
 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7670

EVALUATING RNNS AND TRANSFORMERS FOR CODE-
RELATED TASKS INCLUDING BUG DETECTION, CODE

COMPLETION, AND SUMMARIZATION

RAGHUPATHY DURGA PRASAD1, Dr. MUKTEVI SRIVENKATESH2

1Research Scholar, GITAM University, Department of Computer Science, Visakhapatnam, India

2Associate Professor, GITAM University, Department Computer Science,Visakhapatnam, India

E-mail: 1deardp@gmail.com, 2smuktevi@gitam.edu

ABSTRACT

Software engineering tasks such as bug detection, code completion, and code summarization are critical for
improving the efficiency and reliability of software development. With the increasing complexity of modern
codebases, there is a need for robust deep learning models capable of understanding and predicting patterns
in source code. This study addresses the challenge of selecting the most suitable model for these tasks by
conducting a comprehensive evaluation of two prominent architectures: Recurrent Neural Networks (RNNs)
and Transformers. RNNs are effective at capturing short-term dependencies but struggle with long sequences,
while Transformers excel at modelling long-range dependencies through self-attention mechanisms. This
research evaluates the performance of these models across three key tasks—bug detection, code completion,
and summarization—using multiple datasets. The results demonstrate that Transformers consistently
outperform RNNs in terms of accuracy and Bilingual Evaluation Understudy (BLEU) scores, particularly for
tasks involving long code sequences, while RNNs are more computationally efficient in memory-constrained
environments. The study contributes to the field by providing practical insights for developers and researchers
on how to leverage these models based on task requirements and available computational resources. These
findings highlight the potential of Transformers to enhance the accuracy of software engineering tools, while
also presenting a trade-off in terms of resource consumption, making this study valuable for future model
selection and optimization efforts.

Keywords: Source Code Analysis, Bug Detection, Code Completion, Code Summarization, Recurrent
Neural Networks (RNNs), Transformer Model

1. INTRODUCTION

The advent of deep learning has
significantly transformed many fields, with natural
language processing (NLP) seeing notable
advancements. Among the key architectures,
Recurrent Neural Networks (RNNs) and
Transformers have become powerful tools for
handling sequential data. Initially designed for tasks
like machine translation and text summarization,
these models are now widely applied in software
engineering, especially in analyzing and interpreting
source code [1, 2].

Source code, like natural language, has a structured
and sequential nature, making it a suitable candidate
for deep learning models typically used in NLP.
However, the sequential dependencies, along with
the syntactic and semantic complexities of code,
pose unique challenges that demand specialized
models. RNNs, which can maintain memory of
previous inputs, were some of the first neural
architectures used for code analysis. However, their
limitations in handling long-term dependencies
reduce their effectiveness in certain tasks—a
challenge that Transformers, with their self-attention
mechanisms, are better suited to address [1, 3].

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7671

Transformers excel at capturing long-range
dependencies and have quickly become the model of
choice for many code-related tasks. Their
architecture supports parallel processing and
provides better contextual understanding, making
them particularly effective in code summarization,
bug detection, and code completion [2, 3]. However,
their superior performance comes with the trade-off
of higher computational requirements, which is a
critical factor in real-world applications [1, 4].

The use of deep learning in software engineering has
brought significant improvements in automating
various aspects of software development,
particularly in detecting and correcting
programming errors. Traditional methods, which
often relied on heuristics, lacked the adaptability that
modern deep learning models offer. The introduction
of RNNs and, more recently, Transformers, has
opened new avenues to address these challenges by
leveraging large datasets of source code [2, 5].

RNNs were among the first neural models applied to
tasks like code completion, bug detection, and
automatic code summarization. They are proficient
at capturing short-term dependencies within small
code contexts. However, they struggle with long-
term dependencies due to the vanishing gradient
problem, which limits their effectiveness in tasks
requiring a broader understanding of the code, such
as summarization [5].

These limitations of RNNs led to the adoption of
Transformers in software engineering.
Transformers, utilizing self-attention, handle both
short- and long-term dependencies efficiently,
making them well-suited for tasks that require a deep
understanding of code structure and meaning. The
ability to process all tokens simultaneously reduces
training time and enhances the model’s
generalization across diverse coding styles and
languages [5, 2]. This makes Transformers
particularly effective in code summarization, where
they can produce more accurate and contextually
relevant summaries than RNN-based models.

Transformers have also shown great promise in bug
detection and automatic code correction. For
instance, the DeepFix model, using a multi-layer
sequence-to-sequence network with attention, can
autonomously identify and correct common
programming errors in C code without the need for
external tools, demonstrating the potential for deep
learning models in automating the debugging
process [5].

The growing importance of integrating neural
architectures like Transformers into software
development workflows is clear. These models not
only improve existing tools but also pave the way for
new methods that enhance developer productivity
and code quality. This study aims to evaluate and
compare the effectiveness of RNNs and
Transformers in three key tasks related to source
code analysis: bug detection, code completion, and
summarization. Through experiments on
standardized datasets, we aim to provide practical
insights into how these models can be integrated into
software development to improve both code quality
and developer efficiency [1, 6].

2. RELEATED WORKS

The evolution of code analysis
techniques in software engineering has been
significantly influenced by advancements in
machine learning and, more recently, deep learning.
As Recurrent Neural Networks (RNNs) and
Transformers have emerged as pivotal architectures
for handling sequential and structured data,
exploring existing literature on their application in
source code analysis is imperative. Understanding
previous work is crucial for grasping the strengths
and weaknesses of these models and guiding future
research efforts to refine and optimize these
techniques for better real-world performance.

2.1. Deep Learning in Source Code Analysis

The incorporation of deep learning
into source code analysis has revolutionized
software engineering, presenting novel opportunities
for automation and enhanced productivity. Prior to
deep learning, conventional machine learning
techniques dominated the industry, focusing on
feature engineering and statistical models. Despite
their effectiveness to some extent, these solutions
were constrained by their reliance on manually
crafted features and their limited capacity to
generalize across different programming languages
and coding environments [7].

2.1.1. Recurrent Neural Networks (RNNs)

The introduction of RNNs marked a
significant milestone in applying machine learning
to code analysis. RNNs are well-suited for tasks
involving sequential input, making them particularly
useful for applications such as code completion and
bug detection. For instance, White et al. [8] utilized
RNNs for code completion, where the model

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7672

predicts the next token in a code sequence based on
the preceding context. This represented a substantial
advancement over traditional methods, as RNNs
could autonomously learn patterns from large
datasets without the need for manual feature
engineering.

RNNs have also been applied to bug detection.
Gupta et al. [9] exploited RNNs' ability to model
sequences to capture interdependencies among
different code segments, effectively identifying
potential software defects not apparent through static
analysis alone. Similarly, in code summarization
tasks, RNNs have been used to generate succinct and
accurate descriptions of code snippets, aiding
developers in understanding code functionality
quickly [10].

