
 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8165

AN INTELLIGENT MODEL FOR INTEGRATING
ENTERPRISE DATA WAREHOUSE LAYERS TO MANAGE

SCHEMA EVOLUTION

WADEA GEORGE1,2, MOHAMMED MARIE2, AHMED YAKOUB2

1Department of Computer Science and Math, Faculty of Science, Helwan University Cairo, Egypt
2Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University,

Cairo, Egypt

E-mail: 1wadih.gorg@gmail.com, 2eng_ahmedyakoup@yahoo.com

ABSTRACT

In contemporary organizations, data warehousing centralizes and manages data from diverse sources, such
as relational databases and semi-structured systems like Temenos core banking (T24) XML systems,
facilitating data analytics and informed decision-making. However, the dynamic nature of data and evolving
source schemas pose challenges in adapting data warehouses efficiently, leading to interruptions in data
loading processes. This research proposes an intelligent model to enhance data integration in data
warehouses, aiming to automate or semi-automate the development cycle and integrate various layers,
including business analysis, data modeling, ETL (Extract, Transform, Load), and data quality enhancement
through rejection handling. Leveraging metadata, data dictionaries, data mining techniques, and Data Vault
modeling, the model aims to reduce development time and costs. The proposed model offers an efficient
solution to adapt to changes, significantly reducing adaptation costs compared to prior approaches. By
seamlessly integrating all layers of the data warehouse (DWH), it streamlines development cycles through
automation or semi-automation, introducing additional features to expedite the process. This research
demonstrates the model's superiority through three implemented experiments, showing significant time
savings and cost reductions (75% decrease compared to manual processes). It successfully integrates
development layers, semi-automates the development process, filters rejected data, and provides a clear
vision of schema storage during new changes deployment.

Keywords: ETL; DWH; Data modeling; Schema evolution; Information Retrieval; Metadata.

1. INTRODUCTION

 The integration of diverse data sources into
Data Warehouses (DWH) poses a complex and
evolving challenge within the realm of Data
Management. This challenge arises from the
frequent evolution of schemas due to structural
changes or system upgrades, with External Data
Sources (EDSs) often undergoing significant
alterations. For instance, telecommunication data
sources typically experience schema changes every
7-13 days on average, while banking data sources,
although relatively more stable, still encounter
schema changes every 2-4 weeks. These changes
generally involve modifications such as columns.

Length adjustments, data type alterations, and the
addition of new columns [1]. In practice, changes to
a DWH schema are driven by several factors,
including (1) the evolution of external data sources,
(2) changes in the real-world entities represented by
a DWH, (3) new user requirements, and (4) the
creation of simulation environments, which are
among the most common causes [2]. Previous
research has extensively addressed issues related to
metadata and schema management, ETL process
optimization, schema design and evolution,
performance optimization, and data quality in data
warehousing environments. For instance, a
metadata-based framework [3] effectively manages
schema changes by detecting, understanding, and
organizing Metadata into layers, while a

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8166

wrapper/mediator architecture [4] addresses schema
evolution in web data sources using wrappers for
data extraction and mediators for integration.
Additionally, schema transformations [5]
incorporate temporal elements and key adjustments,
and an adaptive transformation framework [6]
automates the detection and adaptation to source
schema changes. Furthermore, a robust metadata
repository [7] supports schema conversion,
integration, and transformation into a star schema.
To optimize ETL processes, various techniques have
been proposed, such as dynamically adjusting
workflows based on time constraints and workload
variations [8] to ensure ETL scalability, data
freshness, and time efficiency. The E-ETL
framework [9] employs Case-Based Reasoning for
ETL workflow repair and adaptability, while an
RDF-based ETL [10] enhances semantic data
integration through schema-level metadata
automation. Other strategies for ETL optimization
include source data optimization, parallel
processing, caching, incremental loading, and
monitoring [11], with a graph-based model [12]
combining policy annotations and automated
algorithms for schema change impact prediction.

In terms of enhancing data quality, advanced ETL
frameworks [13] manage the complexities of
integrating Traditional Chinese Medicine (TCM)
data, while rule-based frameworks [14] use graph-
based models to handle schema changes in ETL
processes. Comprehensive approaches [15-20]
discuss designing, evolving, and managing data
warehouse schemas with requirement-driven and
user-centric design principles. Research on
balancing OLTP and OLAP systems [21] explores
dimensional data modeling, data loading, staging
techniques, and partitioning strategies, while
methods for enhancing data warehouse performance
[22-27] include automated schema generation and
dynamic architecture adaptation. Logical Schema-
Based Mapping (LSM) [28] improves data retrieval
efficiency through keyword-based searches, and
studies on adapting to business needs [29, 32] focus
on semi-automatically generating schema versions
based on changing requirements. Enhancing data
quality [30] utilizes advanced algorithms during the
ETL process, while research on evolving ETL and
multi-version data warehouses (MVDW) [1]
discusses managing structural changes. An
ontological approach [31] suggests handling schema

evolution at the ontological level to minimize
adaptation costs, and other approaches [2] propose
solutions for managing temporal and multi-version
data warehouses. Despite these efforts, previous
approaches to managing schema evolution in data
warehouses have often been fragmented, addressing
metadata management, schema evolution, and ETL
optimization separately. This fragmentation has led
to increased maintenance efforts, inconsistencies,
and a lack of comprehensive integration.
Furthermore, traditional methods have typically
involved significant manual intervention, making
the process cumbersome and prone to errors. As a
result, the absence of a cohesive framework that
integrates different aspects of DWH development
has hindered the efficiency and reliability of data
management. In contrast, the proposed model in this
paper offers a more advanced solution by reducing
both development time and cost. This model
specifically addresses the automation of core
development processes across DWH layers,
including schema evolution management, business
analysis, schema modeling, ETL automation,
rejection handling, and schema storage assessment.
By streamlining these processes, the model aims to
reduce time, cost, and manual effort compared to
traditional approaches.

The scope of this research is confined to practical
development and experimental validation,
demonstrating the model’s effectiveness in
optimizing DWH integration. Key achievements
include significant reductions in development cycle
time (up to 75% savings) and cost savings through
semi-automated and automated processes.

