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ABSTRACT 

The ongoing COVID-19 pandemic underscores the urgency for rapid and precise diagnostic tools. This study 
presents an innovative approach for classifying lung diseases COVID-19, asthma, and pneumothorax using 
Computed Tomography (CT) lung images. The EfficientNet B4 is proposed to classify lung diseases 
accurately using compound scaling features including depth, width, and resolution. By integrating the 
EfficientNet model with a Genetic Express Processing Algorithm (GEP) for hyperparameter tuning, the 
proposed method focuses on optimizing dropout, learning rate, and batch size. Fine-tuning the EfficientNet 
B4 model through compound scaling and hyperparameter optimization led to a classification accuracy of 
96.5%. Visualizing lung-infected regions using Class Activation Maps (CAMs) provides insights into 
classification decisions. This research work incorporates Generative Adversarial Networks (GANs) to 
generate synthetic images that enhances data diversity and model generalization. This method combines Deep 
Learning (DL) models with Genetic Algorithms (GA) and GANs, demonstrating substantial improvements 
in disease detection accuracy. The proposed approach offers medical professionals efficient diagnostic tools 
for early and reliable disease diagnosis. Code can be available at  
https://github.com/YellepeddiSambaSivaKrishnaAssish/Optimized-EfficientNet-using-GEP-for-Lung-
diseases.git. 

Keywords: Computed Tomography, COVID-19, Genetic Express Processing, Artificial Intelligence, 
Optimization, Deep Learning  

1. INTRODUCTION 

In December 2019, Wuhan, Hubei, China, 
became the epicenter of a COVID-19 pneumonia 
outbreak that rapidly spread worldwide. In the 
absence of a therapeutic vaccine or targeted antiviral 
medications, early diagnosis, and isolation became 
essential safety measures against the virus. The 
COVID-19-infected people undergone for scanning 
to identify the disease. However, the effectiveness of 
using chest CT scans to screen patients suspected of 
having COVID-19 was unclear [1]. To enhance 
understanding of clinical and radiologic symptoms 
of the infection, several academic studies, case 
reports, and sample analyses were published in the 
lateral weeks [2]. Large datasets are crucial for 
training DL models to avoid overfitting and bias. 
Researchers faced significant challenges in 

 
 

acquiring publicly available data and improperly 
collected data that did not meet the standards 
required for use in classification tasks. However, the 
limited availability of public data in the healthcare 
sector created a significant barrier for researchers. To 
address this, the DL community proposed Data 
Augmentation techniques to expand the size of 
training datasets [3]. Currently, highly skilled 
medical professionals manually evaluate CT and 
Chest X-ray (CXR) images and recommend 
treatments to radiological analyses, including chest 
CT scans and CXR, have demonstrated high 
accuracy in diagnosing COVID-19, with a strong 
correlation observed between RT-PCR results and 
radiological data. This has led to the development of 
faster and more cost-effective radiological COVID-
19 screening methods [4]. To reduce infection levels, 
fortunately, the process is labor-intensive and time-
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consuming, enhancing the need for a DL-based 
automated approach. By leveraging automated 
systems, it is possible to improve diagnostic 
efficiency, optimize the use of medical resources, 
reduce the workload on healthcare professionals, 
conserve their energy, and increase the accuracy and 
speed of diagnoses [5]. 

 

Figure 1. Images in Dataset 

 The above Figure 1. shows the images of four 
classes in the dataset. These images are utilized in 
our model to assess its efficiency. Class labels in 
both the train and test set are label-encoded into 0, 1, 
2, and 3 for asthma, Covid-19, Pneumonia, and 
Normal. Otherwise, it can lead to weakness and post-
traumatic stress. It's important to remember that 
distinguishing symptoms caused by COVID-19 
from those of other conditions, such as preexisting 
medical issues, can be challenging. Therefore, it's 
crucial to diagnose COVID-19 effectively so that 
people can be alerted to its presence [6]. Recent 
technological advances have driven substantial 
research into automating the computer-aided 
diagnosis of COVID-19 and creating interactive 
tools to support the care and recovery of affected 
individuals. The adoption of automated methods 
offers several benefits, including reducing 
subjectivity, enhancing diagnostic availability and 
consistency, and enabling early detection [7]. This 
study outlines four key contributions aligned with 
the research objectives. The contributions made in 
this study are as follows: 

 To improve image quality during 
preprocessing, GAN generates high-quality 
synthetic images at a resolution of 380 ×

 380, closely resembles real data, 
enhancing the classification model's 
performance. 

 To optimize the EfficientNet classifier, 
fine-tuning the hyperparameters such as 
learning rate, dropout, and crossover 
enhances the model's accuracy and 
efficiency for lung disease classification. 

  To Analyze and validate the empirical and 
experimental results of the proposed 
EfficientNet with GEP model across 
various medical imaging modalities, 
including CT scans, the model effectively 
showcases its ability to detect and classify 
lung diseases such as asthma, 
pneumothorax, COVID-19, and normal 
cases. 

 Investigate and compare the existing model 
with the EfficientNet with the GEP model 
to highlight the importance of GEP in 
enhancing overall classification accuracy. 
This integrated pipeline, in conjunction 
with the EfficientNet with GEP model, 
enables accurate assessment of lung disease 
severity, offering critical insights to support 
medical decision-making. 

Motivation 

In the fight against global health crises such as 
COVID-19, rapid and accurate diagnosis is crucial, 
often determining life-or-death outcomes. In the 
healthcare community under immense pressure, 
there's an urgent need for smarter, faster tools to 
detect lung diseases from medical images. This 
research taps into the power of cutting-edge AI, 
using DL models like EfficientNet B4 and the 
precision of GA, to revolutionize lung disease 
diagnosis. Our objective is to arm healthcare 
professionals with powerful tools that ensure swift, 
accurate interventions, saving lives and advancing 
the fight against respiratory diseases. 