However, the limitations of RNNs, particularly their
struggle with long-range dependencies due to the
vanishing gradient problem, became apparent as task
complexity increased. This limitation affected their
performance in tasks requiring a deep understanding
of extensive codebases, such as summarizing long
functions or detecting bugs that depend on distant
code interactions.

2.1.2. Transformer Models

To overcome the limitations of
RNNs, Transformer models were introduced,
utilizing self-attention mechanisms to handle long-
range dependencies more effectively. Transformers
can capture both local and global contexts within
code sequences, making them a preferred choice for
complex code analysis tasks.

Vaswani et al. [11] first introduced Transformers in
the context of machine translation, but their
architecture has been successfully adapted for code
analysis. For example, Ahmad et al. [12]
demonstrated that Transformers outperform RNNs
in code summarization tasks, generating more
coherent and contextually relevant summaries. The
self-attention mechanism allows Transformers to
weigh the importance of different parts of the code
when generating summaries, leading to better
performance.

In bug detection, Hellendoorn et al. [13] showed that
Transformers could identify subtle defects by
modeling complex relationships within the code,
outperforming traditional RNN-based models.
Additionally, in code completion, Transformers have
been effective due to their ability to process entire
sequences simultaneously, providing more accurate
predictions [14].

Despite their increased computational demands, the
performance gains offered by Transformers make
them compelling for advancing source code analysis.
Their parallel processing capabilities reduce training
time and enhance the model's ability to generalize
across diverse coding styles and languages.

2.2. Summary and Research Gap

The literature indicates a clear
trajectory from traditional machine learning
techniques to deep learning models, with
Transformers emerging as the state-of-the-art for
code analysis tasks. However, most existing studies
focus on individual tasks or models rather than
providing a comprehensive comparison between
RNNs and Transformers across multiple code-
related tasks.

This study aims to fill that gap by conducting a
comprehensive comparison of RNNs and
Transformers across three essential tasks in source
code analysis: bug detection, code completion, and
code summarization. By evaluating the strengths and
limitations of each model in various contexts, we
seek to provide practical insights for integrating
these models into software development processes.

2.3. Recurrent Neural Networks (RNNs) in
Source Code Tasks

Recurrent Neural Networks
(RNNs), including Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units
(GRUs), have been widely used in source code
analysis for various tasks due to their ability to
handle sequential data. RNNs are particularly well-
suited for tasks like code completion, bug detection,
and code summarization, as they can retain
contextual information from earlier inputs.

One prominent application of RNNs is in code
completion, where models use contextual
information from preceding code to predict the next
potential code element, such as tokens or lines.
Studies, such as that by Karpathy et al. (2015),
demonstrated that RNNs could predict code
sequences with notable accuracy by learning
patterns from vast repositories of existing code [12].
This ability to learn autonomously from large
datasets marks a substantial improvement over
traditional methods that relied on manual feature
engineering.

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7673

RNNs have also been applied to bug detection by
modeling source code as a sequence and learning
statistical properties that might indicate bugs. White
et al. (2016) showed that RNNs could predict buggy
lines of code by training on large datasets of
annotated buggy and non-buggy code,
demonstrating their utility in automating bug
discovery [13].

Another notable application is in code
summarization, where RNNs generate concise
descriptions of code snippets or complete functions.
Allamanis et al. (2016) employed RNNs to map code
sequences to natural language summaries,
demonstrating their effectiveness in producing both
syntactically and semantically accurate summaries,
aiding developers in rapidly understanding code
functionality [14].

Despite these advancements, RNNs face challenges,
particularly in capturing long-range dependencies
due to issues like the vanishing gradient problem.
This limitation can result in the model "forgetting"
crucial information from earlier parts of the
sequence, which hinders performance in tasks that
require a broader context, such as analyzing entire
functions or modules. Therefore, while RNNs are
efficient for shorter sequences and localized tasks,
their effectiveness diminishes as sequence length
and task complexity increase [15].

2.4.Transformer Models in Software Engineering

The advent of Transformer models
represented a breakthrough in natural language
processing (NLP) and has since revolutionized
software engineering tasks as well. Unlike RNNs,
which process data sequentially, Transformers
utilize self-attention mechanisms, enabling them to
capture both local and global dependencies in code
more effectively.

Transformers have shown superior performance in
code summarization tasks compared to RNNs. The
self-attention mechanism allows Transformers to
process entire sequences of code tokens
simultaneously, leading to a more efficient capture
of the overall context. Ahmad et al. (2020)
demonstrated that Transformer-based models
generate more accurate and contextually relevant
code summaries by focusing on relevant portions of
the code, thus producing more coherent and
comprehensive summaries than RNN-based models
[16].

In bug detection, Transformers have also proven to
be more effective. Hellendoorn et al. (2019)
illustrated that Transformers outperform RNNs in
bug detection by capturing more intricate patterns in
code that are often missed by RNNs. The self-
attention mechanism allows Transformers to weigh
different parts of the code according to their
importance in relation to potential bugs, which
results in more precise predictions [11].

In the context of code completion, Transformers
excel due to their ability to process the entire code
sequence at once, making them adept at handling
predictions when context is spread across multiple
lines or functions. Vaswani et al. (2017) introduced
the original Transformer architecture, which has
since been adapted for code completion tasks,
showing significant improvements in both accuracy
and speed over RNNs [2]. The Transformer’s ability
to understand long-range dependencies allows it to
make more informed predictions, thereby reducing
errors in code completion.

When comparing RNNs and Transformers in
software engineering tasks, it is clear that
Transformers offer superior performance in tasks
that involve long-range dependencies and complex
code structures. While RNNs remain effective for
shorter sequences and simpler tasks, Transformers
have become the preferred model for more advanced
code analysis tasks due to their flexibility, parallel
processing capabilities, and ability to capture global
context. This shift is reflected in the growing body
of literature that demonstrates the advantages of
Transformers over traditional RNNs in various
software engineering applications [2, 10].

2.5. Comparative Studies of RNNs and
Transformers

Comparative analyses of RNNs and
Transformers provide crucial insights into the
strengths and limitations of each architecture in
software engineering tasks. These studies often
involve applying both models to the same datasets
and tasks, allowing for direct performance
comparisons using metrics such as accuracy, F1
score, BLEU score (for summarization tasks),
training time, and model size.

A significant area of comparison is code completion,
where both RNNs and Transformers predict the next
code segment based on the given context. Studies,
such as those by Vaswani et al. (2017) and Ahmad
et al. (2020), consistently show that Transformers

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7674

outperform RNNs, particularly for longer and more
complex code sequences. This is primarily due to the
self-attention mechanism in Transformers, which
enables them to capture long-range dependencies
more effectively than RNNs [2, 10].