This work does not extend to data governance and
security layers, alternative data modeling
methodologies beyond Data Vault modeling, or in-
depth theoretical examination of individual
development phases. Additionally, detailed
industry-specific case studies are beyond this scope,
aside from selected examples illustrating the
model’s impact. These topics are recognized as
future work, positioning this study as a targeted
exploration of schema evolution and layer
integration within enterprise DWH environments.
The model integrates data warehouse layers through
six phases: Schema Evolution Trigger, Business
Analysis, Schema Modeling Automation, ETL
Generation, Rejection Handling, and Schema
Storage Assessment. Through these integrated

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8167

layers, the development cycle can be automated
within a few hours, significantly improving the
assessment of impacts before deployment and
enhancing the handling of garbage data. Each phase
addresses specific challenges, aligns business
objectives, ensures efficient data management,
enhances scalability, and allows resumption from
any layer when needed. Together, these phases
streamline data warehouse development, enhance
functionality, and enable adaptation to evolving
enterprise needs.

2. PROBLEM STATEMENT

 Despite extensive research addressing
metadata management, schema evolution, and ETL
process optimization in data warehousing
environments, existing approaches have often been
fragmented, tackling these issues separately and
leading to increased maintenance efforts,
inconsistencies, and a lack of comprehensive
integration within the data warehouse development
cycle; traditional methods typically involve
significant manual intervention, making the process
cumbersome, error-prone, and time-consuming,
especially as frequent schema changes in external
data sources exacerbate these challenges by causing
interruptions in data loading processes, delays in
analytics, and elevated adaptation costs—thus, the
absence of a cohesive framework that integrates
different aspects of DWH development, such as
schema evolution detection, business analysis,
schema modeling, ETL automation, rejection
handling, and storage assessment, hinders the
efficiency and reliability of data management; the
primary problem this research addresses is how data
warehouse development processes can be integrated
and automated to efficiently manage schema
evolution in external data sources, thereby reducing
development time, costs, and maintenance efforts
while improving data quality and adaptability to
evolving business needs—a critical issue for
organizations relying on data warehouses for
strategic decision-making, which necessitates a
holistic approach that unifies various layers of the
data warehouse development cycle into an
intelligent, integrated model capable of automating
responses to schema changes, streamlining
development processes, enhancing data quality, and
being scalable and adaptable to future changes; by
focusing on this problem, the research aims to fill the
gap left by previous fragmented approaches,

providing a comprehensive solution that enhances
the efficiency and reliability of data warehouse
management in the face of ongoing schema
evolution.

3. THE PROPOSED MODEL
 The proposed model streamlines data
warehouse development by automating and
integrating processes across six phases: schema
evolution trigger, business analysis, schema
modeling automation, ETL automation, rejection
handling, and schema storage assessment. This
integrated approach reduces maintenance efforts,
accelerates development cycles, and enhances data
quality and adaptability. Key features include
automated schema updates, faster business analysis
via inverted indexing, scalable schema modeling
with Data Vault, reduced manual ETL processes,
advanced data quality mechanisms, and optimized
schema storage as shown in Figure 1. Experiments
show significant reductions in time, cost, and manual
effort, improving overall efficiency and
functionality to meet dynamic organizational needs.

Figure 1. The impact of the proposed model phases
on DWH architecture (Source, Staging area, and DWH

repository) [35]
3.1. Schema Evolution Trigger

 Objective: The Schema Evolution Trigger
phase plays a crucial role in maintaining the integrity
of the data warehouse by monitoring and managing

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8168

schema changes within the database environment. It
ensures meticulous tracking and documentation of
all alterations over time, providing a reliable audit
trail. This consistent oversight allows the data
warehouse to remain resilient and adaptable to
changing data source structures.
Algorithm 1: Schema Change Detector
Input: Database connection details
Output: Logged schema changes

1. Create table `table_ddl_audit_log` with columns
`event_type`, `object_name`, `event_date`.
2. Create trigger `table_ddl_audit_trigger` after
creating, altering, dropping, or renaming events.
3. Inside the trigger:
 a. Retrieve event type using `ora_sysevent`.
 b. Retrieve object name using
`ora_dict_obj_name`.
 c. Insert event details into `table_ddl_audit_log`.
4. For column changes (add, delete, rename):
 a. Insert 'ADDED_COLUMN' for newly added
columns.
 b. Insert 'DELETED_COLUMN' for removed
columns.
 c. Insert 'RENAMED_COLUMN' for renamed
columns.
5. Commit the transaction.

3.2. Business Analysis
 Objective: The Business Analysis phase is
designed to identify and highlight data that aligns
with business requirements through advanced
information retrieval methods. This approach assists
data warehouse modelers in efficiently capturing
relevant data, ensuring that the data warehouse
supports the strategic objectives of the organization.
Consequently, this alignment helps the organization
respond more effectively to evolving market
conditions. as illustrated in Figure 2.

Figure 2. Business Analysis Phase structure
Algorithm 2: Business Keywords Analyst
Input: Oracle database connection parameters,
search words, columns to combine, Parquet file path
Output: Plot of word counts across DataFrame
columns

1. Connect to the Oracle database and retrieve data.
2. Combine specified columns in the data frame.
3. Write DataFrame to Parquet file.
4. Create an inverted index for the data frame.
5. Perform parallel word counting using
ThreadPoolExecutor.
6. Filter and prepare data for plotting.
7. Plot the word counts using Matplotlib.

3.3. Schema Modeling Automation
 Data Vault modeling is a methodology for
constructing a data warehouse from heterogeneous
sources by automating schema modeling. This
approach ensures that the data warehouse remains
scalable and adaptable to changes in the source
systems. By automating the schema modeling
process, Data Vault modeling significantly reduces
the time and effort required to integrate new data
sources. These are the components of data vault
modeling:

 Hubs: Core entities representing unique
business keys (e.g., customers, products).

 Links: Elements that connect hubs,
modeling many-to-many business
relationships.

 Satellites: Store time-variant descriptive
attributes for hubs and links, maintaining
historical data.

 Satellite Tracking Hubs: Track historical
changes in satellites to manage data
changes.

 Satellite Tracking Links: Monitor
changes across satellites, managing
complex attribute relationships over time
[33].

