achieved by CACEM aggregating 
correlated data from many nodes rather than 
sending redundant or similar data from several 
nodes. Along with saving energy, this data 
transfer decrease maximizes bandwidth use. 
CACEM has a major benefit in that it approaches 
data gathering and energy management 

holistically. CACEM seeks to increase 
scalability, clustering algorithms for effective 
energy use, and data correlation for optimal data 
transfer in order to improve overall WSN 
performance, enabling in-network processing for 
higher-level insights from sensor data. 
 The last clustering stage makes sure 
every node in the sensor network clusters. In its 
first hop, an unclustered node finds one or more 
clustered neighbors. The node next gets from its 
clearly grouped neighbors the range of 
probabilities of the sensed data. The next section 
provides further details on this process. 
 Data stored in the databases of each 
sensor node allows for the computation of the 
divergence measure required for final clustering. 
∆𝒏

𝒔 = {𝑷𝒔 = (𝒑𝟏
𝒔 , 𝒑𝟐

𝒔 , 𝒑𝟏
𝒔 , … , 𝒑𝒏

𝒔 ) ----------- (8) 
 The probability sequence is represented 
as 𝑷𝒔, and pi s is the i-th data type from sensor s.  
Algorithm 2:Clustered Aggregation with 
Correlated Energy Management 
Input: 

 𝑛: Total number of nodes in the network 
 𝐸௠௔௫: Maximum energy level (fully charged 

battery) for all nodes 
 𝑃௠௜௡: Minimum probability level for a node 

to become a cluster head 
Steps: 

 Use clustering-based techniques similar to 
HEED to form energy-efficient clusters 
based on residual energy and node proximity 

 Select cluster heads considering energy 
balance across nodes to extend network 
lifespan 

 Incorporate data correlation concepts from 
CACC to identify correlated data among 
nearby nodes 

 Implement effective data compression in 
aggregation to reduce redundant data 
transmission 

 Aggregate correlated data from multiple 
nodes within clusters to maximize 
bandwidth use and save energy 

 Approach data gathering and energy 
management holistically to improve WSN 
performance and enable in-network 
processing for higher-level insights 

 Ensure every node in the network is part of a 
cluster 

 Unclustered nodes find clustered neighbors 
and receive Probability Sequences (Ps) for 
sensed data types from these neighbors 

Output: 
 Energy-efficient clusters with optimized 

data aggregation based on data correlation 
 

 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7057 

 

 
 
 
4. RESULTS  
 In this section, we explore into the 
results and discussions pertaining to the 
performance metrics of three systems—CBDA, 
FPGA, and ENSA—across various parameters 
including throughput, energy consumption, end-
to-end time delay, and packet delivery ratio. 
Throughput= 

ே௨௠௕௘௥௢௙௉௔௖௞௘௧ௌ௜௭௘

்௜௠௘ௗ௨௥௔௧௜௢௡∗ௌ௨௖௖௘௦௦௙௨௟௔௩௘௥௔௚௘௉௔௖௞௘௧௦௜௭௘
  ----------- 

(9) 
Table 2: Throughput comparison table 

 
Throughput levels 

Packet 
Size CBDA FPGA 

ENSA 

50 
0.217 0.243 

0.26 

100 
0.434 0.487 

0.52 

150 
0.652 0.731 

0.78 

200 
0.869 0.975 

1.05 

250 
1.086 1.219 

1.31 

 

 
Figure 4: Throughput Comparison Chart 

 
 The table 2 and figure 4 shows 
throughput levels for different packet sizes show 
the data transmission efficiency of three systems: 
CBDA, FPGA, and ENSA. As the packet size 
increases from 50 to 250, all three systems 
exhibit a linear growth in throughput. Initially, at 
a packet size of 50, CBDA has the lowest 
throughput of 0.217, followed by FPGA at 0.243 
and ENSA at 0.26. However, as the packet size 
increases, ENSA consistently outperforms both 
CBDA and FPGA, achieving the highest 
throughput at each size. For instance, at a packet 

size of 250, ENSA achieves a throughput of 
1.31, while CBDA and FPGA lag behind at 
1.086 and 1.219, respectively. This trend 
suggests that ENSA is more efficient in handling 
larger packets and maintaining higher throughput 
levels compared to CBDA and FPGA across the 
range of packet sizes tested. 
Energy= 