Methodologies in these comparative studies often
involve standardized datasets like the
CodeSearchNet corpus or large open-source
repositories such as GitHub. These studies generally
use similar experimental setups, such as identical
training epochs, learning rates, and data splits, to
ensure a fair comparison between the models. The
key findings consistently demonstrate that RNNs
perform well on tasks involving shorter sequences,
where the context is more localized. However, for
tasks like bug detection or code summarization,
which require a broader understanding of the code,
Transformers excel due to their ability to model both
local and global dependencies.

Hellendoorn et al. (2019) found that RNNs struggle
to capture dependencies in longer code sequences,
leading to lower accuracy in bug detection tasks
compared to Transformers. However, RNNs have an
advantage in terms of computational efficiency,
requiring less memory and shorter training times,
making them suitable for applications where
computational resources are limited [11].

2.6. Hybrid Approaches and Emerging Trends

Given the complementary strengths
of RNNs and Transformers, recent research has
explored hybrid models that integrate elements of
both architectures. These hybrid approaches aim to
leverage the sequential processing capabilities of
RNNs with the global context understanding
provided by Transformers. In such models, RNNs
are often employed to preprocess or encode the input
sequence, while a Transformer-based decoder
generates the output, thus combining the advantages
of both models. For example, Sun et al. (2020)
demonstrated that hybrid models could achieve
state-of-the-art performance in code summarization,
outperforming models based solely on RNNs or
Transformers by striking a balance between
accuracy and computational efficiency [16].

Emerging trends in this area include the application
of these hybrid models to increasingly complex
software engineering tasks, such as cross-language
code translation, automated code review, and
advanced bug detection systems. Additionally, there

is growing interest in incorporating contextual
information, such as software documentation or
version history, to further improve the models'
understanding of the code. Another significant trend
is the use of unsupervised learning techniques,
where models learn representations from vast
amounts of unlabelled code data and are later fine-
tuned for specific tasks with minimal supervision
[16]. These emerging trends hold promise for
advancing the practical applicability of deep
learning models in real-world software development
scenarios.

2.7 Deep Learning for Code Intelligence

This survey [20] emphasizes the
growing role of deep learning models in code
intelligence tasks like code summarization, code
completion, and bug detection. Recent techniques
such as code representation learning and the
development of open-source benchmarks have been
foundational. The relevance of these models can be
discussed in your work to show how Transformer-
based models have expanded in use and accuracy
for code summarization and bug detection.

2.8 Transformer-based Syntax Utilization

The analysis in this paper [21]
highlights the syntactic structure of source code,
which is critical for tasks such as code completion,
function naming, and bug fixing. You could leverage
this study to demonstrate how recent syntax-
capturing modifications in Transformer models
improve their ability to handle structured code in a
way that traditional models like RNNs cannot. The
paper also provides a comparison framework, which
is a valuable addition to your aim of comparing
RNNs and Transformers.

2.9 AI-Assisted Programming and Code
Embeddings

This work [22] reviews the role of
code embeddings and Transformer technologies in
addressing programming challenges like code
summarization and bug detection. Incorporating this
discussion can help justify the need for efficient,
scalable models that balance performance with
computational costs, which aligns well with your
focus on real-world scenarios in code processing.

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7675

2.10 SG-Trans

This paper [23] introduces SG-Trans, a novel
method that integrates both local and global code
structure into the self-attention module of the
Transformer. The performance improvements in
code summarization using structural code
information are noteworthy and suggest that your
study can contribute by further exploring these
techniques in different software engineering tasks,
such as bug detection and code completion.

2.11 Automated Code Review

The introduction of PDG2Seq [24] for enhancing
code review by utilizing program dependency
graphs can be positioned as part of the broader
conversation on improving code understanding
using deep learning techniques. This study also
underscores the need for efficient learning of code
structure to improve automation in coding tasks,
which directly supports the gap your research seeks
to address regarding computational efficiency and
model effectiveness.

2.12 Code Completion and T5

This paper’s [25] exploration of Transformer-based
models such as T5 in code completion at multiple
granularity levels demonstrates their versatility and
growing importance. By experimenting with
predicting entire code blocks, the study contributes
to the understanding of how Transformer
architectures perform across diverse coding tasks, a
key research gap your study aims to fill.

2.13 Gaps in the Literature and Motivation for
Current Study

Despite the significant progress made in comparing
Recurrent Neural Networks (RNNs) with
Transformers, there remain several gaps in the
literature. One notable gap is the lack of
comprehensive comparisons across multiple tasks,
particularly in practical, real-world applications.
While many studies focus on specific tasks such as
code completion or bug detection, there is limited
research evaluating the performance of these models
across a broader range of tasks or in integrated
systems.

Additionally, many current studies rely on datasets
that may not fully reflect the diversity of real-world
codebases, particularly in terms of programming

languages and coding styles. This creates a need for
more extensive evaluations on real-world datasets to
ensure that findings are applicable in practical
software engineering environments [17]. Another
significant gap is the limited exploration of how
these models perform when integrated into
established software development tools and
workflows, such as version control systems or
integrated development environments (IDEs).
Understanding how these models interact with other
elements of the software development process is
essential for their practical deployment.

The primary objective of this study is to address
these gaps by conducting a comprehensive analysis
of Recurrent Neural Networks (RNNs) and
Transformers in the context of key software
engineering tasks, namely bug detection, code
completion, and summarization. This analysis will
be conducted using a diverse set of real-world
datasets to ensure the validity and generalizability of
the findings. By offering practical insights into the
comparative performance of these models, this
research aims to provide actionable
recommendations for their implementation in real-
world software engineering processes [17].

This research aims to address these gaps by:

Comprehensive Comparison Across Tasks:
Previous research on the application of deep learning
models in software engineering tasks, such as bug
detection, code completion, and summarization, has
often been limited to individual tasks or focused on
either Recurrent Neural Networks (RNNs) or
Transformers alone. Few studies provide a holistic
comparison across multiple tasks, which is critical
for practitioners deciding which model to adopt
based on the specific requirements of their project.
By offering a detailed analysis of both models across
several tasks, this study fills an important research
gap and adds to the broader understanding of these
architectures in practical, real-world settings

Balance Between Performance and
Computational Efficiency: One key issue that this
study addresses is the trade-off between model
accuracy and computational efficiency. While
Transformers excel in tasks requiring long-range
dependency modeling, they come with higher
computational costs, making them impractical for
resource-constrained environments. Conversely,
RNNs, though less capable of handling long-range
dependencies, are more efficient in terms of memory
and computation for tasks involving shorter

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7676

sequences. This study provides insights into when
the computational trade-offs are justified, creating
new knowledge about the practical deployment of
these models based on task complexity, available
resources, and the need for scalabilityoftware.