Recently authors proposed a method that leverages 
contrastive learning, a technique that maximizes data 
utility by enhancing feature extraction and 
generalization, thereby improving classification 
accuracy compared to other methods. The Contrast 
Learning Framework (CLF) in CT-scan successfully 
identified COVID-19 cases from normal samples 
and various kinds of traditional pneumonia, which is 
critical for quick clinical screening. Furthermore, 
CLF is a full, deployable framework that includes 
data pretreatment, improvement, and classification 
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operations, enabling rapid generalization to various 
data domains. 

2. RELATED WORK 

Previous researchers have looked into using DL 
techniques to solve the difficulties associated with 
COVID-19 detection. To explore the potential of CT 
images in COVID-19 diagnosis, this section surveys 
existing literature on the work. 

2.1.  Deep Learning Strategies for CXR & CT-
Scans in Computer-Aided Diagnosis 
(CAD) 

Utilizing the temporal component Loey et al. 
executed a CNN model to extract important COVID-
19 traits, and then a Bayesian model to classify 
patients according to temporal features [8]. Reddy et 
al. comprise three primary segments for the 
Multimodal Fusion Deep Transfer Learning (MMF-
DTL) model, pre-processing, feature extraction, and 
classification, it uses three DL models: ResNet 50, 
Inception v3, and VGG16. The model uses decision-
based multimodal fusion to integrate these three 
methods to improve detection efficiency [9]. Further 
contributions by researchers examine the 
effectiveness of GA and Binary Particle Swarm 
Optimization (BPSO) in enhancing Machine 
Learning (ML) classifiers for COVID-19 Disease 
data. By optimizing feature subsets, GA-inspired 
MLP achieved 85.1% accuracy with 52.32% 
dimensionality reduction, and the BPSO-inspired 
algorithm reached 90.7% accuracy with 41.43% 
reduction [10]. Despite the limitations of traditional 
diagnostic methods, a higher detection rate can be 
achieved with this combination of DL models with 
CAD for CXR & CT scans. In the end, test images 
are divided into six groups using a Softmax 
classifier. The model's execution is thoroughly 
examined using the CXR dataset, which 

demonstrates that it can correctly diagnose COVID-
19 using imaging data. The metrics measured with 
an F-score of 93.26% and an average accuracy of 
98.80%, the fusion model performs well. For 
COVID-19, Ayyar et al. [11] developed a 
hierarchical classification model using CXR images. 
The global attention mechanism's integrated DL 
model outperforms the baseline of the COVID-Net 
model, and it comprises multiple binary 
classification models. Researchers discovered that 
the COVIDx chest imaging dataset, which was 
recently the COVID-Net Open-Source Initiative has 
established one of the largest databases of freely 
accessible COVID-19-positive cases available. 
Furthermore, COVID-Net [12] was recommended as 
the COVIDx standard model, with a COVID-19 
detection sensitivity of 91%. 

To highlight COVID-19 diagnosis, the authors 
provide a unique multi-scale attention network that 
combines improved with original CXR lung images. 
It shows good generalization capabilities when 
tested on a variety of datasets [13]. The research 
provides a unique framework that combines ML and 
DL techniques to classify using CXR images of the 
chest to diagnose lung illnesses. It evaluates the 
effectiveness of several soft computing methods and 
feature normalization approaches in detecting 
COVID-19 and pneumonia. The work emphasizes 
how DL models and rigorous feature normalization 
are important for increasing lung disease 
classification accuracy [16]. The suggested article 
presents DeepCov19Net, an automated COVID-19 
disease detection technique using DL. It makes use 
of an SVM classifier with different kernel functions 
for evaluation, a novel feature selection approach 
called SDAR, and a convolutional-autoencoder 
model for deep feature extraction. The proposed 
approach correctly categorized CXR images for 
COVID-19, normal, and pneumonia patients [17]. 

Table 1. Existing research works 

Author Name  Method Name Dataset Performance (%) Limitations 
Loey et al. [8] Bayesian optimized 

CNN 
CXR Accuracy 96 Dataset is imbalanced  

K.N. Bhramaji 
et al. [9] 

Multi-modal fusion 
deep transfer 
learning (MMF-
DTL) 

CXR  Average Sensitivity 
93, Precision 90, 
Accuracy 98, kappa 
91 

The usage of large 
datasets, so can 
improve the training 
process and also 
improve the detection 
rate. 
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Meghana, Jenny 
et al. [10] 

Multi-level 
Classification 
Covid-NET 
(Resnet-50, 
inception V3) 

CXR Accuracy 91, 
Sensitivity 95  

The results can still be 
optimized by the 
optimization 
techniques. 

Linda, Zhong 
Qui et al [11]  

Covid-NET CXR Accuracy 90,  
Precision 92 

The model can be 
optimized and 
integrated with other 
diagnostic tools. 

Goyal and Rajiv 
[12] 

 CXR   

Fares and 
Cosimo et al 
[13] 

Resnet-50, 
Densenet-161 and 
inception V3 

COVID-CT Accuracy 88, 
Sensitivity 95 

To improve 
classification 
accuracy the dataset 
should be balanced. 

Vruddhi Shah, 
Rinkal et al [14] 

CTnet-10 
VGG-19 

COVID-CT Accuracy 94 
 

Data scarcity restricts 
model effectiveness 
for all patients 

Parnian, Shahin 
et al [15] 

Fully automatic 
Capsule Network  

COVID-CT Accuracy 90.8, 
Sensitivity 94.5, and 
specificity 86.0 

Image enhancement is 
required and Requires 
validation on larger, 
multi-center datasets 
for robustness.  

Godbin and 
jasmine [20] 

Support Vector 
Machine (SVM)  

Sars COV2-
CT 

Accuracy 94.9 
 

The model can be 
tested on deep 
learning classifiers 
and even on various 
datasets can be 
performed 

Ravi Lakshmi et 
al [21] 

Customized CNN 
Image channel 
model 

Sars Cov-2 
CT 
Covid-CT  

Accuracy 89 
Precision 90  

Here it has a lot of 
scope for residual 
network and to 
increase the 
regularization layer 

Esraa Hassan,y. 
shams et al [22] 

Resnet-50, VGG-
19, VGG-16, 
DCNN 

COVID-X 
CT 

Accuracy 96.23 It includes scalability 
issues from high 
computational 
demands, reliance on 
quality training data, 
and lack of real-world 
validation, affecting 
its clinical 
applicability. 

