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ABSTRACT 
 

The automatic identification of fish species plays a crucial role in various fields such as conservation biology, 
fisheries management, and biological research. Convolutional Neural Network (CNN) methods have become 
an effective solution for automating this process from digital images. However, achieving high accuracy 
requires careful consideration of factors such as the amount and quality of data, image processing methods, 
feature extraction techniques, classification algorithms, and optimization methods. This study addresses these 
challenges by proposing a CNN model optimized using the FOX algorithm to select the best augmentation 
method. The results show that selecting the appropriate augmentation techniques, such as Kmeans Color 
Quantization, Horizontal Flip, Voronoi, Elastic Transformation, and Contrast Normalization, can 
significantly improve fish species recognition accuracy up to 98.75% during training. The proposed model 
also demonstrated strong generalization capability, with a validation accuracy of 96.90%, indicating minimal 
overfitting. Although it requires intensive training time, this approach proves highly effective for applications 
demanding high accuracy and good generalization, thus enhancing the understanding and management of 
marine ecosystems in support of sustainable fishing practices. 

Keywords: Fish Image Classification, Convolutional Neural Network, Augmentation, Feature Selection, 
FOX Optimization Algorithm 

 
1. INTRODUCTION  
 

The development of species identification 
techniques, including fish identification, plays a 
crucial role in various fields such as nature 
conservation, fisheries management, and biological 
research. Accurate fish species recognition is a vital 
first step in understanding marine ecosystems and 
ensuring the sustainability of fishery resources. With 
advances in technology, computational approaches, 
particularly Convolutional Neural Networks (CNN), 
have proven to be an effective solution for 
automating the fish species identification process 
from digital images [1]. 

Several studies have explored the automation of 
fish species recognition using artificial intelligence 
techniques, with the majority relying on CNN 
methods. However, differences in recognition 
performance across studies indicate that system 
effectiveness is highly dependent on factors such as 
the quantity and quality of data, image processing 
methods [2], feature extraction techniques [3]–[9], 

the classification methods used, and optimization 
strategies to achieve optimal performance [10]. 
While many studies utilize underwater 
environmental data, few consider the impact of these 
environments when developing methods [11]. 

There is a limited number of studies that leverage 
data affected by underwater environmental 
conditions. Salman et al. [12] proposed a CNN-based 
approach combined with an SVM classifier to 
recognize 10 fish species, using 19,868 images from 
the fish4knowledge dataset, achieving an accuracy 
of 93.65%. A similar study by Qin et al. [13], using 
the same methods and dataset, attained an accuracy 
of 98.13% with 11,724 images from 23 fish species. 
Siddiqui et al. [1], unlike Salman et al. [12] and 
Hsiao et al. [14], applied a general feature detector 
before using CNN and used data influenced by 
underwater conditions rather than fish4knowledge 
data. Siddiqui et al. [1] compared their results with 
previous studies and achieved an accuracy of 94.3%, 
surpassing the performance of both Salman et al. 
[12] and Hsiao et al. [14]. 
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Key challenges frequently discussed in fish 
species recognition include data heterogeneity and 
the influence of underwater environmental 
conditions on the data [1], [12]–[14]. The 
fish4knowledge dataset has been widely used due to 
its size and diversity, yet many methods do not 
adequately address the impact of underwater 
environments. Typically, these approaches involve 
feature extraction followed by classification methods 
for fish species recognition. Enhancing image 
quality and improving feature processing are critical 
for boosting recognition accuracy. Thus, both stages 
are essential to achieving high accuracy in fish 
species identification. 

This study emphasizes the importance of image 
quality in improving fish identification accuracy. 
The proposed method utilizes a CNN optimized with 
the FOX algorithm for augmentation selection, 
carefully considering the impact of underwater 
environmental conditions. This results in a more 
robust and practical model for real-world 
applications, enhancing our understanding of marine 
ecosystems. The implications of this research extend 
to fields such as environmental monitoring, fishery 
resource conservation, and sustainable fisheries 
management, supporting the blue economy concept, 
which emphasizes the balance between marine 
resource use and conservation. 