Engineering Context: The research also addresses
the gap in understanding how these models perform
in large-scale, diverse codebases representative of
real-world software engineering environments.
Previous studies often rely on synthetic or limited
datasets that do not capture the full spectrum of
challenges encountered in practical development
settings. By testing the models on large and varied
datasets, this study ensures its findings are relevant
to industry use cases, making a significant
contribution to applied AI research in software
engineering.

Knowledge CResource-Efficient AI: Another key
contribution is the study's focus on identifying
specific scenarios where RNNs, despite their
limitations, can be more resource-efficient,
especially for tasks with smaller code sequences or
less complex dependencies. This creates valuable
knowledge for developers working in environments
where computational resources are limited, guiding
them in making informed decisions about model
selection based on performance and resource
constraints

In summary, the literature review highlights the
significant progress achieved through the use of deep
learning models, particularly RNNs and
Transformers, for source code analysis tasks such as
code completion, bug detection, and summarization.
While Transformers have generally outperformed
RNNs in tasks that require a deep understanding of
long-range dependencies, both models have their
strengths depending on the specific task and context.
This study aims to fill the existing gaps by providing
a detailed comparison of RNNs and Transformers
across multiple tasks, offering insights that can guide
the development of more efficient and effective
software engineering tools.

3. PROBLEM STATEMENT

Despite the progress made in
applying deep learning models like Recurrent Neural
Networks (RNNs) and Transformer architectures to
software engineering tasks such as bug detection,
code completion, and code summarization, several
key challenges persist. RNNs, while useful for

capturing short-term dependencies in sequential
data, face significant difficulties in handling long-
range dependencies, largely due to the vanishing
gradient problem. This limitation renders them
suboptimal for tasks requiring deep contextual
understanding across larger codebases, such as
summarizing long code functions or identifying bugs
influenced by distant code segments

On the other hand, Transformers, with their self-
attention mechanisms, address the issue of long-
range dependencies and have demonstrated superior
performance in tasks requiring global context.
However, their increased computational complexity,
memory demands, and training time pose significant
barriers to practical deployment in resource-
constrained environmentslects a gap in
comprehensive evaluations that directly compare
these models across multiple real-world code-related
tasks, particularly in large-scale software projects
where both efficiency and accuracy are critical .

This study aimsonducting a comparative analysis of
RNNs and Transformers across key software
engineering tasks. By examining their respective
strengths, limitations, and performance trade-offs,
this work seeks to provide actionable insights into
the deployment of these models in practical software
development settings. The increasing complexity of
modern software projects and the demand for more
robust, scalable solutions further highlight the need
for this research, as current approaches are
insufficient to meet these evolving challenges.

4. PROPOSED WORK

4.1 Evaluation Criteria: The chosen evaluation
metrics—accuracy, computational efficiency, and
scalability—are significant because they directly
relate to the practical challenges that developers face
when deploying AI models in real-world scenarios.
Many software engineering tasks, such as code
completion or bug detection, require high accuracy,
but resource-constrained environments also demand
models that can perform efficiently without
excessive computational costs.

The BLEU scores, often used in code summarization
tasks (as seen in [23] and [24]), measure the
linguistic quality of generated code, which is crucial
for tasks like code summarization where the quality
of the output directly impacts its utility. Similarly,
ROUGE and METEOR metrics, as seen in [24], are
significant in measuring summarization and review

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7677

generation quality. The study also considers
computational time and resource usage, which are
critical when evaluating models for large-scale
industry adoption, especially for complex tasks like
bug fixing or code generation.

4.2 Why are these Criteria Significant

The choice of these metrics stems from the practical
applicability of the study’s findings. Developers
implementing code intelligence systems need
models that balance accuracy and speed. By
comparing RNNs and Transformers across tasks, the
study not only provides an academic contribution but
also offers actionable insights for practitioners
seeking to optimize their development
environments.

4.3 Comparison to Other Studies:

While many recent studies focus on individual tasks,
such as code embeddings or bug summarization, this
study's holistic comparison across multiple tasks is a
key differentiator. Most of the existing literature
evaluates models on a single criterion, such as
accuracy or efficiency, without integrating both into
a broader performance analysis. By contrast, this
study seeks to provide a multi-faceted evaluation,
which sets it apart from prior work.

Additionally, the importance of integrating structural
properties into Transformer-based models to
improve their effectiveness, especially in code
summarization tasks. The study’s evaluation criteria,
therefore, are aligned with similar research but
expand the scope to include a more comprehensive
set of real-world performance metrics.

4.4 Justification of the Outcome:

The findings of this study highlight that while
Transformers perform better on tasks requiring long-
range dependency modeling (e.g., code
summarization and bug fixing), RNNs can be more
computationally efficient for shorter tasks such as
code completion. This outcome is consistent with the
growing body of literature that emphasizes the trade-
offs between accuracy and resource usage when
selecting AI models for specific tasks [20] [22]. The
study's outcome not only fills a research gap but also
provides a decision framework for developers,
justifying the use of RNNs in scenarios where
computational efficiency is paramount and

Transformers for tasks where contextual accuracy is
more critical.

In conclusion, the evaluation criteria are carefully
chosen to balance academic rigor with practical
application, ensuring that the results are not only
novel in a research context but also relevant to real-
world software development environments. The
study’s contribution to knowledge creation is both
timely and necessary, given the rapid adoption of AI-
driven code intelligence tools in modern
programming.

5. METHODOLOGY

This section details the
methodology used in this study, which aims to
compare the performance of Recurrent Neural
Networks (RNNs) and Transformers in source code
analysis tasks such as bug detection, code
completion, and code summarization. The
methodology encompasses dataset details, pseudo-
algorithm, model architecture, and experimental
setup, providing a comprehensive overview of the
research approach.

5.1. Dataset Details

The datasets used in this study are derived from
various sources and are tailored to the specific tasks
being analyzed. The dataset details are as follows:

 Bug Detection Dataset: This dataset
comprises bug-fixing pairs (BFPs) from
Java projects on GitHub. The dataset
includes 2.3 million bug-fix pairs, with
subsets like BFmedium (methods up to 100
tokens) and BFsmall (methods up to 50
tokens). The dataset has been pre-processed
and tokenized, with each buggy method
paired with its corresponding fixed version
[18].

 Code Completion Dataset: The
CodeSearchNet corpus, specifically filtered
for Java methods, serves as the primary
dataset for code completion tasks. This
dataset includes approximately 634,799
methods for Java and 654,224 methods for
Android applications. The data is structured
to simulate different code completion
scenarios with token, construct, and block-
level masking [19].

 Code Summarization Dataset: The
dataset for code summarization contains

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7678

over 2.1 million tuples of Java methods and
their corresponding summaries. The
methods are filtered to ensure a balanced
representation of various coding styles and
complexities [18].

