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ABSTRACT 
 

Strawberry, which is a popular fruit, is known for its high content of vitamin C and antioxidants, thus 
contributing to cardiovascular health and blood sugar control. Faced with the challenges posed by diseases 
affecting its cultivation, such as anthracnose and powdery mildew, the integration of advanced technologies 
has become crucial to improve productivity compared to conventional agricultural methods. In recent years, 
deep learning techniques have been widely used in various fields of computer vision, demonstrating their 
potential for strawberry disease detection. However, the lack of in-depth discussions on the application of 
deep learning to this culture highlights the need for a comprehensive review of recent technologies. This 
article provides a comprehensive review of recent advances in this field and highlights four main models: 
YOLO, Mask R-CNN, RetinaNet, and SSD, which have been widely used in object detection. It also 
explores different databases available in the literature, while highlighting the challenges of using them for 
real-time research. 
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1. INTRODUCTION 
 
Strawberry cultivation is of fundamental importance 
globally, being an essential pillar of the agricultural 
and food economy [1]. This fruit is not only among 
the most popular, but also one of the most consumed 
worldwide. Its cultivation represents a major 
incoming source for many farmers and agricultural 
regions, thus actively participating in the economic 
dynamics of local and national communities [2]. 
However, strawberry production faces many 
challenges, including diseases that can cause 
considerable economic losses [3]. Diseases such as 
gray rot [4] (Botrytis cinerea), root rot 
[5](Phytophthora spp.), and various fungal, bacterial 
and viral infections can affect the growth, quality 
and quantity of strawberries produced. 
To ensure strawberry health and maintain optimal 
yields, it is crucial to design and employ techniques 
to detect diseases as they emerge. Conventional 

detection approaches can sometimes be time-
consuming and expensive, [6] which delay the 
implementation of control measures and promote 
the spread of diseases. This is where the need for 
fast and accurate detection methods comes into play. 
In recent years, the artificial intelligence 
technologies, including machine learning and deep 
learning, has revolutionized disease detection in 
crops [7, 8]. The use of image recognition through 
deep learning and computer vision has proven to be 
a highly accurate and cost-effective solution for 
spotting diseases affecting crops [9]. Available 
reports highlight convolutional neural network 
(CNN) as one of the most effective deep learning 
techniques for detecting crop diseases. 
Visual identification and field sampling of plant 
material remain the conventional approaches to 
spotting infections in the field, but they are 
laborious and require specialized know-how [10]. 
These traditional methods cannot detect latent 
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infections in the early stages of their development. 
Although various laboratory analyses, such as 
microscopy and molecular, biochemical and 
microbiological techniques, have been implemented 
to diagnose crop diseases, they have drawbacks. 
This is because the sampling process is destructive 
and provides limited diagnostic points, which does 
not facilitate scalable field detection or accurate 
representation of the variability of field conditions. 
The integration of computer vision technologies has 
generated great enthusiasm for precision agriculture 
over the last decade [11]. The computer vision, 
which positioned at the heart of robotics and 
artificial intelligence, offers the possibility of 
performing a multitude of tasks in an automated and 
efficient manner throughout the agricultural 
production cycle, from the planting phase to the 
harvest. 
Currently, the adoption of the computer vision 
technology, especially the object detection, in the 
agricultural sector is growing steadily. This 
technology uses imaging devices to capture images 
and determine whether they contain weeds, pests or 
even plant diseases with their locations in the image 
using the object detection techniques [12]. 
For this review, we adopted a systematic and 
structured methodology to ensure rigorous selection 
and in-depth analysis of relevant articles. We began 
by defining precise inclusion and exclusion criteria 
to identify relevant studies on strawberry disease 
detection techniques. Articles were selected from 
recognized scientific databases such as IEEE Xplore 
and Google Scholar, using specific keywords related 
to strawberry disease detection and object detection 
techniques. Each selected article was analyzed in 
depth according to predefined criteria such as the 
methodology used, the results obtained and the 
contributions to current research. This systematic 
approach allowed us to provide a comprehensive 
and critical overview of existing techniques in this 
area. 
Based on the opinions of the authors of the selected 
articles and the importance of the algorithms in the 
current literature, we chose to analyze the 
RetinaNet, Mask R-CNN, SSD, and YOLO 
algorithms in detail. These algorithms are among the 
most popular and recognized for their performance 
and unique characteristics. 

This paper presents a review of the utilization of 
deep learning techniques to enhance the economic 
aspects of strawberry farming. It aims to summarize 
and analyze recent literature to facilitate researchers 
in comprehending the relevant methodologies and 
technologies in this field efficiently and 
systematically. 
This paper is organized to provide a comprehensive 
understanding of the challenges and advances in 
disease detection in strawberry cultivation. The 
background section explores the importance of 
strawberries on a global scale, detailing their 
economic importance to farmers and the agricultural 
industry. Additionally, it highlights the impact of 
diseases such as anthracnose and powdery mildew 
on crop yield and quality, as well as economic 
losses, highlighting the need for advanced 
technologies. Object detection techniques are then 
discussed, including classic approaches such as 
image segmentation and rule-based systems, as well 
as deep learning methods and transfer learning 
concepts. The discussion extends to datasets, 
reviewing those that exist and addressing challenges 
related to their availability and diversity. Real-world 
applications and case studies illustrate successful 
implementations of object detection in strawberry 
disease detection, highlighting their practical 
importance on agricultural operations. Finally, the 
evaluation metrics are elucidated, covering 
commonly used metrics such as precision, recall, 
and F1 score. 
The rest of this paper is organized as follow. Section 
2 gives the background. The object detection 
techniques are presented in section 3. Section 4 
presents the datasets. The applications and case 
studies are presented in section 5. Section 6 presents 
Evaluation Metrics. Finally section 7 gives the 
conclusions followed by the most relevant 
references. 
2. BACKGROUND 

Strawberries (Fragaria × ananassa) are among the 
most widely cultivated fruits across the globe, due to 
their distinctive flavor and remarkable nutritional 
qualities, as well as their versatility as a fresh or 
processed product. Additionally, strawberries play a 
major economic role globally and are considered a 
key commodity in many regions. Their economic 
value is not only limited to their local consumption, 
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but they also represent a crucial element in 
international trade, with strong potential as an 
export product [13]. 
There are many important factors to consider when 
growing strawberries, including diseases that 
seriously affect them. For example, fungi and 
bacteria diseases, that attack fruits, flowers, and 
leaves in strawberry crops, can have an impact from 
the earliest stages of growth [14]. Among these 
diseases, there are some disease examples, which 
are shown in table 1, such as; gray rot, anthracnose, 
leaf spot disease, angular leaf spot, powdery mildew 
[15-19], and Blossom Blight [20]. Gray rot [15] is a 
significant example. This disease affects plants 
during the flowering period when the weather is 
cold and wet for long periods, creating favorable 
conditions for its spread. Symptoms vary; from gray 
spots on infected fruit to spread of the disease 
between different parts of the plant. Anthracnose 
[16] is a fungal disease that affects many plants, 
including strawberries. It is caused by different 
fungi of the Colletotrichumgenus. Anthracnose can 
cause black spots on the leaves, stems, and fruits of 
strawberries, leading to discoloration and 
deformation of the fruits, which often reduces their 
quality and yield. Leaf spot disease [17] is one of 
the serious conditions that affect the stems of 
strawberry plants as well as several parts of the 
plant. It significantly reduces crop growth and can 
even lead to complete death of plants if the disease 
is associated with drought or high temperatures. 
Among its symptoms, for example, we observe the 
presence of a dark purple color on the upper parts of 
the leaves of strawberry plants, and as the disease 
progresses, the tissues surrounding these spots take 
on a purple and red tint, giving the leaves a burnt 
appearance in many resistant cases. Angular leaf 
spot [18] is a bacterial disease caused by 
Xanthomonas fragariae. It affects the leaves of 
strawberries and causes characteristic angular 
lesions whose edges are soaked in water. Powdery 
mildew [19] is one of the major fungal diseases 
affecting strawberries, and its occurrence can lead to 
significant crop losses if not controlled effectively. 
The first signs of powdery mildew generally appear 
on the leaves, in the form of white powdery spots. 
This white substance is made up of fungal spores 
that spread easily from plant to plant, especially in 

