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ABSTRACT 

 
Assisting individuals with visual impairments in navigating their surroundings using technological equipment 
remains a challenging task due to challenges regarding movement, item and person identification, and 
engagement with the environment. Typically, these devices integrate sensors, visual mechanisms, and tactile 
or auditory feedback. This article proposes a vision system integrated with 3D audio feedback to improve 
navigation for the visually impaired people by providing a more intuitive knowledge of object placements 
along a path by modifying headphone sound level. This system consists of three primary components: firstly, 
depth calculation utilizing stereoscopic vision to generate a depth map; secondly, object recognition 
employing a YOLO neural network (CNN) for identifying common objects and Aruco tags for less common 
ones; and finally, the production of 3D audio based on the depth map and object locations. Subsequently, the 
user utilizes this spatial audio signal to navigate effectively. When an object is selected using voice 
commands, the system spell the detected objects names to provide users with direction and distance guidance. 
During real-world testing, this system has proven to be very helpful and precise in assisting visually impaired 
people with their navigation. 

Keywords: Visually Impaired, Navigation, Object Detection, 3D Sound, Stereoscopic Vision, Computer 
Vision, Neural Networks 

 
1. INTRODUCTION  
 

Developing autonomous navigation tools 
for visually impaired individuals remains a 
significant challenge, despite advances in 
technology. According to World Health 
Organization (WHO) statistics from 2015, 39 million 
people are blind, and 256 million have vision 
impairments that, if untreated, could lead to 
permanent blindness. Currently, the most widely 
used self-navigation aid for the visually impaired is 
still the white cane, which has seen limited 
enhancements, such as the addition of ultrasonic 
sensors. 

Despite innovations, including computer 
vision systems capable of recognizing path patterns 
[1], RFID systems detecting ground beacons for 
navigation assistance [2], and devices providing 
environmental information through tactile feedback 
on the tongue [3], precise navigation toward specific 
objects or destinations remains a largely unsolved 
issue. This paper focuses on addressing this gap by 

assisting visually impaired individuals in navigating 
toward specific objects or destinations along a route. 

The system proposed in this research 
introduces a portable solution that provides 
navigation instructions through an audio-based 
feedback system. It incorporates advanced 
technologies such as neural networks, stereoscopic 
vision for depth estimation, and image processing 
techniques. By leveraging well-established 
stereoscopic vision concepts, the system estimates 
the depth of objects using cameras. Common objects 
are detected using widely adopted deep neural 
network architectures [5-10], which have 
demonstrated high precision across various 
industries. For less common objects, locations, or 
directions, ArUco markers can be affixed to enable 
identification through image processing techniques. 
This allows visually impaired individuals (PVI) to 
receive real-time navigation guidance and 
information about their surroundings. 
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The device alerts users to obstacles in their 
path via auditory feedback, tapping into the naturally 
heightened sensory abilities of visually impaired 
individuals [4]. By delivering 3D audio messages, 
users can better understand the spatial relationship 
between themselves and surrounding objects, 
allowing for more intuitive navigation. 

This paper is structured as follows: Section 
2 details the implementation of the proposed system, 
Section 3 evaluates its performance through test 
cases, and Section 4 discusses the limitations of this 
work and suggests potential improvements for future 
iterations of the system. 

2. RELATED WORKS 

Multiple tools leverage computer vision 
technologies to assist blind individuals. For instance, 
TapTapSee, a mobile app [11], employs computer 
vision and crowdsourcing to describe images 
captured by blind users within about 10 seconds. 
Blindsight's Text Detective [12] utilizes optical 
character recognition (OCR) to identify and read text 
from camera-captured images. Facebook is in the 
process of developing image captioning technology 
to enable blind users to engage in conversations 
about pictures [13]. Baidu recently showcased a 
demo video of the DuLight project [14], hinting at 
concepts of scene description and recognition of 
people, currency, merchandise, and crosswalk 
signals. However, these tools primarily focus on 
specific functionalities rather than offering a 
comprehensive visual sense for the blind. Moreover, 
they do not utilize spatial sound techniques to 
enhance the user experience. 