2. RELATED RESEARCH 

Various studies [11], [12], [14]–[19] have 
examined fish species recognition, though few have 
utilized data influenced by underwater 
environmental conditions, such as in the research by 
Spampinato et al. [15], [18], Hsiao et al. [14], Boom 
et al. [17], Huang et al. [19], Salman et al. [12], Qin 
et al. [13], and Siddiqui et al. [1]. Spampinato et al. 
[15] employed artificial intelligence to recognize 13 
fish species from 3,179 fish4knowledge images. 
Shape features were extracted using the invariant 
moment method, while texture features were derived 
from HOG, GLCM, Gabor filters, and Fourier 
descriptors. These feature combinations were 
classified using SVM, resulting in an accuracy of 
86.32%. Boom et al. [17] used similar features and 
data but proposed BGOT classification based on 
SVM to address data imbalance, achieving a 
performance of 97.21%, surpassing Spampinato et 
al. [15]. Boom et al.'s [17] work was continued by 
Huang et al. [19], who added a Gaussian Mixture 
odel (GMM). Tested on the fish4knowledge dataset 
with 24,150 images of 15 fish species, Huang et al. 
[19] achieved a 95% accuracy rate.  

Hsiao et al. [14] used the fish4knowledge dataset 
with modifications to eigenfaces and fisherfaces, 
followed by sparse representation-based 
classification, achieving an accuracy of 81.8% on 
1,000 images of 25 fish species. However, this study 
[14] did not compare its results with other 
classification methods from previous research. 
Spampinato et al. [18] proposed a different approach 
using SIFT and LTP feature extraction methods with 
SVM classification on the fish4knowledge dataset. 
The data consisted of 24,441 training images and 
6,956 test images, achieving 91% precision. Salman 
et al. [12] utilized CNN and SVM to recognize 10 
fish species from 19,868 fish4knowledge images, 
reaching 93.65% accuracy. Qin et al. [13] employed 
the same methods and data, achieving 98.13% 
accuracy from 11,724 fish images. Siddiqui et al. [1] 
applied a generalized feature detector before CNN 
on underwater data, achieving an accuracy of 94.3%, 
surpassing Salman et al. [12] and Hsiao et al. [14]. 

The key challenges in fish species recognition 
include data heterogeneity and the effects of 
underwater environments. Common methods 
involve feature extraction and classification but 
often fail to account for the impact of underwater 
conditions. Improving image quality and feature 
extraction processes is crucial for enhancing fish 
species recognition accuracy, as both are 
interrelated. Therefore, this study focuses on 
improving image quality through the selection of the 
best augmentation method. 

 

Figure 1: Proposed Research 

3. PROPOSED RESEARCH 

4. This study presents a novel approach to fish 
species identification by integrating a Convolutional 
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Neural Network (CNN) with the FOX optimization 
algorithm to select the most effective augmentation 
method, where the CNN evaluates the results of the 
FOX algorithm's fitness function based on accuracy, 
aiming to enhance fish recognition performance 
through the combination of advanced AI techniques 
and swarm-based optimization, as depicted in Fig 1. 

3.1 Data Collection 
Fish image data is collected from the public 

fish4knowledge dataset. This dataset includes 
27,370 verified images extracted from live video, 
divided into 23 image labels [20]. The images depict 
variations in components, number, and shape of fins. 
The dataset is highly imbalanced, with the most 
frequently detected species appearing approximately 
1,000 times more often than the least detected 
species [21]. Table 1 and 2 illustrates an overview of 
the fish4knowledge dataset. 

Table 1. Dataset Fish4Knowledge 

  
Fish_01 Fish_02 Fish_03 Fish_04 

Fish_05 Fish_06 Fish_07 Fish_08 

  
Fish_09 Fish_10 Fish_11 Fish_12 

  
Fish_13 Fish_14 Fish_15 Fish_16 

 
Fish_17 Fish_18 Fish_19 Fish_20 

 
 

Fish_21 Fish_22 Fish_23 
 

3.2 Augmentation 
This study utilizes 60 augmentation methods from 

the Python "imgaug" package, including horizontal 
flipping, random cropping, and color space 
augmentation [22]. Only a specific subset of various 
image processing techniques from the library is 
employed in this research. The best augmentation 
methods are selected from Table 3 using the FOX 
Optimization Algorithm, which identifies the top 
five combinations from all available options. 