Objective: The Schema Modeling Automation phase
utilizes Data Vault modeling, a methodology
designed to automate the construction of a data
warehouse from heterogeneous sources. This phase
involves creating a scalable and flexible schema
model that can efficiently organize and manage data
from various sources. The automated approach
significantly reduces development time and
enhances the model's ability to adapt to future
changes as shown in Figure 3.

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8169

Figure 3. Business Analysis Phase structure

Algorithm 3: Data Warehouse DWH Modeling
Generator
Input: User inputs, database connection details
Output: Data Vault model, Data Definition
Language (DDL), and Mapping Excel sheet

1. Connect to Oracle and Teradata databases.
2. Extract data and metadata from source systems.
3. Propose a Data Vault schema based on metadata.
4. Generate DDL statements and mapping sheets.
5. Apply business rules and transformations.
6. Create Hubs, Links, and Satellites in the target
Data Vault schema.
7. Integrate data into the Data Vault model.
8. Generate SQL scripts for Data Vault structures.
9. Archive data, generate DDL, and export mapping
sheets.
10. Finalize and close database connections.

3.4. ETL Automation
 Objective: The ETL Automation phase
leverages metadata to streamline the creation and
implementation of ETL (Extract, Transform, Load)
processes, optimizing data integration and ensuring
efficient data flow. By automating these processes,
this phase reduces manual intervention, minimizes
errors, and accelerates the data loading process. This
automation also ensures consistency in data
handling, which is crucial for maintaining data
accuracy and reliability.

Algorithm 4: ETL Pipeline Generator
Input: Source files, target directories, configuration
files
Output: ETL workflows

1. Initialize variables and paths for data processing
tasks.
2. Prepare and upload mapping sheet data to
Teradata.

3. Analyze XSD for XML schema definition.
4. Apply business logic transformations and validate
data.
5. Generate audit logs and control tables.
6. Create and deploy ETL workflows in Informatica
PowerCenter.
7. Execute workflows and manage execution logs.

3.5. Rejection Handling
 Objective: The Rejection Handling phase is
crucial for maintaining data integrity by
systematically filtering and managing invalid
records. This phase segregates records into valid and
rejected categories, ensuring that only accurate and
reliable data is processed within the data warehouse.
Effective rejection handling not only preserves data
quality but also streamlines the correction process
for any invalid data identified as shown in Figure 4

Figure 4. Rejection handling phase flowchart

Algorithm 5: Garbage Data Filter
Input: Data records
Output: Valid and rejected records

1. Initialize lists for valid and rejected records.
2. Define validation checks (Date, Character,
Decimal).
3. Iterate over each record for validation.
4. Perform validation based on criteria.
5. Handle validation outcome:
 a. Add rejected records to the rejection list with
reasons.
 b. Add valid records to the valid list.
6. Insert rejected records into the Rejection Table.
7. Update the source table to flag processed records.

3.6. Schema Storage Assessment

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8170

 Objective: The Schema Storage Assessment
phase plays a vital role in evaluating and organizing
storage utilization within the database schema. It
provides visual insights that enable decision-makers
to manage storage needs proactively, ensuring that
the database remains efficient and scalable. By
optimizing storage allocation, this phase supports the
long-term sustainability of the data warehouse's
infrastructure as shown in Figure 5.

Figure 5. Schema storage assessment phase result

Algorithm 6: Schema Storage Measure
Input: Database credentials
Output: Dash app displaying schema storage
utilization

1. Connect to the database and retrieve space
utilization data.
2. Fetch individual table sizes.
3. Categorize tables based on size (Big,
Intermediate, Small).
4. Group tables by size category and sum up their
sizes.
5. Create a Plot pie chart for storage allocation.
6. Generate custom annotations for each table.
7. Set up the Dash web application layout with the
pie chart.
8. Run the Dash app server to display the schema
storage dashboard.

These algorithms encapsulate the core
functionalities and definitions of each phase,

providing a comprehensive yet concise view of the
proposed model for efficient data warehouse
development and maintenance.

4. EXPERIMENTAL RESULTS

 This section discusses the implementation
details and experimental results of the proposed
model. Furthermore, the proposed model is
evaluated to demonstrate its superiority over other
similar existing techniques. This section discusses
the three experiments that were performed to
evaluate different aspects of the proposed model for
enhancing Data Warehouse (DWH) efficiency. The
first experiment assessed the impact of the model's
six phases on time and cost reduction in the data
warehouse. The second experiment compared the
Ontology Approach against the proposed model to
see whether the proposed model is effective in
reducing time and costs in the data warehouse. The
third experiment then compared Schema
Modification Operators (SMOs) to the proposed
model in terms of their ability to automate Extract,
Transform, Load (ETL) processes and reduce
maintenance efforts. Each experiment used distinct
datasets, such as T24 temenos core banking
extensible markup language [37] for Experiment 1
and TPC-H Schema [34] and Sales Schema as shown
in Figure 1 on page 2 of [36] for Experiments 2 and
3, respectively. A variety of development tools were
employed across these experiments, including Java,
Python, extensible markup language, shell scripting,
Excel, relational database management system, and
Data Vault Modeling manner.

4.1. Experiment 1:

 Experiment 1 is an evaluation result for the
six phases of the proposed model and how they
enhance the data warehouse development cycle
using T24 temenos core banking data (Teller
extensible markup language dataset [37]) as
illustrated in Table 1. The experiment conducted
across the six phases of data warehouse (DWH)
development provides insight into the performance
gains when using the proposed model versus
traditional manual approaches. Here's an explanation
of the experiment implementation:

Table 1. Performance comparison of the proposed and traditional approaches with
respect to timesaving/reduction

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8171

Phases Manual (Before) Time Reduction Cost Impact

1- Schema
Evolution Trigger

Missing Metadata Schema
changes Immediate detection Reduced error costs

2- Business
Analysis

It takes a long time to get
specific business keywords

Getting data in a few
minutes Increased productivity

3- Schema
Modeling
Automation 1 day per source

75 % reduction
(2 hours per source) Labor cost reduction

4- ETL
Automation 1 day per source

75 % reduction
(2 hours per source) Faster deployment

5- Rejection
Handling

Phasing rejection through
loading

Filtering rejected data in
customized tables to
avoid data flow failures
to save maintenance time Improved data quality

6- Schema Storage
Assessment

Cannot get feedback about
the impact of new
development on the schema

Full vision of storage
schema to make
assessments through
developing to reduce
assessment time while
publishing Better resource allocation

Schema Evolution Trigger:

Setup: Establish connections to T24 temenos core
banking extensible markup language (Teller dataset)
[37] and configure Informatica to parse extensible
markup language data into a relational staging table.
Execution: Implement the Shema Change Detector
algorithm via table_ddl_audit_trigger to monitor and
log changes. Introduce various schema
modifications to test the trigger's responsiveness
such as changes of the Teller table by adding some
columns and renaming others.
Evaluation: Review the logs to verify that all
intended changes on the table and columns such as
altering and dropping levels are captured accurately
and within the expected time frame, assessing the
trigger's efficiency and reliability.

