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ABSTRACT 

 
This paper examines the feasibility of applying machine learning models to predict traffic states in Paris, 
drawing up on real-world data from permanent sensors provided by the City of Paris' Roads and Transport 
Department. Four popular machine learning models—logistic regression, decision tree, random forest, and 
k-nearest neighbors—were investigated and evaluated without hyper parameter tuning, revealing insightful 
performance trends. The analysis delves into the impact of traffic features and missing data, illuminating 
model strengths and limitations in a practical setting. The paper further explores the potential of innovative 
approaches involving temporal feature extraction, the use of deep learning models (MLP), and hybrid model 
combinations with traditional macroscopic traffic models, outlining opportunities for enhancing predictive 
accuracy. 
Keywords: Imputation, K-nearest neighbors, Logistic regression, Machine learning, Performance 

evaluation, Random Forest, Traffic prediction, Urban mobility 
 
1. INTRODUCTION 

1.1 Traffic Congestion: A Defining Issue in Urban 
Landscapes 

    Traffic congestion, a pervasive issue in modern 
cities, impinges on every aspect of urban life. Its 
adverse effects on travel times [1], fuel consumption, 
environmental pollution, and productivity losses 
pose significant challenges to economic growth and 
quality of life [2]. 

     The 2019 INRIX Global Traffic Scorecard found 
that drivers in major cities world wide spent an 
average of 130 hours stuck in traffic in 2019 [3]. This 
translates to billions of dollars lost annually in 
wasted fuel and productivity. Paris, a city renowned 
for its vibrant urban core and heavy traffic, is no 
exception to these challenges. 

 

 

1.2 The Rise of Intelligent Transportation 
Systems and the Power of Data 

To manage these growing congestion challenges, 
cities have begun embracing innovative 
technologies. Intelligent Transportation Systems 
(ITS), relying on real-time data collection and 
analysis, offer a promising path toward solving 
traffic woes. 

Permanent sensors, deployed across road 
infrastructure and within vehicles, provide a 
continuous stream of vital information on traffic 
conditions. They collect data on variables like flow, 
occupancy rates, average speed, and GPS data. This 
real-time data unlocks unprecedented potential to 
optimize traffic management, leading to smoother 
traffic flows and improved urban mobility [4,12] 

1.3 Machine Learning: A Powerful Tool for 
Efficient Traffic Management 

The massive amount of traffic data collected via ITS 
presents an incredible opportunity to leverage 
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machine learning (ML) techniques. ML algorithms 
excel at learning patterns from large datasets, 
identifying correlations, and constructing predictive 
models. These predictive models hold significant 
promise for estimating future traffic conditions and 
creating smarter, dynamic solutions to congestion 
[5]; 

1.4 Traffic State Prediction: A Key Challenge for 
Urban Mobility 

The core focus of this study is traffic state prediction, 
which aims to forecast the present state of traffic on 
a given road segment with high accuracy, relying on 
real-time data from permanent sensors. Traffic states 
are categorized into distinct levels based on traffic 
density, occupancy rate, speed, and other factors. We 
use a five-category framework for traffic state in this 
study: 

 Free Flow: Traffic density is low, 
occupancy rates are low, and vehicles move 
freely without significant delays. 

 Pre-saturated: Traffic density increases 
moderately. Occupancy rates are higher, 
and slight delays maybe gin to occur. 

 Saturated: Significant traffic density and 
occupancy rates, frequent delays are 
expected, but traffic flow continues. 

 Blocked: Extreme congestion. Traffic 
density is maximized, flow is minimal or 
nonexistent. Travel times are severely 
impacted [14]. 

 Unknown: Data is insufficient for a 
reliable assessment of the traffic state. 

2. DATA AND PREPROCESSING 

2.1 Dataset Description 

The dataset utilized in this study was provided by the 
Direction de la Voirie et des Déplacements of the 
City of Paris. It includes traffic information gathered 
from permanent sensors deployed on the Paris road 
network, covering key characteristics outlined in 
Table 2. 

Table 2: description of traffic data Attributes 
Attribute Type Description 
iu_ac Integer Unique ID of the road 

arc 
libelle String Name of the road or 

section of road 

iu_nd_amont Integer ID of the upstream 
node (intersection) 

libelle_nd_amont String Name of the up stream 
node 

iu_nd_aval Integer ID of the downstream 
node (intersection) 

libelle_nd_aval String Name of the 
downstream node 

T1h Datetime Hourly timestamp 
(end of measurement 
period) 

Q Float Flow (number of 
vehicles per hour) 

K Float Occupancy rate 
(percentage) 

etat_trafic Integer Traffic state (0-4) 
etat_barre Integer Road lane state (0-3) 
dessin String Geometric 

information for the 
arc 

 

2.2 Data Preprocessing 

Data preprocessing is crucial for improving model 
accuracy. 