hot dry weather. Flower stems and fruits may also 
be affected, reducing the quality and quantity of the 
harvest. Blossom Blight[20] is a disease that affects 
strawberry flowers. It is characterized by the initial 
formation of a gray fungus on the stigma of the 
flower, which gradually leads to flower burn, 
followed by black rot and complete flower necrosis. 

Table 1. Strawberry disease examples 

Strawberr

y disease 
Image disease characteristics  

Gray rot [15] 

  

Anthracnose 

[16] 

  

Leaf spot 

[17] 

  

Angular leaf 

spot [18] 

  

Powdery 

mildew [19] 

  

Blossom 

Blight [20] 
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In the past, farmers using traditional methods often 
faced major challenges in plant disease 
management. Manual recognition and expert 
systems were the primary methods for identifying 
diseases, but their efficiency and accuracy were 
limited, making real-time crop monitoring difficult. 
Early detection of diseases during their initial 
infection phase is crucial for effective prevention, 
but was often difficult to achieve quickly. So, it is 
essential to accurately and quickly identify plant 
diseases, particularly when growing strawberries, 
and to implement effective corrective measures to 
limit their spread. This helps prevent reduction in 
crop yield and quality, while reducing dependence 
on pesticides [21]. In this context, the adoption of 
advanced technologies becomes essential for 
smarter agriculture. 
Traditional image recognition methods have 
yielded satisfactory results, but they have 
limitations such as complex image preprocessing, 
high subjectivity, and interference in complex 
environments [22]. However, thanks to 
technological advancements in the fields of deep 
learning and computing, deep learning-based 
detection algorithms are increasingly used in 
agricultural research. These algorithms provide 
significant advantages, including high speed, 
increased accuracy, generalization ability, and 
robustness in varying environments [23]. By 
integrating these technological advances, farmers 
can benefit from real-time monitoring of plant 
diseases, allowing them to take more effective and 
targeted preventive and corrective measures. This 
contributes to more sustainable crop management, 
reducing yield losses and excessive use of 
pesticides. 
In conclusion, it is imperative to consider the 
implications of excessive pesticide use on the 
environment, fruit quality and human health. By 
reducing dependence on pesticides, we not only 
preserve ecological balance and biodiversity, but 
we also improve fruit quality. Reducing exposure to 
pesticide residues helps ensure healthier and safer 
fruits for human consumption. By protecting the 
health of consumers, we also help preserve the 
health of ecosystems and agricultural communities 
in the long term. This shift towards more 
sustainable and environmentally friendly 

agricultural practices is essential to ensuring a 
secure and sustainable food future for future 
generations. 
 
3. OBJECT DETECTION TECHNIQUES 

 
Object detection is a crucial process in computer 
vision and image processing, involving locating and 
identifying specific objects in images or videos. 
Basically, it involves detecting the presence of 
objects in a scene and determining their location 
and class. 
Object detectors generally operate by analyzing 
visual information in an image or video frame and 
generating bounding boxes that delineate the 
regions where objects are detected. Besides 
localizing the objects, object detectors also classify 
them into predefined categories or classes, 
specifying the type of object identified. 
There are multiple approaches to object detection, 
including traditional methods and deep learning-
based techniques. Traditional methods typically 
involve handcrafted feature extraction and machine 
learning algorithms, such as the Viola-Jones 
Detector, Histogram of Oriented Gradients (HOG) 
Detector, and Deformable Part-based Model 
(DPM). 
Conversely, deep learning-based approaches have 
garnered significant attention and success in recent 
years. Convolutional Neural Networks (CNNs) play 
a crucial role in deep learning for object detection, 
as they can automatically extract relevant features 
from images and learn complex patterns 
representative of various object categories. CNN-
based object detection architectures can be 
categorized into two types: one-stage detectors and 
two-stage detectors. 
In this section, we explore various object detection 
techniques, to provide innovative solutions for 
agriculture and crop health. 

3.1. Classical Approaches 
 
Object detection is a fundamental pillar of 
computer vision, relying on various classical 
methods to identify and interpret elements present 
in an image [24]. Among these methods, image 
segmentation plays a vital role. This approach 
consists of subdividing an image into distinct 
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regions or objects, thus making it possible to 
discern the different visual components. By 
isolating these regions, segmentation facilitates the 
understanding and analysis of the various elements 
contained in the image, thus facilitating object 
detection [25].Meanwhile, feature extraction 
represents another crucial method in the object 
detection process. This technique involves the 
identification and isolation of specific features 
within the image that are relevant for object 
recognition and classification. By extracting 
distinctive features such as patterns, textures or 
shapes, this method provides valuable clues to 
identify target objects in the image [26]. 
Furthermore, rule-based systems play a significant 
role in object detection. These systems rely on the 
definition of specific rules that encode criteria or 
conditions to identify particular objects or events. 
By applying these predefined rules, systems can 
determine the presence or absence of target objects 
in an image, providing a structured approach for 
object detection and classification [27]. However, 
despite their usefulness, these traditional computer 
vision methods have limitations when faced with 
complex scenes, lighting variations, and dynamic 
environments. Image segmentation can face 
challenges when distinguishing between objects 
that are overlapping or have similar textures, while 
feature extraction can be sensitive to subtle 
variations in the appearance of objects. Similarly, 
rule-based systems can be limited by their rigidity 
and inability to generalize to new or unexpected 
contexts. These methods can also struggle to handle 
the diversity of objects and situations encountered 
in real-world environments, compromising their 
ability to provide accurate and reliable results [28]. 
To address these challenges, new approaches based 
on deep learning and artificial intelligence has 
emerged, providing enhanced capabilities for object 
detection in complex environments. By leveraging 
deep neural networks and advanced machine 
learning techniques, these approaches enable more 
sophisticated analysis of visual data, improving the 
accuracy and robustness of object detection in a 
variety of contexts. As a result, the integration of 
these emerging technologies opens new avenues for 
computer vision and object detection, paving the 
way for innovative applications in various fields, 

including surveillance, security and image analysis 
[29]. 
 