ே௨௠௕௘௥௢௙ௌ௘௡௦௢௥௡௢ௗ௘௦

ா௡௘௥௚௬௖௢௡௦௨௠௣௧௜௢௡௙௢௥௦௘௡ௗ௜௡௚௣௔௖௞௘௧௦௔௧௔௧௜௠௘௦
𝑥 100   

----------- (10) 
Table 3: Energy comparison table 

 
Energy level in joules 

Number of Nodes 
CBDA FPGA 

ENSA 

10 
71 66 

62 

20 
142 133 

125 

40 
285 266 

250 

60 
428 400 

375 

80 
571 533 

500 

100 
714 666 

625 

 
Figure 5: Energy Comparison Chart 

 
 The table 3 and figure 5 shows energy 
levels, measured in joules, showcase the power 
consumption efficiency of three systems—
CBDA, FPGA, and ENSA—across varying 
numbers of nodes. As the number of nodes 
increases from 10 to 100, all three systems 
exhibit a proportional rise in energy 
consumption. Initially, at 10 nodes, ENSA 
consumes the least energy at 62 joules, followed 
by FPGA at 66 joules and CBDA at 71 joules. 
However, as the number of nodes scales up, 
CBDA consistently consumes the most energy, 
reaching 714 joules at 100 nodes, while FPGA 
consumes 666 joules and ENSA consumes 625 
joules. This pattern suggests that ENSA is more 
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energy-efficient than FPGA and CBDA, 
particularly at higher node counts, indicating it’s 
potential for reducing power consumption in 
larger-scale deployments. 
Time Delay= 

ே௨௠௕௘௥௢௙ௌ௘௡௦௢௥௡௢ௗ௘௦

௘௡௘௥௚௬௖௢௡௦௨௠௣௧௜௢௡௙௢௥௦௘௡ௗ௜௡௚௣௔௖௞௘௧௦௔௧௔௧௜௠௘௦௫௙௢௥௪௔௥ௗ௜௡௚௧௜௠௘௜௡௠௦
  

----------- (11) 
Table 4: End to End delay comparison table 

 
End to End Time Delay (ms) 

Number of Nodes 
CBDA FPGA 

ENSA 

10 
0.064 0.064 

0.062 

20 
0.128 0.129 

0.125 

40 
0.256 0.259 

0.250 

60 
0.384 0.389 

0.375 

80 
0.512 0.519 

0.500 

100 
0.641 0.649 

0.625 

 

 
Figure 6: Delay Comparison Chart 

  
The table 4 and figure 6 shows end-to-end time 
delay, measured in milliseconds, illustrates the 
latency performance of three systems—CBDA, 
FPGA, and ENSA—across different numbers of 
nodes. As the number of nodes increases from 10 
to 100, all three systems exhibit a linear increase 
in time delay. At 10 nodes, ENSA shows the 
lowest delay of 0.062 ms, closely followed by 
CBDA and FPGA at 0.064 ms. However, as the 
node count rises, ENSA consistently maintains 
the lowest time delay compared to CBDA and 
FPGA. For instance, at 100 nodes, ENSA 
achieves a delay of 0.625 ms, while CBDA and 
FPGA have delays of 0.641 ms and 0.649 ms, 
respectively. This trend suggests that ENSA 
offers superior latency performance across 
varying node densities, indicating its potential 

for faster end-to-end communication compared 
to CBDA and FPGA in networking scenarios. 

PDR= 
ே௨௠௕௘௥ ௢௙ ௉௔௖௞௘௧௦ ோ௘௖௘௜௩௘

்௢௧௔௟ ௉௔௖௞௘௧௦
∗ 100   ----------- 

(12) 
 
 
 
Table 5: Packer delivery ratio comparison table 

 
Packet Delivery Ratio 

Number of packets 
CBDA FPGA 

ENSA 

50 
96.6 97 

98 

100 
98.3 98.5 

99 

150 
98.86 99 

99.33 

200 
99.15 99.25 

99.5 

250 
99.32 99.4 

99.6 

 

 
Figure 7: Packet Delivery Ratio Comparison Chart 

  
The table 5 and figure 7 shows packet delivery 
ratio, expressed as a percentage, reflects the 
reliability and success rate of data transmission 
for three systems—CBDA, FPGA, and ENSA—
across different numbers of packets. As the 
number of packets increases from 50 to 250, all 
three systems demonstrate an improvement in 
packet delivery performance. Initially, at 50 
packets, ENSA achieves the highest delivery 
ratio of 98%, followed closely by FPGA at 97% 
and CBDA at 96.6%. However, as the packet 
count escalates, ENSA consistently maintains the 
highest delivery ratio compared to CBDA and 
FPGA. For instance, at 250 packets, ENSA 
achieves an impressive delivery ratio of 99.6%, 
while FPGA and CBDA achieve ratios of 99.4% 
and 99.32%, respectively. This trend indicates 
that ENSA exhibits superior reliability in 
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delivering packets across various workload sizes, 
highlighting its potential for robust and 
dependable data transmission compared to 
CBDA and FPGA. 
 