5.2. Pseudo-Algorithm

To facilitate a clear understanding of the processes
involved, the following pseudo-algorithm outlines
the general procedure applied in training and
evaluating the models for each task:

Pseudo-Algorithm:

1. Input: Dataset D={(xi,yi)}, where xi
represents the input code and yi the
corresponding output (bug-fix, completion,
or summary).

2. Initialize: Model M (either RNN or
Transformer), learning rate η, number of
epochs N, and batch size B.

3. Preprocess Data: Tokenize and pad
sequences to a uniform length.

4. For epoch t=1 to N:

For each batch Bj in dataset D:

 Pass xi through model M.

 Compute the loss
L(M(xi),yi).

 Update model
parameters using
backpropagation and
gradient descent.

End For

Evaluate model performance on
validation set Dval.

5. End For

6. Output: Trained model MMM and
performance metrics.

5.3 Model Architecture

The model architecture is a crucial element of this
study, as it determines the efficiency with which
each model can process and analyze source code.
The study focuses on two main deep learning
architectures: Recurrent Neural Networks (RNNs),
specifically Long Short-Term Memory (LSTM)
networks, and Transformer models. Every

architecture is customized to meet the individual
needs of tasks such as bug identification, code
completion, and code summarizing.

5.3.1. RNN Architecture

a. Embedding Layer: The initial layer in the RNN
model is the embedding layer, responsible for
transforming the input tokens (such as code tokens)
into compact and continuous vector representations.
The embedding layer assigns a vector of a
predetermined size to each token in the vocabulary,
representing the token's syntactic and semantic
characteristics. The mathematical representation of
this change is as follows:

where is the embedding vector for token

 and is the embedding matrix.

b. LSTM Layers: Following the embedding layer,
the architecture includes multiple LSTM layers.
LSTMs are a type of RNN designed to capture long-
term dependencies in sequential data. Each LSTM
unit has a cell state that is passed through time, along
with three gates—input, forget, and output gates—
that regulate the flow of information. The operations
in an LSTM cell at time step t can be described by
the following equations:

Here, , and represent the forget, input, and

output gates, respectively; is the candidate cell

state; is the cell state; and ht is the hidden state

output by the LSTM at time step t. The matrices

, , and contain the weights that are learned
during training.

c. Dropout Regularization: Dropout regularization
is implemented after each LSTM layer to mitigate
overfitting. During training, dropout is used to
randomly deactivate a portion of the LSTM units.
This helps prevent the model from excessively

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7679

relying on any units. The dropout rate is a
hyperparameter that specifies the proportion of units
to exclude.

d. Output Layer: The last layer in the RNN model
is a fully linked layer. In classification tasks, such as
bug detection, the output layer employs a softmax
activation function to generate a probability
distribution across the available classes. The softmax
function is defined as:

where zi is the logit (input to the softmax function)
for class i, and is the predicted probability for
class i. For regression tasks, such as code
summarization, the output layer uses a linear
activation function, which directly outputs the
predicted values without transformation.

The architecture commences with the Input
Sequence, which denotes the unprocessed data, such
as a sequence of code tokens, that the model will
handle. The sequence is initially processed by the
Embedding Layer, which transforms each token into
a compact vector representation. These embeddings
encode both the meaning and structure of the tokens,
converting them from distinct symbols into
continuous vectors that the model can handle with
more efficiency. Following the embedding layer, the
data proceeds to the initial LSTM layer.

Figure 1. Model
Architecture Diagrams for RNN and Transformer
Networks in Source Code Analysis Tasks

The purpose of LSTM Layer 1 is to analyze
sequential data and identify relationships between
tokens that are in close proximity to each other
within the sequence. This layer utilizes Long Short-
Term Memory (LSTM) cells, which have the ability
to retain information over a period of time. This
makes them highly effective for processing
sequential data that relies on context. The output
generated by the initial LSTM layer is subsequently
passed as input to the second LSTM layer. The
second LSTM layer further analyzes the sequence,
enabling it to capture intricate relationships that may
extend across greater distances within the sequence.
Utilizing many LSTM layers enhances the model's
capacity to develop a more profound comprehension
of the sequential data, hence enhancing its accuracy
in making predictions. After the LSTM layers, the
model implements Dropout as a form of
regularization. During training, the Dropout layer
selectively sets a portion of the output units from the
preceding layer to zero in a random manner. This
aids in mitigating overfitting, guaranteeing that the
model does not excessively depend on certain units
and can effectively generalize to novel data.
Subsequently, the data proceeds through the Fully
Connected Output Layer. In classification tasks, the
last layer of the neural network usually employs a
softmax activation function. This function
transforms the output values into probabilities
corresponding to each potential class. In regression
tasks, the layer would utilize a linear activation
function, resulting in the generation of continuous
output values. Ultimately, the processed data arrives
at the Output stage, when the model generates its
ultimate predictions by leveraging the acquired
patterns and connections in the input sequence. The
output represents the model's prediction or
classification outcome, which is utilized for
subsequent decision-making or analysis.

5.3.2. Transformer Architecture

a. Embedding Layer: Like the RNN architecture,
the Transformer model commences with an
embedding layer that transforms input tokens into
compact vectors. In addition, the Transformer
incorporates positional encodings that are used with
the embeddings to incorporate information about the
position of each token in the sequence. The
positional encoding is determined by:

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7680

where pos is the position, i is the dimension, and
dmodel is the embedding dimension.

b. Self-Attention Mechanism: The essential
component of the Transformer model is the self-
attention mechanism, which enables the model to
determine the significance of various tokens in
relation to one another. The computation of the
scaled dot-product attention is as follows:

where Q (queries), K (keys), and V (values) are all
projections of the input sequence, and dk is the
dimension of the keys. The self-attention mechanism
enables the model to capture dependencies across the
entire sequence, regardless of their distance.

c. Multi-Head Attention: The Transformer use
multi-head attention to capture many forms of
interactions. This involves performing numerous
self-attention operations, or "heads," simultaneously,
each with distinct learning projections. The results of
these components are combined and subjected to a
linear transformation to create the ultimate output of
the multi-head attention layer:

where each head is computed as:

Here, , , , and W0 are learned

parameter matrices.

d. Feed-Forward Network: After the attention
layers, the Transformer utilizes a position-wise feed-
forward network to process each token individually.
The feed-forward network comprises of two linear
transformations separated by a ReLU activation
function:

where and are weight matrices, and and

 are bias terms.

e. Output Layer: Like the RNN architecture, the
output layer in the Transformer is task specific. For
classification tasks, it includes a SoftMax activation

function, while for regression tasks, a linear
activation function is used.

This detailed architecture provides a robust
framework for comparing the performance of RNNs
and Transformers across various source code
analysis tasks, ensuring that each model is optimally
configured for the task at hand. The inclusion of
equations and the architecture diagrams aids in
understanding the flow of data and the processing
mechanisms within each model, highlighting their
respective strengths and operational mechanisms.

