
 Journal of Theoretical and Applied Information Technology 
15th November 2024. Vol.102. No. 21 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
7830 

 

 ADVANCED LIGHTWEIGHT ST-TCN FRAMEWORK USING 
UAV MULTI-SPECTRAL REMOTE SENSING FOR 

SURVEILLANCE AND CONTROL OF PINE NEMATODE 
DISEASE 

 
Dr. J. DEEPA1, Dr. V. GOKULA KRISHNAN2,*, Dr. S. VENKATA LAKSHMI3, Dr. D. ARUL 

KUMAR4, Dr. V. VIJAYARAJA5 

 
1Associate Professor, Department of CSE, Easwari Engineering College, Chennai, Tamil Nadu, India. 
2,*Professor, Department of CSE, Saveetha School of Engineering, Saveetha Institute of Medical and 

Technical Sciences, Thandalam, Chennai, Tamil Nadu, India 
3Professor & Head, Department of AI & DS, Sri Krishna College of Engineering and Technology, 

Coimbatore, Tamil Nadu, India 
4Associate Professor, Department of ECE, Panimalar Engineering College, Poonamallee, Chennai, Tamil 

Nadu, India 
5Associate Professor, Department of AI & DS, RMK College of Engineering and Technology, 

Kavaraipettai, Tamil Nadu, India 
 

Email:  1deepa.j@eec.srmrmp.edu.in, 2,*gokul_kris143@yahoo.com, 3venkatalakshmis@skcet.ac.in, 
4arul.annauniv@gmail.com, 5vijayarajaads@rmkcet.ac.in 

 
 

ABSTRACT 
 

The pine nematode is a highly infectious disease that devastates pine forests globally, necessitating prompt 
and precise diagnostic approaches. However, existing methods face challenges in accurately identifying and 
localizing nematode infections within individual trees, with limited studies addressing these gaps. This 
research contributes a novel artificial intelligence-based approach that leverages multi-spectral remote 
sensing imagery captured by unmanned aerial vehicles (UAVs) to diagnose pine nematode infections. By 
utilizing lightweight special task temporal convolutional network (ST-TCN) blocks and multiple bottleneck 
layers, our model focuses on critical features in the input sequence. This enables the classifier to 
differentiate between various diseases effectively. We further improve classification accuracy by fine-
tuning model parameters through a Cat Swarm Updated Black Widow (CSUBW) optimization algorithm. 
The proposed method offers a rapid, accurate, and practical solution for monitoring and managing pine 
wood nematode disease, marking a significant advancement in the detection and control of this infection.  
Keywords: Unmanned Aerial Vehicle, Special Task Temporal Convolutional Network, Cat Swarm 

Updated Black Widow Model, Remote Sensing Images, Pine Nematode Disease. 
 
1. INTRODUCTION  

 

Pinewood nematode (Bursaphelenchus 
xylophilus) causes pine wilt disease (PWD), which 
disrupts water and nutrient flow in pine trees, 
leading to dehydration and death [1]. Two primary 
vectors, Monochamus alternatus and Monochamus 
saltuarius, spread this disease across regions in East 
Asia, including the Korean Peninsula, where 
different species inhabit distinct climatic zones. 
Southern regions, warmer parts of Japan, and 
southern China are home to M. alternatus, while M. 
saltuarius is prevalent in colder zones such as 
central Korea, northeast China, and parts of Russia 

and Finland [2, 3]. The infection particularly affects 
black pine, Japanese red pine, and Korean white 
pine in Korea [4]. Initially identified in North 
America, PWD has become the most destructive 
forest disease in East Asia, severely impacting 
forests in Japan, China, Korea, and extending into 
Europe, where it has damaged pine trees in 
Portugal. This disease not only degrades the 
environment but also disrupts local economies, 
emphasizing the need for robust forest health 
measures and quarantine practices in affected 
regions [5, 6]. 

Detecting and controlling PWD remains a 
challenging task due to its rapid spread and the high 
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cost of conventional ground-based monitoring 
methods. UAVs equipped with advanced imaging 
sensors offer an efficient alternative by enabling 
remote, cost-effective pest detection through multi-
spectral imaging and object detection models [7]. 
However, traditional monitoring struggles to 
accurately track the spread of PWD, especially 
given the spread of pests to new areas as climate 
change allows subtropical pests to survive in 
temperate climates, while warming winters allow 
localized pests to thrive [8, 9]. Early detection, 
combined with tree removal and fumigation, is the 
most effective strategy to prevent PWD spread, but 
conventional land monitoring presents financial and 
logistical limitations [10]. Recent efforts have 
explored the potential of UAV footage in detecting 
PWD, focusing on time-series data, multispectral 
footage, and vegetation indices [11]. 