3.2. Deep Learning Approaches 
 
Deep learning, a branch of machine learning, has 
revolutionized computer vision, a crucial area for 
interpreting the growing avalanche of images and 
videos recently available [30]. Faced with this flood 
of visual information, the extraction of relevant 
data has become essential. The foundations of 
computer vision are based on machine learning 
techniques and in particular on deep learning [31]. 
With increasing computing power and abundance 
of data, deep learning has emerged as a leading 
method to efficiently process huge data sets and 
extract features from unstructured data. These 
advances have been deployed in various sub-
domains of computer vision, which are enabled the 
prowess in tasks such as classification, localization, 
detection, and segmentation, with remarkable 
performance. The development of object detection 
methods perfectly illustrates the impact of deep 
learning in the field of computer vision. These 
methods aim to locate and classify objects that 
presented in images or videos; this complex task 
requires a deep understanding of the visual context. 
There are many deep learning architectures 
designed specifically for object detection, such as 
you only look once (YOLO), single-shot detector 
(SSD), mask region-based convolutional neural 
network (Mask R-CNN) and RetinaNet, which have 
revolutionized the way of computers interpreting 
and understanding visual information [32]. These 
architectures combine sophisticated image 
processing techniques with deep neural networks to 
extract meaningful features from visual data and 
make precise inferences about the presence, 
location and class of detected objects. Table 2 
highlights the strengths and limitations of Mask 
RCNN, RetinatNet, SSD and YOLO approaches for 
object detection in images, based on different 
experiments carried out by various authors 
specializing in the field of deep learning. 
 

 You Only Look Once(YOLO) 
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YOLO represents an innovative object detection 
algorithm which is based on CNNs and offers a 
distinct approach from previous networks [33]. 
YOLO applies a single neural network to the entire 
image, avoiding the need to generate separate 
region proposals. This process consists of 
subdividing the image into several sub-regions, 
then predicting the bounding boxes and class 
probabilities for each of these subdivisions. Figure 
1 shows the architecture of YOLO algorithm. 

 

 

Figure 1. The YOLO algorithm architecture 

 
The heart of YOLO's architecture is a convolutional 
neural network (CNN), usually considered as 
backbones and built using deep classification 
models like Darknet or ResNet, which is 
responsible for extracting relevant features from the 
image at different scales and resolution levels. This 
feature extraction is crucial for accurate detection 
of objects in the image. YOLO divides the image 
into a grid of cells, with each cell responsible for 
predicting a set of bounding boxes and their 
associated confidences. Each bounding box also 
predicts the class scores for different categories of 
objects present in the image. Prediction of 
bounding boxes and class scores is performed using 
specific techniques, such as box regression and 
softmax classification, ensuring accurate detection 
of objects in the image. Finally, YOLO applies a 
non-max removal technique to eliminate redundant 
detections and merge overlapping bounding boxes.  
In summary, YOLO's architecture enables real-time 
object detection by applying a single neural 
network to the entire image, providing an efficient 
and accurate approach for object detection in a 
variety of scenarios of application. There are 
several versions of this model, each with specific 
improvements and adjustments at different 

levels.YOLOv8 represents the latest iteration of the 
YOLO object detection model; This version, while 
retaining the fundamental architecture of its 
predecessors, introduces several significant 
improvements; These improvements include a new 
neural network architecture leveraging both the 
Feature Pyramid Network (FPN) and the Path 
Aggregation Network (PAN). Additionally, 
YOLOv8 includes a new labeling tool that 
significantly simplifies the data annotation process. 
This tool offers various features such as automatic 
labeling, labeling shortcuts, and customizable 
hotkeys. This combination of features greatly 
facilitates image annotation for model training, 
thereby increasing the efficiency and accuracy of 
object detection [34]. 

 

 Single-Shot Detector (SSD) 
 

The SSD algorithm has similarities to YOLO in 
that it avoids generating distinct region proposals 
and performs object detection in a single pass 
through the neural network [35]. 
The mechanism of the SSD algorithm is based on 
using a single pass through a convolutional neural 
network to detect objects in an image. It works by 
extracting features at different spatial scales from 
the image and then using special detection layers to 
predict bounding boxes and confidence scores for 
each object class. These predictions are made at 
several scales to detect objects of varying sizes. The 
algorithm is trained in an end-to-end manner, which 
means that it is optimized for object detection 
directly from the training images [32]. In summary, 
SSD is an efficient and fast method for real-time 
object detection thanks to its single-pass approach 
through the neural network. Figure 2 shows the 
architecture of SSD algorithm. 
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Figure 2. The SSD algorithm architecture 

 

The SSD architecture is an efficient solution for 
object detection in images, designed around a 
single pass through a convolutional neural network. 
First, SSD uses a convolutional backbone to extract 
image features at different scales and resolution 
levels. This step allows capturing relevant 
information about the objects present in the image, 
using popular architectures such as VGG, ResNet 
or Inception. Then, the SSD uses a feature pyramid 
to detect objects at different spatial scales. This 
pyramid is built by applying convolutions on the 
intermediate layers of the network, which allows 
information to be captured at different spatial 
resolutions. At each scale, special detection layers 
are used to predict bounding boxes and confidence 
scores for each object class. Bounding boxes are 
predicted using default boxes defined at different 
scales and aspect ratios to cover a variety of object 
sizes and shapes. The detection layers predict both 
the confidence scores for each object class and the 
coordinates of the bounding boxes associated with 
each class. 
Finally, to eliminate redundant detections, SSD 
uses the Non-Maximum Suppression (NMS) 
algorithm which merges overlapping bounding 
boxes with high confidence scores. This step 
ensures that the final detections are accurate and 
non-redundant. 

 
 Mask Region-based Convolutional Neural 

Network (Mask R-CNN) 
 

Mask R-CNN is an extend version from the Faster 
R-CNN model by introducing Instance 
segmentation functionality for object detection. 
Mask R-CNN operates in three main steps; it 

begins by generating object proposals via an R-
CNN. Then, it refines these proposals with 
increased spatial precision using convolutional 
regional of interest (ROI) pooling. Finally, it 
creates segmentation masks for each detected 
object. This evolution of the R-CNN architecture is 
motivated by the limits of traditional object 
detection which did not take into account pixel-by-
pixel segmentation of objects. Successive 
improvements, including Fast R-CNN and Faster 
R-CNN, led to Mask R-CNN, providing a more 
comprehensive solution for the precise detection 
and segmentation of objects in images [36, 37]. 
Figure 3 shows the architecture of Mask R-CNN 
algorithm. 
The concept of Mask R-CNN is quite simple to 
understand: it is an extension of Faster R-CNN 
which, for each object candidate, not only generates 
a class label and bounding box offset, but also an 
accurate mask of the object itself. This extension is 
intuitive, but the additional mask output requires 
extraction of finer spatial details from objects, 
which represents a distinct challenge from class and 
box outputs. 
To explain how the Mask R-CNN works, let's start 
by looking at the Faster R-CNN detector. The latter 
is divided into two main stages: the first stage, 
called region proposal network (RPN), proposes 
bounding boxes for candidate objects. The second 
stage, which is essentially a Faster R-CNN, extracts 
features from each candidate box using RoIPool, 
and then performs bounding box classification and 
regression. The extracted features can be shared 
between the two stages to speed up inference. 
The Mask R-CNN, on the other hand, follows the 
same two-step procedure with an identical first 
step, i.e. RPN. In the second step, in addition to 
predicting the class and offset of the box, Mask R-
CNN also produces a binary mask for each region 
of interest (RoI). 
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Figure 3. The Mask R-CNN algorithm architecture 

 

 RetinaNet 

RetinaNet [38, 39] presents itself as an innovative 
architecture that integrates a main network and two 
distinct sub-networks. The main network, often 
referred to as the backbone, operates on the input 
image to calculate a convolutional map. This map is 
then used by sub-networks for specific tasks which 
making RetinaNet a comprehensive and efficient 
model for object detection in images. 
 