Figure 2. Detailed Illustration of the RNN and
Transformer Architectures for Sequential Data

Processing in Source Code Analysis

The model architecture commences with the Input
Sequence, comprising unprocessed data such as code
tokens. The data undergoes initial processing in the
Embedding Layer, where tokens are transformed
into dense vector representations. These vectors
encapsulate the semantic significance of the tokens
and ready them for subsequent processing.
Subsequently, the Positional Encoding Layer is
activated, incorporating vital details regarding the
location of each token inside the sequence. It is
crucial for the model to understand the token order,
as Transformers process sequences in parallel rather
than sequentially. Subsequently, the data is directed
onto the Multi-Head Self-Attention Layer. The
presence of this layer is crucial for the Transformer's
capacity to effectively process intricate sequences.
The model is capable of simultaneously processing
numerous features of the input sequence, allowing it
to capture relationships between tokens throughout
the whole sequence, regardless of their placements.

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7681

The Add & Norm Layer has a residual connection,
where the original input is added to the output of the
attention layer after the self-attention process.
Normalization is the subsequent phase, which
guarantees the stability of the data while it traverses
the network. The output generated by the attention
layers is subsequently handled by the Feed-Forward
Network Layer. This layer utilizes an individual
neural network for each position, operating
separately and enhancing the information obtained
from the attention mechanism. Next, there is another
Add & Norm Layer, in which the model once again
applies a residual connection and normalizing to
ensure the stability of the data flow. Ultimately, the
processed data arrives at the Fully Connected Output
Layer, where the model generates its ultimate
predictions. This layer can utilize a SoftMax
function for classification tasks or a linear activation
for regression tasks, thereby defining the model's
output depending on the acquired representations of
the input sequence.

5.4. Experimental Setup

The experimental setup establishes the specific
conditions under which the models were trained and
evaluated. In terms of training configuration, both
models utilized the Adam optimizer, with an initial
learning rate set at 10−4. A batch size of 32 was
employed, and training was conducted for up to 50
epochs. However, early stopping was applied based
on validation loss to avoid overfitting. Regarding
hardware, the experiments were carried out on an
NVIDIA Tesla V100 GPU, which has 32GB of
VRAM. This hardware selection provided the
necessary computational power to effectively train
the deep models. Evaluation metrics included
accuracy for bug detection, BLEU scores for code
summarization, and token-level accuracy for code
completion. To provide a thorough analysis of the
models' performance, additional metrics like F1
score and precision-recall were also calculated. As
for baseline models, the study included traditional
machine learning methods, such as n-gram models
for code completion, and simpler RNN models.
These baselines were used to benchmark the more
advanced architectures evaluated in this research.
This methodology was designed to ensure a fair and
thorough comparison between RNNs and
Transformers, yielding meaningful insights into their
respective advantages and disadvantages in
analyzing source code tasks.

6. RESULTS AND DISCUSSIONS

This section presents the results of the comparative
study between Recurrent Neural Networks (RNNs),

Transformer models, and other traditional models
across three primary tasks: bug detection, code
completion, and code summarization. The
performance of these models is evaluated based on
several metrics including accuracy, BLEU score, F1
score, training time, and memory usage.

Bug Detection: In the bug detection task, the
accuracy of RNN and Transformer models was
analyzed as a function of sequence length. As shown
in the results, the Transformer model consistently
outperforms the RNN model across all sequence
lengths. For shorter sequences (50 tokens), the RNN
model achieved an accuracy of 85.4%, while the
Transformer achieved 87.9%. However, as the
sequence length increased to 250 tokens, the
accuracy of the RNN dropped to 75.2%, whereas the
Transformer maintained a higher accuracy of 90.0%.
This demonstrates the superior ability of the
Transformer model to capture long-range
dependencies, which is crucial for effective bug
detection in larger code sequences (see Table 1 and
Figure 3)

Table 1: Accuracy Comparison of RNN and
Transformer Models Across Sequence Lengths

Figure 3. The accuracy of RNN and Transformer
models as sequence length increases, showing the

Transformer's resilience in maintaining high
accuracy even with longer sequences.

Sequence
Length

RNN
Accuracy

(%)

Transformer
Accuracy (%)

50 85.4 87.9

100 83.1 88.5

150 80.7 89.1

200 77.5 89.4

250 75.2 90.0

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7682

Code Completion: For the code completion task, the
token prediction accuracy of both models was
evaluated across different code snippet lengths. The
Transformer model again outperformed the RNN,
particularly for longer snippets. For code snippets of
50 tokens, the RNN model achieved an accuracy of
80.3%, while the Transformer model reached 82.5%.
As the snippet length increased to 250 tokens, the
RNN's accuracy dropped to 69.5%, whereas the
Transformer's accuracy was significantly higher at
88.5%. This result underscores the effectiveness of
the Transformer model in understanding complex
code structures, which is essential for accurate code
completion (see Table 2 and Figure 4).

Table 2: Accuracy Comparison of RNN and
Transformer Models Across Snippet Lengths

Figure 4. Token prediction accuracy for RNN and
Transformer models across varying code snippet
lengths, highlighting the Transformer's superior

performance, especially in longer sequences.

Code Summarization: In the code summarization
task, the models were evaluated using BLEU scores,
which measure the quality of the summaries
generated. The Transformer model significantly
outperformed the RNN, with BLEU scores of 0.82

compared to 0.67 for the RNN. This difference is
largely due to the Transformer's ability to maintain a
global context, which is crucial for generating
coherent and accurate summaries. The higher BLEU
score indicates that the Transformer's summaries are
closer to human-written summaries, making it the
preferred model for this task (see Table 3 and Figure
5).

Table 3: BLEU Score Comparison Between RNN
and Transformer Models

Model BLEU Score

RNN 0.67

Transformer 0.82

Figure 5. BLEU scores comparing RNN and
Transformer models in code summarization tasks,

showing the Transformer's dominance in
generating high-quality summaries.

Computational Efficiency: When examining
computational efficiency, the RNN model was more
efficient in terms of memory usage, requiring 8.5 GB
of memory compared to 12.3 GB for the
Transformer. However, the Transformer model
completed training faster, with a training time of 11.2
hours compared to 14.5 hours for the RNN. This
trade-off between memory usage and training speed
is an important consideration, particularly in
environments with limited computational resources.
The Transformer's faster training time, despite
higher memory requirements, highlights its
efficiency in processing large datasets (see Table 4
and Figure 6).

Snippet
Length

RNN
Accuracy

(%)

Transformer
Accuracy (%)

50 80.3 82.5

100 77.4 84.2

150 74.6 86.1

200 72.1 87.3

250 69.5 88.5

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7683

Table 4: Training Time and Memory Usage
Comparison Between RNN and Transformer

Models

Figure 6: Comparison of training time and memory
usage for RNN and Transformer models,

illustrating the trade-offs between computational
speed and resource consumption.

