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ABSTRACT 
 

Cardiovascular Diseases (CVDs) are a significant global cause of mortality, necessitating effective diagnostic 
techniques. Phonocardiography (PCG) is among the fundamental methods used to analyze heart sounds to 
detect human heart-related abnormalities. However, in an environment where state-of-the-art PCG equipment 
is not available, a Machine Learning (ML) based solution can serve as a reliable alternative. However, the 
main challenges faced by ML-based PCG systems, are the unavailability of balanced and unbiased datasets, 
the vanishing and exploding gradient a well-known Deep Learning (DL) issue, and inappropriate feature 
extraction techniques, which often compromise the accuracy and reliability of ML-based PCG systems. This 
study introduces a novel Deep Extreme Learning Machine (DELM) and Mel-Frequency Cepstral Coefficients 
(MFCC) based PCG framework for CVD diagnosis. The proposed framework uniquely addresses the above 
mentioned challenges. The proposed model achieves a remarkable training accuracy of 98.46 % and a test 
accuracy of 86.80 %, using the Heartbeat Sound dataset with five classes and after class aggregation and 
dataset normalization the proposed model achieved training accuracy 99.52 % and a test accuracy of 92.30 
% demonstrating its potential in PCG diagnostics. This framework represents a significant advancement in 
ML-based PCG systems for automating heart sound analysis and contributing to improved cardiac healthcare, 
especially in resource-limited settings. 

Keywords: Cardio Vascular Disease (CVDs), MFCC, Machine Learning, Deep Extreme Learning Machine 
(DELM), Heart Disease 

 
1. INTRODUCTION  
 

This CVDs are the leading cause of death 
globally, taking 17.9 million lives per year, or 
almost 32 % of all deaths worldwide [1]. A 
noteworthy 85 % of these deaths are the 
consequence of heart attacks and strokes. More 
than 75 % of deaths from CVD occur in low- and 
middle-income nations. Concerningly, 38 % of the 
17 million recorded deaths before the age of 70 
occurred only in 2019 as a result of CVDs. It is 
noteworthy that heart attacks and strokes account 
for about four out of every five deaths attributable 
to CVD, and that an alarming one-third of these 
deaths occur in people under the age of seventy-
one. Unfortunately, the lack of cardiovascular 

disease specialists, the lack of modern diagnostic 
tools, and the high rate of misdiagnosed cases are 
a few major causes of these deaths [2].  

PCG serves as a fundamental technique 
utilized to diagnose the state of the human heart 
and determine whether it is functioning normally 
or displaying any abnormal patterns. It involves 
the visual recording of the sounds and murmurs 
produced by the contracting of the heart, 
originating from the valves and connected large 
vessels. In situations where advanced diagnostic 
equipment is not readily available, general 
physicians rely solely on the stethoscope to 
perform PCG [3]. Nonetheless, general physicians 
could find it difficult to determine whether the 
heart is beating normally or whether there are any 
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anomalies in the heart's walls without the 
assistance of a cardio specialist [4].  

There are many strains associated with 
PCGs as well. For instance, environmental factors 
like skin friction, electromagnetic interference 
(EI), and breathing noises can cause considerable 
disruptions to the PCG diagnosis [3, 5]. Moreover, 
Heart sounds can differ significantly among 
humans due to natural factors as well like age, 
gender, and health condition [6]. The variations in 
heart sound can also be caused because of 
anatomical differences, and physiological 
variations that further challenge PCGs for 
achieving consistent diagnosis [7]. Furthermore, 
the lack of standardized protocols and guidelines 
for recording and analyzing heart sound signals 
makes PCG diagnosis even more complex and less 
reliable. Also, inconsistencies in signal acquisition 
techniques, sensor placement, and signal 
processing methods make PCG diagnosis deceitful 
[8]. The practicality and usability of PCG systems 
can also be hindered by the availability and 
affordability of suitable hardware devices. Access 
to high-quality sensors or wearable devices that 
can reliably capture heart sounds may be limited, 
particularly with limited resources. Distinguishing 
between normal and abnormal heart sounds, as 
well as identifying various pathological 
conditions, can be intricate and may necessitate the 
involvement of experienced cardiologists or 
clinicians. The accurate automation of this process 
remains a significant challenge [9, 10]. 