Business Analysis:

Setup: Integrate an advanced search algorithm
Business Keywords Analyst through a Python
environment with inverted indexing to facilitate
rapid keyword retrieval relevant to product types to
help the data modeler make the right decision for
modeling the needed columns that meet the business
requirements.
Execution: Run the algorithm to identify and extract
data related to product types such as savings
accounts, current accounts, and mortgage loans.

Evaluation: Analyze the completeness and
relevancy of the extracted data from the accurate
tables and their columns, and measure the time taken
against manual methods to determine efficiency
gains.

Schema Modeling Automation:

Setup: configure the modeling Java tool and connect
to the Teller table, read metadata, and use it to
propose a Data Vault schema with the data
warehouse modeling generator to automate the new
needed columns or tables based on the previous
steps.
Execution: Generate the mapping sheet and DDL
files for the modeled Teller table, ensuring that the
proposed model aligns with Data Vault standards.
Evaluation: Compare the automated Data Vault
schema against a manually created model for
accuracy, and assess the time saved during this
phase.

ETL Automation:

Setup: configure algorithm ETL pipeline generator
through shell scripting Linux to prepare the mapping
sheet by translating it into a format usable in the
relational table for ETL and script the generation of
extensible markup language workflows to cover the
newly generated model per the previous step.
Execution: Deploy and run the ETL workflows to
load data into the data warehouse, utilizing the

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8172

generated extensible markup language files of the
modeling of the Teller table from source to targets.
Evaluation: Measure the time taken for ETL
processes compared to manual development and
implement the slowly changing dimension through
the Informatica ETL mapping pipeline.

Rejection Handling:

Setup: Configure the Garbage data filter through the
procedural language extension to Structured Query
Language (SQL) stored procedure which uses data
type patterns over the ETL system to identify and
redirect invalid records of the Teller table to
rejection tables.
Execution: Execute the stored procedure during the
ETL process, focusing on how rejected records are
managed and isolated from the valid data flow.
Evaluation: Assess the effectiveness of the rejection
handling system by reviewing the invalid data
captured, reasons for rejection, and the ease of
rectifying these records.

Schema Storage Assessment:

Setup: Set up the Schema Storage measure
algorithm as a Python tool reading the database
schema which is modeled for the Teller table to
measure and categorize the storage consumed by
different elements of the schema in the development
environment, particularly focusing on the new model
of the Teller table.
Execution: Perform a storage assessment post-ETL
to gauge the impact of the new Teller table model on
the schema's storage
Evaluation: Use visual tools to analyze the storage
allocation and create reports on how the new model
influences storage requirements. Evaluate whether
the storage used aligns with projections and
performance standards.

In conclusion, this structured approach through
setup, execution, and evaluation ensures a thorough
analysis of each phase's effectiveness. It benchmarks
the proposed automated model against traditional
methods, demonstrating its value in enhancing the
data warehouse development lifecycle.

4.2 Experiment 2:

 Experiment 2 is an evaluation result for
comparison between the ontology approach [31] and
the proposed model.

The experiment focuses on the adaptability and
efficiency of both models in handling schema
evolution. The results show that the proposed model
outperforms the ontology approach in several key
areas, including time savings and cost reduction.
Illustration of the approach using TPC-H Schema
Benchmark (SSB) [34] and Data Vault Modeling
Manner which models the data warehouse. TPC-H is
a decision support benchmark that represents the
used source. as used previously in research [31]. The
evolution of the TPC-H source schema encompassed
a series of modifications, including the addition and
deletion of attributes and tables, as well as the
renaming of existing entities. Overall, there were
849 such evolution operations recorded. The
frequency distribution of each type of operation is
depicted in Figure 6.

Figure 6. Distribution of occurrence per kind of evolution

operations [31]
A summary of the implemented proposed model is
presented in Table 2 for finding various types of
schema evolution events compared with the total
corrected results in the ontology approach of the
previous work [31] It was observed that attribute
additions and renaming were predominant,
significantly influencing the activities within the test
cases. Crucially, the proposed framework
demonstrated an effective capacity to adapt activities
to these frequent changes. Figure 7 and Figure 8
illustrate the efficacy of the proposed model, plotting
the evolution operators on the x-axis against the
number of impacted entities on the y-axis. These
figures illustrate the count of affected entities against
those successfully amended through the proposed
approach.

Table 2. Affected and corrected operations for the
ontology model and the proposed model.

Evolution

Event
Type

Total
Affected

Total
Corrected

Total
Enhanced

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8173

(Ontology
Approach)

(Proposed
Model)

Attribute
Addition

210 206 209

Attribute
Deletion

189 189 189

Attribute
Rename

196 194 195

Table
Addition

98 95 97

Table
Deletion

84 83 84

Table
Rename

72 69 71

Figure 7 No. Of Attributes Affected, corrected, and
enhanced for the Ontology model and the proposed

model

Figure 8 No. of tables affected, corrected and enhanced
for the ontology model and the proposed model.