Tabel 2. Dataset Fish4Knowledge 

ID Species Total images 

1 Dascyllus reticulatus 12112 

2 Plectroglyphidodon dickii 2683 

3 Chromis chrysura 3593 

4 Amphiprion clarkii 4049 

5 Chaetodon lunulatus 2534 

6 Chaetodon trifascialis 190 

7 Myripristis kuntee 450 

8 Acanthurus nigrofuscus 218 

9 Hemigymnus fasciatus 241 

10 Neoniphon sammara 299 

11 Abudefduf vaigiensis 98 

12 Canthigaster valentini 147 

13 Pomacentrus moluccensis 181 

14 Zebrasoma scopas 90 

15 Hemigymnus melapterus 42 

16 Lutjanus fulvus 206 

17 Scolopsis bilineata 49 

18 Scaridae 56 

19 Pempheris vanicolensis 29 

20 Zanclus cornutus 21 

21 Neoglyphidodon nigroris 16 

22 Balistapus undulatus 41 

23 Siganus fuscescens 25 

* source: Fish4Knowledge [20] 

 
3.3 FOX Optimization Algorithm 

The FOX optimization algorithm begins by 
initializing a population X, which represents the 
positions of the foxes. The fitness of each agent is 
calculated using a benchmark function. The 
BestFitness and BestX values are determined by 
comparing the fitness of all agents during each 
iteration. To maintain a balance between exploration 
and exploitation, a random variable is used to 
allocate iterations between these two phases within 
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the FOX algorithm. This variable assigns a 50% 
probability for either exploration or exploitation, 
helping to prevent the algorithm from getting trapped 
in local optima. The variable aaa is used to enhance 
the search performance by reducing its value with 
each iteration based on BestX. Position updates are 
influenced by the fitness function, which helps 
agents avoid local optima. If the new position 
remains unchanged, the exploration phase is 
disabled, allowing the exploitation phase to take 
over, ensuring efficient convergence. 

Table 3. Augmented Method 

No Methods No Methods 

1 
Affine (Rotasi, Skala, 
Translasi) 

31 Speckle Noise 

2 Horizontal Flip 32 Glass Blur 
3 Vertical Flip 33 Defocus Blur 

4 
Contrast 
Normalization 

34 Zoom Blur 

5 
Elastic 
Transformation 

35 Fog 

6 
Kmeans Color 
Quantization 

36 Frost 

7 Superpixels 37 Snow 
8 Voronoi 38 Spatter 
9 Uniform Voronoi 39 Contrast 

10 
Regular Grid 
Voronoi 

40 Brightness 

11 
Relative Regular 
Grid Voronoi 

41 Saturate 

12 Gaussian Blur 42 Pixelate 

13 Average Blur 43 
Elastic 
Transform 

14 Median Blur 44 Solarize 
15 Motion Blur 45 Equalize 
16 Mean Shift Blur 46 Auto contrast 
17 Gamma Contrast 47 Enhance Color 

18 Sigmoid Contrast 48 
Enhance 
Contrast 

19 Log Contrast 49 
Enhance 
Brightness 

20 Linear Contrast 50 
Enhance 
Sharpness 

21 All Channels Clahe 51 Filter Blur 
22 Clahe 52 Filter Smooth 

23 
Histogram 
Equalization 

53 
Filter Smooth 
More 

24 Sharpen 54 
Filter Edge 
Enhance 

25 Emboss 55 
Filter Edge 
Enhance More 

26 Edge Detect 56 
Filter Find 
Edges 

No Methods No Methods 
27 Directed Edge Detect 57 Filter Contour 
28 Gaussian Noise 58 Filter Emboss 
29 Shot Noise 59 Filter Sharpen 
30 Impulse Noise 60 Filter Detail 

3.3.1 Exploitation 
During the exploitation phase, if the random 

variable 𝑝 is greater than0.18, the fox searches for a 
new position to capture its prey. For this, the distance 
traveled by the sound DistSTit the distance between 
the fox and the prey DistFoxPreyit, and the jump 
value Jump. The sound travel time TimeSTit is 
determined randomly within the range of 0 to 1. The 
sound distance from the fox is calculated by 
multiplying the speed of sound in air  (SpS = 343 
m/s) by TimeSTit [23], as shown in Equation (1). The 
number of iterations ranges from 1 to 500. Another 
equation calculates the speed of sound SpS based on 
the best position BestPositionit n the search 
population, as per Equation (2). 