Due to the extensive data generated by 
UAV networks, managing large volumes of multi-
spectral footage requires automated, 
computationally efficient methods. Manually 
created feature-based algorithms are insufficient in 
handling such complex datasets, highlighting the 
need for deep learning (DL) and deep neural 
network (DNN) methods that can autonomously 
learn critical features for PWD detection [12]. 
Convolutional DNNs, inspired by the structure of 
the animal visual cortex, have proven effective for 
image processing, but traditional approaches lack 
accuracy when applied to diseases requiring an 
analysis of temporal and spatial relationships in the 
data [13, 14]. 

The need for an accurate and 
computationally efficient approach to diagnosing 
PWD leads to the following research contributions: 

 We introduce a bottleneck layer to 
improve the model’s ability to analyze 
local motion between frames, capturing 
spatial and temporal correlations more 
effectively than traditional methods. This 
bottleneck layer, applied here for the first 
time to disease diagnosis, enhances 
detection accuracy and reduces latency in 
real-time applications. 

 Our proposed model uniquely combines 
bottleneck layers with a temporal 
convolutional network (TCN) for feature 
extraction, allowing for a more precise 
distinction of disease symptoms. This 
network learns important signals from 
multi-spectral UAV images, surpassing 

traditional methods in terms of diagnostic 
performance. 

 For further enhancement, we employ a Cat 
Swarm Updated Black Widow (CSUBW) 
optimization model to fine-tune 
parameters, thereby boosting classification 
accuracy through optimized feature 
selection. 

In summary, this research aims to address 
the limitations of existing PWD detection methods 
by proposing a novel AI-based solution for prompt, 
accurate, and scalable monitoring of pine nematode 
infections, offering a significant advancement in 
forest health management. 

The rest of the paper is organized as 
follows: Section 2 references the related works; 
Section 3 presents the projected methodology and 
its explanation; Section 4 demonstrates the results 
analysis and finally, the conclusion of the research 
work is given in Section 5. 

2. RELATED WORKS 

As a lightweight approach to pine wilt 
disease detection, Yuan et al. [16] provide Light-
ViTeYOLO, which is based on Vision 
Transformer-enhanced YOLO. The EfficientViT 
feature extraction network is built using a new 
lightweight multi-scale attention module that allows 
for multi-scale learning. To improve localization 
accuracy, a new neck network called CACSNet 
(Content-Aware neck network) is optimized for 
loss function, and it is meant to better diseased tree 
detection at single granularity. The approach 
manages to improve detection performance while 
simultaneously decreasing the detection model's 
parameter count and GFLOPs. In comparison to 
existing baseline algorithms, the experimental 
results show that the proposed Light-ViTeYOLO 
algorithm in this study has the lowest parameter 
complexity (3.89 MFLOPs) and computational 
complexity (7.4 GFLOPs) among relevant 
algorithms. With 57.9 frames per second, it 
outshines the original YOLOv5. Aside from a small 
drop in recall and mAP@0.5, its mAP@0.5:0.95 
ranks highest among baseline algorithms. Pine wilt 
disease detection has never been easier than with 
our Light-ViTeYOLO. Both the needs for 
automated forestry operations and the need for real-
time detection of pine wilt disease outbreaks are 
met by it. How can lightweight deep learning 
models be enhanced to improve both detection 
accuracy and computational efficiency for 
identifying pine wilt disease (PWD) across 
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different tree species and disease stages in large 
forest areas? 

In the Dahuofang Experimental, Liaoning 
Province, Xie et al., [17] used UAVs to take 
pictures of pine trees in the early stages of PWD 
infection. In order to help with future studies on 
detecting early-stage infestations in pine trees, a 
dataset of early infected trees afflicted by PWD has 
been compiled. On the early-stage PWD dataset, 
the top-performing approach outperforms Faster R-
CNN, DETR, and YOLOv5 with improvements of 
17.7%, 6.2%, and 6.0% in average precision (AP) 
and 14.6%, 3.9%, and 5.0% in F1 scores, 
respectively. What techniques can be developed to 
generate realistic synthetic data that closely 
approximates the characteristics of PWD in natural 
forest settings, thereby improving model 
generalizability? As a first step towards early 
treatment of pine wood nematode disease, the study 
offers technological support for field-based early-
stage PWD tree counting and localization in 
forested areas.  

Using YOLOv8 to segment sick areas, 
cropping the diseased portions from the original 
image, and applying Deep Metric Learning for 
classification, Thapa et al., [18] proposes a novel 
classification. After extracting embedding’s from a 
ResNet50 model trained with semi-hard triplet loss, 
we trained a Random Forest classifier to distinguish 
between false positives and identify tree species. 
We chose segmentation over object detection 
because it can provide us information down to the 
pixel level, which allows us to easily extend the 
bounding boxes that come after it. The efficiency of 
Deep Metric Learning in processing visually 
comparable images led to its selection as the 
classification method following segmentation. The 
segmentation findings show an average Union of 
83.12%, with test set classification accuracies of 
90.7% and validation set accuracies of 98.7%. 