In broader sensory substitution efforts, 
individuals like Daniel Kish, who is totally blind, 
have developed accurate echolocation abilities using 
"mouth clicks" for independent navigation tasks like 
biking and hiking [15]. Similarly, colorblind artist 
Neil Harbisson devised a device that translates color 
information into sound frequencies. The vOICe 
technology [16] takes an extreme approach by 
converting visual information into sound, 
associating height with pitch and brightness with 
loudness. However, these approaches are reported to 
involve challenging learning processes. In contrast, 
our approach utilizes visual recognition algorithms, 
enabling a more direct understanding of objects 
within a visual scene. 

Moreover, researchers have explored the 
use of 3D sound technology to assist the blind. One 
study [17] introduced a system that employs spatial 
audio to aid in discovering points of interest in large, 

unfamiliar indoor environments, such as shopping 
malls. Another initiative [18] attempted to integrate 
3D sound into GPS-based outdoor navigation. 
However, these approaches did not incorporate 
visual recognition techniques. The integration of 
object detection methods presents new possibilities 
for assisting indoor navigation among the blind and 
visually impaired [19]. 

A recent study proposes a novel deep 
learning-based approach to assist visually impaired 
individuals in identifying Indonesian banknotes, 
overcoming challenges related to varying 
denominations and imaging conditions. The system 
utilizes a Convolutional Neural Network (CNN) 
model specifically designed for banknote detection, 
incorporating modules for image capture, feature 
extraction, and classification. By leveraging a 
camera-based setup accessible via smartphones, the 
model achieved a high accuracy rate of 94.29% at the 
60th epoch, using optimized kernel sizes of 3x3 and 
2x2 for the convolutional layers. This approach 
demonstrates significant improvements over 
traditional methods, providing an efficient and 
accurate solution for real-time banknote recognition 
[37]. 

Understanding 2D images is a complex 
challenge in computer vision, extending beyond 
mere object identification to encompass scene 
comprehension. This capability is crucial for tasks 
like image captioning, visual question answering 
(VQA), and image retrieval. Recent advances have 
seen graph neural networks (GNNs) become integral 
to these tasks, providing a natural representation of 
object relationships within an image. A 
comprehensive survey reviews this evolving field, 
detailing various graph types, GNN models, and 
future directions. This survey is notable for being the 
first to focus extensively on the use of GNNs in 
image captioning, VQA, and image retrieval [38]. 

A recent study introduces a smart stick 
system designed to aid visually impaired individuals 
in navigating their surroundings. This system 
integrates multiple technologies—such as ultrasonic, 
infrared, and water sensors; alarm modules like 
buzzers and voice statements; and GPS/GSM 
systems—into a single device. The smart stick serves 
as a vision assistant, providing obstacle detection and 
location-tracking capabilities. The real-world tests 
showed positive results, achieving an average 
obstacle avoidance accuracy of 88.75%. The system 
offers a comprehensive solution for visually 
impaired people, combining all essential features to 
facilitate safer and more independent navigation 
[39]. 
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3. PROPOSED METHODOLOGY 

Multiple The primary goal of this system is 
to guide the PVI during navigation by delivering 
directional cues, contextual information about the 
locations visited, and information about the distance 
and type of objects in front of them in order to make 
their navigation smoother and more autonomous. 

Several queries concerning the 
functionality of the system arise in this context: 

1.  How the distance between the PVIs and the 
object is measured? 

2. What are the methods used for object 
identification? 

3. What are the mechanisms that facilitate 
communication between the PVIs and the 
system? 

4. How does the system effectively convey 
information to the PVI? 

 

In order to answer these important 
questions, the system is designed around three 
essential modules, as shown in following Figure: 

 
  

 
Figure 1: System Architecture 

 

1. Depth calculation, focuses on precisely 
determining an object's depth or distance from 
the user. 

2. Object detection: Employing advanced 
techniques, this module recognizes various 
objects within the user's surroundings. 