Observations  

Observations from Table 1. highlight key research 
efforts in using ML and DL for COVID-19 disease 
detection from CXR and CT scans. It provides 
various methods, detailing their performance metrics 
like accuracy and sensitivity, while also pointing out 
limitations such as data imbalance, scalability issues, 
and the need for further optimization. various 
COVID-19 detection models using CXR and CT 

datasets, with accuracy ranging from 87% to 98%. 
Common challenges include imbalanced datasets, 
data scarcity, and the need for optimization 
techniques [27-28]. Some models struggle with 
dataset-related issues, while others require image 
enhancement and broader validation. This concise 
review offers a quick comparison of different 
approaches, helping to identify the most promising 
models and areas for improvement in medical 
imaging diagnostics. 
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2.2. COVID-19 Classification  

To quickly screen COVID-19, researchers 
considered noisy CXR images, and their robustness 
was evaluated by a combination of neural networks 
with transfer learned weights from AlexNet, 
DenseNet121, InceptionV3, resNet18, and 
GoogLeNet [18]. The model's accuracy of 95.83% 
was acceptable. The model could still be made more 
robust, although. AI-based chest CT imaging, with 
its extensive inspection range and variety of images, 
is also utilized in the diagnosis of viral pneumonia. 
Since COVID-19 has developed quickly, more 
DL techniques have become available to the wider 
public [19]. It is suggested that Covid-Vision-
Transformers (CovidViT) be used to identify Covid-
19 instances from CXR scans. Transformers block 
with the self-attention mechanism serve as the 
foundation for CovidViT. To prove its superiority, 
the experimental result demonstrates that CovidViT 
achieves 98.0% accuracy on the test set and 
surpasses other DL models [20]. 

By harsening AI capabilities Godbin et al. suggested 
employing ML models that use radiomics, such as 
GLCM characteristics from CT scans, to get 99.94% 
precision in evolving COVID-19 from comparable 
illnesses like pneumonia [21]. The scientists 
employed a Deep Convolutional Neural Network to 
categorize the COVID-19 and Normal CT scan 
inputs. Pre-trained transfer learning models used in 
the study include ResNet (50), VGG (19), VGG (16), 
and Inception V3. The binary cross-entropy metric, 
based on the anticipated likelihood for each class, is 
used to compare COVID-19 cases to normal ones. 
Overfitting problems are dealt with by using Adam 
optimizers and stochastic gradient descent [22]. 
Researchers offered a multi-level feature attention 
network (MLF-AttNet) consisting of a data analyst 
and a data preprocessor for COVID-19 
identification. The six-layer data preprocessing 
denoises and augments the input health information, 
while the four-layer combined information analyzer 
extracts features by analyzing and classifying the 
source data's multi-scale, multi-level, and temporal 
dimensions. In the future, it can also look at 
unsupervised and semi-supervised DL methods to 
improve the competitiveness of our model [23].  

The authors proposed a Squeeze-and-Excitation 
Network (SENet) that reweights feature 
representations and records channel-wise 

information. To direct networks' attention, this 
module can be freely inserted into any feature-
extract layer. Different variants have been created to 
handle channel features even more effectively after 
SENet [24]. Previous studies have extensively 
explored hyperparameter optimization techniques. 
Two of the most popular searches are grid search and 
random search. While random search picks 
hyperparameters at random, grid search conducts an 
exhaustive search across a deliberately defined 
subset of the hyperparameter space. These 
techniques are time-consuming and computationally 
expensive, even if they can be somewhat effective, 
especially for large datasets and sophisticated 
models [25]. The exploration extends to COVID-19 
diagnosis using CT scans and is promising but 
limited by the need for expert radiologists and 
variability in interpretations. A research study that 
used a dataset of 349 positive and 397 negative CT 
images to fine-tune 15 pre-trained CNNs for 
COVID-19 detection was introduced. In connection 
with accuracy (0.85), recall (0.854), and precision 
(0.857), the ensemble comprising EfficientNetB0, 
B3, B5, Inception_resnet_v2, and Xception is far 
better than any one of the individual models. This 
illustrates how deep transfer learning may be used to 
accurately diagnose COVID-19 [26]. 

3. METHODOLOGY 

At this juncture, the article methodology is 
organized in a structure as follows: (i) Pre-
processing techniques; (ii)EfficientNet B4 
Architecture; (iii) Genetic Algorithm Evolution; and 
(iv) Empirical Analysis of GA. 

3.1.  Preprocessing techniques 

The preliminary lung image processing is done 
to remove noise and abnormalities from the COVID-
19 image to improve its contrast and quality. This 
pre-processing step can assist reduce inconsistencies 
and increase the accuracy of other stages in the 
process by improving contrast, reducing noise, and 
normalizing the image. Image processing attempts to 
improve and enhance the quality of COVID-19 CT 
scans in the pursuit of identifying clinical 
characteristics associated with lung illnesses. The 
Generative Adversarial Network (GAN) is feasible 
and can significantly enhance preprocessing for 
classifying diseases such as COVID-19, Pneumonia, 
Asthma, and Normal. Incorporating GANs into your 
lung disease classification task involves generating 
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synthetic images for each class (Covid-19, 
Pneumonia, Normal, and Asthma). These synthetic 
images, combined with traditional data 
augmentation techniques like rotation and flipping, 
can help balance the dataset, improve model 
generalization, and enhance classification accuracy 
by providing a more diverse and robust training set. 
The EfficientNet's advanced feature extraction 
capabilities can be leveraged within the GAN 
framework, either as part of the discriminator to 
improve feature differentiation or in the generator to 
produce high-quality images.  

 

Figure 2. Techniques used during Preprocessing the Lung 
CT scans 

Before Preprocessing, initially the lung images in the 
dataset are in different resolution ranges from 
102 ×  137 to 1853 ×  1485 . While CT scans are 
typically stored in DICOM format, the images from 
the two databases used in this study are in PNG 
format, Figure 2. exhibits the operations used during 
preprocessing, images were scaled to 380 ×  380 

pixels in the direction of the image to match the 
input criteria for the proposed CNN architecture. The 
CT images were then standardized to a range of 0 to 
1 to improve the stability of the CNN model. 