 Timestamp Conversion: Raw traffic data 
typically includes timestamps representing the 
measurement period. We convert these 
timestamps to date time objects in Python using 
libraries like pandas. This enables more 
straightforward manipulation and analysis of 
time trends. For example, extracting information 
about peak traffic times for specific routes can be 
easily achieved by converting timestamps to 
dates, times, or weekdays. 

 Handling Missing Data: Traffic data is often 
prone to missing values (represented by NaN in 
Python). The missing data might be due to sensor 
failures, intermittent data transmissions, or other 
data collection anomalies. We implemented 
mean imputation [13], where missing values for 
a feature are replaced with the average value of 
that feature for existing data. This assumes a 
normal distribution for the feature, but for traffic 
data, constant average values are frequent for 
traffic flow (q) or occupancy (k). 

o Further Exploration: Other techniques 
like median imputation or most frequent 
value imputation could be explored in 
future research for more nuance datasets. 

 Feature Scaling: Characteristics like flow (q) 
and occupancy rate (k) might have very different 
scales, influencing the model training process 
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disproportionately. We applied standard 
scaling, subtracting the mean from each feature 
and dividing by its standard deviation. This 
standardizes features, reducing their impact due 
to scale discrepancies. 

3. MACHINE LEARNING MODELS 

We employed four classical machine learning 
models for traffic state prediction. Their 
performances are summarized in the results section 
and are presented below. 

3.1 Logistic Regression 

Logistic regression is a linear ML model suitable for 
binary classification tasks. For traffic prediction, we 
adapted it to classify the traffic state based on 
measured traffic flow (q) and occupancy (k). 

Mathematical Function: 

 The sigmoid (logistic) function lies at the core of 
logistic regression. This function calculates the 
probability of a data point belonging to a specific 
traffic state class. Its formula is as follows: 

 σ(z) = 1 / (1 + exp(-z)) 

Where z is a linear combination of features (flow q, 
occupancy k, etc.) weighted by the model's learned 
parameters. These parameters are found by 
minimizing the logistic loss function. 

 Minimizing the loss function is achieved by 
adjusting the sigmoid function's parameters to obtain 
class probability (prediction) that most closely 
matches real data values. 

Parameter Optimization Methods: 

 Logistic regression generally utilizes gradient 
descent methods (e.g., stochastic gradient 
descent or L-BFGS) to minimize the loss 
function. 

 The lbfgs solver is relatively quick, but it 
sometimes struggles to converge accurately, 
especially with sparse or high-dimensional 
datasets. Lib linear, on the other hand, is 
frequently more efficient and stable for such 
data, especially in classification problems. 

3.1.1 Implementation in Python: 

From sklearn.linear_model import 
LogisticRegression 
 
model = 
LogisticRegression(solver='liblinear', 
penalty='l2', random_state=42, 
max_iter=1000)  
model.fit(X_train, y_train) 
 

This code uses Logistic Regression from scikit-
learn. We select the lib linear solver (more efficient 
for larger datasets), the l2 penalty (as discussed 
above), a fixed random state random_state=42, and 
max_iter=1000 for the optimization algorithm. 

3.2 Decision Tree 

Decision trees are a type of ML model that creates a 
branching tree structure to represent decisions based 
on different features. They can be interpreted easily 
as sets of decision rules, making them suitable for 
some practical applications in traffic management. 

Mathematical Function: 

 Internal nodes in a decision tree represent 
questions based on features (e.g., "Is flow below 
'x'?"). 

 Terminal nodes (leaves) represent classification 
categories (e.g., "free flow," "near saturation," 
etc.). 

 The key mathematical component governing tree 
grow this the impurity at each node. The 
algorithm maims to decrease this 
impurity. 

o Impurity Measures: Impurity is a measure 
of how mixed up the class labels are at a node. 
Popular impurity measures include: 
 Gini Impurity 
 Entropy 

Entropy is calculated as follows: 

Entropy(S) = -Σ[p(i) * log2(p(i))] 
 

where S is the set of data points at the node, and p(i) 
is the probability of class i in this subset. 