We constructed our synthetic dataset based 
on the virtual forest that Jung et al. [19] describes, 
which takes people with disabilities into account 
and was rendered using 3D techniques. Our use of 
Image-to-Image (I2I) translation methods further 
guarantees that the simulated data will closely 
match the original. For this purpose, we compared 
the output of each dataset using the EfficientNetv2-
S model. We validated that our model, which was 
trained exclusively on the PWD synthetic dataset, 
had the capability to recognize actual PWD. With 
an F1 Score of 92.88%, the model that was trained 

using an ensemble that included both real and 
synthetic data performed even better. Improved 
presentation was also seen when an ensemble of 
actual and synthetic data was translated using the 
I2I technique. This finding lends credence to the 
study's proposed synthetic data and demonstrates its 
usefulness. What advanced optimization methods 
can be applied to fine-tune model parameters for 
enhanced classification and localization of PWD, 
enabling rapid and scalable disease detection in 
real-world environments? It is believed that this 
study's results will have implications for 
agricultural management and the wider preservation 
of forest ecosystems through their applicability to 
the identification of diseases in different types of 
forests. 

The monthly outbreak timing and 
dissemination distances of PWD have been studied 
by Tan et al., [20]. The study focused on two areas 
in southeastern China, A and B, which were 
identified by different proportions of broadleaf and 
coniferous trees. There were four distinct phases of 
infection inflicted on trees: early, medium, late, and 
dead. To determine the stress stages and tree 
locations, three deep learning procedures—namely, 
Faster R-CNN, YOLOv5, and YOLOv8—were 
used in conjunction with monthly RGB data 
collected by an unmanned aerial vehicle (UAV) 
over the course of a year. In addition, the distances 
from the site of neighboring trees were calculated 
by recording the number of newly afflicted trees 
each month. The YOLOv5 model outperformed the 
others with the best accuracy (mAP = 0.58, F1 = 
0.63) in the study. Faster R-CNN came in second 
with mAP = 0.55, F1 = 0.58, and YOLOv8 came in 
third with mAP = 0.57, F1 = 0.61). In the months of 
August and September, there were early and 
middle-stage PWD outbreaks, and in the months of 
October and February of the following year, there 
were late-stage and dead-tree outbreaks. During the 
course of a year, the average nearest spread 
distance for PWD-infected trees in regions A and B 
was 12.54 m (median: 9.24 m) and 13.14 m 
(median: 10.26 m), respectively. According to the 
results, the best time to control PWD is between the 
months of February and August. Also, forests that 
are mixed conifer and broadleaf, with a higher 
percentage of broadleaf trees, help reduce the 
severity of PWD outbreaks. How can the 
integration of outbreak timing and spread distance 
data with UAV-based detection models provide 
actionable insights for controlling PWD spread and 
improving disease management strategies?. This 
study provides technical help for the control and 
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management of forest pests by demonstrating the 
efficacy of using deep learning algorithms in 
conjunction with monthly UAV-based imagery to 
track the timings and distances of PWD outbreaks. 

Problem Statement: 

1. Existing methods for detecting pine wilt disease 
(PWD) struggle with accurately identifying and 
localizing infections across different tree species 
and disease stages in real-world forest 
environments. 
2. Although lightweight models (e.g., Light-
ViTeYOLO) improve detection speed, they face 
limitations in recall and precision, particularly in 
detecting early and subtle signs of infection. 
3. Synthetic data approaches help augment training 
data, yet there remains a gap in generating 
simulated data that closely mirrors real-world PWD 
characteristics, impacting model generalizability. 
4. Current studies on PWD spread timing and 
distances indicate a need for methods that integrate 
multi-spectral data to track disease progression at 
the individual tree level. 
5. A scalable, high-accuracy solution is needed that 
combines multi-spectral UAV imagery with 
advanced deep learning techniques for efficient, 
large-scale PWD monitoring and early intervention. 
 
3. PROPOSED MODEL 

The disease detection is carried out by 
UAV images from drones and uses the ST-TCN 
network, which is shown in Figure 1.  

 

 
Figure 1: Workflow of the proposed model 

3.1. Data Information 

The FeimaD200 quadrotor served as the 
experimental platform for aerial flying. The UAV 
was outfitted with a multi-spectral camera, namely 
a RedEdge-MX model, which possesses green (475 
nm), red bands [21]. We were able to get four 
photographs using the UAV [22]. You may find all 
the relevant data in Table 1. These regions can be 
found throughout central and eastern China. In 

Anhui, you may find Huangshan-1 and Huangshan-
2. A small number of hardwood trees complement 
the more common bamboo and Masson pine. In the 
flight area, you can see mixed woodlands near 
Wuhan, which is in Hubei. Shandong is home to 
Yantai and is mostly forested with coniferous trees. 
The training data set included Huangshan-2, 
whereas the test sets included Huangshan-1, 
Wuhan, and Yantai. 