3.  System feedback through 3D audio: The system 
sends the user 3D audio messages in real time as 
feedback. 

These integrated modules collectively 
serve to enhance the navigation experience and 
provide invaluable assistance to PVIs. 

  This project centered around a 
system meant to process images in real time. To 
achieve this demand, an efficient setup is required to 
ensure that results are delivered on time. Several 
continuous operations must be carried out by the 
system at the same time 

Perform object detection using YOLO for 
particular classes, process video streams from two 
cameras, build depth maps, and detect Aruco 
markers. Originally designed for a Raspberry Pi 4, 
this vast number of procedures is a real challenge due 
to the platform's computing limitations. 

In this sense, the use of a parallel server 
with the Raspberry Pi 4 has been considered. The 
server will handle object detection using YOLO, 
while the Raspberry Pi 4 will focus on acquiring 
video streams, creating depth maps, and forwarding 
these streams to the server for object detection 
operations. This approach aims to overcome the 
processing limitations of the Raspberry Pi 4.  

 

However, Because of the time delays 
associated with sending and receiving data between 
the server and the Raspberry Pi 4, this method isn't 
optimal. Furthermore, users of this system will 
constantly  require a reliable and stable internet 
connection, which might not always be feasible in 
everyday life. Hence, this method does not ensure 
complete autonomy given the user's dependency on 
internet connectivity. 

The final explored and adopted solution 
involves using two Raspberry Pi 4 devices. The first 
is responsible for processing video streams and 



 Journal of Theoretical and Applied Information Technology 
15th October 2024. Vol.102. No. 19 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6969 

 

generating depth maps. It transmits these streams to 
the second Raspberry Pi 4 through a local network. 
The second Raspberry Pi 4 then handles object and 
Aruco marker detection in these video streams and 
finally relays the results back to the first Raspberry 
Pi 4, which, in turn, verifies the response from the 
second Raspberry Pi 4, compiles, and communicates 
to the PVI the necessary indications and information 
about objects, locations, and directions through 
binaural audio in the earphones. This method 
eliminates response delays, as both Raspberry Pi 
communicates within the same local network via an 
access points, without requiring an internet 
connection. In other words, these two Raspberry Pi 4 
devices act as local servers communicating with each 
other. This operational mode ensures real-time 
processing in this context. 

The hardware used for this project includes: 

 Two  Raspberry Pi 4 Model B 8GB 
 Two  Raspberry Pi Camera Module v2 
 One Earphone 

The following figure illustrates the data 
flow circulating through various system 
components: 

 

 
Figure 2: Current Data flow pipeline of our system 

 

3. DEPTH ESTIMATION 

Sections The perception of depth and 
distance concerning surrounding objects represents a 
crucial element in navigation, particularly for 
individuals with visual impairments. Spatial 
perception is vital to enable them to move safely and 
comprehend their environment. 

This system utilizes the concept of 
stereoscopy to generate a depth map. A stereoscopic 
imaging sub-system was created using two 
Raspberry Pi Camera Module v2 units. This 

stereoscopic camera is positioned on a head worn 
helmet to continuously capture images. 

The images captured by these two 
calibrated cameras are used as input for this module. 
To compute the disparity between each 
corresponding pixel in the two images, a semi-
automatic block correspondence approach is used 
[20]. 

These determined disparities are used to 
construct a depth map, which is then used to create 
the three-dimensional audio vector. To elaborate, the 
3D audio module receives a matrix comprising the 
depth, measured in centimeters, for each pixel. For 
further in-depth information on this topic, refer to 
[21]. 

4. OBJECT DETECTION 

4.1 Detecting Common Objects 
These We examine multiple detection 

systems, currently in use that have the ability to 
identify objects and assess them at different points in 
an image in order to effectively detect nearby 
objects. Using root filters, the Deformable Parts 
Model (DPM) [22] moves detection windows 
throughout the whole picture. Region proposal 
techniques are used by R-CNN [23] to produce 
potential bounding boxes in an image that is 
processed by ConvNets to categorize the content. 
The long test period, complex training process, and 
substantial storage capacity are no suppoted by our 
system. 