 

 

Figure 4. The RetinaNet algorithm architecture 

 
The single-stage RetinaNet network architecture, 
figure 4, uses a Feature Pyramid Network (FPN) on 
a forward-propagating ResNet architecture (a) to 
generate a rich, multi-scale convolutional feature 
pyramid (b). To this backbone, RetinaNet 
associates two sub-networks, one for classification 
of anchor boxes (c) and the other for regression of 
anchor boxes to reference object boxes (d). The 
network design is intentionally simple, allowing 

this work to focus on a novel focal loss function 
that eliminates the accuracy gap between our 
single-stage detector and state-of-the-art two-stage 
detectors such as Faster R- CNN with FPN while 
running at higher speeds. 
Generally, the architecture of RetinaNet is based on 
a convolutional "pyramid" neural network (FPN) 
and a recurrent neural network (RPN). FPN is used 
to extract features from images at different scales, 
while RPN is used to generate potential ROIs. 
These regions of interest are then classified and 
refined to detect objects of interest. One of the main 
features of RetinaNet is its use of a loss function 
called "Focal Loss", which allows rare objects to be 
processed more efficiently and avoids the class 
imbalance problem. This innovative architecture 
enabled exceptional disease detection results, 
surpassing traditional methods [40]. 
 

Table 2. The strengths and limitations of the Mask 
RCNN, the RetinatNet, the SSD and the YOLO models 

Model Advantages Disadvantages 

YOLO[41] 

Its high 

processing 

speed, which 

allows it to 

detect objects 

in real time in 

images and 

videos, making 

it an effective 

option for 

applications 

such as video 

surveillance 

and 

autonomous 

vehicles. 

Its poor 

detection to 

small or poorly 

defined objects, 

which can lead 

to difficulties in 

accurately 

detecting these 

objects, 

particularly in 

complex or 

cluttered 

environments. 

SSD[42] 

The use of a 

single network 

allows faster 

Object detection 

accuracy is 

lower than Fast 
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localization of 

objects 

compared to 

the Fast R-

CNN and 

Faster R-CNN 

approaches. 

R-CNN and 

Faster R-CNN, 

although the 

latter are faster. 

Mask R-

CNN[43] 

It stands out 

for its ability 

to detect 

objects 

precisely, 

segment their 

contours with 

high accuracy 

and manage 

multiple 

instances of 

objects in an 

image, thus 

providing a 

versatile and 

powerful 

solution for 

computer 

vision 

Using an 

external 

candidate region 

generator causes 

a bottleneck in 

the detection 

process 

RetinaNet[44] 

Effective use 

of a focal loss 

function to 

overcome class 

imbalance 

Compared to 

SSD, Mask R-

CNN and 

YOLO, its 

higher 

computational 

complexity may 

limit its 

performance in 

applications 

requiring higher 

computing cost 

large number of 

negative 

samples 

Require high 

VRAM 

 

 3.3. Transfer Learning 

 
Transfer learning consists of reusing a model 
already developed for one task as a starting point 
for another model intended for a second task. This 
approach, widely used in deep learning, uses pre-
trained models to initiate tasks in computer vision 
and natural language processing. It is favored 
because of the significant computational resources 
and time required to develop neural networks on 
these problems, as well as the significant advances 
it brings to similar tasks. Pre-trained models are 
derived from prior training on large datasets, and 
their weights are retained for later use [45].In 
practice, for agricultural disease detection, transfer 
learning involves taking a pre-trained deep learning 
model (e.g. ResNet, VGG, Inception) and re-tuning 
it on a smaller dataset containing images of plants 
with and without diseases. The weights of the pre-
trained model are adjusted during the training 
process to adapt to the specific characteristics of 
agricultural images and disease detection task. 
Transfer learning in deep learning involves using 
pre-trained models as a starting point to train a new 
model on a similar or related task. 
A pre-trained model is a deep neural network that 
has been trained on an extensive dataset to perform 
a specific task, such as image classification or 
object detection. This pre-trained model has 
acquired the ability to extract relevant features from 
the input data, and these features can be reused to 
solve similar tasks. 
In the context of transfer learning, pre-trained 
models are typically leveraged in two main ways. 
First, the pre-trained model can serve as a feature 
extractor, where the output of one or more layers of 
the pre-trained model is used as input to a new 
model. Next, the pre-trained model can be fine-
tuned, which involves adjusting the weights of 
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some or all layers of the pre-trained model during 
training to better fit the new task. 
 
4. DATASETS 

 
For training and evaluation of strawberry disease 
detection models, several datasets are widely used 
in the research community and agricultural 
industry. 

 

4.1. Smaller Dataset Problems 

 
Currently, crop disease detection techniques rely 
largely on advances in deep learning, particularly in 
the field of computer vision. Crop disease detection 
is a crucial specialized application for modern 
agriculture. However, the availability of samples of 
agricultural diseases and pests are remains limited. 
Compared to open standard libraries, datasets 
collected by farmers themselves are often more 
restricted and require laborious effort to label [46, 
47]. The small size of these datasets represents a 
major challenge for detecting crop diseases and 
pests, especially when considering the disparity 
with large datasets such as those from ImageNet, 
which include over 14 million of samples. The 
scarcity of training data, due to the low prevalence 
of diseases and the high cost of image acquisition, 
poses a significant obstacle to the effective 
application of deep learning methods for the 
identification of diseases and diseases crop pests. 
Data augmentation methods represent crucial 
solutions to compensate for the lack of data in 
various scenarios. They encompass a range of 
techniques designed to enrich both the 
characteristics and size of training datasets. 
Therefore, deep learning networks that integrate 
these approaches tend to have better performance. 
Some examples of these techniques used to address 
challenges associated with limited datasets include 
flipping, color space, translation, cropping, rotation, 
and adding noise [48-53]. 
 

Flipping 
 

The flipping operation consists of inverting an 
image either horizontally or vertically. This 
technique generates new images by rotating the 

image by a multiple of 90 degrees. However, it is 
important to note that some frameworks do not 
support vertical flipping natively. In such cases, 
vertical flipping can be simulated by rotating the 
image 180 degrees and then applying a horizontal 
flips [54]. 
 

Color Space 
 

Color space transformation, also known as 
photometric transformation, is a techniques used in 
image processing. The operation consists of 
creating three stacked matrices representing the 
image, each of these matrices having the 
dimensions of height and width. Each matrix 
corresponds to pixel values for the red, green, and 
blue (RGB) color components. This approach 
makes it possible to modify the color distributions 
of the image in order to correct the lighting 
problems encountered [55]. 
 

Cropping 
 

Cropping, also known as randomly sampling a 
specific section of an original image, involves 
selecting a random portion of the image and 
resizing it to the size of the original image. It is 
therefore a selected part of the initial image which 
is adapted to a specific scale if necessary. This 
method is often referred to as "random cropping." It 
is important to note that random cropping differs 
from translation in that it reduces the size of the 
image, while translation maintains its spatial 
dimensions [54, 56]. 