 Information Gain: The algorithm aims to 
reduce the overall limpurity of the tree. 
Information gain measures the improvement in 
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knowledge (decreased uncertainty) achieved by 
splitting a node [6]. 

Gain(S, A) = Entropy(S) - Σ[ |Sv| / 
|S| * Entropy(Sv) ] 

Where: 
*A is the feature being split. 
*Sv is the subset of data points where A has a 
particular value. 
* |S| and |Sv| are the sizes of the data set before and 
after the split, respectively. 

 The algorithm recursively splits the data 
into subsets until certain purity conditions 
are met. After the tree is built, it may be 
pruned to simplify the tree and reduce 
overfitting. 

3.2.1 Implementation in Python: 

fromsklearn.tree import 
DecisionTreeClassifier 
 
model = 
DecisionTreeClassifier(random_state=42
)  
model.fit(X_train, y_train) 
 

This code uses Decision Tree Classifier from scikit-
learn with random_state=42 for reproducibility. 

 You can explore other parameters like 
max_depth, min_samples_split, etc., for further 
analysis. 

3.3 Random Forest 

Random Forests are a popular ensemble method in 
machine learning. They aggregate the predictions of 
multiple decision trees, which are trained on random 
subsets of the data and randomly selected features, 
resulting in a more robust and less prone to 
overfitting model [7]. 

Mathematical Function: 

 Random forests function by building a collection 
of decision trees, where each tree is trained on a 
random sample (with replacement) of the 
training data. 

 Each tree is constructed using a randomly 
selected subset of features from the dataset. 

Prediction: 

 When making a prediction for a new data point, 
the random forest combines predictions from all 
its in divi dual trees. 

 A majority vote is commonly employed to select 
the final prediction category. 

Advantages: 

 Random forests are known to be highly robust 
against overfitting. 

 They can effectively handle datasets with a high 
number of features, making them suitable for 
analyzing traffic data with numerous variables. 

3.3.1 Implementation in Python 

fromsklearn.ensemble import 
RandomForestClassifier 
 
model = 
RandomForestClassifier(random_stat
e=42) 
model.fit(X_train, y_train) 
 
3.4 K-Nearest Neighbors (KNN) 

KNN is a non-parametric algorithm that relies on 
proximity for classification. It doesn't build a 
specific model like logistic regression or decision 
trees; it finds the nearest neighbors in the data to 
make a prediction [8]. 

 

 

Mathematical Function: 

 The algorithm calculates the distances between 
new data points and existing data points in the 
training dataset. 

 A commonly used distance metric is the Euclidean 
distance, which is calculated as the straight-line 
distance between points in an n-dimensional space. 

 Prediction: 

 To predict the class of a new data point, the 
algorithm finds the k nearest neighbors (those with 
the smallest distances). 
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 A majority vote (the most common class) among 
those k nearest neighbors is then used for the 
prediction. 

Advantages: 

 Easy to implement and understand. 
 Relatively robust to missing values and 

noisy data. 

3.4.1 Implementation in Python 

fromsklearn.neighbors import 
KNeighborsClassifier 
 
model = KNeighborsClassifier() 
model.fit(X_train, y_train) 
 
4. MODEL EVALUATION 

Model performance was evaluated using common 
metrics: accuracy, recall, F1-score, and the 
confusion matrix. 

Table 1: Machine Learning Model Performance 

Model Accuracy Recall 
(Average) 

F1-score 
(Average) 

Logistic 
Regression 

0.80 0.57 0.60 

Decision 
Tree 

1.00 1.00 1.00 

Random 
Forest 

1.00 1.00 1.00 

K-nearest 
Neighbors 

0.98 0.96 0.96 

Figure 1: Model AccuracyComparison 

 

 
 

 
 

Figure 2: Confusion Matrices 

5. DISCUSSION 

5.1 Analysis of Model Performance: 

5.1.1 Logistic Regression: 

Logistic Regression exhibits relatively good overall 
performance, achieving an accuracy score of 0.80. 
While it demonstrates success in predicting simpler 
traffic states (e.g., "Free Flow" or "Blocked"), the 
model shows a lower level of consistency and is less 
effective in predicting more complex traffic states 
(e.g., "Pre-saturated" and "Saturated"). This suggests 
that the model struggles to capture the nuances of 
traffic flow when transitioning between these 
intermediate states. This limitation may be due to the 
model's inherent linearity, which makes it less 
suitable for capturing intricate non-linear 
relationships present in traffic data. 