Overall Performance: The overall performance of
the models across all tasks is summarized using
average metrics. The Transformer model achieved
an average accuracy of 86.3%, an F1 score of 0.80,
and a BLEU score of 0.82. In contrast, the RNN
model had an average accuracy of 78.2%, an F1
score of 0.72, and a BLEU score of 0.67. These
results clearly demonstrate that the Transformer
model outperforms the RNN in terms of accuracy, F1
score, and BLEU score across all tasks, particularly
in tasks that require handling longer sequences and
more complex dependencies (see Table5 and figure
7a, 7b and 7c).

Table 5: Overall Model Performance Metrics
Comparison Between RNN and Transformer

Models

Figure 7a: Accuracy Comparison Between RNN
and Transformer Models

Figure 7b: F1 Score Analysis for RNN-and
Transformer Models

Figure 7c: BLEU Score Performance of RNN vs.
Transformer Models

Comparative Analysis with Other Models: In
addition to comparing RNN and Transformer
models, this study also considered traditional
machine learning models such as n-gram models for
code completion and decision tree-based models for
bug detection. These models, while still in use,
generally performed below the levels achieved by
both RNNs and Transformers. For example, in the
bug detection task, traditional models achieved an

Model
Training Time

(hours)
Memory Usage

(GB)

RNN 14.5 8.5

Transformer 11.2 12.3

Metric RNN Transformer

Accuracy (%) 78.2 86.3

F1 Score 0.72 0.8

BLEU Score 0.67 0.82

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7684

accuracy range of 65-70%, significantly lower than
the 75.2% to 90.0% range seen with RNNs and
Transformers. Similarly, in the code completion
task, n-gram models achieved token prediction
accuracy of around 60% for shorter sequences,
which further declined with longer sequences,
falling behind both RNNs and Transformers. The
comparative analysis of the models revealed distinct
performance differences across various tasks. In bug
detection, traditional models achieved an average
accuracy of around 67%, whereas RNNs and
Transformers demonstrated significantly higher
performance. When it came to code completion,
traditional models performed adequately with
shorter sequences, reaching about 60% accuracy, but
their performance declined as the sequence length
increased. In contrast, RNNs and Transformers
maintained higher accuracy across varying sequence
lengths. For code summarization, traditional models
encountered challenges with capturing context
effectively, resulting in BLEU scores around 0.50,
which was notably lower compared to the more
advanced RNNs and Transformers. These results
highlight the superiority of RNNs and Transformers
over traditional models in these specific tasks (see
Table 6 and figure 8a, 8b and 8c).

Overall, the results highlight that while traditional
models may be suitable for simpler tasks or as
baselines, RNNs and Transformers are clearly
superior for more complex and context-dependent
tasks like those in source code analysis. The
Transformer model, in particular, excels across the
board, offering the best balance of accuracy, speed,
and ability to handle long-range dependencies. The
RNN model, while slightly behind the Transformer
in performance, still outperforms traditional models,
especially in environments where computational
resources are constrained.

Table 6: Performance Comparison of RNN and
Transformer Models Across Different Tasks

Task

RNN
Accu
racy
(%)

Transf
ormer
Accur

acy
(%)

RN
N

BL
EU
Sco
re

Transf
ormer
BLEU
Score

R
N
N
F1
Sc
or
e

Transf
ormer

F1
Score

Bug
Detectio

n
80.4 88.0

0.6
5

0.78
0.7
0

0.78

Code
Complet

ion
75.3 85.7

0.6
6

0.80
0.7
1

0.79

Code
Summa
rization

78.2 86.3
0.6
7

0.82
0.7
2

0.80

Figure 8a. Accuracy Comparison Across Different
Tasks: Bug Detection, Code Completion, and Code

Summarization

Figure 8b. BLEU Score Comparison Across
Different Tasks: Bug Detection, Code Completion,

and Code Summarization

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7685

Figure 8c. F1 Score Comparison Across
DifferentTasks: Bug Detection, Code Completion,

and Code Summarization

The findings unequivocally demonstrate that
conventional models, which were previously
prevalent, are now being surpassed by advanced
deep learning models, including RNNs and
Transformers. The Transformer's self-attention
method enables it to effectively capture both local
and global dependencies, making it highly suitable
for complicated tasks such as code summarizing and
bug identification. Nevertheless, the RNN's
effectiveness in memory utilization implies that it
remains valuable in contexts with limited resources,
especially for jobs that involve shorter sequences.
Practitioners will need to carefully assess the balance
between accuracy and computing efficiency. The
exceptional performance of Transformers in this
study indicates that they should be the preferred
model for most applications, particularly where there
are sufficient computational resources. Subsequent
investigations may focus on hybrid models that
integrate the advantages of both architectures,
potentially providing a trade-off between
performance and resource consumption. Traditional
models, on the other hand, could continue to serve as
benchmarks or be used in less complex applications
where the intricacy of deep learning models is not
required.

7. CONCLUSIONS

The conclusions of this study are directly drawn
from the identified research gap and the methods
applied. By comparing Recurrent Neural Networks
(RNNs) and Transformer models in three critical
source code analysis tasks—bug detection, code
completion, and code summarization—this research
addressed the growing need for more efficient AI-
driven tools in software development. The findings
demonstrated that the Transformer model
consistently outperforms RNNs in all evaluated
tasks, particularly in managing complex code
dependencies. For instance, in the bug detection
task, the significantly higher accuracy of the

Transformer (90.0% vs. RNN’s 75.2%) underscores
its superior capacity to analyze long-range
dependencies within source code—a key factor in
complex bug identification.

Furthermore, the study revealed that the
Transformer’s dominance in code completion and
summarization tasks also stems from its ability to
maintain high accuracy and BLEU scores across
more complex code sequences and summaries. This
ability directly addresses the limitations found in
RNNs, particularly their struggles with longer code
snippets and generating coherent summaries, which
often require an understanding of a broader context.

However, the computational overhead of
Transformers, as indicated by their higher memory
consumption and shorter training times, brings forth
a trade-off that developers must consider. Although
the Transformer models offer superior performance,
the higher computational cost may not be feasible in
environments where resource limitations are a
concern. This nuance justifies the conclusion that
while Transformers should be the preferred choice
for tasks demanding higher accuracy and handling of
complex code dependencies, RNNs can still be
practical in scenarios where computational
efficiency is a priority over performance.

The methods applied in this study, including the use
of accuracy metrics, BLEU scores, and memory
usage analysis, align with the industry-relevant
criteria and provide a practical decision-making
framework for developers. This research fills a
critical gap by offering a comprehensive comparison
of both models across multiple tasks, a feature often
missing in earlier studies which focus on isolated
tasks or metrics. The outcomes justify the need for
further exploration into hybrid models that can
leverage the strengths of both architectures while
minimizing their respective weaknesses, particularly
in resource-constrained environments.