The proposed regions are max-pooled using 
Fast R-CNN [24], which also combines the ConvNet 
computation for each image proposal to output 
features of all the regions simultaneously. After the 
last layer of ConvNet, Faster R-CNN [25], which is 
based on Fast R-CNN, inserts a region proposal 
network. 

Both techniques increase accuracy while 
cutting down on computation times. These 
techniques still have quite complicated processes 
that are challenging to optimize. Given that this 
project requires real-time objective detection, in this 
project, we use the You Only Look Once (YOLO) 
model [19]. YOLO could efficiently provide 
relatively good objective detection with extremely 
fast speed. 

YOLO stands as a cutting-edge technology 
in real-time object detection methodologies. The 
initial iterations, namely YOLOv1, YOLOv2, and 
YOLOv3 [26][27][28], constituted the early 
versions. YOLOv2 specifically aimed to 
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substantially enhance accuracy. The last version is 
YOLOv8. 

Anchors for detection, a concept initially 
introduced in YOLOv2, were influenced by Faster 
R-CNN's methodology. Furthermore, YOLOv2 
integrated principles from Faster R-CNN, Batch 
Normalization [30], and Skip connections [31] as 
foundational components within its design. 

Evolved from its predecessors YOLOv1 
and YOLOv2, YOLOv3 emerged as a leading-edge 
approach in object detection. This iteration adopted 
Darknet-53 [28] as its backbone, departing from 
Darknet-19 [27]. It integrated multi-scale feature 
extractors (FPN) [32] and replaced Softmax 
classification loss with binary crossentropy loss. 

YOLOv4 [33] was introduced with the 
primary goal of enhancing the capabilities of 
YOLOv3. In contrast to Faster R-CNN, YOLO 
employs a distinctive methodology by employing a 
single neural network to process an entire image. 
This network divides the input into a S x S grid and 
detects within each cell, allowing bounding box 
predictions and associated confidences. 

The confidence scores represent the model's 
level of confidence that an object exists within a 
bounding box. When the model is confident, the 
confidence score, as shown in Equation (1), shows 
the accuracy of overlap between the ground truth 
(GT) and the model's predictions (pred). 

 

Confidence = Pr(Object) ∗ IoU (GT, pred)      (1) 

where Pr(Object) ∈ [0,1]. 

In the YOLO model for detection, every 
grid cell is responsible for predicting various values 
associated with the detected objects, including 
coordinates (x, y, h, w), Confidence scores, and C 
class probabilities. The x and y are the coordinates of 
the box's center, w and h are tits width and height 
respectively. 

We chose YOLO to detect everyday 
objects. However, when we examine its 
implementation on more limited devices such as the 
Raspberry Pi, we prefer the YOLOv4-tiny version 
due to its efficiency and optimized architecture. The 
Raspberry Pi 4, while a versatile and capable 
platform, has limitations in computational power and 
memory. YOLOv4, with its deeper architecture and 
higher parameter count, demands more processing 
capabilities and memory, making real-time inference 
challenging on this device. YOLOv4-tiny, on the 
other hand, addresses these constraints by offering a 

streamlined and lighter model without sacrificing 
significantly on performance. Its reduced complexity 
allows it to operate more efficiently on resource-
limited hardware like the Raspberry Pi 4, ensuring 
faster inference speeds while maintaining a 
reasonable level of object detection accuracy. This 
makes YOLOv4-tiny a pragmatic choice for 
practical implementations on the Raspberry Pi 4, 
where speed and responsiveness are crucial factors 
alongside the available computational resources. 

We developed a 37-layer CNN specifically 
designed for YOLOv4-tiny. Our method aligns with 
the YOLOv4 model specifications while notably 
reducing the overall weight of the final deep learning 
model. YOLOv4-Tiny incorporates several 
modifications from the original YOLOv4 
architecture, optimizing it for rapid execution on 
inexpensive embedded systems. 