Result Analysis:
To assess the proposed model, these assumptions
are applied based on the algorithm that was used in
the ontological approach [31]
The manual effort comprises detection, inspection,
and where necessary the rewriting of
affected activities by an event.
Human effort for manual handling of schema
evolution for a change c, over an event e, is
expressed as:

MC
𝒆
𝒄

=AX
𝒆
𝒄

+RX
𝒆
𝒄

 (1)

Where,
AX = no. of changes c, affected by event e, that is
manually detected
RX = no. of changes c, which must be manually
updated to event e
For a set of evolution operators O, in activity A, the
overall cost of manual adaption to the
change c, for an event e, is given as:

CMA= ∑ ∑ 𝐌𝐂
𝒆
𝒄𝐞∈𝐀𝐜∈𝐎 (2)

Automatic handling of schema evolution using the
proposed ontological approach is quantified as

175

180

185

190

195

200

205

210

Addition Deletion Rename

N
um

be
r O

f A
tt

rib
ut

es

Change Type
Affected

Corrected[30]

Proposed

0

10

20

30

40

50

60

70

80

90

100

Addition Deletion Rename
N

um
be

r o
f T

ab
le

s
Change TypeAffected

Corrected[30]
Proposed

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8174

a sum of no. of changes imposed on the DW schema
CS and the cost of manually discovering and
adjusting activities AMC that escape the automation
Ad, the latter cost AMC is expressed as:

AMC= ∑ ∑ 𝐌𝐂
𝒆
𝒄𝐞∈𝐀𝐝𝐜∈𝐎 (3)

The overall cost of automated adoption is given by,

CAA=CS+AMC (4)

Applying that approach to Addition detection:

Manual Effort for Addition Detection:

 Detection Effort (AX)=308 changes
detected, suppose each requires 1 effort
unit, So the total detection effort is 308
∗1=308 effort units.

 Update Effort (RX): 308 changes requiring
updates, each needing 2 effort units,
leading to 616 effort units.

 Total Manual Effort (CMA): The sum of
detection and update efforts, amounting to
924 effort units.

Applying accordingly to the Ontology Model:

Now, let's consider the automated approach as
described:

 Automatically Handled Changes (CS): the
automation can handle 301 out of 308
detected changes. Ideally requiring no
manual effort.

 Manually Corrected Post-Automation
(AMC): 7 changes that the automation
cannot handle, each requiring 3 effort units
(2 for updates and 1 for detection), totaling
21 effort units.

 Total Cost of Automated Adaptation
(CAA): Only includes AMC, amounting to
21 effort units since CS requires no manual
effort.

 Thus, the total cost of automated adaptation
(CAA) would be 0+21 effort units (since
CS changes don't add to the manual effort,
only AMC does).

Applying accordingly to the Proposed Model:

Now, let's consider the automated approach as
described:

Automatically Handled Changes (CS): The proposed
model can automatically handle 306 out of the 308
detected changes, also requiring no manual effort.

Manually Corrected Post-Automation (AMC): 2
changes that the automation cannot handle, each
requiring 3 effort units (2 for updates and 1 for
detection), totaling 6 effort units.

Total Cost of Automated Adaptation (CAA): Only
includes AMC, amounting to 6 effort units since CS
requires no manual effort.

Similarly, can calculated over three levels
Addition, Deletion, and Renaming.

Based on the results presented in the ontology work
[31] and depicted in Figure 9, it has been observed
that the cost of automated adaptation (CAA) using
the ontology approach is lower than the manual cost
of adoption (CMA) associated with the Multi-
Version Trajectory Data Warehouse (MVTDW)
approach [32].

Figure 9 Comparison of Adaptation cost for existing and

proposed model [31]

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8175

Table 3. Comparison cost between the ontology model
and the proposed model

 Addition Deletion Rename

Affected 308 273 268

Corrected
(Ontology)

301 272 263

Enhanced
(Proposed)

306 273 266

CMA(Affected) 924 819 804

AMC(Ontology) 21 3 15

AMC (Proposed
Model)

6 0 6

 Referring to the results articulated in Table 3 for the
proposed model, it can deduce the following metrics:

Ontological approach for addition = 300 Adaptation
Cost
So, 300 Cost = 21 effort unit
So, 1 effort unit = 14.2 Cost on the figure
So, the Proposed Model will be 14.2 * 6 ≈ 85

Ontological approach for Deletion = 275 Adaptation
Cost
So, 275 Cost = 3 effort unit
So, 1 effort unit = 91.6 Cost on the figure
So, the Proposed Model will be 91.6 * 0 =0

 Ontological approach for Renaming = 260
Adaptation Cost
So, 260 Cost = 15 effort unit
So, 1 effort unit = 17.3 Cost on the figure
So, the Proposed Model will be 17.3 * 6 ≈
104

This outcome demonstrates the efficiency of the
proposed model in reducing manual labor and
overall costs compared with MVTDW and Ontology
approaches as shown in Figure 10

Figure 10 Comparison results of Adaptation cost for
MVTDW, ontology, and the proposed model.

4.3 Experiment 3:
 This section is an evaluation result for
comparison between the SMOs approach [2] and the
proposed model. The experiment examines how
each approach handles schema modifications in a
multi-version data warehouse environment. The
findings indicate that the proposed model offers
better scalability and reduced maintenance efforts
compared to the SMO approach through:

1. Multi-version Multidimensional Model
(MV MD model): This part of the model
focuses on managing schema changes by
allowing the creation of multiple versions
of the data warehouse schema, each
representing different structural
configurations over time.

2. Schema Modification Operators
(SMOs): SMOs are mechanisms used
within the MV MD model to enact schema
changes systematically. They enable the
addition, deletion, or modification of
schema elements. After creating the same
used schema metadata Sales Schema as
illustrated in Figure 11 focusing on the
schema change evolution scope, these
results were obtained after comparing with
the functional description of the schema
modification operations (SMOs) [2] as
illustrated in Table 4. The proposed model

0
50

100
150
200
250
300
350
400

Addition Deletion Rename

Ad
ap

ta
tio

n
Co

st

Change Type

Comparison of Adaptation Cost for Ontological
,MVTDW and Proposed Enhanced Model

MVTDW[32] Ontology[30] Proposed Model

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8176

outlines six steps for smooth data
warehouse (DW) development, aiming to
simplify and automate changes across
different schemas. It focuses on improving
schema scalability within the same version
to reduce maintenance efforts and
complexity. These changes are integrated
into the Extract, Transform, Load (ETL)
layer, a process not addressed by the
Schema Modification Operators (SMO)
approach [2]. However, managing complex
systems with multiple schema versions

poses challenges. It requires a thorough
understanding and careful planning for
smooth operation. Yet, this complexity
comes with drawbacks. Performance
overhead is a concern due to dynamic
coercion functions and managing multiple
versions, potentially slowing down query
execution. Moreover, maintaining
historical versions and potential data
duplication increases storage needs and
leads to inconsistency in retrieving
information from different DW versions.