5.1.2 Decision Tree: 

The Decision Tree model exhibits exceptional 
performance on our Paris traffic data, achieving a 
perfect accuracy score of 1.00. This aligns with 
findings from previous research, where decision 
trees demonstrated success in capturing 
straightforward relationships between features in 
similar contexts. This model's ability to generate 
clear, easily interpretable rules makes it a potentially 
valuable tool for real-world traffic management. 
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However, decision trees are known to be prone to 
overfitting, especially with complex datasets. In our 
case, the absence of overfitting might be attributed 
to a combination of factors: 

 The use of pruning techniques: Pruning, a 
method for simplifying the decision tree by 
removing unnecessary branches, can help 
to reduce overfitting. We employed a 
specific pruning technique called cost-
complexity pruning. This technique aims to 
find the optimal balance between tree 
complexity and model performance, 
minimizing the risk of overfitting. 

 The characteristics of our dataset: Our Paris 
traffic data might be relatively 
straightforward compared to other, more 
complex datasets. The clear patterns and 
relationships within this data might 
contribute to the model's ability to learn 
without overfitting. 

5.1.3 Random Forest: 

This ensemble model also achieves perfect accuracy 
(1.00), further underscoring its robustness in 
handling complex datasets. Previous research has 
shown that random forests consistently outperform 
other models in traffic state prediction, 
demonstrating their ability to effectively handle 
intricate data patterns. 

By aggregating predictions from numerous 
individual decision trees, random forests effectively 
understand non-linear relationships and mitigate 
overfitting issues. This advantage is particularly 
relevant in this study because: 

 Traffic data is inherently complex: Traffic 
flow is influenced by a multitude of factors, 
including road network geometry, traffic 
density, weather conditions, and driver 
behavior. These factors interact in complex 
ways, creating non-linear relationships that 
traditional models might struggle to 
capture. 

 Random forests excel at handling this 
complexity: The ensemble nature of 
random forests allows them to learn from 
diverse perspectives, reducing the risk of 
overfitting to any single feature or 
relationship. This makes them well-suited 
for analyzing large datasets with multiple 

variables, as is the case with our Paris 
traffic data. 

 The diversity in our dataset: Our dataset 
includes a variety of road segments with 
different characteristics, making it more 
challenging for traditional models to 
achieve high accuracy. Random forests, 
however, are able to leverage this diversity 
by learning from a multitude of decision 
trees, each trained on a different subset of 
data. 

 Further research could investigate the 
impact of different hyperparameter settings 
on the random forest model's performance, 
exploring how to optimize the model for 
even better accuracy in predicting traffic 
states. 

5.1.4 K-Nearest Neighbors (KNN): 

KNN demonstrates good performance, attaining an 
accuracy score of 0.98. This model is particularly 
effective in leveraging spatial information, making it 
suitable for predicting traffic states on neighboring 
road segments. Its ability to capture local 
relationships is well documented in previous 
research, where KNN was successful in predicting 
traffic states on neighboring road segments. 

However, the performance of KNN is known to be 
sensitive to the choice of k (the number of neighbors 
to consider). Previous research has found that 
selecting the optimal k value is crucial for achieving 
optimal model performance. 

Further investigation could be conducted to optimize 
k for improved prediction accuracy. This could 
involve: 

 Grid Search: Systematically exploring a 
range of k values to identify the optimal one 
for our dataset. 

 Cross-Validation: Using techniques like k-
fold cross-validation to evaluate the 
model's performance with different k 
values and select the one that performs best 
on unseen data. 

 Further research could explore the impact 
of different distance metrics on KNN's 
performance. The Euclidean distance 
metric, which we used in this study, might 
not be the most appropriate for all traffic-
related datasets. Exploring alternative 
metrics, such as Manhattan distance or 
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cosine similarity, could potentially lead to 
improved prediction accuracy. 

 By addressing these key aspects of KNN, 
we can further refine its performance and 
contribute to more accurate traffic state 
predictions. 

5.2 Challenges and Opportunities for Improving 
Traffic State Prediction: 

5.2.1 Limitations of the Models: 

Analysis of the results reveals key limitations. 
Despite the absence of overfitting, Logistic 
Regression failed to reach exceptional performance. 
This model is not optimal for handling the complex 
patterns of traffic data. It is more prone to errors in 
cases with a higher percentage of missing data [11] 
(occupancy rate k in particular). 