Mainly, the convolutional layers within the 
CSP backbone undergo compression. Additionally, 
the YOLO layers have been condensed from three to 
two, accompanied by a decrease in the number of 
anchor boxes utilized for prediction. YOLOv4-tiny 
comprises three primary modules depicted in Figure 
3: CSPDarknet53-Tiny, the Feature Pyramid 
Network (FPN), and the YOLO Head. 

The CSPDarknet53-Tiny module functions 
as the main feature extractor, housing Convolutional 
blocks (Conv) and CSPBlocks. Within the 
Convolutional layers, batch normalization and 
activation functions are incorporated. Batch 
normalization serves to regulate the model, 
eliminating the necessity for dropout layers in the 
architecture to counter overfitting problems. Its 
function involves enhancing input normalization by 
establishing variance values. 

Leaky ReLU (Rectified Linear Unit) serves 
as the activation function. Within the Cross Stage 
Partial Network (CSPNet), the CSPBlock follows a 
systematic approach by dividing the Base layer's 
model into two segments. The initial part forms a 
residual edge, while the subsequent segment 
combines with the former, culminating in the final 
output after a sequence of convolutional operations. 

The Feature Pyramid Network (FPN) 
architecture is designed to amalgamate features from 
multiple network layers, retaining semantic content 
from deep networks and geometric details from low-
level networks. This strategy aims to enhance the 
capability of feature extraction. The YOLO Head 
serves as the architecture's concluding module 
responsible for generating feature output results. 
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In the context of a one-stage detector, the 
YOLO Head serves to perform dense predictions. 
These predictions consist of a vector encompassing 
the coordinates of the predicted bounding boxes 
(height, width, center), the associated label, and the 
confidence score, as illustrated in Eq. (2). Here, Pw 
and Ph denote the width and height of the bounding 
boxes, while (Cx, Cy) represents the coordinates of 
the image's top-left corner. 

 
𝑏𝑥 =  𝜎(𝑡௫) +  𝐶௫ 

 
𝑏𝑥 =  𝜎൫𝑡௬൯ +  𝐶௬ 

     
     (2) 

𝑏௪ =  𝑃௪  .  𝑒௧௪ 
 

𝑏 =  𝑃  .  𝑒௧ 
  

 

Figure 3: The architecture of YOLOv4-tiny Network 
 

Our system's object detection methodology 
is based on the use of YOLOv4-tiny. Initially, we 
created a model using pictures from COCO data [37] 
, focusing specifically on the chairs and doors for our 
tests. However, different kinds of objects can be 
added to the model as needed, increasing its 
recognition capability. 

We use one of the two images from the 
stereoscopic camera to do object detection. The size 
of the captured image is reduced to speed up the 
image detection and processing process. The 
detection process generates bounding boxes around 

identified objects. The coordinates of the center point 
within these bounding boxes serve to calculate the 
distance on the depth map. 

This distance measurement represents the 
user's distance to the detected object. Using this data, 
our system can calculate the distance between the 
user and the identified objects, providing critical 
information for PVIs navigation. 

 

 

 

 

 

 

 
 

 

 

Figure 4: Object Detection Pseudocode 
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4.2 Detecting Uncommon Objects and Places 
To detect certain objects not detectable by 

YOLO or to provide indications about locations for 
PVI, the system relies on the use of ArUco markers. 
These markers are placed on uncommon objects or 
on building facades and walls. Once the ArUco is 
scanned, the user of this system can know, through 
an audio message, the nature of the detected object 
or the name of the location. For example, if the 
system scans an ArUco placed on a pharmacy wall, 
it will inform the user by a vocal message  that 
designate this situation. Several use cases are 
proposed, such as placing these ArUco markers next 
to signage panels indicating gathering points, exits, 
or emergency stairs. This information is highly 
useful, and every visually impaired person should 
have access to this kind of information. 

ArUco markers are visual markers used in 
augmented reality and computer vision for precise 
object detection and tracking. They typically consist 
of black-and-white patterns with inner quadrilateral 
structures, enabling a camera to identify and 
determine their position and orientation in space. 