Table 1: Flight Limits 

Images 
Huangs
han-1 

Huangs
han-2 

Wuhan Yantai 

Discover 
Anhui 
Area 

Anhui 
Area 

Hubei 
Area 

Shando
ng Area 

Flight 
height 

170 m 170 m 200 m 160 m 

Spatial 
resolutio

n 
0.1 m 0.1 m 0.175 m 0.1 m 

Flight 
date 

2019-08-
12 

2019-08-
13 

2019-8-
21 

2019-
10-16 

Wavelen
gth (nm) 

Blue: 475 nm 
RedEdge: 740 nm 

Green: 560 nm 
Red: 670 nm 

Near IR: 840 nm 

A data acquisition technique without 
picture control was used for this experiment since 
the UAV flight platform used had a real-time 
kinematic scheme, which meant that high-precision 
foreign copy elements were delivered. When 
creating multi-spectral orthographic photos, several 
steps were involved, such as orienting the camera 
internally, choosing a coordinate system, 
calibrating the radiation, registering the bands, 
using aerial triangulation, creating a digital 
elevation model, and finally, creating the 
photographs themselves. Figure 2 shows the results 
of the radiometric calibration that was conducted 
prior to flight using a diffuse plate [23]. 
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Figure 2. UAV besides diffuse plate. 

3.2. Dataset Details 

This work uses the Huangshan-2 image as 
a data sample, and then uses a visual interpretation 
approach to create vector data of pine nematode 
illness and produce the associated label. To avoid 
over fitting models and increase sample size and 
diversity, multi-scale segmentation is useful. 
Hence, the label data and Huangshan-2 photos were 
split into 128 × 128 pixels and 256 × 256 pixels, 
respectively. After merging, a base for the pine 
nematode disease identification prototypical was 
created. The data sample was erratically split into a 
training set and a ratio of 3:1 in order to evaluate 
the model's validity. There were 4862 sub-images 
in the training data after a small number of invalid 
samples were removed, and 1712 sub-images were 
confirmed. In Figure 3, a few examples are given. 

 
Figure 3. Sample Dataset (a, c, e: Imageries) (b, d, f: 

Labels) 
 
 

3.3. Spatial Task Temporal Convolution 
Network (ST-TCN) 

The study proposes the ST-TCN blocks as 
a feature extractor as an alternative of traditional 
RNNs, which use feedback loops to propagate 
information through time. But our TCN uses 
temporal convolutions to capture long-term 
dependencies in the input sequence. The input 
sequence is fed into a stack of convolution layers. 
In contrast, each layer applies a filter to a sequence 
of input values, with the other attributes 
determining the size of the receptive field. 
Therefore, by stacking multiple convolution layers 
with increased receptive field, TCN can capture 
dependencies over increasingly long periods. We 
designed three blocks of the ST-TCN in a 
hierarchical manner to learn features efficiently and 
make them parallelized for long sequence 
processing. Each block is connected hierarchically 
with input to capture deeper and hidden features 
from long sequences. 

Each ST-TCN block consists of Input, a 
sequence of data points, and a tensor of shape 
(sequence length, input dimension), convolutional 
layers. The convolution filters have a fixed size and 
are convolved over the input sequence with a 
specified receptive field. After each layer, an 
activation function is applied to the layer’s output 
with residual connections to improve the flow of 
gradient in training and alleviate the vanishing 
gradient problem. Our network often includes 
residual connections that bypass some of the 
convolutional layers. This allows the network to 
learn the input sequence’s short- and long-term 
dependencies. Similarly, down sampling and up 
sampling are used to lessen the dimensionality of 
the output besides extract the key features from the 
sequence. Through this, we capture long-term 
dependencies in the input sequence using a stack of 
layers, enhancing the system efficiency and 
scalability for real-time. 

3.3.1. Bottleneck Transformer Network (BTNet) 

In [24], an updated version of the 
conventional transformer design was presented: the 
bottleneck transformer. For long input sequences, 
the computing cost of applying the self-attention 
mechanism to each token can be prohibitive. A 
visual representation of the BTNet's updated 
workflow. Before being combined with the 
remaining tokens and transferred to the next layer, a 
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subset of the input tokens is randomly chosen and 
processed by a reduced number of attention layers 
in a bottleneck transformer. As a result, the 
architecture becomes more computationally 
efficient by reducing the number of attention layers 
required. Following this same approach, we trained 
the classic bottleneck transformer network (BTNet) 
in a manner analogous to that of regular 
transformers, using back propagation and gradient 
descent optimisation, and then optimized it for 
detection tasks. We used the dimensions of the 
imputed tensor to capture the content's position, and 
then we parallel connected it to the original 
material in order to highlight important signals. 
With fewer computational resources needed, the 
suggested BTNet outperformed the standard. 

There are two sections to the suggested 
BTNet's learning technique when dealing with the 
input sequence: the "core" sequence and the 
"context" sequence. Many attention layers work 
independently to process the context sequence. The 
forward layer receives a combined set of core and 
context sequences. Merging the two sequences and 
applying a linear projection layer is all that's needed 
to achieve the combo. This can be done on different 
levels at the same time. While lowering the number 
of attention layers given to the main sequence. The 
suggested BTNet is able to attain better 
computational efficiency without sacrificing 
performance because of this approach. To further 
regularize the network and avoid over fitting, we 
used various pattern dropout techniques. Instead of 
removing individual weights during training, 
complete attention weight patterns are randomly 
dropped. The approach enhances the network's 
capacity to generalize to new data and motivates it 
to learn stronger representations. 