Figure 11. Sales Schema in a fictitious company [36].

Table 4. Comparison of Results and features between the SMO model and the proposed model

Schema Change Nonconformity Semantics of SMO
[2]

Proposed Model SMO
ETL [2]

Proposed
Model ETL

Add level None Create metadata for a
new MV level/fact.

Archive the old
version and add the
current version

Not
Applied

The changes
are applied in
the ETL Layer

Delete level Deleted level
remains in existing
versions.

Update metadata to
reflect no new data
loaded for it; physical
data deletion is not
performed.

Archive the old
version and delete
from the current
version

Not
Applied

The changes
are applied in
the ETL Layer

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8177

Add attribute Existing schema
versions won't
reference the new
attribute/measure.

Update metadata to
include a new
attribute/measure in
the metalevel/meta
fact, creating a new
schema version.

Archive the old
version and add the
current version

Not
Applied

The changes
are applied in
the ETL Layer

Delete attribute New schema
versions won't
reference the
deleted
attribute/measure.

Update metadata to
exclude the
attribute/measure in
the new schema
version; existing
versions remain
unchanged.

Archive the old
version and delete it
from the current

Not
Applied

The changes
are applied in
the ETL Layer

Rename attribute None Update metadata to
include alias mapping
for the renamed
attribute/measure,
ensuring consistency
across versions.

Update metadata to
include alias
mapping for the
renamed
attribute/measure,
ensuring
consistency across
versions.

Not
Applied

The changes
are applied in
the ETL Layer

Change
attribute/measure
domain to a
specific.

Potential type
mismatch in
existing versions.

Update metadata to
reflect the type
change, ensuring data
type conversion
where applicable.

Archive the old
version and modify
the attribute of the
current version

Not
Applied

The changes
are applied in
the ETL Layer

Change
attribute/measure
domain to generic.

Potential type
mismatch due to
inconvertibility.

Similar to specific-to-
generic change,
update metadata and
ensure conversion of
existing data types.

Archive the old
version and modify
the metadata of the
current version

Not
Applied

The changes
are applied in
the ETL Layer

Add relationship Orphaning of child
members in existing
schema versions.

Update metadata to
define a new
relationship, ensuring
the linking of orphan
child members to a
default parent.

Archive the old
version and update
the relationship in
the Link entity of
the current version

Not
Applied

The changes
are applied in
the ETL Layer

Delete relationship Orphaning of child
members in future
schema versions.

Update metadata to
reflect the
relationship deletion;
no action on the
physical data.

Archive the old
version and delete
the relationship in
the Link entity of
the current version

Not
Applied

The changes
are applied in
the ETL Layer

Change cardinality Violation of new
cardinality
constraints in
existing/future
schema versions.

Update metadata to
create a new
relationship version,
adjusting constraints
as needed.

Archive the old
version and delete
the relationship in
the Link entity of
the current version.

Not
Applied

The changes
are applied in
the ETL Layer

Make granularity
finer/coarser.

Data semantics
variation across
schema versions.

Update metadata to
reflect the addition of
a new dimension" to
accommodate
granularity changes,
applying
transformations as
needed.

Update metadata to
reflect the addition
of a new
"dimension" to
accommodate
granularity
changes, applying
transformations as
needed in ETL

Not
Applied

The changes
are applied in
the ETL Layer

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8178

5. CONCLUSION AND FUTURE WORK

 This paper introduced an intelligent In
addressing the critical challenge of managing
schema evolution in data warehouses, this paper has
introduced an intelligent model that integrates and
automates key layers of the development cycle—
including schema evolution detection, business
analysis, schema modeling automation, ETL
processes, rejection handling, and schema storage
assessment. By directly tackling the problem of
fragmented approaches and manual intervention, the
model achieves significant reductions in
development time and costs—up to 75% compared
to traditional methods—while enhancing data
quality and adaptability to evolving business needs.
The model's contributions include comprehensive
integration that reduces maintenance efforts and
inconsistencies, and automation that minimizes
errors and manual labor. Through advanced rejection
handling mechanisms, it improves data quality, and
its use of Data Vault modeling and metadata-driven
processes provides scalability and adaptability. This
integrated approach empowers organizations to
maintain uninterrupted data-loading processes and
make timely, informed decisions, thereby enhancing
efficiency and reliability in data warehouse
management. Future work will extend the model to
encompass data governance and security layers,
further enhancing its robustness and ensuring
compliance with regulatory standards and data
integrity throughout the data warehouse
development cycle.

REFERENCES

[1] R. Wrembel, “On Handling the Evolution of

External Data Sources in a Data Warehouse
Architecture,” Integrations of Data
Warehousing, Data Mining and Database
Technologies: Innovative Approaches, Poznan
University of Technology (Poland), 2011, pp.
42. doi:

10.4018/978-1-60960-537-7.ch006. [Online].
Available: https://www.igi-
global.com/chapter/handling-evolution-
external-data-sources/53074

[2] W. Ahmed, E. Zimányi, A. A. Vaisman, and R.
Wrembel, “Schema Evolution in Multiversion
Data Warehouses,” International Journal of
Data Warehousing and Mining, vol. 17, no. 4,
2021, pp. 1-21. doi:
10.4018/IJDWM.2021100101. [Online].
Available:
https://econpapers.repec.org/article/iggjdwm00

/v_3a17_3ay_3a2021_3ai_3a4_3ap_3a1-
28.htm

[3] G. Shankaranarayanan, “Managing Changes to
Schema of Data Sources in a Data Warehouse,”
Proceedings of AMCIS 2001, Dec. 2001, pp. 1-
10. [Online]. Available:
http://aisel.aisnet.org/amcis2001/68

[4] A. Marotta, R. Motz, and R. Ruggia, “Managing
Source Schema Evolution in Web Warehouses,”
Instituto de Computación, Facultad de
Ingeniería, Universidad de la República,
Montevideo (Uruguay), 2001. [Online].
Available:
https://www.researchgate.net/publication/2209
47302_Managing_Source_Schema_Evolution_
in_Web_Warehouses