ML-based approaches can provide 
effective PCG solutions, by overcoming the 
discussed limitations of conventional PCG 
techniques [11]. Compared with typical manual 
PCG diagnosis, ML models can expedite the 
evaluation of PCG recordings, saving time and 
lowering the possibility of human error. 
Furthermore, by training ML models on large 
datasets of labeled PCG recordings, the accuracy 
and reliability of PCG diagnosis models can be 
improved. Also, PCG includes continuously 
evaluating audio signals and adjusting to new data 
while ML-based methods are best known for 
handling vast volumes of data, evolving learning, 
and eventually improving models. This allows 
improved performance and the detection of novel 
circumstances even amongst diverse human 
populations [8]. Real-time evaluation of PCG 
recordings by utilizing ML-based PCG models has 
the potential to offer accurate diagnostic insights. 
Integrating ML with PCG can produce more 
precise and unbiased outcomes, ultimately 
improving the diagnosis and management of 

cardiac conditions [12]. However, previously 
proposed ML-based PCG frameworks have indeed 
faced several challenges that have hindered their 
effectiveness. Model overfitting, limited 
interpretability, un-explainability, and the absence 
of standardized protocols and standards related to 
the development of ML-based PCG systems are 
also some other challenges and provocations that 
make ML-based PCG systems slightly impractical 
and limit their commercial adoption.  

ML-based models need large, balanced, 
unbiased efficient, and effective datasets to train. 
However, publicly available datasets are limited in 
sample size, unbalanced, and biased. The limited 
size of the datasets restricts the representation of 
the full variability and complexity of heart sound 
signals, impacting the generalization and 
performance of the models. Unbalanced datasets 
underrepresent or overrepresent certain classes or 
labels, which can lead to biased predictions and 
lower accuracy, especially in detecting rare 
abnormalities. Furthermore, noisy or incomplete 
labels in the datasets can introduce errors and 
hinder accurate learning. The lack of 
standardization in data collection, annotation, and 
preprocessing has also posed further challenges in 
comparing results and reproducing experiments.  

Mostly ML-based PCG prediction model 
is trained using BP Neural Network (NN) 
algorithms because of their efficiency, versatility, 
and adaptability.  But using BP has some 
challenges as well like data sensitivity, time and 
resource intensive, and prone to model overfitting. 
Still one of the vital challenges includes vanishing 
and exploding gradients, which are classical 
problems in BP algorithm-based trained models. In 
the BP algorithm, the gradient is a vector that 
represents the partial derivatives of a function with 
multiple variables. It measures how the change in 
weights relates to the change in error. The gradient 
is used to calculate the rate at which the output of 
a complex equation changes when the input 
changes. The gradients calculated during training 
either become extremely small ("vanishing") or 
very large ("exploding") as they propagate through 
the network layers, hindering the learning process 
and preventing effective weight updates.  

Additionally, another significant 
challenge is a suitable feature extraction technique 
that extracts features from analog heart sound 
signals available in different datasets in the form of 
digital sound files. Selecting appropriate features 
that capture the distinctive characteristics of 
different heart conditions is also very critical for 
ML-based PCG systems. 
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This study focuses on the three main 
challenges related to ML-based PCG systems i.e. 
dataset related issues like data biases, improper 
class aggregation, etc. BP-based model issued i.e. 
vanishing and exploding gradients, and use of 
inappropriate feature extraction techniques.  The 
proposed framework also minimizes the impact of 
human error, natural factors, environmental issues, 
and machine-human biases. The proposed study 
aims to address these challenges in PCG that will 
assist medical technicians, practitioners, and 
physicians in providing real-time 
recommendations to patients with heart 
abnormalities. By incorporating, a benchmark, 
high-quality, unbiased, class aggregated and 
normalized dataset, state-of-the-art Deep Learning 
(DL) based Feed-Forward Neural Network (FF) 
learning algorithm i.e. DELM and effective feature 
extraction techniques i.e. MFCC. The study aims 
to enhance the accuracy and reliability of heart 
sound classification by proposing a novel 
framework.  