𝐷𝑖𝑠𝑡𝑆𝑇𝑖𝑡 = 𝑆𝑝𝑆 × 𝑇𝑖𝑚𝑒𝑠𝑆𝑇𝑖 (1) 

𝑆𝑝𝑆 = ൬
𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑡

𝑇𝑖𝑚𝑒𝑆𝑇௜௧

൰  (2) 

To calculate the sound distance, Equation (3) is 
used. As a result, the distance between the fox and 
its prey, DistFoxPreyit can be computed using 
DistSTit in Equation (4). n physics, when calculating 
the distance between a sensor and an object, the 
sound distance is halved because the sensor is 
positioned halfway along the path traveled by the 
sound wave [23]. The sensor both sends and receives 
the sound wave signal, so the sound travel time is 
multiplied by 0.5 or divided by two. This operation 
accounts for the fact that only half of the sound 
wave's journey is relevant..  

𝐷𝑖𝑠𝑡𝐹𝑜𝑥𝑃𝑟𝑒𝑦௜௧ = 𝐷𝑖𝑠𝑡𝑆𝑇௜௧ × 0.5 (3) 

𝐷𝑖𝑠𝑡𝑆𝑇௜௧ = 𝑆𝑝𝑆 × 𝑇𝑖𝑚𝑒𝑆𝑇௜௧  (4) 

After determining the distance between the fox 
and its prey, the fox needs to calculate the jump 
height Jumpit using Equation (5) to find a new 
position that allows it to leap and capture the prey. 

𝐽𝑢𝑚𝑝௜௧ = 0.5 × 9.81 × 𝑡ଶ (5) 

The acceleration due to gravity is 9.81, and t 
represents the average sound travel time, squared 
due to the jump step. The transition time tt  is 
calculated from TimeSTit with t being half of tt 
multiplied by 0.5. Gravitasi and t are then multiplied 
by 0.5 to calculate the jump height Jump along with 
the distance between the fox and the prey 
DistFoxPreyit and a constant c1. 

The value 9.81 represents the acceleration due to 
gravity, and t is the average time taken by the sound 
wave, squared because of the upward and downward 
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steps involved in the jump. The transition time tt is 
calculated by dividing the sum of  TimeSTit by the 
number of dimensions. Equation (8) shows the 
calculations for tt and MinT. The average time t is 
found by dividing tt by 2. Gravity and the average 
time are multiplied by 0.5 because the jump requires 
two different times for ascent and descent. The jump 
value Jump is then multiplied by the distance 
between the fox and prey DistFoxPreyit and a 
constant c1. The variable c1 ranges between [0, 0.18] 
when the fox jumps in the northeast direction.. 

𝑋௜௧ାଵ = 𝐷𝑖𝑠𝑡𝐹𝑜𝑥𝑃𝑟𝑒𝑦௜௧ × 𝐽𝑢𝑚𝑝௜௧ × 𝑐ଵ (6) 

Equations (6) and (7) are used to determine the 
fox’s new location. Only one of these equations is 
executed in each iteration, depending on the 
condition of p. The main difference lies in the second 
part of the condition for p in Equation (5). If  p>0.18, 
Equation (5) is multiplied by c2 instead of q. If 
p≤0.18,  the new position is calculated using 
Equation (7). The range of c2  is between [0.19, 1]. 

𝑋௜௧ାଵ = 𝐷𝑖𝑠𝑡𝐹𝑜𝑥𝑃𝑟𝑒𝑦௜௧ × 𝐽𝑢𝑚𝑝௜௧ × 𝑐ଶ (7) 

The values of c1 and c2 are 0.18 and 0.82 
respectively. These values are used in the fox's jump 
movement, either toward the northeast or in the 
opposite direction. If p>0.18, the fox jumps toward 
the northeast, with DistFoxPreyit and Jumpit 
multiplied by c1, increasing the chances of reaching 
the global optimal position. However, p≤0.18, the 
fox jumps in the opposite direction from the 
northeast. In this case DistFoxPreyit and Jumpit are 
multiplied by c2, reducing the chances of reaching 
the prey (≤18%).  
3.3.2 Exploration 

The fox performs a random search based on the 
best position it has found. In this phase, the fox 
moves randomly to explore the search space for prey 
without using the jump technique. The variables 
MinT and a re used to control the random movement 
toward the fox's best position. Equations (8) and (9) 
describe the calculations of MinT and a, with MinT 
determined as the minimum value of tt. 