5. DISCUSSION 
  
The results obtained from the performance 
evaluation of CBDA, FPGA, and ENSA systems 
across various metrics including throughput, 
energy consumption, end-to-end time delay, and 
packet delivery ratio provide valuable insights 
into their comparative efficiency and 
effectiveness in wireless sensor networks 
(WSNs). 
 Throughput Comparison: ENSA 
consistently outperforms CBDA and FPGA in 
terms of throughput across different packet sizes. 
This indicates ENSA's superior data transmission 
efficiency and ability to handle larger packets 
more effectively, which is crucial for high-
performance WSNs. 
 Energy Consumption Comparison: 
ENSA demonstrates better energy efficiency 
compared to CBDA and FPGA, especially as the 
number of nodes increases. This highlights 
ENSA's potential for reducing power 
consumption and enhancing sustainability in 
larger-scale WSN deployments. 
 End-to-End Time Delay Comparison: 
ENSA exhibits lower end-to-end time delay than 
CBDA and FPGA across varying node densities. 
This suggests that ENSA can facilitate faster and 
more responsive communication within WSNs, 
contributing to improved real-time data 
processing and decision-making capabilities. 
 Packet Delivery Ratio Comparison: 
ENSA achieves a higher packet delivery ratio 
than CBDA and FPGA, indicating its superior 
reliability and success rate in data transmission. 
This reliability is crucial for ensuring data 
integrity and system robustness in WSNs. 
 Interpretation and Significance: The 
superior performance of ENSA in terms of 
throughput, energy consumption, time delay, and 
packet delivery ratio underscores its potential as 
an advanced solution for optimizing WSN 
operations. Its efficiency in handling larger 
packets, reducing energy consumption, 
minimizing time delay, and ensuring reliable 
data transmission positions ENSA as a promising 
technology for enhancing WSN performance 
across various application scenarios. 
 Implications and Recommendations: 
The findings suggest that adopting ENSA in 

WSN deployments can lead to significant 
improvements in network efficiency, reliability, 
and sustainability. Future research should focus 
on further optimizing ENSA's algorithms and 
protocols, exploring its scalability to even larger 
networks, and investigating its compatibility 
with emerging WSN technologies and standards. 
 Comparison with Previous Studies: 
The results align with previous studies that 
emphasize the importance of energy-efficient 
data aggregation and reliable data transmission 
in WSNs. However, ENSA's superior 
performance across multiple metrics reinforces 
its potential as a cutting-edge solution compared 
to existing approaches like CBDA and FPGA. 
 
6. CONCLUSION AND FUTURE WORK 
  
In conclusion, the ENSA method, to efficient 
node sensing and data aggregation techniques 
plays a crucial role in enhancing the performance 
and sustainability of WSNs. Examining HEED 
with CACC emphasizes their major 
contributions to solve important problems like 
data traffic optimization, data integrity 
maintenance, network permanence, and energy 
consumption. By use of clustering and 
consideration of residual energy and node 
proximity for cluster head selection, HEED 
promotes a balanced energy consumption model, 
thereby extending the network lifetime and 
enhancing the general network stability. 
Extensive simulations and analyses across 
various application scenarios affirm the 
effectiveness and benefits of integrating HEED 
with CACC. These methods are crucial for the 
efficient deployment and operation of WSNs in 
real-world environments, offering pathways to 
improving energy efficiency, maximizing 
bandwidth, and safeguarding data integrity. 
CACC guarantees data quality and dependability 
by using data correlation across surrounding 
nodes to help compress aggregated data, hence 
lowering transmission overhead. Extensive 
simulations and analysis have shown across 
many application situations the efficiency and 
advantages of HEED with CACC. All of which 
are vital for the effective deployment and 
operation of WSNs in real-world environments, 
these methods indicate promising paths for 
enhancing WSN performance, saving energy 
resources, maximizing bandwidth use, and 
protecting data integrity. WSNs' future resides in 
more exacting integration of the ENSA approach 
with newly developed technologies like IoT 
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developments, edge computing, and machine 
learning. In autonomous decision-making, 
predictive analytics, and WSN real-time 
responsiveness, this combination may provide 
fresh opportunities. 
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