 
Rotation 
 

Rotation allows you to adjust the image in 90 
degree increments or at finer angles as needed. 
When rotated in 90 degree increments, the image 
maintains its integrity without introducing 
background noise. However, this is not true for 
rotations at finer angles, where background noise 
may be added to the image during orientation. 
Additionally, if the background of the image is 
black or white, any noise introduced will likely 
blend into the image. Conversely, if the background 
contains different colors, the noise may not blend 
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in, allowing the network to perceive it as a 
distinctive feature of the image [54, 55].  
Alternatively, rotational augmentation is a 
technique used to increase data diversity by rotating 
images clockwise or counterclockwise around an 
axis. The degree of rotation can vary from 1 to 359 
degrees, which provides great flexibility in 
transforming images. The safety of this increase 
depends on the degree of rotation applied. Indeed, a 
slight rotation, say 20 degrees, can often retain the 
integrity and semantics of the original data while 
introducing sufficient variability to enrich the 
dataset. 
It is important to note that when applying this 
technique, the data label or annotation is usually 
preserved for light rotations. However, as the 
degree of rotation increases, it is possible that the 
annotation of the data will be changed, which may 
require special attention when using this 
augmentation in machine learning or data 
processing applications and image processing. 
The degree parameter for rotation governs the 
conservatism of the augmentation. It proves 
beneficial in digit recognition tasks for light 
rotations. However, increasing the degree of 
rotation may alter the data label after 
transformation. 

 
Translation 
 

Translation, when applied to images, makes it 
easier to identify objects in different regions of the 
image. It involves moving the image along the X or 
Y axis, or both which allowing adjustments left, 
right, up or down. This technique is very useful for 
mitigating positional biases in the data because it 
allows the network to explore different parts of the 
image. However, this increase can introduce 
background noise into the image [57]. 

 
Noise Infusion 
 

The process of foleying involves injecting an 
arbitrary matrix of values into the data. Generally, 
this matrix is generated from a Gaussian 
distribution. Moreno Barea et al. [58] studied noise 
injection using nine datasets from the UCI 
repository. Introducing disturbances into images 

allows convolutional neural networks (CNNs) to 
acquire additional robust features. 
 

4.2. Dataset availability 

 
To effectively deploy deep learning techniques in 
agriculture, the availability of large and high-
quality datasets is essential. These datasets can be 
acquired through various means including; self-
collection efforts, network collaboration, and public 
repositories [26, 49, 32, 53]. Methods for self-
collecting image datasets are often involve ground 
camera photography, monitoring via Internet of 
Things (IoT) devices, and aerial photography using 
unmanned aerial vehicles equipped with cameras, 
hyper-spectral imagers or near-infrared 
spectrometers. Datasets collected in real 
agricultural contexts are particularly valuable 
because of their relevance to practical applications. 
Although an increasing number of researchers are 
making field-collected images publicly available, 
uniformly comparing datasets across different 
disease classes, detection objects, and scenarios 
remains a challenge. 
 

Table 3. Strawberry disease detection datasets example 

Dataset 

Name 

Total 

Images 

Trainin

g 

Images 

Validation 

Images 

Test 

Image

s 

Link 

PlantVilla

ge [59] 

 

61,486    

https://dat

a.mendele

y.com/dat

adata/tyw

btsjrjv/1 

The 

Strawberr

y Disease 

Detection 

Dataset 

[60] 

2,500 1450 307 743 

 

https://ww

w.kaggle.c

om/dataset

s/usmanaf

zaal/straw

berry-

disease-

detection-

dataset 
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PlantDoc-

Object-

Detection-

Dataset 

[61] 

2,598    

https://gith

ub.com/pr

atikkayal/

PlantDoc-

Dataset 

 

strawberry

-disease-

detection-

dataset_da

taset [62] 

4918    

https://uni

verse.robo

flow.com/

strawberry

-

disease/str

awberry-

disease-

detection-

dataset 

 

 
Table 3 presents a selection of publicly available 
datasets from existing research efforts. These 
datasets provide valuable resources for researchers 
and practitioners in the field of agriculture and 
plant pathology. 

 
 PlantVillage Dataset 

 
The PlantVillage dataset [59] was designed to 
provide effective solutions in the detection of 39 
distinct plant diseases. It includes a total of 61,486 
images of plant leaves and backgrounds. This 
dataset was enriched through the use of six 
different augmentation techniques. These methods 
allowed for the creation of more diverse data sets, 
exhibiting a variety of background conditions. The 
augmentations applied include resizing, rotation, 
noise infusion, gamma correction, image flipping, 
and PCA color augmentation. 
 

Blueberry_healthy 
             

Grape_black 
rot 

   Potato_early 
blight 

  Strawberry_healthy 
      

 
 
 

 The Strawberry Disease Detection Dataset 
 

The Strawberry Disease Detection dataset [60] 
includes 2,500 images showing cases of strawberry 
diseases, collected from different greenhouses 
using camera-equipped mobile phones. These data 
were collected in numerous greenhouses located in 
South Korea, under natural lighting conditions, to 
encompass a diverse range of environmental 
variables. Disease validation was carried out by 
experts in the field. 

 

Angular_leafspot 

 

Blossom_blight Aanthracnose_fruit_rot 

 

      Gray mold   Leaf_spot 

 

Powdery_mildew_leaf 

 

Powdery_mildew_fruit  

  

 
 PlantDoc Dataset 

 
PlantDoc dataset [61] is a dataset for visual 
detection of plant diseases. This dataset contains 
2,598 total data points across 13 plant species and 
up to 17 disease classes, involving approximately 
300 hours of human effort to annotate images 
retrieved from the Interne. 
 

 

    

 
 Strawberry-disease-detection-dataset 

Dataset 
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Strawberry-disease-detection-datasetdataset [62] 
contains 4918 open source strawberry disease 
images, accompanied by a pre-trained model and 
strawberry disease detection API.  
 

 

blossom_blight 

 

anthracnose_fruit_

rot 

 

 

angular_leafspot 

 

5. APPLICATIONS AND CASE STUDIES 

 
In this section, we will look at a summary of the 
applications of deep learning algorithms used for 
strawberry disease detection from the reviewed 
studies. We will explore advances and real-world 
applications of deep learning techniques in the early 
and accurate detection of diseases affecting 
strawberry crops. These studies will shed light on 
how deep learning models have been deployed to 
identify symptoms of various diseases on 
strawberry leaves, thereby providing innovative 
solutions for farmers to prevent economic losses 
and drive better crop management crops. 