The lung CT image is then subjected to the center 
crop transformation, which crops it in the center to 
produce a final size of 380 ×  380 pixels for 
optimal performance. The cropping technique 
ensures that important portions of the image, 

including the lungs and their surroundings, are 
focused on and preserved. 

3.2. EfficientNet B4 Architecture  

This section discusses the transfer learning 
paradigm with the fine-tuned architecture of the 
EfficientNetB4 in detail. EfficientNet B4 is a 
cutting-edge CNN that aims to achieve excellent 
accuracy with fewer parameters than classic models. 
It applies a compound scaling strategy to balance the 
network's depth, breadth, and lung image resolution. 
Figure 3. illustrates EfficientNet B4 uses compound 
scaling to scale depth, width, and resolution 
simultaneously. Width scaling increases the number 
of channels, helping the model capture detailed 
features in lung images. Depth scaling allows it to 
learn complex patterns like lung abnormalities 
across multiple layers. Resolution scaling ensures 
high-resolution input images retain crucial details 
for better disease detection. Here scaling balance 
optimizes EfficientNet B4 for accurate and efficient 
lung disease classification. 

 

Figure 3. Illustration of Compound scaling of 
EfficientNet with Width, Depth & Resolution 

Here, the pipeline illustration in Figure 4. will 
outline the architecture of EfficientNet B4 and its 
classification to classify lung diseases into four 
classes: asthma, COVID-19, pneumonia, and 
normal. The primary components include the stem 
layer, MBConv blocks, and Classification head. 
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Figure 4. Pretrained EfficientNet with GA for classification

The stem layer is the initial layer that processes the 
input lung image, typically consisting of a 
convolutional layer followed by batch normalization 
and a Swish activation function. Mathematically, 
this can be represented as  

𝑌 = 𝑆𝑤𝑖𝑠ℎ(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣(𝑋))   (1) 

Here, X is the input lung image, while Y is the stem 
layer's output. Following the input layer, the model 
includes several convolutional and pooling layers, 
organized into four main convolutional blocks. Each 
block is designed to progressively extract more 
complex features while reducing the spatial 
dimensions of the data.  

 

Figure 5. Output after the Convolutional layer 

The first convolutional block can be visualized in 
Figure. 5 uses a Conv2D layer with 32 filters in total 
and a (3, 3) kernel size, followed by a Global 
Average Pooling (GAP) 2D layer with a pool size of 
(2, 2). The purpose of the GAP 2D layer is to reduce 
the dimensionality of the data, which helps in 
reducing the computational load and mitigating 
overfitting by discarding less important spatial 

information. The computational load on the GAP 
layer for lung images is minimal. GAP reduces the 
spatial dimensions of feature maps by averaging 
values across each channel to vector, resulting in 
fewer parameters and a lower risk of overfitting. 

Conv2D(x, W, b) = W ⨂ x + b   (2) 

where ⨂ denotes the convolution operation, W is the 
filter (weight) matrix, x is the input, and b is the Bias 
term.   

After the Convolutional layer, Batch Normalization 
is used to improve training efficiency and stability 
by minimizing internal covariate shift. The process 
involves four key steps: first, computing the mean 
μ of a mini-batch of inputs; second, calculating the 
variance 𝜎

ଶ of the mini-batch; third, normalizing the 
inputs by removing the mean and dividing by the 
square root of the variance plus a tiny constant 𝜖 for 
numerical stability; and finally, scaling and shifting 
the normalized inputs using learnable parameters γ 
(scale) and β (shift). This normalization technique 
allows the network to maintain the representational 
power of the original activations while ensuring 
more stable and faster training.    

  𝑦 = 𝛾 ቌ
௫ିఓಳ

ටఙಳ
మ  ାఢ

ቍ + 𝛽        (3) 

The above states where 𝑦  is the output after batch 
normalization, 𝑥 is the input, 𝜇 is the mean, 𝜎

ଶ is 
the variance, 𝜖 is a small constant for numerical 
stability, and 𝛾 and 𝛽 are learnable parameters. 
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The second convolutional block expands on the first 
by adding 64 filters while preserving the same kernel 
size and ReLU activation [31]. The Conv2D layer is 
followed by another GAP layer with a pool size of 
(2,2). This trend continues in the third convolutional 
block, where the Conv2D layer contains 128 filters 
and another GAP layer is applied. The fourth 
convolutional block also includes a Conv2D layer 
with 128 filters, followed by a GAP layer. 

 

Figure 6. Output before the Dense layers 

From the visualization of Figure 6. the initial layer 
captures basic features, while the final layer outputs 
a condensed feature map highlighting complex 
patterns. The processed lung image data is then used 
for classification in the dense layers, each of these 
blocks increases the network's depth, allowing it to 
record more detailed and abstract information as the 
input moves through the layers. Following a series 
of convolutional and pooling layers, the model 
progresses to fully connected (dense) layers. First, a 
flattened layer is utilized to turn the convolutional 

layers' 2D matrix data into a 1D vector. This 
transformation is crucial as it prepares the 
data for the dense layers, which operate on 
one-dimensional input. 

𝑦 =
ଵ

ு×ௐ
∑ ∑ 𝐹(𝑖, 𝑗)௪

ୀଵ
ு
ୀଵ               (4) 

The preceding equation describes the GAP, where H 
is the feature map's height, W is its width, 𝐹 (i, j) is 
the feature map's value at position (i, j) for channel 
C, and 𝑦 is the average value for the complete 
feature map 𝐹.  The initial dense layer is made up of 
512 units that use Softmax activation. This layer 
connects the high-level feature extraction achieved 
by the convolutional layers and the final 
classification task [32]. To stay away from 
overfitting, a 50% dropout layer is placed after the 
dense layer.  Table 3. shows the layers of 
EfficientNet B4, which include a layer of 
convolution, batch normalization, global average 
pooling, dropout, and a dense layer. 