This study's findings not only advance the state of
research but also have real-world implications for
developers seeking to integrate AI-based tools into
their workflows, particularly in scenarios requiring
scalable and efficient code analysis tools.

REFERENCES

[1]. Villmow, J., Ulges, A., & Schwanecke, U.
(2021). A Structural Transformer with Relative
Positions in Trees for Code-to-Sequence Tasks.
In International Joint Conference on Neural
Networks (IJCNN).

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7686

[2]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. (2017). Attention is All You
Need. In Advances in Neural Information
Processing Systems pp. 5998-6008.

[3]. Devlin, J., Chang, M.-W., Lee, K., & Toutanova,
K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding. In Proceedings of the
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers) pp. 4171-4186.
Minneapolis, Minnesota: Association for
Computational Linguistics.

[4]. Gu, X., Zhang, H., & Kim, S. (2018). Deep
Code Search. In IEEE/ACM 40th International
Conference on Software Engineering (ICSE)
pp. 933-944.

[5]. Gupta, R., Pal, S., Kanade, A., & Shevade, S.
(2017). DeepFix: Fixing Common C Language
Errors by Deep Learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial
Intelligence (AAAI-17).

[6]. Alon, U., Zilberstein, M., Levy, O., & Yahav, E.
(2019). Code2Vec: Learning Distributed
Representations of Code. In Proceedings of the
ACM on Programming Languages, 3(POPL),
40.

[7]. Murphy, C., Kaiser, G., Hu, L., & Wu, L.
(2014). Properties of machine learning
applications for use in software engineering.
Proceedings of the 2014 International
Conference on Software Engineering pp. 75-84.

[8]. White, M., Tufano, M., Vendome, C., &
Poshyvanyk, D. (2015). Deep learning code
fragments for code clone detection. Proceedings
of the 31st IEEE/ACM International
Conference on Automated Software
Engineering pp. 87-98.

[9]. Raychev, V., Bielik, P., & Vechev, M. (2016).
Probabilistic model for code with decision trees.
Proceedings of the ACM on Programming
Languages.

[10]. Ahmad, W. U., Chakraborty, S., Ray, B., &
Chang, K. W. (2020). A transformer-based
approach for source code summarization.
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics pp.
1449-1462.

[11]. Hellendoorn, V. J., & Devanbu, P. (2019). Are
deep neural networks the best choice for
modeling source code? Proceedings of the
ACM/IEEE International Symposium on

Empirical Software Engineering and
Measurement pp. 1-11.

[12]. Karpathy, A., Johnson, J., & Li, F. F. (2015).
Visualizing and understanding recurrent
networks. Proceedings of the International
Conference on Learning Representations
(ICLR).

[13]. White, M., Vendome, C., Linares-Vásquez, M.,
& Poshyvanyk, D. (2016). Toward deep
learning software repositories. Proceedings of
the 2016 IEEE/ACM International Conference
on Mining Software Repositories pp. 334-345.

[14]. Allamanis, M., Barr, E. T., Devanbu, P., &
Sutton, C. (2016). A survey of machine learning
for big code and naturalness. ACM Computing
Surveys (CSUR), 48(4), 1-29.

[15]. Bengio, Y., Simard, P., & Frasconi, P. (1994).
Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on
Neural Networks, 5(2), 157-166.

[16]. Sun, Z., Wang, S., & Dong, Y. (2020).
Transformer-based hybrid model for code
summarization. IEEE Transactions on Software
Engineering, 46(10), 1019-1034.

[17]. Raychev, V., Vechev, M., & Yahav, E. (2016).
Code completion with statistical language
models. Proceedings of the 38th International
Conference on Software Engineering pp. 419-
429.

[18]. Mastropaolo, A., Scalabrino, S., Cooper, N.,
Palacio, D.N., Poshyvanyk, D., Oliveto, R. and
Bavota, G., 2021, May. Studying the usage of
text-to-text transfer transformer to support
code-related tasks. Proceedings of 43rd
International Conference on Software
Engineering (ICSE) pp. 336-347. IEEE.

[19]. Siddiq, M.L., Majumder, S.H., Mim, M.R.,
Jajodia, S. and Santos, J.C., 2022, October. An
empirical study of code smells in transformer-
based code generation techniques. IEEE 22nd
International Working Conference on Source
Code Analysis and Manipulation (SCAM) pp.
71-82. IEEE.

[20]. Y. Wan, Y. He, Z. Bi, J. Zhang, H. Zhang, Y. Sui,
G. Xu, H. Jin, and P. S. Yu, 2024 Deep Learning
for Code Intelligence: Survey, Benchmark, and
Toolkit. ACM Comput. Surv., vol. 56, no. 1

[21]. N. Chirkova and S. Troshin, 2021 Empirical
Study of Transformers for Source Code, in Proc.
29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering
(ESEC/FSE), pp. 703–715.

 Journal of Theoretical and Applied Information Technology
15th November 2024. Vol.102. No. 21

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7687

[22]. S. Kotsiantis, V. S. Verykios, and M. Tzagarakis,
2024, AI-Assisted Programming Tasks Using
Code Embeddings and Transformers,
Electronics, vol. 13, no. 4, Art. no. 767

[23]. S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, X. Xia,
and M. R. Lyu, 2021 Code Structure Guided
Transformer for Source Code Summarization,
ACM Trans. Softw. Eng. Methodol., vol. 30, no.
3, pp. 1-30, 2021

[24]. Y. Xiao, X. Zuo, L. Xue, K. Wang, J. S. Dong,
and I. Beschastnikh, 2023, Empirical Study on
Transformer-based Techniques for Software
Engineering, arXiv preprint arXiv:2310.00399.

[25]. Y. Yin, Y. Zhao, Y. Sun, and C. Chen, 2023,
Automatic Code Review by Learning the
Structure Information of Code Graph, Sensors,
vol. 23, no. 5, Art. no. 2551.

[26]. S. M. F. Ishaqui, M. A. Bari, and L. K. S.
Kumar., 2020 Automated Summarization of
Bug Reports to Speedup Software
Development/Maintenance Process by Using
Natural Language Processing (NLP), in Proc.
Int. Conf. Comput. Sci. Educ. (ICCSE), pp. 483-
488.

[27]. M. Ciniselli, N. Cooper, L. Pascarella, A.
Mastropaolo, E. Aghajani, D. Poshyvanyk, M.
Di Penta, and G. Bavota,(2022) An Empirical
Study on the Usage of Transformer Models for
Code Completion, IEEE Trans. Softw. Eng., vol.
48, no. 12, pp. 4818-4837.