3.3.2. Bottleneck attention  

The bottleneck attention mechanism [25] 
is a technique used in deep learning to improve the 
efficiency of attention-based models. Attention 
mechanisms are used to selectively focus on 
essential parts of input data when dealing with long 
sequences. Bottleneck attention reduces input 
dimensionality, cutting costs while preserving 
crucial information. Our proposed bottleneck 
includes a sequential and spatial layer, with an 
attention mechanism operating on the reduced-
dimensional representation using standard do 
product attention. Our suggested module calculates 
the final feature map by: 

       (1) 
 

      (2) 
 

      (3) 

 

     (4) 

 
      (5) 

 

      (6) 

There are three components to the 
attention weights: Ms(F) for spatial features, Mc(F) 
for temporal cues, and M(F) for the final weights. 
The preceding method shows that gradients and 
attentions value are directly related. The inverse is 
also true: larger attention values necessitate larger 
gradient values. The constraints used in feature 
extraction are represented by the symbol θ. 
Consequently, humans pay close attention to 
important signals by employing attention processes 
like channel-wise. Spatial attention eliminates noise 
and targets crucial spatial locations via dense layers 
rather than selecting an object region apart from 
channel focus. Combining these two attentional 
systems is crucial for activities because they 
employ complimentary information. 

We were able to zero in on the exact 
objectives of each branch in the input tensor thanks 
to our attention map implementation, which led to a 
very effective strategy. A linear projection or other 
dimensionality reduction layer is one component of 
our attention module that takes an input sequence. 
Often referred to as the "bottleneck layer," this 
layer limits the amount of data that can reach the 
attention mechanism. An attention mechanism 
takes a lower-dimensional representation of the 
input sequence and uses it to determine the relative 
relevance of each element by giving it a weight. 
You can provide more weight to significant parts 
and less weight to irrelevant ones by using the 
weighted sequence and the attention weights that 
come from it to weight the input sequence. The 
result is a prioritized list with the most important 
details highlighted. All of the model's components 
get their input sequence attention weights from this 
process. 
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3.3.3. Fine-tuning of the model using CSUBW 

The CSO was designed with insights 
gained from studying feline behaviour. Because of 
its improved convergence, the CSO model is able to 
resolve complex optimisation problems. Both 
"seeking mode" and "tracking mode" describe the 
typical behaviors of cats. Also, black widow 
spiders' "unique mating behaviour" served as 
inspiration for the BWO. Strongly convergent 
solutions to complicated optimisation issues are 
likewise efficiently handled by the BWO model. In 
addition, the search agents find global keys in the 
search space in this scenario. The literature states 
that conventional algorithms need lower levels of 
convergence than hybrid optimisation models. In 
this work, we combined the BWO [26] with the 
CSA model; thus, the suggested hybrid approach is 
the CSUBW model. What follows is a breakdown 
of the CSUBW model's steps 

Step 1: Put the search agent's M population (pop) 
into its initial state in the space with dimensions D. 
The search agent's position is indicated by X, and 
its velocity is marked. 

Step 2: The cats are dispersed at random across the 
three-dimensional space, and the value is chosen at 
random from the range of possible velocities. 

Step 3: The tracing mode is activated after the 
"mixture ratio (MR)" and the number of cats have 
been determined. All of the surviving cats are now 
on a never-ending hunt. 

Step 4: Looking for Manner 

1. Seeking Mode: for the present cat Catk, J 
made. Here, J is the SMP. If SPC charge = 
true, then set J = (SMP-1) and set the 
existing cat as the best one. 

2. As per CDC, the SRD values are 
indiscriminately minus. Then, substitute 
the old ones with the current ones. 

3. For entirely the candidate topics, the 
fitness is calculated using Equation (7). 

      (7) 

4. For each candidate point, the selection 
probability is calculated when they are not 
equal. When all of the candidate points 

have an equal fit, the choosing probability 
is set to 1. 

5. Here, minimizing is the goal, therefore, 
Fitb= Fitmax 

6. The point is selected at random to depart 
from the candidate points, and the cats' 
positions are swapped out. 

Step 5: Proposed Tracing Style: When mode, the 
cat's speed is independent in all directions. What 
follows is an illustration of the procedures used in 
the tracing model:  

(a) Equation (8) provides a newly proposed 
expression that is used to update the search agent's 
velocity for every dimension. 

      (8) 

In this case, w is the mass of inertia 
besides e is the velocity of random variables 
distributed uniformly over the intermission [0, 1]. 
Furthermore, α and β are the parameters that 
regulate the process. According to Equations (9) 
and (10), the mathematical parameters a(t) and b(t) 
can be utilized to regulate the cats during the 
exploring phase, respectively. The variables a(min) 
and a(max) indicate the lower and upper bounds, 
respectively. A current iteration is pointed as t, and 
the maximal iteration is denoted as t(max). 
Additionally, b(min) represents the value of the 
initial iteration and b(max) represents the value of 
the final repetition. 