 

 

Table 2. Layers Description 

Layer Output 
shape 

Parameters 

Input layer () 0 
Convolutional 

layer 
(6,6,1536) 1404576 

Batch 
Normalization 

(6,6,1536) 6144 

Global Average 
Pooling (GAP) 

(1536) 0 

DropOut (1536) 0 
Dense (4) 6148 

 

 Dropout is a regularization strategy in which a 
portion of the units are randomly set to zero during 
training, forcing the network to learn more robust 
characteristics that are not dependent on any 
individual unit. The output layer is the model's final 
layer, and it is meant for classification. This layer is 
dense, containing as many units as there are classes 
in the classification problem. It employs softmax 
activation to generate a probability distribution over 
the classes, allowing the framework to predict which 
class the input image belongs to. The below equation 
is the softmax activation 

 𝜎(𝑧) =


∑ 
ೕೖ

ೕసభ

 for i = 1,2, . . . . . , k (5) 

Where 𝜎(𝑧) represents the probability of the i-th 
class, 𝑒௭  is the exponential of the input score of the 
i-th class, and ∑ 𝑒௭ೕ

ୀଵ  is the sum of the exponentials 

of the input scores for all classes. 

The classification head is the final component, 
consisting of global average pooling, a fully 
connected (dense) layer, and a softmax activation to 
output the class probabilities. This can be 
mathematically described as 

𝑃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)))(6) 

Here F is the feature map input and P provides the 
class probabilities for asthma, COVID-19, 
pneumonia, and normal. During training, the multi-
label classification uses categorical cross-entropy 
loss. Here, the mathematical expression  

𝐿 = − ∑ 𝑦𝑙𝑜𝑔(𝑦̂

)ே

ୀଵ              (7) 
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Where 𝑦  is the ground truth label and 𝑦
̂
 is the 

predicted probability for class i. The Adam 
optimizer is used for training the model and updating 
model parameters as 𝜃. 

𝜃௧ାଵ = 𝜃௧ − 𝑛. ∇ఏ𝐿(𝜃௧)                  (8) 

Here 𝑛 is the Learning rate. In this phase, the trained 
EfficientNet B4 model is used to predict the class 
probabilities for new input CT scans.  

3.3. Genetic Algorithm Evolution 

       The GA is one of the ideal algorithms for 
addressing sophisticated optimization issues that are 
difficult to deal with employing conventional 
approaches [33,34]. It is a flowchart that illustrates 
the steps of a GA. Evolution and genetics provide as 
inspiration for GA search algorithms. They are used 
to identify the best answers to problems by creating 
a population of potential solutions via a process 
equivalent to biological reproduction.  

 

Figure 7. Workflow of GA 

Algorithm: Efficient Net + GEP to optimize 
the hyperparameters of lung disease 

procedure GEP_Classification (I, C) 
// Input I = CT image for diagnosis 
// Output C = predicted class for the image 
// 1. Initialize population and evaluate initial fitness 
for generation = 0; generation ≤ Max Generations; 
generation++ do 
    // 2. Apply genetic operations for each individual 
in the population 
    for i = 0; i ≤ Population Size; i++ do 
        // a. Select parents for crossover 
        Parent1, Parent2 ← Select Parent (Population, 
Fitness) 
        Offspring ← Crossover (Parent1, Parent2) 
        // b. Apply mutation to offspring 
        Mutated Offspring ← Mutate (Offspring) 
        // c. Evaluate fitness of mutated offspring 
        Fitness Offspring ← Evaluate Fitness (Mutated 
Offspring) 
        // d. Replace worst individual if offspring has 
better fitness 
        if Fitness Offspring > Min Fitness then 

            Population[i] ← Mutated Offspring 
            Fitness[i] ← Fitness Offspring 
        end if 
    end for 
end for 
// 3. Select the best chromosome with highest fitness 
Best Chromosome ← Select Best Chromosome 
(Population, Fitness) 
C ← Predict Class (Best Chromosome) 
return C 

 

The Figure 7. flowchart starts with a baseline 
population of solutions. Each solution is evaluated 
using a fitness function, which determines how well 
it meets the desired criteria. In the selection step, 
individuals from the population are chosen based on 
their fitness.  The individuals with greater fitness 
scores are more likely to be chosen. The algorithm 
applies crossover and mutation operators is done 
through an exchange or swap policy to the choose 
individuals. Crossover simulates reproduction by 
mixing the genetic information from two parent 
solutions and producing offspring. 

The mutation causes random changes to individual 
solutions, which helps to preserve population 
diversity and prevents the algorithm from becoming 
stuck in local optima. The newly generated offspring 
are then evaluated using the fitness function. This 
cycle of evaluation, selection, crossover, and 
mutation will continue until the termination 
specifications are met. The termination criterion may 
include a predefined number of iterations or a 
desired level of fitness in the individuals. 

𝑝𝑜𝑝 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑝𝑜𝑝1
𝑝𝑜𝑝2
𝑝𝑜𝑝3

⋮
𝑝𝑜𝑝 𝑛

𝑝𝑜𝑝 𝑛 − 1⎦
⎥
⎥
⎥
⎥
⎤

     (9) 

Furthermore, let's use the letter “pop” to stand for the 
population that consists of parents that have proven 
to have higher fitness values. When percentage P is 
set to 30%, only the fittest 30% of the individuals is 
considered suitable to take part in the crossover or 
recombination selection process. The F1 score 
measures the effectiveness of the model and is 
computed using the validation set. Hyperparameter 
tweaking is used to evaluate different parameter 
configurations, aiming to optimize the model’s 
ability to distinguish between pneumonia and 
normal patients. To ascertain the ideal fitness value 
for subsequent utilization, see Equation.  
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𝑓𝑡 = ∑ 𝑅௦/𝑀ெ
ୀଵ           (10) 

The addition of 



 to the summation term is 

represented by variable 𝑠, and certain parameters are 
the focus of improvement. In this case, M represents 
the entire number of regulations, and  𝑅௦ indicates 
the rule that has been chosen. For every value, 𝑓௧ is 
determined by the fitness value selected rules. Each 
value is evaluated in reference to the fitness function. 
Only solutions that align with the fitness function's 
requirements advance to either crossover or 
mutation-based generation. The purpose of mutation 
is to add unpredictability to the population by 
randomly altering a subset of hyperparameters [35-
36]. Every solution in the population is prevented by 
the mutation from reaching the local optimum of the 
resolved problem. The result of crossing is an 
offspring population that is susceptible to random 
mutation 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐶) = ൜
1 − 𝐶[𝑘], 𝑖𝑓 𝑟 < 𝑝

𝐶[𝑘],  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (11) 

Here k refers to the features in the individual and r is 
the random number. 