𝑡𝑡 =
𝑠𝑢𝑚 ൬𝑇𝑖𝑚𝑒ௌ೅೔೟

(𝑖, : )൰

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
,   𝑀𝑖𝑛𝑇

= 𝑀𝑖𝑛(𝑡௧) 
 

(8) 

The average TimeSTit is calculated based on the 
dimensions of the problem to find the minimum 
value of the average time tt. 

𝑎 = 2 × ൭𝑖𝑡 − ൬
1

𝑀𝑎𝑥௜௧

൰൱ (9) 

Maxit represents the maximum number of 
iterations. The calculation of MinT and the variable 

a is crucial for the search phase toward the optimal 
solution. The fox uses rand(1,dimension) for 
stochastic exploration while searching for prey. The 
variable r is employed to balance exploration and 
exploitation. The best solution BestXn significantly 
influences the fox's exploration strategy. Equation 
(9) describes the fox's exploration technique when 
searching for a new position within the search space 
X(i,:) which can be adapted to existing algorithms or 
used to develop new metaheuristic algorithms. 

𝑋௜௧ାଵ = 𝐵𝑒𝑠𝑡𝑋௜௧ × 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)
× 𝑀𝑖𝑛𝑇 × 𝑎 

(10) 

The equations in both phases do not require 
modification, except for adjustments to suit specific 
problems when the fox is used to solve 
multidimensional space problems. Full details about 
the FOX algorithm can be found in Algorithm 1. 

 
Algorithm 1. FOX 

 
1. Initialize the red fox population 𝑋௜(𝑖 = 1,2, … … , 𝑛) 
2. 𝑊ℎ𝑖𝑙𝑒 𝑖 < 𝑀𝑎𝑥(𝑖𝑡): 
 Inisialisasi variabel: 𝐷𝑖𝑠𝑡𝑆𝑇, 𝑆𝑝𝑆, 𝑇𝑖𝑚𝑒𝑆𝑇, 

𝐵𝑒𝑠𝑡𝑋, 𝐷𝑖𝑠𝑡𝐹𝑜𝑥𝑃𝑟𝑒𝑦, 𝐽𝑢𝑚𝑝, 𝑀𝑖𝑛𝑇, 𝑎, 
𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

 Calculate the fitness value for each search agent. 
 Select 𝐵𝑒𝑠𝑡𝑋 and 𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 among the fox 

population (𝑋) at each iteration. 
 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜  >  𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜ାଵ 
o 𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௜ାଵ 
o 𝐵𝑒𝑠𝑡𝑋 = 𝑋(𝐼, : ) 

 if r >=0.5 
o if 𝑝 ≥ 0.18  
 Initialize time randomly. 
 Calculate DistanceSoundtravels (1). 
 Calculate SpS (2). 
 Calculate the distance from the fox to the prey 

(3). 
 𝑇௧ is the average time. 

 𝑇 = ೟்

ଶ
 

 Hitung lompatan jump (5). 
 Temukan 𝑋௜௧ାଵ (6). 

o If  p<0.18 
 Initialize time randomly. 
 Calculate DistanceSoundtravels (1). 
 Calculate SpS from Equation (2).  
 Calculate the distance from the fox to the prey 

(3).  
 𝑇௧ is the average time. 

 𝑇 = ೟்

ଶ
 

 Calculate the jump (5). 
 Find 𝑋௜௧ା  (7). 

 If  r <0.5 
o Find MinT (8) 
o Explore 𝑋௜௧ାଵ (10) 

 Check and correct the position if it exceeds the 
boundaries. 
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 Evaluate the search agents based on their fitness 
values. 

 Update BestX. 
 it = it + 1 

3. Return 𝐵𝑒𝑠𝑡𝑋 and 𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 
 

FOX begins by randomly initializing the 
population of red foxes and selecting the best 
position based on the best fitness value within the 
population. Each iteration consists of either an 
exploitation or exploration phase, depending on the 
random value r and the condition p. The time 
complexity of FOX per iteration is O(n2), where n is 
the population size, with the same space complexity 
for the vectors and matrices in Algorithm 1. 

 
3.4 Convolutional Neural Network as an 

Evaluation Method 
This study employs the FOX approach to 

determine the optimal augmentation technique, 
utilizing Convolutional Neural Networks (CNN) to 
compute the fitness function based on accuracy. 
CNN, a mathematical model with a parametric 
design, consists of an input layer, several hidden 
layers, and an output layer [24], [25]. Each hidden 
layer is connected by adjustable weights and 
progressively represents increasingly complex 
aspects of the input image [26]. The traditional CNN 
framework includes convolutional layers, pooling 
layers, and fully connected layers [24], which 
together transform the initial input representation 
into a higher and more conceptual level. The CNN 
method used in this study is illustrated in Fig 2. 