                   (9) 

  

   (10) 

 (b) Before proceeding, be sure the speed is not 
higher than the maximum speed. If the new speed is 
beyond the allowed maximum speed range, then set 
limit. 

(c) Update the site of Catk going with the BWO's 
update model instead of the old-fashioned CSA 
update function. The Mutepop number is chosen at 
random from the population (pop) via the mutation 
update model. The Mutepop is calculated using the 
mutation rate. 
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Step 6: Find the search agent's fitness using 
Equation (7). We say that the optimal choice is the 
cat whose fitness function is the highest. Xbest. 

Step 7: The cats are enthused grounded on their 
flags; if the cat Catk is determined to be in seeking 
mode, then processes in seeking mode; otherwise, 
processes in tracing mode. 

Step 8: Determine the number of cats once more 
using the MR, and then put them into either 
searching or tracing mode. 

Step 9: Terminate. 

4. RESULTS AND DISCUSSION 

The trials are conducted on a PC with an 
Intel Core i5-7200 CPU, 8 GB of RAM, and a 
processing speed of 2.7 GHz. A specialized user 
interface (UI) and Jupiter Notebook (Python 3.7) 
are utilized to execute the procedures on Windows 
10, a 64-bit operating system. Natural Setting. 

4.1. Validation Analysis of Proposed Classifier 
Table 2 and Figure 4 deliver the 

comparative investigation of proposed classifier 
with existing techniques in terms of unlike metrics. 

Table 2: Validation analysis of proposed model 
Metrics AlexNet VGG19 SqueezeNet Proposed 
Accuracy 0.9588 0.9671 0.9788 0.9971 
Precision 0.9417 0.9510 0.9645 0.9801 
Sensitivity 0.9524 0.9645 0.9797 0.9877 
Specificity 0.9614 0.9788 0.9866 0.9973 
F1-Score 0.9553 0.9410 0.9446 0.9625 
Time 
[minutes] 

21.31 19.76 17.19 15.48 

 
 

 
Figure 4: Graphical Comparison of proposed model 

In above table 2 and figure 4 represent the 
Validation study of projected model. In the analysis 
of Accuracy calculation of AlexNet technique 
as 0.9588 also VGG19 technique of 0.9671 and 
squeeze technique as 0.9788 and also proposed 
technique as 0.9971 correspondingly. Then the 
Precision calculation of AlexNet technique as 
0.9417 also VGG19 technique of 0.9510 and 
squeeze technique as 0.9645 and also proposed 
technique as 0.9801 correspondingly. Then the 
Sensitivity calculation of AlexNet technique as 
0.9524 also VGG19 technique of 0.9645 and 
squeeze technique as 0.9797 and also proposed 
technique as 0.9877 correspondingly. Then the 
Specificity calculation of AlexNet technique as 
0.9614 also VGG19 technique of 0.9788 and 
squeeze technique as 0.9866 and also proposed 
technique as 0.9973 correspondingly. Then the F1-
Score calculation of AlexNet technique as 0.9553 
also VGG19 technique of 0.9410 and squeeze 
technique as 0.9446 and also proposed technique as 
0.9625 correspondingly. Then the Time [minutes] 
calculation of AlexNet technique as 21.31 also 
VGG19 technique of 19.76 and squeeze technique 
as 17.19 and also proposed technique as 15.48 
correspondingly.   

4.2. Validation Study of Proposed Optimization 
Table 3 delivers the experimental study of 

proposed optimization with existing models in 
terms of unalike metrics.  

Table 3: Comparative analysis of proposed optimization. 

Metrics ABOA CSOA BWOA CSUBW 

Accuracy 0.9388 0.9571 0.9688 0.9701 

Precision 0.9147 0.9251 0.9405 0.9617 

Sensitivity 0.9324 0.9415 0.9597 0.9770 

Specificity 0.9514 0.9688 0.9766 0.9873 

F1-Score 0.9153 0.9241 0.9346 0.9550 

In Table 3: Comparative analysis of 
proposed optimization.in the analysis of Accuracy 
estimations of ABOA technique attained as 0.9388 
also CSOA technique as 0.9571 and BWOA 
technique as 0.9688 and also CSUBW technique 
rate as 0.9701 correspondingly. Then the Precision 
estimations of ABOA technique attained as 0.9147 
also CSOA technique as 0.9251 and BWOA 
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technique as 0.9405 and also CSUBW technique 
rate as 0.9617 correspondingly. Then the 
Sensitivity estimations of ABOA technique attained 
as 0.9324 also CSOA technique as 0.9415 and 
BWOA technique as 0.9597 and also CSUBW 
technique rate as 0.9770 correspondingly. Then the 
Specificity estimations of ABOA technique attained 
as 0.9514 also CSOA technique as 0.9688 and 
BWOA technique as 0.9766 and also CSUBW 
technique rate as 0.9873 correspondingly. Then the 
F1-Score estimations of ABOA technique attained 
as 0.9153 also CSOA technique as 0.9241 and 
BWOA technique as 0.9346 and also CSUBW 
technique rate as 0.9550 correspondingly. 