On the contrary, the decision tree and random forest 
models attain near-perfect performance. However, 
they require significant computational time for 
training and prediction. 

The k-nearest neighbors’ model exhibits variability 
in performance depending on the size of the dataset 
and the choice of k (the number of neighbors to 
consider). Choosing the best value for k is not always 
straight forward and may require experimentation 
for each dataset [9]. 

5.2.2 Innovations for Enhanced Traffic State 
Prediction: 

To address these challenges and further enhance the 
accuracy of traffic state prediction, we propose 
exploring the following innovative approaches: 

Enriching Features with Temporal Information: 
In addition to traditional traffic features (flow and 
occupancy rates), incorporating temporal 
information is key to capturing cyclical and seasonal 
trends in traffic patterns. 

o Hour of Day: Incorporating the hour of day 
helps to capture traffic peaks and reduce 
misclassifications related to those times. 

o Day of Week: Considering the day of week 
(Monday to Sunday) is critical to account for 
traffic variability between weekday and 
weekend days. 

o Month and Seasons: Including the month 
and the season can allow the model to learn 
about traffic patterns related to school 
vacations or seasonal events in Paris. 

Exploring the Power of Deep Learning: 

o Multi-Layer Perceptron (MLP) is a 
powerful type of neural network capable of 
learning highly non-linear relationships in 
data, making it well-suited to model the 
complex interactions of various features 
influencing traffic state[10]. 

Blending Traditional and Modern Models for 
Optimal Performance: 

o Hybrid Approaches: Combining the 
predictions of classical models (like random 
forests) with more complex ones (such as 
neural networks) could improve the overall 
prediction accuracy and provide 
complementary insights from different 
modeling approaches. 

o Macroscopic Fundamental Diagrams 
(MFDs) in Traffic Modeling: ** Introducing 
macroscopic traffic relationships (such as 
those described in fundamental diagrams) can 
refine traffic prediction accuracy and allow 
for better understanding of traffic movements 
on road segments (Van Lint & van Zuylen, 
2011). 

5.3 Recommendations and Conclusion 

The results suggest that machine learning models 
hold promise for traffic state prediction in Paris. 
However, we identified certain challenges related to 
the use of traditional ML models in handling missing 
data and the potential for overfitting. 

Recommendations for Future Research: 

 Investigating the Impact of Weather and 
Geographic Factors: Were commend in 
future research exploring how weather 
conditions (temperature, rain, snow, etc.), as 
well as the geographic properties of road 
segments (bike lanes, major arterials), impact 
traffic flow. 

 Employing More Sophisticated Models: 
Deep learning architectures like Recurrent 
Neural Networks (RNNs) or Convolutional 
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Neural Networks (CNNs) can capture highly 
complex spatiotemporal relationships in traffic 
data. They represent a promising avenue for 
enhancing traffic state prediction. 

 Enriching the Dataset with Diverse 
Information Sources: Leveraging additional 
data sources, including information on public 
transit systems, major events, and real-time 
vehicle data collected via mobile apps, can 
enrich the dataset and improve model 
performance in capturing complex traffic 
dynamics in Paris. 

 Adaptive Models for Dynamic Road 
Networks: To effectively address the 
constantly changing nature of the Paris Road 
network, we advocate the development of 
models capable of adapting to changes 
dynamically. Dynamic learning algorithms 
could be deployed to track new routes, 
closures, and modifications in real time, 
enabling continuous model improvement and 
adaptation. 

6. CONCLUSION: 
 
This research demonstrates the effectiveness of 
machine learning models, particularly random 
forests and KNN, for traffic state prediction in 
Paris, achieving near-perfect accuracy in our 
dataset. This study contributes to the field by 
showcasing the practical application of these 
models in a complex urban environment and by 
providing valuable insights into their strengths and 
limitations. 
However, the study is limited by the availability of 
data, specifically the lack of weather information 
and detailed road network characteristics. Future 
work could focus on incorporating these additional 
features and exploring the potential of deep 
learning models, particularly MLPs, for even more 
accurate predictions. Additionally, research is 
needed to assess the adaptability of these models to 
the dynamic nature of Paris' road network. 
Overall, the findings suggest that machine learning 
models hold significant promise for traffic state 
prediction in Paris. However, further research is 
needed to overcome limitations and develop robust, 
adaptive models that can effectively address the 
complex challenges of urban traffic management. 
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