 

5.1 Multiple Disease Detection 

 
Diseases are a predominant factor in reducing the 
quality and productivity of vegetables, thereby 
causing economic losses for farmers, and are 
closely linked to daily economic activities [63, 64]. 
Strawberries, among the major greenhouse crops, 
are no exception and face various disease problems. 
The ability to quickly detect and identify strawberry 
diseases, as well as take appropriate control 
measures, is of crucial importance to ensure their 
growth, treat infections and increase farmers' 
income. Although different diseases may present 
symptoms visible in the light spectrum, their 
identification remains complex and subject to 
variations, requiring the expertise of specialists 
trained in the field of plant pathology for an 

accurate diagnosis. With advances in computer 
vision, a range of methods have been developed to 
address the challenges of detecting plant diseases, 
including first observing lesions and infection 
patterns on leaf surfaces. So, many researchers 
were proposed precise techniques for detecting and 
classifying plant infections [65, 66, 68]. 
Many studies have developed deep learning models 
to identify different diseases grouped into different 
classes. We took the approach of detecting multiple 
diseases as distinct categories. The Background 
section provides information on common diseases 
and their essential characteristics, while Table 4 
summarizes the deep learning algorithms used in 
strawberry disease detection studies. At the same 
time, several researchers have developed models to 
early predict the appearance of specific plant 
diseases. The use of CNNs by several researchers 
has enabled the detection of multiple diseases 
(categories) in strawberries, leading to the creation 
of various specialized models capable of detecting 
multiple pathologies. For example, the study in [67] 
developed models such as GoogLeNet model, 
Resnet50, and VGG 16 to detect strawberry 
diseases. 
In [69, 70], authors used the AlexNet model so that 
this model is used to train the strawberry diseases 
and pest image dataset. An enhanced residual 
network G-ResNet50 is used to identify healthy 
strawberry plants, powdery mildew, strawberry 
anthracnose and leaf spot disease images in [6]. In 
[71], this study explored the recognition of 
common strawberry diseases using deep 
convolutional neural network technology. 
Moreover, it presented a new method based on the 
strawberry disease recognition algorithm of deep 
convolutional neural networks (DCNN). In [72], 
this study used a recent approach to build a system 
capable of detecting and classifying plant diseases. 
By analyzing and comparing previous works based 
on deep learning, we concluded that these studies 
mainly use two CNN architectures (AlexNet and 
GoogleNet). By evaluate state-of-the-art CNN 
architectures using a public plant disease dataset, 
the results of this evaluation clearly showed that we 
can improve accuracy using new CNN architectures 
such as InceptionV3, which achieved an accuracy 
of 99.76%. Furthermore, this study investigated 
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increasing the transparency of deep models using 
visualization techniques, introducing the saliency 
map method to locate infected regions of plants 
after disease identification. In [73], authors 
proposed a simple but effective strawberry disease 
detection system with unknown diseases that can 
produce reasonable performance. In [63], authors 
used a computer vision model based on the YOLO 
v5 architecture to perform real-time research on 
seven of the most common strawberry diseases. 
This model demonstrated effective disease 
detection with 92% accuracy. In [74], authors 
presented a plant disease detection model based on 
deep learning. This model is designed to identify 
different diseases from images of plant leaves. To 
develop this disease detector, a methodology steps 
was: first, data augmentation was carried out to 
expand the sample, then, a CNN, with multiple 
convolution and pooling layers, was employed. In 
[65], authors proposed a model based on Mask R-
CNN architecture that effectively performs instance 
segmentation for seven diseases. They used a 
ResNet backbone and follow a systematic approach 
to data augmentation that enables segmentation of 
target diseases under complex environmental 
conditions. Authors achieved a final average 
accuracy of 82.43%. In [75], authors trained a deep 
CNN to identify 14 crop species and 26 diseases (or 
lack thereof). The trained model achieved 99.35% 
accuracy, demonstrating the feasibility of this 
approach. In [76], authors presented a model for 
detecting strawberry leaf diseases. This research 
used AlexNet and GoogLeNet architectures to 
develop strawberry leaf disease detector based on 
dual-channel residual network with multi-
directional attention mechanism. 

 

5.2 Specific Disease Detection 

 
This research work in [68] developed a method for 
diagnosing powdery mildew disease on strawberry 
leaves based on RGB images using deep learning 
techniques. The optimized models such as AlexNet, 
SqueezeNet, GoogLeNet, ResNet-50, SqueezeNet-
MOD1 and SqueezeNet-MOD2 were subjected to 
exhaustive evaluation. To avoid over-fitting and to 
take into account the variability of leaf shapes and 
orientations in the field, data augmentation was 

carried out using 1450 photos of healthy and 
diseased plants. The used six deep learning 
algorithms presented an overall average 
classification accuracy exceeding 92%. ResNet-50 
stood out by achieving a classification accuracy of 
98.11% to distinguish healthy leaves from infected 
leaves. However, considering the processing time, 
AlexNet processed 2320 images with a 
classification accuracy of 95.59% in just 40.73 
seconds. Due to its performance with classification 
accuracy of 92.61% and memory requirements for 
hardware deployment, SqueezeNet-MOD2 is 
recommended for particle detection on strawberry 
leaves. Although ResNet-50 achieved statistically 
higher classification accuracy (98.11%), the other 
methods did not show a notable difference in 
classification accuracy. SqueezeNet-MOD2 turned 
out to be the least demanding in terms of hardware 
memory. ResNet-50 was the slowest in processing 
the 2320 photos, requiring 178.20 seconds, while 
AlexNet was the fastest, taking just 40.73 seconds. 
The CNN algorithms tested exhibited significantly 
different processing times, with AlexNet and 
SqueezeNet-MOD2 being the fastest. 
A recent study used deep learning networks, 
including UNet, to detect the presence and assess 
the severity of gray mold on strawberries [66]. 
Three groups of strawberries were inoculated with 
different levels of the pathogen. Using an RGB 
camera, symptoms were recorded on leaves non-
invasively. A set of 400 leaf images was divided 
into training and testing sets. The model was 
trained and evaluated with five cross-validations. 
UNet showed an accuracy rate of 82.12%, low 
memory usage (~22 MB), and fast test times (0.2 s 
per frame on a standard computer). Incorporating 
VGG16's pre-trained convolutional layers improved 
the performance of the XGBoost classifier. The 
researchers concluded that UNet's performance is 
superior due to the concatenation of feature maps 
from the encoder and decoder, as well as the 
network's ability to detect fine image details. The 
decoder ensures that the input and output images 
have the same dimensions, facilitating the 
calculation of disease severity. 
In [77], authors described the development of 
convolutional neural network models to detect and 
diagnose plant diseases from simple images of 
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healthy and diseased leaves using deep learning 
techniques. The models were trained with an open 
database of 87,848 images, including 25 plants in 
58 different classes of [plant, disease] 
combinations, including healthy plant samples. The 
highest performers achieved a success rate of 
99.53%. In another investigation [80], the UNet 
architecture was employed to assess the impact of 
fungal diseases on plant leaves. Research conducted 
by Kim et al. [81] used a standardized deep neural 
network to detect fungal diseases on strawberry 
leaves. Disease categories include leaf spot, leaf 
blight, leaf blight, and a category where leaf blight 
and leaf blight coexist. Their method achieved 98% 
classification accuracy, 97% precision, 95.7% 
recall, and 96.3% F1 score. Previous research [82] 
used multi-task learning and attention networks to 
detect verticillium wilt in strawberries. This study 
presents a technique for identifying verticillium 
wilt in strawberry images, using faster R-CNN and 
multi-task approaches. Hu et al. [83] developed a 
CNN model using deep metric learning to classify 
known and unknown diseases in strawberry leaf 
samples. 
 