[5] A. Marotta, “Data warehouse design: a schema-
transformation approach,” Proceedings of IEEE
SCCC 2002, Feb. 2002. doi:
10.1109/SCCC.2002.1173188. [Online].
Available:
https://www.researchgate.net/publication/4000
971_Data_warehouse_design_a_schema-
transformation_approach

[6] D. Solodovnikova, “Data Warehouse Adaptation
after the Changes in Source Schemata,”
presented at the Conference Paper, July 2006.
[Online]. Available:
https://www.researchgate.net/publication/2817
76380_Data_Warehouse_Adaptation_after_the
_Changes_in_Source_Schemata

[7] N. M. Dar and N. Zahra, “Generic Metadata
Repository for a Data Warehouse,” Dept. of
Computer Science, Mohammad Ali Jinnah
University (Pakistan) and Islamic International
University, Islamabad (Pakistan), 2010.
[Online]. Available:
https://www.researchgate.net/publication/2241
00155_Generic_metadata_repository_for_a_da
ta_warehouse

[8] P. M. de Oliveira Martins, “Elastic ETL+Q for
Any Data-Warehouse Using Time Bounds,”
Ph.D. dissertation, Faculdade de Ciências e
Tecnologia, Universidade de Coimbra, July
2015. [Online]. Available:
https://estudogeral.uc.pt/bitstream/10316/2909
0/3/Elastic%20ETL+Q%20for%20any%20data
-warehouse%20using%20time%20bounds.pdf

[9] "ETL workflow reparation by means of case-
based reasoning," Information Systems
Frontiers, vol. 20, 2018, pp. 21-43. doi:
10.1007/s10796-016-9732-0. [Online].
Available:
https://www.researchgate.net/publication/3121

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8179

50128_ETL_workflow_reparation_by_means_
of_case-based_reasoning

[10] R. P. Deb Nath et al., “High-level ETL for
Semantic Data Warehouses,” Semantic Web,
vol. 13, 2022, pp. 85-132. doi: 10.3233/SW-
210429. [Online]. Available:
https://www.researchgate.net/publication/3566
11581_High-
level_ETL_for_Semantic_Data_Warehouses

[11] D. Seenivasan, “Improving the Performance of
the ETL Jobs,” International Journal of
Computer Trends and Technology, vol. 71, no.
3, Mar. 2023, pp. 27-33. doi:
10.14445/22312803/IJCTT-V71I3P105.
[Online]. Available:
https://www.researchgate.net/publication/3696
66785_Improving_the_Performance_of_the_E
TL_Jobs

[12] "What-If Analysis for Data Warehouse
Evolution," presented at the Conference Paper,
Sept. 2007. doi: 10.1007/978-3-540-74553-2_3.
[Online]. Available:
https://www.researchgate.net/publication/2208
02661_What-
If_Analysis_for_Data_Warehouse_Evolution

[13] X. Pan, X. Zhou, H. Song, R. Zhang, and T.
Zhang, “Enhanced Data Extraction
Transforming and Loading Processing for
Traditional Chinese Medicine Clinical Data
Warehouse,” Proceedings of the 2012 IEEE
14th International Conference on e-Health
Networking Applications and Services
(Healthcom), 2012. doi:
10.1109/Healthcom.2012.6380066. [Online].
Available:
https://ieeexplore.ieee.org/document/6380066

[14] G. Papastefanatos, P. Vassiliadis, A. Simitsis,
T. Sellis, and Y. Vassiliou, “Rule-Based
Management of Schema Changes at ETL
Sources,” presented at the Conference Paper,
Sept. 2009. doi: 10.1007/978-3-642-12082-4_8.
[Online]. Available:
https://www.researchgate.net/publication/2216
51284_Rule-
Based_Management_of_Schema_Changes_at_
ETL_Sources

[15] P. Jovanovic, O. Romero, A. Simitsis, and A.
Abelló, “A requirement-driven approach to the
design and evolution of data warehouses,”
presented at the Conference Paper. [Online].
Available:
https://www.researchgate.net/publication/2600
45268_A_requirement-
driven_approach_to_the_design_and_evolution
_of_data_warehouses

[16] D. Solodovnikova and L. Niedrite, “Evolution-
Oriented User-Centric Data Warehouse,”
presented at the Conference Paper, Sept. 2011.
doi: 10.1007/978-1-4419-9790-6_58. [Online].
Available:
https://www.researchgate.net/publication/2527
09100_Schema_Evolution_for_Data_Warehou
se_A_Survey

[17] A. Gosain, “Schema Evolution for Data
Warehouse: A Survey,” International Journal of
Computer Applications, vol. 22, no. 9, May
2011, pp. 23-30. doi: 10.5120/2590-3588.
[Online]. Available:
https://www.researchgate.net/publication/2527
09100_Schema_Evolution_for_Data_Warehou
se_A_Survey

[18] J. W. Kang, F. Basrizal, Q. Yu, and E. P.
Holden, “Web-Based Implementation of Data
Warehouse Schema Evolution,” Rochester
Institute of Technology, Rochester (NY, USA),
2015. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-
3-319-16211-9_32

[19] P. Manousis, P. Vassiliadis, A. Zarras, and G.
Papastefanatos, “Schema Evolution for
Databases and Data Warehouses,” Proceedings
of the Department of Computer Science,
University of Ioannina, Ioannina (Greece),
2016. [Online]. Available:
https://www.researchgate.net/publication/3025
91145_Schema_Evolution_for_Databases_and
_Data_Warehouses

[20] M. Thenmozhi and K. Vivekanandan, “An
Ontological Approach to Handle
Multidimensional Schema Evolution for Data
Warehouse,” International Journal of Database
Management Systems (IJDMS), vol. 6, no. 3,
June 2014. [Online]. Available:
https://www.researchgate.net/publication/2741
74299_An_Ontological_Approach_to_Handle_
Multidimensional_Schema_Evolution_for_Dat
a_Warehouse

[21] R. Dumoulin, “Architecting Data Warehouses
for Flexibility, Maintainability, and
Performance,” Computer Science, 2000.
[Online]. Available:
https://www.olap.it/Articoli/architectingdwh.p
df