Each ArUco marker is associated with a unique 
identifier. These identifiers are generally encoded as 
binary or decimal numbers, depending on the library 
or tool used for marker detection. For example, an 
ArUco marker can be represented by a decimal 
number or in binary form with a sequence bit 
representing a specific identifier. 

 

 

Figure 5: Exemple of an ArUco used for an emergency 
door 

When the camera detects an ArUco marker, 
the corresponding identifier is interpreted by the 
system. For instance, an emergency exit sign could 
be represented by the unique identifier 13. This 
identifier is interpreted as an emergency exit, and a 
message indicating the nature of what is detected is 
conveyed to the PVI. 

Similar to YOLO detection, the position of 
the ArUco marker is used on the depth map image to 
determine the distance between the visually impaired 
person and the detected ArUco marker.  

 

Figure 6: A use case of an ArUco 

 
4.3 User Interaction 

Sections In order to optimize the system for 
everyday use, voice command capabilities have been 
integrated for controlling its operations. All program 
functions can be executed via voice commands. 

The stereoscopic camera continuously 
captures images. Real-time depth map calculation 
occurs at the client's end. Ones images captured from 
the two cameras are sent to the server for object 
detection. As a result,’position and name in the 
image, for each object, are then relayed back to the 
client. 

To activate audio feedback for object 
detection, users can simply say the word "scan" 
Upon identification of objects in the captured image, 
their names are audibly output. Table 2 delineates the 
user-issued voice commands and subsequent actions 
taken’. 

The recognition of audio commands is 
implemented using SpeechRecognition a Speech 
recognition module for Python [34], while the audio 
speech output is facilitated by utilizing … 

gTTS (Google Text-to-Speech) wich is a 
Python library and command-line interface (CLI) 
tool designed to interact with Google Translate's 
text-to-speech API. This tool enables users to 
convert text into spoken audio using Google's 
powerful text-to-speech technology [35].  Presently, 
only English is supported, thus limiting recognition 
accuracy for non-native speakers. Voice output 
guides users through individual steps of the program, 
such as informing them of a brief waiting period for 
object detection after taking a photo. Upon the return 
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of results, the system automatically announces the 
list of identified objects and their respective names. 

Table 1 contains two columns: the user-
issued voice commands, actions executed by the 
client: 

 
Table 1: User, client and server interaction. 

User Client 
“Scan” Reads list of objects 

aloud 
“Stop” Stop reading the list of 

objects aloud 
Says the object 

Name (Ex : Door) 
Announces distance and 

location of selected 
object 

 
 
5. 3D AUDIO FEEDBACK 

5.1 Processing the Detected Object Coordinates 
The 3D audio module aids in providing the 

virtual reality user with an intuitive feeling of the 
object's placement. The identified object's name and 
a vector denoting its position in 3D space are defined 
using values collected from previous modules. 

The returned position consists of two 
coordinates, x and y, corresponding to the object's 
coordinates on the captured image. 

The image, captured by the stereoscopic 
camera is divided into 6 zones, 3 horizontally and 3 
vertically. Each zone is defined by coordinates two 
points with coordinates (x1, y1), and (x2, y2). Each 
of these zones also bears a name representing its 
spatial position relative to the user. For instance, on 
figure 6, Zone 1 represents "top-left". 

 

 
 

Figure 7: Division of the captured image into 6 zones 

The module responsible for creating the 
binaural audio message checks in which zone this 
point lies. Determining if a point (x, y) is inside the 
bounding box corresponding.to one of the defined 
zones.  

Let's say a bounding box defined by it two 
points:  (Xmin,Ymin) for the bottom-left corner and  
(Xmax,Ymax) for the top-right corner. If a point ( 
X,Y) is inside the bounding box, the following 
conditions must be met: 

               𝑋  ≤ 𝑋 ≤  𝑋௫       (3) 
𝑌  ≤ 𝑌 ≤  𝑌௫  

For example, if a bounding box with 
(Xmin, Ymin) = (0, 0) and (Xmax, Ymax) = (213, 
160) is considered. Given a point (x, y) = (100, 110): 

Xmin = 0, Xmax = 213, Ymin = 0, Ymax = 160 

For the point (100, 110): 

0 ≤ 100 ≤ 213 (True) 
0 ≤ 110 ≤ 160 (True) 

The audio message will then indicate to the 
user that the object is located in the top-left zone. The 
value of the distance separating the object from the 
user is determined on the depth map based on the 
same point coordinates on the captured image. 