4.3 Limitations and Issues 
A key limitation is the dependency on 

high-quality UAV-based multi-spectral imagery 
data, which may not be available for all forested 
regions. Disease progression is influenced by 
environmental factors (e.g., climate, soil quality, 
and forest composition) and seasonal changes, 
which may impact the model’s generalizability 
across different regions and times of the year. 
Balancing the need for high accuracy with the 
limitations of computational resources remains 
challenging. While the model can identify infection 
in real-time, there remains an open issue regarding 
the integration of long-term monitoring data to 
predict disease spread and assist with proactive 
interventions. Adapting the model to environmental 
variability across diverse ecosystems is an on-going 
challenge. While this study focuses on PWD, the 
adaptability of the model for detecting other forest 
diseases remains unexplored. 

5. CONCLUSION 
 
This study introduces a novel framework 

for detecting pine wood nematode disease (PWD) 
through UAV-captured multi-spectral imagery, 
addressing key challenges in achieving high 
accuracy, scalability, and efficiency in forest 
disease monitoring. Our approach incorporates a 
spatial information retention module to capture 
essential low-level features, an attention refinement 
module to accentuate disease-specific indicators, 
and a context information module to broaden the 
model’s receptive field. Together, these 
components tackle the critical need for precise 
PWD identification, as outlined in our problem 
statement, by effectively isolating disease-related 
characteristics from background noise. The 
experimental results confirm the proposed model’s 
accuracy and robustness in identifying PWD across 

different stages, directly supporting our objective of 
enhancing detection accuracy across species and 
progression levels. Unlike traditional methods, 
which often suffer from feature loss and require 
significant computational resources, our framework 
successfully retains critical spatial information and 
selectively highlights disease traits, leading to 
marked improvements in detection precision and 
processing efficiency. The model also demonstrated 
superiority over current state-of-the-art techniques, 
aligning with our objective of creating a high-
performance solution suitable for real-time forest 
health management. With scalability in mind, the 
model holds promise for broad application across 
different forest disease scenarios, thus fulfilling the 
need for sustainable and proactive forestry 
solutions. Future work will focus on testing the 
model with additional datasets that cover diverse 
environmental conditions and a range of disease 
types. This testing will help evaluate the model’s 
adaptability, address potential limitations, and 
refine it for broader applicability. Overall, this 
research contributes a powerful tool for effective 
PWD detection and offers significant potential for 
safeguarding forest ecosystems against disease 
threats through timely and precise interventions. 

 
REFERENCES:  
 

[1] Zhang, Z., Wang, B., Chen, W., Wu, Y., Qin, J., 
Chen, P., ... & He, A. (2023). Recognition of 
abnormal individuals based on lightweight deep 
learning using aerial images in complex forest 
landscapes: a case study of pine wood 
nematode. Remote Sensing, 15(5), 1181. 

[2] Li, H., Chen, L., Yao, Z., Li, N., Long, L., & 
Zhang, X. (2023). Intelligent identification of 
pine wilt disease infected individual trees using 
UAV-based hyperspectral imagery. Remote 
Sensing, 15(13), 3295. 

[3] Jung, Y., Byun, S., Kim, B., Amin, S. U., & 
Seo, S. (2024). Harnessing synthetic data for 
enhanced detection of Pine Wilt Disease: An 
image classification approach. Computers and 
Electronics in Agriculture, 218, 108690. 

[4] Wang, D., Sun, Z., Huang, X., Liu, M., Zheng, 
Q., Zhang, H., & Zhang, G. (2024). Pine wood 
nematode disease area identification based on 
multi-temporal multi-source remote sensing 
images and BIT model. Geocarto International, 
39(1), 2310117. 

[5] Chen, Y., Yan, E., Jiang, J., Zhang, G., & Mo, 
D. (2023). An efficient approach to monitoring 
pine wilt disease severity based on random 



 Journal of Theoretical and Applied Information Technology 
15th November 2024. Vol.102. No. 21 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
7839 

 

sampling plots and UAV imagery. Ecological 
Indicators, 156, 111215. 

[6] Lee, M. G., Cho, H. B., Youm, S. K., & Kim, S. 
W. (2023). Detection of pine wilt disease using 
time series UAV imagery and deep learning 
semantic segmentation. Forests, 14(8), 1576. 

[7] Miao, J., Zhang, C., Yuan, M., & Gu, S. (2023, 
November). Detection of Pine Wood Nematode 
Infestation Based on Improved YOLOv5. In 
Journal of Physics: Conference Series (Vol. 
2637, No. 1, p. 012029). IOP Publishing. 