[22] R. A. Ahmed and T. M. Ahmed, “Generating
Data Warehouse Schema,” International Journal
of Foundations of Computer Science &
Technology (IJFCST), vol. 4, no. 1, Jan. 2014.
doi: 10.5121/ijfcst.2014.4101. [Online].
Available:
https://www.researchgate.net/publication/3643

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8180

24920_GENERATING_DATA_WAREHOUS
E_SCHEMA

[23] C. Gröger, H. Schwarz, and B. Mitschang, “The
Deep Data Warehouse: Link-based Integration
and Enrichment of Warehouse Data and
Unstructured Content,” Proceedings of the
IEEE 18th International Enterprise Distributed
Object Computing Conference, 2014. [Online].
Available:
https://www.researchgate.net/publication/2705
74862_The_Deep_Data_Warehouse_Link-
Based_Integration_and_Enrichment_of_Wareh
ouse_Data_and_Unstructured_Content

[24] M. M. Jaber, M. K. Abd Ghani, N. S.
Mohammed, A. M. Mohammed, and T. Abbas,
“Flexible Data Warehouse Parameters: Toward
Building an Integrated Architecture,”
Proceedings of the IEEE 7th International
Conference on Inventive Communication and
Computational Technologies (ICICCT), 2015.
doi: 10.7763/IJCTE.2015.V7.984. [Online].
Available:
https://www.researchgate.net/publication/2665
54118_Flexible_Data_Warehouse_Parameters
_Toward_Building_an_Integrated_Architectur
e

[25] A. Mendes, “Datawarehouser: A data
warehouse artist who has the ability to
understand data warehouse schema pictures,”
presented at the Conference Paper, Nov. 2016.
doi: 10.1109/TENCON.2016.7848419.
[Online]. Available:
https://www.researchgate.net/publication/3135
84797_Datawarehouser_A_data_warehouse_ar
tist_who_have_ability_to_understand_data_wa
rehouse_schema_pictures

[26] A. H. Al-Rammahi, “Designing a Variety of
Data Warehouse Schemas Suitable for Meta-
Search Engines,” Faculty of Sciences and Fine
Arts, June 2013. Book published May 2016.
[Online]. Available:
https://www.researchgate.net/publication/3036
83685_DESIGNING_A_VARIETY_OF_DAT
A_WAREHOUSE_SCHEMAS_SUITABLE_
FOR_META-SEARCH_ENGINES

[27] P. Tiwari, A. C. Mishra, S. Kumar, V. Kumar,
and B. Terfa, “Improved Performance of Data
Warehouse,” Proceedings of the International
Conference on Inventive Communication and
Computational Technologies (ICICCT 2017),
2017. doi: 10.1109/ICICCT.2017.7975220.
[Online]. Available:
https://www.academia.edu/34829918/Improve
d_Performance_of_Data_Warehouse

[28] F. Majeed and M. Shoaib, “Reduce Search
Space in the Data Warehouse for Keyword-
Based Search,” International Arab Journal of
Information Technology, vol. 14, no. 1, Jan.
2017, pp. 70. [Online]. Available:
https://www.semanticscholar.org/paper/Logical
-schema-based-mapping-technique-to-reduce-
in-Majeed-
Shoaib/612a015a939cd38b395761ac154382f8
17b64e81

[29] D. Solodovnikova, L. Niedrite, and N.
Kozmina, “Handling Evolving Data Warehouse
Requirements,” Proceedings of the East
European Conference on Advances in
Databases and Information Systems, Sept. 2015.
doi: 10.1007/978-3-319-23201-0_35. [Online].
Available:
https://www.researchgate.net/publication/2852
45720_Handling_Evolving_Data_Warehouse_
Requirements

[30] N. Gupta and S. Jolly, “Enhancing Data Quality
at ETL Stage of Data Warehousing,”
International Journal of Data Warehousing and
Mining, vol. 17, no. 1, Jan.-Mar. 2021, pp. 74.
[Online]. Available:
https://www.researchgate.net/publication/3489
51742_Enhancing_Data_Quality_at_ETL_Stag
e_of_Data_Warehousing

[31] M. Thenmozhi and K. Vivekanandan, “An
Ontological Approach to Handle
Multidimensional Schema Evolution for Data
Warehouse,” International Journal of Database
Management Systems (IJDMS), vol. 6, no. 3,
June 2014. [Online]. Available:
https://www.researchgate.net/publication/2586
52420_An_Ontology_based_Hybrid_Approach
_to_Derive_Multidimensional_Schema_for_D
ata_Warehouse

[32] W. Oueslati and J. Akaichi, “A Multiversion
Trajectory Data Warehouse to Handle Structure
Changes,” International Journal of Database
Theory and Application, vol. 4, no. 2, 2011.
[Online]. Available:
https://www.researchgate.net/publication/2756
19765_Handling_Instance_Changes_in_a_Mul
tiversion_Trajectory_Data_Warehouse

[33] D. Linstedt and M. Olschimke, Building a
Scalable Data Warehouse with Data Vault 2.0,
Morgan Kaufmann, Elsevier, Waltham, MA,
USA, 2015. [Online]. Available:
https://www.amazon.sa/-/en/Building-Scalable-
Data-Warehouse-Vault/dp/0128025107

[34] T. P. P. Council, “TPC-H benchmark
specification,” [Online]. Available:

 Journal of Theoretical and Applied Information Technology
30th November 2024. Vol.102. No. 22

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8181

www.tpc.org/tpch/, 2008. [Accessed: May 20,
2014].

[35] "Data Warehouse Architecture," Javatpoint.
[Online]. Available:
https://www.javatpoint.com/data-warehouse-
architecture. [Accessed: May 24, 2024].

[36] W. Ahmed, E. Zimányi, A. A. Vaisman, and R.
Wrembel, “Schema Evolution in Multiversion
Data Warehouses,” International Journal of
Data Warehousing and Mining, vol. 17, no. 4,
2021, pp. 1-21. doi:
10.4018/IJDWM.2021100101.

[37] "T24 temenos core Banking Teller extensible
markup language Dataset," Google Drive.
[Online].
Available:https://drive.google.com/file/d/1awa
8xmwt8x9Mgyew0tbTMWdrSAj7S2MC/view
?usp=drive_link. [Accessed: Jun. 1, 2024].