The following image shows an example of 
the detected ArUco marker at coordinates 100,110, 
located within the top-left bounding box. 

 

Figure 8: Detection of an ArUco marker's position 
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5.2 Normalization 
To generate a binaural sound, the system 

utilizes the Python package Librosa [36] . The 
position of the audio vector is determined using the 
coordinates of a point on the image, considering to 
the image center as the reference point from which 
the audio vector's position is calculated. 

In audio spatialization based on image 
coordinates, the goal is to simulate a sense of 
directionality or positionality within the audio 
experience. This process is akin to how one might 
perceive sound originating from different locations 
when observing an image or a scene. 

Normalization is the process of scaling the 
image coordinates, defined in the interval [0, 
640]x[0, 480] to fit within a specific range . This 
scaling ensures uniformity and consistency when 
interpreting these coordinates relative to the image 
dimensions. 

Not considering the position of a person 
with a visual impairment (PVI) leads to significant 
issues with the 3D audio vector. When assuming the 
user is positioned at (0, 0), the construction of the 
audio vector should ensure that any sounds 
originating from the user's left are represented with 
negative X values, while those from the PVI's right 
are denoted by positive X values. Consequently, the 
X coordinate domain was adjusted from [0, 640] to 
[-1, 1], and similarly, the Y coordinate was 
transformed from [0, 480] to [-1, 1] to maintain 
consistency in representation. 

Horizontal panning corresponds to the left-
right positioning of sound sources. By using the 
normalized x-coordinate, the code calculates a 
horizontal panning factor. This factor determines 
how much the sound will be positioned to the left or 
right channels in the stereo audio. 

Vertical panning relates to the up-down 
positioning of sound sources. However, in the audio 
world, the convention often inverts the vertical axis 
compared to the image coordinate system. Therefore, 
the code inverts the normalized y-coordinate to align 
with this convention. The resultant vertical panning 
factor controls the up-down placement of sound in 
the stereo audio. 

Once the horizontal and vertical panning 
factors are calculated, the code adjusts the gains 
(loudness levels) of the left and right audio channels 
accordingly. For instance, a higher gain in the left 
channel relative to the right channel will position the 
sound more to the left in the stereo field, creating a 
sense of directionality. 

By combining these gains in varying 
proportions based on both the horizontal and vertical 
factors, the code effectively spatializes the audio, 
creating a stereo signal that simulates a specific 
audio location corresponding to the image 
coordinates. 

After manipulating the gains for each 
channel, the resulting signals for the left and right 
channels are combined to form a stereo spatialized 
audio signal. This stereo signal, when played through 
stereo speakers or headphones, recreates the illusion 
of the sound originating from a particular location in 
the listener's auditory space, corresponding to the 
specified image coordinates. 

This spatialization technique provides a 
means to immerse the listener in a more realistic 
audio environment, aligning with the visual content 
observed in the image by positioning audio sources 
according to their relative positions within the image 
frame. 

When a sound from the resulting audio 
vector is played, users will perceive the sound's 
origin as the object's location. This perception often 
prompts a natural inclination in PVIs to move 
towards the source of the sound. The audio message 
conveys the object's name, its distance in centimeters 
from the user, and its spatial position in front of the 
user, such as "top-left" as an example. Figure 8 show 
the visualization of the normalized vector of the 
point with the coordinate (100,110):  

 

Figure 9: 3D Audio Vector Visualization 

 

6. RESULTS AND DISCUSSION 

To test this system, various experiments 
were conducted using YOLOv4-tiny and ArUco for 
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detection purposes. Figures 9, 10, and 11 display 
tests conducted with YOLOv4-tiny on a chair 
positioned to the left, in front, and to the right of the 
camera. Figures 12, 13, and 14 depict depth maps 
obtained from each of these three tests. 