Figure 2. CNN Model as an Evaluation Method 

CNN enhances useful input features while 
reducing irrelevant variations. Compared to 
feedforward neural networks, CNNs have fewer 
connections and parameters, making them easier to 
train. However, their optimal performance might be 
slightly lower. The capacity of CNNs can be adjusted 
by configuring their width and depth.  

 
Figure 3.  Model CNN 

3.4.1 CNN Model 
The CNN model for fish classification accepts 

RGB images with a resolution of 128 x 128 pixels 
and three color channels. It consists of several 
sequential Conv2D and MaxPooling2D layers. The 
first Conv2D layer has 32 filters (3x3) with the 
ReLU activation function, followed by a 
MaxPooling2D layer (2x2). This process is repeated 
four times with filters of 64, 128, 128, and 256, 
respectively, with a MaxPooling2D layer after each 
Conv2D. The output is then flattened into a one-
dimensional structure using a flatten layer. A dense 
layer with 512 neurons, using ReLU activation, 
follows. The final dense layer contains 23 neurons, 
using the softmax activation function (as shown in 
Fig 3). This structure enhances the model's ability to 
extract relevant features for classification. 

3.4.2 ReLU Function 
The ReLU activation function is used in neural 

networks because it is simple and efficient, 
effectively addressing the "vanishing gradient" 
problem present in other functions like sigmoid or 
tanh [27]. However, ReLU has a drawback known as 
the "dying neuron" issue, where neurons produce a 
constant zero output, which hinders learning. The 
equation for ReLU is shown in (9). 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)  (9) 

3.5 Performance Evaluation 
The performance of the classification algorithm 

is evaluated by calculating accuracy. Accuracy refers 
to the correct and precise categorization of all the 
obtained data [28]. The accuracy value is calculated 
using Equation (10), where t is the number of 
correctly identified sample data points, and n is the 
total number of sample data points. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡/𝑛) × 100 (10) 
 

3.6 Research Design 
This research includes the implementation and 

optimization stages of the fish identification model. 
The implementation follows guidelines using 
hardware such as an Intel Core i9 CPU, Nvidia 
GeForce RTX 3060 Ti graphics card, and 64GB 
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RAM. Optimization is performed to evaluate the 
performance results of the selected augmentation 
methods based on epochs, aiming to improve 
accuracy and efficiency. Model validation is 
conducted to test the results of the chosen optimal 
augmentation method. Accuracy is the primary 
metric used to evaluate the proposed method. 

5. RESULTS AND DISCUSSION 

4.1 Research Results 
In this experiment, fish image classification was 

performed using Convolutional Neural Networks 
(CNN) on a dataset comprising 23 different species. 
Augmentation methods were applied to improve the 
quality of segmented images, while the FOX 
optimization method was used to select the best 
combination of various available augmentation 
techniques. The experimental results show that 
augmentation methods such as Kmeans Color 
Quantization, Horizontal Flip, Voronoi, Elastic 
Transformation, and Contrast Normalization 
achieved an accuracy of 98.75% on the training data. 
On the other hand, augmentation methods like Frost, 
Elastic Transformation, FilterEdgeEnhance, 
ShotNoise, and MotionBlur only reached an 
accuracy of 97.73% on the same data. This 
difference highlights the importance of selecting the 
appropriate augmentation method to improve the 
accuracy of the developed model. The performance 
improvements from each selected augmentation are 
shown in Tables 3 and 4. These results were used to 
combine augmentation methods in CNN 
classification. 

Table 3. Selected Best Augmentations 

Kmeans Color Quantization 

 

Horizontal Flip 

 

Voronoi 

 

Elastic Transformation 

 

Contrast Normalization 

 
 

In addition to presenting the augmentation results 
for each image, the performance accuracy for 
training is shown in Figure 4. The figure 
demonstrates that the model consistently improved 
in accuracy throughout the iterative process. Each 
iteration involved ten different trials, with the best 
result occurring in the eighth iteration. Initially, 
accuracy started at 98.10% in the first iteration, with 
slight variations in the early iterations, such as 
98.28% in the second and third iterations, and a small 
drop to 98.20% in the fourth iteration. Although 
there was a decrease to 97.73% in the fifth iteration, 
the model recovered and showed significant 
improvement in subsequent iterations, reaching 
98.75% in the eighth iteration. The ninth and tenth 
iterations demonstrated stable accuracy levels of 
98.55% and 98.56%, respectively. Analysis indicates 
that the model tends to stabilize with an overall trend 
of increasing accuracy, despite minor fluctuations in 
some iterations. 