Table 4. Summary of applications of deep learning 
algorithms used for strawberry disease detection from the 

reviewed studies 

Category Parameters 
Used tools and 

techniques 

Disease 
detection 

 

Multiple 
classes 

AlexNet  [69,70] 
Improved ResNet50  [6] 
DCNN [71] 
AlexNet, DenseNet-169, 
Inception v3, ResNet-
34, SqueezeNet-1.1 
andVGG13 [72] 
GoogLeNet model, 
Resnet50, and VGG 16 
[67] 
DNN (PlantNet) [73] 
YOLO  [63] 
CNN (a location 
network, a feedback 
network, and a 
classification network) 
[74] 
Mask R-CNN [65] 
CNN [75] 

AlexNet and 
GoogLeNet  [76] 

Fungal leaf 
disease 

Multi-directional 
Attention Mechanism-
Dual Channel Residual 
Network [77] 
DCNN [78] 
DCNN [79] 
UNet [80] 
CNN, VGG 16, 
GoogleNet, and  Resnet 
50 [81] 

Gray mold 
disease 

UNet [66] 

Verticillium 
Wilt 

Faster R-CNN and 
multi-task learning [82] 

Powdery 
mildew 
disease 
detection 
(Leaf) 

AlexNet, SqueezeNet, 
GoogLeNet, ResNet-50, 
SqueezeNet-MOD1, and 
SqueezeNet-MOD2. 
[68] 

Known and 
unknown 
diseases 

Deep Metric Learning-
Based KNN Classifier 
[83] 

 

6. DISCUSSION 

Recent research in strawberry disease detection has 
shown significant advancements through the use of 
deep learning algorithms, particularly convolutional 
neural networks (CNNs). Several studies have 
proposed innovative approaches to improve the 
accuracy and speed of detection, addressing specific 
challenges such as the variety of diseases and the 
conditions in which images are captured in real-
world environments. 

The study by [68] demonstrated that architectures 
such as AlexNet, ResNet50, and SqueezeNet can 
effectively diagnose specific diseases like powdery 
mildew. Although ResNet50 achieved the highest 
accuracy at 98.11%, it was slower in processing 
images, which can be problematic for real-time 
applications. On the other hand, AlexNet, while 
slightly less accurate, processed images much 
faster. This highlights a common trade-off in 
disease detection systems: the balance between 
accuracy and speed, especially critical for real-time 
applications where quick detection is essential to 
prevent large agricultural losses. 

Furthermore, the approach proposed by [63] using 
YOLOv5 for real-time detection of seven common 
strawberry diseases is notable for its efficiency, 
achieving 92% accuracy. However, while YOLOv5 
shows promise, its performance is constrained by 
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the complexity of real-world environmental 
conditions and the challenge of generalizing to 
diseases not included in the training dataset. 

More recent architectures, such as UNet, used in the 
study by [66], have proven their ability not only to 
detect diseases but also to assess their severity. This 
approach is particularly valuable for enabling 
farmers to prioritize treatments based on the 
severity of infections. UNet’s ability to capture fine 
details in images is a significant advantage for real-
time monitoring, although it comes at the cost of 
higher memory usage and computational resources. 

Some studies, such as [67], also focused on image 
segmentation to isolate infected areas using models 
like Mask R-CNN. These techniques not only detect 
the presence of diseases but also precisely segment 
the affected regions. However, while Mask R-CNN 
demonstrated good performance with an accuracy 
rate of 82.43%, its complexity may limit its 
deployment in resource-constrained environments, 
such as in-field systems used by farmers. 

In summary, previous studies have shown that 
different CNN architectures have their own 
strengths and weaknesses. Models like AlexNet and 
SqueezeNet offer speed and lightweight 
architecture, making them suitable for real-world 
conditions, whereas more complex architectures 
like ResNet50 or Mask R-CNN provide higher 
accuracy but require more computational and 
memory resources. For practical use, especially in 
agricultural environments where quick data 
processing is essential, a trade-off between these 
factors is often necessary. Future approaches must 
not only focus on improving accuracy but also 
consider the feasibility of models in environments 
where speed and resource efficiency are critical. 

 

7. EVALUATION METRICS 

 
Metrics for evaluating strawberry disease detection 
algorithms must be carefully adapted to the 
particularities of this complex task. Symptom 
variability is one of the major challenges where 
disease signs can vary widely depending on many 
factors such as; the type of pathogen, weather 
conditions, stage of plant development, and other 
environmental variables. Metrics must therefore be 
sensitive to this variability and be able to 
understand the diversity of disease manifestations. 
There are different evaluation metrics to measure 
the performance of machine learning algorithms 

[84]. Some focus on evaluating each individual 
class prediction, while others evaluate the overall 
predictive performance. This section highlights 
several of these metrics, including confusion 
matrix, precision, recall, F1 score, average 
precision, and mean average precision which are 
specifically designed to accurately evaluate the 
performance of each class prediction whether for 
image classification, object detection, or instance 
segmentation. 
 

7.1 Confusion Matrix 

 
The Confusion Matrix, also known as a 
contingency table, constitutes a fundamental tool in 
the field of machine learning for visualizing the 
results of predictive analysis [85]. Although it is 
widely used in data science, data mining and 
statistical analysis, its main role is in evaluating the 
performance of a model during a classification task. 
Unlike other performance indicators, the confusion 
matrix is not limited to displaying accuracy. Indeed, 
it offers a more in-depth view of the performance of 
the classifier by comparing the real values to the 
values predicted by the model. This comparison 
helps visualize metrics such as precision, accuracy, 
recall, specificity, sensitivity, and f1-score. 
By providing a detailed view of error types and 
their occurrences, the confusion matrix allows 
classification results to be analyzed more 
comprehensively. Thus, it distinguishes correctly 
classified examples from incorrectly classified 
examples, classifying them into true positives (TP), 
false positives (FP), true negatives (TN), and false 
negatives (FN). This approach makes it possible to 
identify the strengths and weaknesses of the model 
precisely, thus facilitating its continuous 
improvement. Figure 5 shows the confusion matrix 
for binary classification problem. 

 TP (True Positive): A true positive occurs when 
a model correctly predicts a positive class. This 
means that the model's prediction is positive and 
the truth (or actual label) is also positive. 

 FP (False Positive): A false positive occurs when 
a model incorrectly predicts a positive class when 
the truth is actually negative. In other words, the 
model made a mistake by incorrectly classifying a 
negative example as positive. False positives are 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7194 

 

often associated with Type I errors in statistical 
tests. 

 FN (False Negative): A false negative occurs 
when a model incorrectly predicts a negative class 
when the truth is actually positive. This means that 
the model failed to detect a positive occurrence. 
False negatives are associated with type II errors in 
statistical tests. 

 TN (True Negative): In classification, a true 
negative occurs when the model correctly predicts a 
negative class. This means that the model's 
prediction is negative and the truth is also negative. 
True negatives represent correct predictions of 
negative examples by the model. 