[8] Zhang, N., Chai, X., Li, N., Zhang, J., & Sun, T. 
(2023). Applicability of UAV-based optical 
imagery and classification algorithms for 
detecting pine wilt disease at different infection 
stages. GIScience & Remote Sensing, 60(1), 
2170479. 

[9] Xie, W., Wang, H., Liu, W., & Zang, H. (2024). 
Early-Stage Pine Wilt Disease Detection via 
Multi-Feature Fusion in UAV Imagery. Forests, 
15(1), 171. 

[10] Pan, J., Lin, J., & Xie, T. (2023). Exploring the 
potential of UAV-based hyperspectral imagery 
on pine wilt disease detection: Influence of 
spatio-temporal scales. Remote Sensing, 15(9), 
2281. 

[11] Thirumalraj, A., Chandrashekar, R., Gunapriya, 
B., & kavin Balasubramanian, P. (2024). 
Detection of Pepper Plant Leaf Disease 
Detection Using Tom and Jerry Algorithm With 
MSTNet. In Machine Learning Techniques and 
Industry Applications (pp. 143-168). IGI 
Global. 

[12] Yu, R., Luo, Y., & Ren, L. (2024). Detection of 
pine wood nematode infestation using 
hyperspectral drone images. Ecological 
Indicators, 162, 112034. 

[13] Tan, C., Lin, Q., Du, H., Chen, C., Hu, M., 
Chen, J., ... & Xu, Y. (2024). Detection of the 
Infection Stage of Pine Wilt Disease and Spread 
Distance Using Monthly UAV-Based Imagery 
and a Deep Learning Approach. Remote 
Sensing, 16(2), 364. 

[14] Shen, J., Xu, Q., Gao, M., Ning, J., Jiang, X., & 
Gao, M. (2024). Aerial Image Segmentation of 
Nematode-Affected Pine Trees with U-Net 
Convolutional Neural Network. Applied 
Sciences, 14(12), 5087. 

[15] Qin, B., Sun, F., Shen, W., Dong, B., Ma, S., 
Huo, X., & Lan, P. (2023). Deep learning-based 
pine nematode trees’ identification using 
multispectral and visible UAV imagery. Drones, 
7(3), 183. 
 

[16] Yuan, Q., Zou, S., Wang, H., Luo, W., Zheng, 
X., Liu, L., & Meng, Z. (2024). A Lightweight 
Pine Wilt Disease Detection Method Based on 
Vision Transformer-Enhanced YOLO. Forests, 
15(6), 1050. 

[17] Xie, W., Wang, H., Liu, W., & Zang, H. (2024). 
Early-Stage Pine Wilt Disease Detection via 
Multi-Feature Fusion in UAV Imagery. Forests, 
15(1), 171. 

[18] Thapa, N., Khanal, R., Bhattarai, B., & Lee, J. 
(2024). Pine Wilt Disease Segmentation with 
Deep Metric Learning Species Classification for 
Early-Stage Disease and Potential False Positive 
Identification. Electronics, 13(10), 1951. 

[19] Jung, Y., Byun, S., Kim, B., Amin, S. U., & 
Seo, S. (2024). Harnessing synthetic data for 
enhanced detection of Pine Wilt Disease: An 
image classification approach. Computers and 
Electronics in Agriculture, 218, 108690. 

[20] Tan, C., Lin, Q., Du, H., Chen, C., Hu, M., 
Chen, J., ... & Xu, Y. (2024). Detection of the 
Infection Stage of Pine Wilt Disease and Spread 
Distance Using Monthly UAV-Based Imagery 
and a Deep Learning Approach. Remote 
Sensing, 16(2), 364. 

[21] Gallo, I., Rehman, A. U., Dehkordi, R. H., 
Landro, N., La Grassa, R., & Boschetti, M. 
(2023). Deep object detection of crop weeds: 
Performance of YOLOv7 on a real case dataset 
from UAV images. Remote Sensing, 15(2), 539. 

[22] Qin, J., Wang, B., Wu, Y., Lu, Q., & Zhu, H. 
(2021). Identifying pine wood nematode disease 
using UAV images and deep learning 
algorithms. Remote Sensing, 13(2), 162. 

[23] He, Y.; Chen, G.; Potter, C.; Meentemeyer, R.K. 
Integrating multi-sensor remote sensing and 
species distribution modeling to map the spread 
of emerging forest disease and tree mortality. 
Remote. Sens. Environ. 2019, 231, 111238.  

[24] A. Fan, E. Grave, and A. Joulin, ‘‘Reducing 
transformer depth on demand with structured 
dropout,’’ 2019, arXiv:1909.11556. 

[25] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, ‘‘A 
simple and light-weight attention module for 
convolutional neural networks,’’ Int. J. Comput. 
Vis., vol. 128, no. 4, pp. 783–798, Apr. 2020. 

[26] Hayyolalam, V., & Kazem, A. A. P. (2020). 
Black widow optimization algorithm: a novel 
meta-heuristic approach for solving engineering 
optimization problems. Engineering 
Applications of Artificial Intelligence, 87, 
103249. 

 