Table 4. Selected Lowest Performing Augmentations 

Frost 

 

Elastic Transformation 

 

Filter Edge Enhance 

 

Shot Noise 

 

Motion Blur 
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The experimental results in Figure 5 indicate that 
the model maintained relatively stable variations in 
validation accuracy over the ten iterations 
conducted. Starting at 96.43% in the first iteration, 
the accuracy showed minor fluctuations during the 
initial iterations, reaching a peak of 97.06% in the 
second iteration. Small variations were observed in 
some iterations, such as 96.40% in the fourth 
iteration and 96.80% in the sixth iteration. Overall, 
despite these minor fluctuations, the model 
consistently maintained accuracy within the range of 
96.40% to 97.06% throughout the experiment. This 
analysis suggests that the model exhibits stable 
performance with minimal variation, demonstrating 
good consistency in validation results across 
iterations. 

Figure 4. Best Training Results for Each Iteration 

Figure 5. Best Validation Results for Each Iteration 

 
The difference between training accuracy (Fig 4) 

and validation accuracy (Fig 5), though not 
significant, suggests that the model may experience 
slight overfitting to the training data, especially 
considering that validation accuracy tends to be 
stable and not far from training accuracy. However, 
an ANOVA analysis revealed a significant 
difference between training and validation accuracy 
(F = 267.504, p < 0.05), indicating that the model 
tends to overfit the training data. The variability 
between iterations was not statistically significant (F 
= 2.321, p > 0.05), suggesting consistency in the 
model's performance across iterations. 

4.2 Discussion 
From the experimental results, it is evident that 

the FOX optimization method successfully 
demonstrates its ability to combine various data 
augmentation techniques and achieve optimal 

accuracy performance on the CNN model. 
Specifically, this method reached the highest training 
accuracy of 98.75%, indicating that the model was 
able to learn very effectively from the available 
training data. Furthermore, the validation accuracy 
of 96.90% shows that the model has excellent 
generalization capabilities on new, unseen data 
during training. All training time required to achieve 
these results was 103,413.83 seconds, indicating that 
the FOX method is computationally intensive. 
However, the performance results justify the long 
training time, as the high accuracy achieved proves 
the effectiveness of the method. 

The small difference between training and 
validation accuracy suggests that the model does not 
suffer from significant overfitting, a condition that is 
often avoided in machine learning model training. 
The success of the FOX method in achieving ideal 
performance, where the gap between training and 
validation accuracy is minimal, makes it a highly 
effective approach for CNN model development. 
Therefore, despite the long training time, this method 
is highly recommended for applications that require 
high accuracy and strong generalization. This further 
reinforces the idea that the FOX optimization 
method excels not only in integrating augmentation 
techniques but also in producing a model that 
delivers consistent and reliable accuracy 
performance. 

4. CONCLUSION 
The development of fish species identification 

techniques through computational approaches like 
Convolutional Neural Networks (CNN) offers an 
effective solution for automating this process from 
digital images. This study demonstrates that the FOX 
optimization method successfully identifies 
augmentation techniques that achieve top 
performance, such as Kmeans Color Quantization, 
Horizontal Flip, Voronoi, Elastic Transformation, 
and Contrast Normalization, which improved fish 
species recognition accuracy to 98.75% during 
training. However, other augmentation methods only 
reached 97.73% accuracy, highlighting the 
importance of selecting the right augmentation 
methods to enhance model performance. The results 
also show that the CNN model optimized by FOX 
for augmentation selection achieved consistent 
accuracy between training (98.75%) and validation 
(96.90%), with minimal performance degradation 
between these stages. Although this approach 
requires intensive training time, it has great potential 
for applications in fields such as nature conservation, 
fisheries management, and biological research, 
strengthening our understanding of marine 
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ecosystems and supporting sustainable fisheries 
resource management practices. 
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