 

 

Figure 5. The confusion matrix for binary 
classification problem [86] 

 

7.2 Precision, Recall, Specificity, Sensitivity, and 
F1-score 

 
To facilitate the interpretation of the Confusion 
Matrix and evaluate the performance of the model, 
different metrics can be employed; precision, recall, 
specificity, sensitivity, and f1-score 
 

Recall 

 
In the context of classification, recall [87], 
represents the percentage of positive examples that 
a model has correctly classified among all positive 
examples. It is calculated by dividing the number of 
true positives (TP) by the sum of true negatives 
(FN) and false negatives (FN). Sometimes called 
the success rate, recall measures the model's ability 
to correctly identify positive examples 
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

 

Precision 

 
Like recall, precision evaluates the percentage of 
positive examples. However, it focuses on data 
identified as positive by the model. In other words, 
it divides the total number of positive examples by 
the sum of true positives (TP) and false positives 
(FP). Precision quantifies the proportion of 
examples correctly identified among those 
identified as positive by the model [88]. 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 
 

Specificity 

 
Specificity measures the ability of the test to 
correctly identify true negatives among all true 
negative occurrences [89]. Mathematically, it is 
formulated as follows: 

Specificity =
TN

TN +  FP
 (3) 

 
Sensitivity 

 
Sensitivity measures the ability of the test to detect 
true positives among the set of truly positive items 
[90]. Mathematically, it is formulated as follows: 
 

Sensitivity =
TP

TP +  FN
 (4) 

 
F1-score 

 
The F1 score, also known as the F-measure, 
provides a combined measure of precision and 
recall through harmonic averaging. It is calculated 
by doubling the product of the two metrics, then 
dividing it by their sum. This metric is particularly 
useful for evaluating models where the balance 
between precision and recall is essential [91]. 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 
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 Overall Accuracy 
 
The Overall Accuracy (OA) is a metric that 
indicates the percentage of correctly mapped 
reference sites relative to the whole. It is usually 
expressed as a percentage, where 100% indicates 
perfect classification of all reference sites. To 
calculate it, we divide the total number of correctly 
classified pixels (which corresponds to the sum of 
the elements along the main diagonal) by the total 
number of reference pixels. OA is the primary 
metric used to evaluate classification accuracy [92, 
93]. 
 

𝑂𝐴

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(6) 

 
 Intersection over union (IoU) and Non-max 

Suppression 
 

Intersection over union (IoU) 
 

Intersection over Union (IoU) [94] represents a 
crucial metric in the evaluation of object detection 
algorithms. This metric, based on the Jaccard 
Index, evaluates the similarity between two data 
sets, often used to determine what constitutes 
"correct" or "incorrect" detection in object 
detection. 
In the process of object detection, the IOU 
measures the degree of overlap between the 
predicted bounding box and the actual ground 
bounding box. By dividing the intersection area 
between these two boxes by their union area, the 
IOU provides an indication of detection accuracy. 
This measurement thus makes it possible to 
evaluate the performance of detection algorithms 
by taking into account the spatial precision of the 
predictions in relation to the ground truths. 
 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

=  
|𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∩  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

|𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∪  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|
 

(7) 

 
Non-max Suppression 
 

Non-max Suppression is a technique utilized in 
object detection to eliminate redundant detections 

generated by object detection algorithms that 
produce multiple bounding boxes for the same 
object within an image [95]. Object detection 
algorithms typically produce confidence scores for 
each detected object, reflecting the algorithm's 
confidence level in the accuracy of the bounding 
box prediction. The process of Non-max 
Suppression involves several steps; eliminate all 
predicted boxes with confidence scores below a 
predetermined threshold set by the user, then Iterate 
through the list of predicted bounding boxes, then 
select the bounding box with the highest confidence 
score and use it to make a prediction, and then 
compare the IoU of this bounding box with every 
other predicted bounding box of the same class. If 
the IoU threshold exceeds the user-defined IoU 
threshold, discard it as a duplicated detection, and 
then remove the predicted bounding box from the 
list of bounding boxes. 
 
 Average Precision (AP) 

 
Average Precision (AP) is a measure used in the 
field of information retrieval and machine learning 
to evaluate the performance of classification or 
search models. It combines both recall and 
precision of classification or search results. In short, 
it represents the average of the precisions obtained 
after the recovery of each relevant element [96]. 
The average precision is a key performance 
indicator that seeks to eliminate dependence on 
selecting a confidence threshold value and is 
defined by the AP, which summarizes the Precision 
Recall Curve into a scalar value. Average precision 
is high when both precision and recall are high and 
low when either is low for a range of confidence 
threshold values. Additionally, the range for AP is 
between 0 and 1. 
There are two approaches generally used to find the 
area under the PR curve: The 11-point interpolation 
and the all-point interpolation. In the 11-point 
interpolation, the precision × recall curve's shape is 
condensed by averaging the maximum precision 
values at 11 evenly distributed recall levels ranging 
from 0 to 1, as given by: 
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𝐴𝑃ଵଵ =  
1

11
 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅)

ோ∈{,.ଵ,...,.ଽ,ଵ}

 (8) 

Where 

𝑃௧(𝑅) = max P൫R෩൯ (9) 

 
In this definition of Average Precision (AP), 
instead of utilizing the precision P(R) observed at 
each recall level R, AP is determined by 
considering the maximum precision P୧୬୲ୣ୰୮(R) 

where the recall value surpasses R, as shown in 
figure 6. In the all-point interpolation approach, 
rather than interpolating solely at 11 evenly spaced 
points, interpolation can be performed across all 
points in such a manner that: 

𝐴𝑃 =  න 𝑃(𝑅)𝑑𝑅

ଵ

ோୀ

 (10) 

𝐴𝑃 =  (𝑅ାଵ  − 𝑅)𝑃௧(𝑅ାଵ)



 (11) 

Where 

𝑃௧(𝑅ାଵ) = max P൫R෩൯ (12) 
 
 
 

 

 
 

Figure 6. Precision × Recall curves of points 
using the 11-point interpolation approach. 

 

Figure 7. Precision × Recall curves of points      
applying interpolation with all points 

 
In this case, rather than relying on precision 
observed at limited points, the Average Precision 
(AP) is calculated by interpolating precision at each 
level, considering the maximum precision where 
the recall value is greater than or equal to R୬ାଵ. 
 

 Mean Average Precision (mAP) 
 
Mean Average Precision (mAP) is a metric used to 
evaluate the accuracy of object detectors across 
classes in a specific database. The mAP simply 
corresponds to the average of the AP (Average 
Precision) across all classes [97]. 

mAP =
1

N
 AP୩



ୀଵ

 (13) 

 
With AP being the AP of the Kth class and N 

being the total number of classes evaluated. 
 

8. CONCLUSION 

 
This research has examined the application of deep 
learning techniques to the detection of strawberry 
diseases, contributing to the growing body of work 
aimed at improving agricultural productivity and 
disease management. By leveraging object 
detection models such as YOLO, SSD, and 
RetinaNet, this study has demonstrated the potential 
of advanced technologies to accurately identify 
diseases like anthracnose and powdery mildew in 
strawberry crops. 

 
While the results are promising, particularly in 
terms of precision and detection speed, there are 
still some limitations to consider. One of the key 
challenges identified is the variability in real-world 
conditions, such as lighting and environmental 
factors, which can impact the generalizability of the 
models. Additionally, the dataset used, while 
effective for training and testing, could benefit from 
further expansion to include more diverse disease 
images and different growth stages of the 
strawberry plants. 

 
Despite these challenges, the strengths of this work 
lie in its systematic approach to evaluating different 
object detection models, its use of state-of-the-art 
techniques such as transfer learning, and its 
practical implications for real-world agricultural 
use. Moving forward, future research should focus 
on addressing these limitations by expanding 
datasets, refining models, and exploring the 
integration of real-time monitoring systems to 
further enhance the economic benefits for farmers. 

 
In conclusion, this study provides a solid 
foundation for researchers and practitioners looking 
to implement deep learning in strawberry disease 
detection. It highlights the value of continued 
innovation in this field, paving the way for more 
robust and scalable solutions to be applied across a 
range of agricultural challenges. 
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