3.4. Empirical Analysis of GEP Evolution 

The core of the architecture lies in the GA 
evolution process, which iterates through several 
generations to optimize the feature subset. The 
evolution process comprises multiple components, 
including classification, validation, and the 
generation of new populations through genetic 
operations. The empirical analysis demonstrates the 
effectiveness of GA in optimizing hyperparameters 
for a neural network. By iteratively evolving a 
population of candidate solutions, the GA converges 
towards better solutions, as evidenced by improved 
fitness values over generations. The GA workflow 
involves seven several steps  

i). Initialization 

The initial population consists of four individuals, 
each representing a set of hyperparameters. The 
initial population is randomly generated within the 
given ranges:  

𝑃(0) = ቊ
భస[బ.బబభ,బ.ఱ]
మస[బ.బభ,బ.య]

యస[బ.బబఱ,బ.ర]
రస[బ.బమ,బ.మ]

ቋ  (12)  

ii). Fitness Evaluation 

Fitness is evaluated based on the validation accuracy 
of the neural network using the given 
hyperparameters. Higher accuracy indicates better 
fitness. 

𝑓(𝑋ଵ) = 0.85,  𝑓(𝑋ଶ) = 0.80, 𝑓(𝑋ଷ) = 0.83, 
𝑓(𝑋ସ) = 0.78 

iii). Selection 

Parents are selected using Roulette Wheel Selection, 
which is a probabilistic method where more fit 
individuals have an increased probability of 
selection. Assume 𝑋ଶ and 𝑋ଷ are selected as parents. 

iv). Crossover 

The chosen hyperparameters are learning rate and 
dropout so, the arithmetic crossover is performed 
with a parameter 𝛼 = 0.6 to attain offsprings. 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଵ = 0.6. 𝑋ଶ + 0.4. 𝑋ଷ = [0.008,0.34] 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଶ = 0.4. 𝑋ଶ + 0.6. 𝑋ଷ = [0.007,0.36] 

V). Mutation 

Here Gaussian mutation is applied with a standard 
deviation 𝜎 = 0.001 for Learning rate and 𝜎 = 0.05 
for Dropout. 

𝑀𝑢𝑡𝑎𝑡𝑒𝑑 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଵ =  [0.0085,0.33] 

𝑀𝑢𝑡𝑎𝑡𝑒𝑑 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଶ =  [0.0068,0.38] 

VI). Replacement 

Here it includes the current population and new 
offspring then selecting the best individuals based on 
fitness. 

𝑃(1) =

ቊ
భస[బ.బబభ,బ.ఱ] (భ)సబ.ఴఱ

ಾೠೌ ೀೞೝభస[బ.బబఴఱ,బ.యయ] (ಾೠೌ ೀೞೝ భ)స బ.ఴర

యస[బ.బబఱ,బ.ర] (య)సబ.ఴయ
ಾೠೌ ೀೞೝమస[బ.బబలఴ,బ.యఴ] (ಾೠೌ ೀೞೝమ)స బ.ఴభ

ቋ

(13) 

4. PROPOSED ARCHITECTURE OF 
EFFICIENTNET WITH GENETIC 
EXPRESS PROCESSING  

 Genetic Express Processing (GEP) is an 
evolutionary algorithm [37]. For identifying lung 
diseases like COVID-19, asthma, pneumonia, and 
normal, GEP can effectively analyze complex 
medical data to distinguish between these 
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conditions. It incorporates the strength of GA and 
genetic programming to enhance classification 
accuracy. By leveraging GEP, robust models can be 

developed to improve diagnostic precision and 
patient outcomes. 

 

Figure 8. Schematic Representation of the proposed model using the GEP Algorithm

Figure 8. illustrates a bio-inspired optimization GEP 
workflow for classifying Covid-19, Asthma, 
Pneumonia, and Normal cases. It starts with 
extracting features from the training and test data. 
The train data's features are leveraged for model 
training, while test data's features evaluate its 
performance. In GEP, the GA evolution begins with 
creating an initial population of feature sets encoded 
with random binary values (0 and 1). These feature 
sets undergo classification, training, and validation. 

 

 

Table 3. Hyperparameters for optimization 

Hyper-Parameters Values 

Population 50 

Generation 10 

Drop Out 0.5 

Batch size 32 

Learning rate 0.001 

Cross over 0.6 

 

 If the stopping criteria are not met, the algorithm 
continues with parent selection, crossover, and 
mutation to generate a new population. This periodic 
process continues until the stopping criteria are 

satisfied, at which point the best feature set is 
selected. The final model, using these optimal 
features, is applied to the test data, which classifies 
the instances into COVID-19, Asthma, Pneumonia, 
or Normal categories. This bio-inspired GEP ensures 
robust hyperparameter tuning and enhances the 
classifier's accuracy.  

Table 3. outlines hyperparameters for a DL model, 
specifying a population size of 50 and 10 generations 
for evolutionary optimization. The dropout rate is set 
at 0.5 to mitigate overfitting, while a batch size of 32 
is used for training iterations. The learning rate is 
0.001, which controls the step size during 
optimization. Additionally, a crossover rate of 0.6 is 
used for GA operations, and the fitness value 
represents the evaluation metric for the model's 
performance. 

5. EXPERIMENTAL DETAILS  

This section introduces the datasets, evaluation 
metrics, and training information for the 
experiments. Then we do broad comparison 
investigations with various models and loss 
functions, and lastly, analyze the outcomes. 