The research holds significant importance 
due to its potential to progress the field of PCG and 
contribute to enhancing the diagnosis and 
monitoring capabilities of cardiac conditions. The 
outcomes of this research can greatly impact 
clinical settings, where timely and accurate 
identification of cardiac abnormalities is crucial 
for patient care. Improved classification and 
detection capabilities can assist healthcare 
professionals in making more informed decisions, 
enabling early intervention and leading to better 
patient outcomes. This research also contributes to 
the existing knowledge in ML by exploring 
innovative approaches for feature extraction and 
learning techniques within the context of PCG. 
This study contributes to the development of more 
accurate, reliable, commercially usable, and 
adoptable ML-based PCG systems. The insights 
gained from this study can serve as a foundation 
for future advancements in the field and inspire 
further research in related areas, ultimately driving 
innovation and progress in healthcare technology. 

The framework's optimal performance 
assumptions rely on expertise in data 
preprocessing, noise reduction, and iterative model 
training. Limitations include reliance on high-
quality sensors for data acquisition and challenges 

in addressing the inherent biases and 
inconsistencies in publicly available datasets. 
Furthermore, environmental noise and inter-
individual variability in heart sounds represent 
additional hurdles in achieving a universally robust 
solution. 

The proposed framework aims to address 
critical gaps in existing PCG systems by 
integrating MFCC for effective feature extraction 
and DELM for overcoming gradient issues. Unlike 
traditional methods, this framework leverages 
normalized datasets with class aggregation to 
minimize bias and enhance reliability, ensuring 
practical applicability in resource-constrained 
healthcare settings. 

 
2. MATERIAL & METHODS 

The proposed PCG framework includes 
phases like heart sound acquisition, signal 
denoising, signal segmentation, and feature 
extraction classification models. Also, the 
proposed framework is extensively evaluated, the 
results are rigorously obtained under different 
experimental settings and the results are 
comprehensively discussed.  

Heart sounds are captured using digital 
stethoscopes or PCG sensors and converted into 
digital recordings. Preprocessing is applied on 
captured heart sounds to remove noise and 
artifacts, using a signal denoising technique 
followed by feature extraction using MFCC to 
capture distinctive features of different heart 
conditions using MFCC. The DELM algorithm is 
utilized to train models on labeled datasets. Model 
performance is evaluated using 5 class, and 3 class 
aggregation. The proposed model can be deployed 
in real-world applications for analyzing heart 
sound recordings and providing predictions or 
classifications to aid in diagnosing and monitoring 
cardiac conditions. This study assumes that the 
optimal performance of the framework relies on 
expertise in data preprocessing, noise reduction, 
feature engineering, and iterative model training, 
as well as the availability of high-quality datasets, 
standardized protocols, and standards to capture 
and record accurate heart sound signals. The 
proposed framework is depicted in the Figure 1. 
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Figure 1: Proposed MFCC and DELM-based PCG Framework 

2.1 Heart Sound Signals 
Heart sound signals are produced by 

cardiac events like a valve closing or the chordae 
tendinous tightening. S1 and S2, the two audible 
heart sounds, are often present in healthy hearts. S1 
is the sound that occurs when the atrioventricular 
valves close during ventricular contraction. When 
the semilunar valves close during ventricular 
diastole, the sound produced is known as S2. Since 
the two valves close at slightly different times, 
each sound has two components. There may be 
other cardiac sounds, such as S3 and S4, which can 
cause sound wave sensors that translate sound 
waves into electrical signals, which are 
subsequently transformed into digital audio data. 
Heart sound signals are distinct audio vibration 
bursts that vary in strength, frequency, pitch, 
length, and quality. Heart sound signals in the form 
of digital audio files captured by an electronic 
stethoscope or other audio recording devices act as 
an input to the proposed MFCC and DELM-based 
PCG system. 