Additionally, experiments with ArUco 
involved placing markers to the left, in front, and to 
the right of the camera. Test results are depicted in 
figures 15, 16, and 17.  

The results indicate that the system is robust 
and accurate, aligning with the predicted audio 
vector. 

As an improvement, one can consider 
encapsulating the system's components in a plastic 
casing, reducing the device's weight by opting for a 
more compact battery, or even disconnecting it from 
the rest of the system. Another intriguing possibility 
would be to shrink the device in size to transform it 
into a pair of glasses equipped with a camera on each 
side. 

 

Figure 10: Object is located in front of the camera (Test 
1) 

 

Figure 11: Object is located to the left of the camera 
(Test 2) 

 

Figure 12: Object is located to the right of the camera 
(Test 3) 

 

Figure 13: Depth map from test 1 
 

 

Figure 14: Depth map from test 2 
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Figure 15: Depth map from test 3 

 

 

Figure 16: ArUco is located in front of the camera (Test 
4) 

 

 

Figure 17: ArUco is located to the left of the camera 
(Test 5) 

 

 

Figure 18: ArUco is located to the right of the camera 
(Test 6) 

 
Table 2: Results from test 1, 2 and 3 using yolov4-tiny. 

 Test 1 Test 2 Test 3 

Average 
Depth 

373,19 
cm 

369,92 
cm 

370,32 
cm 

Image 
Coordinates 

(X, Y) 
(331,271) (186,269) (488,272) 

Normalized 
Audio 
Vector  
(X, Y) 

(0.034,  
-0.129) 

(-0.418, 
 -0.120) 

(0.524, 
 -0.133) 

Position 
Center 

(Zone 5) 
Left 

(Zone 4) 
Right 

(Zone 6) 

 
Table 3: Results from test 4, 5 and 6 using ArUco. 

 Test 4 Test 5 Test 6 

Average 
Depth 

213,48 
cm 

193.74 
cm 

175.36 
cm 

Image 
Coordinates 

(X, Y) 
(324,286) (159,314) (472,256) 

Normalized 
Audio 
Vector 
 (X, Y) 

(0.012, 
 -0.191) 

(-0.503,  
-0.308) 

(0.475, 
 -0.066) 

Position 
Center 

(Zone 5) 
Left 

(Zone 4) 
Right 

(Zone 6) 

 

The graphs illustrating the 3D audio vectors 
from these test scenarios are presented in Figures 17 
and 18. A comparison of these graphs reveals the 
model's proficiency in mapping the user's position in 
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relation to the target object for navigation, 
demonstrating a notably precise representation. 

 
Figure 19: Visual representations for test cases 1, 2, and 

3 through the utilization of YOLOv4-tiny  

  
Figure 20: Visual representations for test cases 1, 2, and 

3 through the utilization of ArUco. 
 

7. CONCLUSION 

This article presents a vision system 
integrated with a 3D auditory feedback mechanism 
designed to assist individuals with visual 
impairments in navigation. By utilizing spatial 
sound, the system fosters a more intuitive 
understanding of object locations. The combination 
of convolutional neural networks, ArUco Detection, 
and stereoscopic vision demonstrates the system's 
effective navigation capabilities across diverse 
environments. 

 
The model's reliability is evidenced by the 

robust performance indicated by the 3D audio 
vector. While the current implementation employs 
YOLOv4-tiny, which offers less accuracy compared 
to the standard YOLO version, there remains 

significant potential for enhancement through the 
use of alternative computational platforms that could 
improve both speed and precision. 

 
This research primarily focuses on chairs, 

which may limit the broader applicability of our 
findings. To address this limitation, future work will 
explore the integration of a trajectory planning 
algorithm and the diversification of the neural 
network's training data to include a wider array of 
objects, thereby enhancing overall system 
performance. In conclusion, our findings mark a 
crucial advancement toward developing effective 
navigation tools for visually impaired individuals, 
while also highlighting opportunities for future 
enhancements to broaden the system's impact. 
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