5.1. Dataset Description 

The dataset comprises Lung images graded into 
four classes namely COVID-19, Asthma, 
Pneumonia, and Normal. Images were collected 
from publicly available repositories [29-31].   
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Table 4. Dataset Description 

S. N0 Class Name No of Samples 
1 Covid-19 1250 
2 Pneumonia 1340 
3 Normal 1545 
4 Asthma 2250 

  

Table 4. summarizes the dataset Sarscov-2 and 
Covid-CT used for classification, comprising 1,250 
Covid-19 samples, 1,340 Pneumonia samples, 1,545 
Normal samples, and 2,250 Asthma samples. The 
dataset shows a slight imbalance, with the most 
samples in the Asthma class and the fewest in the 
Covid-19 class. So, to make the class balance GANs 
are used in preprocessing. This combination not only 
improves data quality but also improves the overall 
efficiency of the GAN in distinguishing between the 
given classes. To enhance data, a data generator 
modifies existing images with transformations like 
rotation, while a GAN generates entirely new, 
realistic images from scratch. GANs provide richer 
and more diverse samples than basic data generators. 

5.2. Hardware and Software  

All experiments are executed on a Jupyter 
notebook using Python 3.8, running on hardware 
with a 2.3 GHz Intel Core i9 processor, 16 GB of 
2400 MHz DDR4 RAM, and Intel UHD Graphics 
630 with 1536 MB of memory. 

5.3.  Results & Discussion 

 In this study, the performance of three distinct 
pre-trained DL models, namely ResNet 50, VGG-16, 
Resnet101, and ChesxNet, was analyzed against the 
new EfficientNet+GEP model. To test classification 
performance, a number of metrics were utilized, 
including accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value 
(NPV). These measurements were essential for 
assessing discrimination's effectiveness. The false 
positive index (FP), true positive index (TP), true 
negative index (TN), and false negative index (FN) 
were the four operation indices that were computed 
[38-40]. An FP (False Positive) case indicates that 
COVID-19 was incorrectly identified as viral 
pneumonia, whereas a TP (True Positive) case 
indicates that COVID-19 was correctly identified. 
On the other hand, a TN (True Negative) case 
indicates that viral pneumonia has been accurately 

identified as COVID-19, whereas a FN (False 
Negative) instance occurs when COVID-19 is 
successfully identified as viral pneumonia.  

 

Figure 9. The visualization of Lung CT scans through 
feature maps 

Figure 9. visualizes six feature maps from the 
EfficientNet model, extracted just before the dense 
layers. Each feature map represents a 2D grid. Each 
cell's color intensity and shade indicate the presence 
and strength of specific learned features within the 
input image, such as edges, textures, or patterns. The 
proposed method's classification performance is 
fully evaluated utilizing a variety of assessment 
metrics, including the F1 score, PRE (precision), 
ACC (accuracy), and recall. The F1 score combines 
accuracy and recall. Accuracy is the ratio of properly 
predicted samples to total predicted samples; 
precision is the percentage of all positive samples 
that are truly positive; and recall is the percentage of 
all positive samples that are correctly anticipated to 
be positive. Below are the formulas for these 
evaluation metrics. 

 

Figure 10. Heat Map of lung CT-scan for identified 
disease 

For instance, the red-circled area in the last heatmap 
in Figure. 10 suggests the model's detection of 
significant features such as ground-glass opacities or 
consolidations, commonly associated with COVID-
19 or Pneumonia. These visualizations indicate the 
model's interpretability and accuracy in identifying 
specific disease features. There are four scenarios of 
the estimated values of the model are investigated in 
the assessment of classification problems. Positive 
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classifications that are accurately and wrongly 
predicted are referred to as True Positives (TP) and 
False Positives (FP), respectively [41]. True 
Negatives (TN) and False Negatives (FN) indicate 
negatively predicted classes that are mistakenly and 
correctly predicted, respectively. These words are 
used to assess a model's performance by looking at 
its precision, sensitivity, and accuracy. 

Accuracy 
The most frequent statistic for assessing 
classification model success is the ratio of properly 
predicted samples to total samples. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =
(்ା்ே)

(்ାிା்ேାிே)
     (12) 

Precision 
It is defined as the proportion of correctly predicted 
classes that are positive (TP) to all predicted 
positive cases (TP+FP), or the measure of precision 
(precision). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

(்ାி)
                   (13) 

The provided Figure 11. illustrates the training and 
validation loss for a model over 10 epochs before 
optimization. The training loss, illustrated by the red 
line, drops sharply from around 4.0 to less than 0.5 
during the first few epochs, suggesting that the 
model is effectively learning from the training data. 
Similarly, the green line represents the validation 
loss, which reduces fast and stabilizes at around the 
same position as the training loss, indicating strong 
generalization without overfitting. The best epoch, 
marked by a blue dot at epoch 9, highlights the point 
of optimal performance on the validation set. To 
further evaluate the model's performance, accuracy 
and precision metrics for each epoch are essential.  

 
Figure 11. Training and Validation Accuracy 

Figure 11. illustrates the training and validation 
accuracy of an EfficientNet model over 10 epochs. 
The training accuracy, represented by the red line, 
steadily increases, indicating that the model is 
effectively learning from the training data. 
Meanwhile, the validation accuracy, represented by 
the green line, fluctuates slightly, suggesting some 
variability in the model's performance on unseen 
data, but overall shows an improvement. The best 
performance on the validation set is marked at epoch 
9 (indicated by the blue dot), where the accuracy 
peaks before slight fluctuations, potentially hinting 
at minor overfitting. This suggests that while the 
model is learning well, further optimization, such as 
implementing regularization techniques or using 
early stopping, could improve generalization. 

 

Figure 12. Training and Validation Loss of EfficientNet 

Figure 12. shows training and validation loss over 10 
epochs. Training loss (red line) decreases steadily, 
while validation loss (green line) also drops and 
stabilizes, indicating good model generalization. 
The best performance is at epoch 9 (blue dot), where 
both losses are lowest, suggesting optimal learning. 

The confusion matrix in Figure.13 shows the 
classification results for four classes: Asthma, 
COVID-19, Normal, and Pneumonia. True positives 
are on the diagonal, indicating 356 correctly 
classified Asthma cases, 562 COVID-19 cases, 983 
Normal cases, and 132 Pneumonia cases. Off-
diagonal values represent misclassifications, with 
notable confusion between COVID-19 and Normal 
classes, suggesting the model needs improvement in 
distinguishing between these similar classes. 

Table 5. shows the performance metrics of an 
EfficientNet model for a classification task, with an 
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accuracy of 85%, an F1-Score of 75%, and a 
precision of 72%. These results indicate moderate 
effectiveness in balancing true positives and 
minimizing false positives. To enhance these 
metrics, GEP approach is employed for 
hyperparameter tuning. 

 

 

Figure 13. Confusion Matrix 

Table 5. Results obtained by EfficientNet model 

Metrics Values 
Accuracy 85 
F1-Score 75 
Precision 72 

 

 

Figure 14. Results with EfficientNet with GEP

Figure 14. displays the training (red line) and 
validation (green line) loss over 25 epochs, with the 
lowest validation loss (blue marker) at epoch 25. 
Both losses drop sharply in the initial epochs, 
indicating rapid learning and error reduction by the 
model. Subsequent to this steep fall, both training 
and validation losses stabilize at low values, 
demonstrating the model's consistent performance 

on both datasets. The close alignment of the two 
lines suggests that overfitting is minimal, as the 
model maintains low error rates on unseen data, with 
the optimal performance observed at the final epoch. 
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Figure 15. Confusion Matrix 

It shows the importance of pre-processing in the 
GEP model. For the multi-class classification of 
healthy and various lung disease statuses, confusion 
matrices of EfficientNetB4+GEP, best performed 
pre-trained DL model are depicted in Figure. 15. The 
above Confusion Matrix indicates that the model 
accurately predicted most instances, with 356 correct 
predictions for asthma, 562 for COVID-19, 983 for 
normal, and 132 for pneumonia. There are minimal 
misclassifications, such as 4 asthma cases 
misclassified as COVID-19 and 33 normal cases 
misclassified as COVID-19. 

6. ABLATION STUDY 

To explore the effectiveness of the key components 
in the proposed EfficientNet+GEP structure, an 
ablation study is conducted and the results are shown 

in Table 6. As observations from Table. 6, the impact 
of incorporating a GEP into the EfficientNet model 
by comparing its performance against two other 
models: a baseline CNN and the standard 
EfficientNet B4. Ablation studies were conducted to 
assess how the proposed strategies influenced the 
model's performance. Specifically, it compares the 
impact of adding GEP (with and without) and 
investigates the performance differences between 
optimized EfficientNet with GEP and plain 
EfficientNet. Table 6 shows that each component 
greatly improves model accuracy across datasets, 
giving useful information about the usefulness of 
improved EfficientNet with GEP. Using 
EfficientNet, 2%-4% approximate increase in 
accuracy was observed and a 5%-11% increase in 
efficiency after optimizing it with GEP. 

The table 6. compares the performance of two 
trained models: EfficientNet B4 and EfficientNet 
combined with GEP.  EfficientNet B4 achieved an 
accuracy of 85.6%, a validation loss of 0.31, and an 
F1-score of 75%. In contrast, the model combining 
EfficientNet with GEP significantly outperformed 
EfficientNet B4, achieved an accuracy of 96.5%, a 
validation loss of 0.05, and an F1-score of 91%. This 
indicates that incorporating GA with EfficientNet 
improves the model's performance across all 
measured metrics 

 

 

 

 

Table 6. Comparison and performances of the model with some existing techniques 

S. No Trained Model Accuracy (%) Validation loss F1-Score 
(%) 

1 SVM+ Dragonfly [42] 76 0.51 84 
2 ResNet 101 V2 and 

CheXnet [43] 
88 - 76 

3 CNN-OELMnet [44] 85 - 91 
4 VGG 19 and Resnet-50 

[45] 
87 0.42 80 

5 EfficientNet B4 
without GEP 

85.6 0.31 75 

6 EfficientNet B4+GEP 96.5 0.05 91 
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Figure 16. Visualization of Proposed Vs Existing 

The Figure 16. illustrates the performance of three 
models (SVM+Dragonfly, EfficientNet B4, and 
EfficientNet+GEP) using Four metrics: accuracy, 
validation loss, F1-score and Precision [46]. The 
inexpensive EfficientNet with GEP model 
significantly decreases computing complexity and 
time requirements. 

7. CONCLUSION 

This study examined how the GEP and EfficientNet 
B4 can identify lung diseases such as COVID-19, 
normal conditions, pneumonia, and asthma. 
EfficientNet B4, noted for its high accuracy and 
efficient architecture, was used to extract features 
for this essential task. The GEP was used to 
optimize important hyperparameters like learning 
rates and dropout rates, improving model 
performance by efficiently navigating the 
hyperparameter space for optimal outcomes. The 
combination of EfficientNet B4 and GEP showed 
promising results in accurately classifying lung 
diseases. The model's architecture, including 
convolutional and MBConv blocks, effectively 
extracts features from medical imaging data. The 
use of Swish activation functions in the hidden 
layers contributed to improved training dynamics 
and model performance. GAP was used to compress 
the feature maps to a single value per channel, 
allowing for an efficient transition to the 
classification layer. The final Dense layer, which 
used a softmax activation function, guaranteed 
correct probabilistic classification of all four 
circumstances.  

The combination of EfficientNet B4’s depth and the 
optimization power of GEP provided a balanced 
commutation between computational efficiency and 
model accuracy. The aforementioned highlights the 
effectiveness of using advanced neural network 
architectures coupled with optimization techniques 

to tackle complex classification tasks in medical 
Visualization. Down the line, the dataset could be 
expanded to include diverse samples and 
incorporate multi-modal data. Additionally, 
exploring advanced neural architectures and real-
time adaptation mechanisms could further improve 
model performance and clinical applicability. 
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