2.2 Signal Denoising 
The recording of heart sounds can be 

readily interfered with by environmental factors 
including friction between the device and the skin, 
interference from electromagnetic sources (EI), 
and background sounds such as breathing, lung or 
respiratory noises, and surrounding environmental 
sounds [3]. To filter out-of-band noise or any 
interference that might be present with the sound 
signals generated by the human heart must be 
removed. Noise reduction has a major impact on 
the subsequent phases like segmentation, feature 
extraction, and final classification results. Three 
widely used denoising approaches are wavelet 
denoising, variational mode deconstruction 
denoising, and digital filter denoising (DFD) [13]. 
Proposing a novel signal-denoising technique is 
not in the scope of this study. However, this 
framework recommends digital filter denoising 

techniques for noise reduction. In this study, a 
wavelet function for human heart impulses is being 
developed. This wavelet function is built upon 
prior knowledge of heart sound data [14]. A sound 
spectrum is an illustration of a sound, typically a 
brief excerpt of the sound in terms of vibration 
intensity at each frequency. Typically, it is shown 
as a power or pressure graph plotted against 
frequency. Decibels are typically used to measure 
pressure or power, whereas Hertz, or vibrations per 
second, is used to measure frequency. After the 
sound is analyzed, the spectrum is produced, which 
represents the frequency composition of the sound. 
A coordinate plane is typically used to describe a 
sound spectrum. The amplitude A, or intensity, of 
a harmonic component with a given frequency, is 
displayed along the axis of ordinates, while the 
frequency f is plotted along the axis of abscissas. 

2.3 Segmentation 
The diastole, second heart sound S2, and 

first heart sound S1 are separated into four 
segments as part of the segmentation process. 
Important information that helps differentiate 
between various heart sounds can be found in each 
area. Nevertheless, erroneous PCG signal 
segmentation can result from individual 
differences in the length of the pulse cycle, the 
quantity of heart sounds, and the kinds of heart 
murmurs. As a result,a crucial stage in the 
automated processing of PCG signals is 
segmenting the Fatal Heart Sound (FHS). 
Envelope-based approaches have emerged as some 
of the most popular strategies for heart sound 
segmentation in recent years [15].  Several 
significant segmentation techniques include the 
electrocardiogram (ECG) [16], time-frequency 
analysis approaches [18], feature-based methods 
[17], and probabilistic model methods [19, 20, 21, 
22]. This diastolic interval is longer than the 
systolic period, which is the fundamental 
assumption of the proposed framework. It is 
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crucial to remember that this presumption is not 
always accurate for an aberrant heart sound in 
infants and cardiac patients. [23, 29]. Due to the 
similarities between ECG and heart signals, 
research has shown that combining ECG data with 
the cardiac cycle enhances the accuracy of 
segmentation algorithms. However, they do 
require more sophisticated technology in terms of 
hardware and software.   

In sound signals pitch and frequency are 
related i.e. higher pitch means high frequency and 
vice versa. To produce a representation that is 
essentially the same as the human brain 
processable, the representation gains the frequency 
dimension from the spectrogram. A spectrogram is 
a visual representation of the frequency spectrum 
of a signal that varies with time. When applied to 
an audio source, spectrophotograms are sometimes 
called sonography, voiceprints, or voice grams. 
Spectrograms are widely utilized in many 
disciplines, including seismology; voice 
processing, sonar, radar, music, and linguistics. 
Audio spectrograms can be used to study animal 
cries and phonetically identify spoken phrases. It 
can be produced using a wavelet transform, a bank 
of band-pass filters, an optical spectrometer, or a 
Fourier transform. 

2.4 Feature Extraction 
Davis and Murmelstein first proposed the 

MFCC method in 1980 [24]. In this study, the 
MFCC technique is proposed for feature 
extraction. MFCC is suitable to capture a compact 
representation of the spectral envelope of an audio 
signal, which can then be utilized further. The 
signal's power spectrum is simply smoothed to 
create the spectral envelope, which is a 
representation of the signal's energy distribution 
over several frequency bands [25] seen in Figure 2. 

 

Figure 2: Signal in the Time Domain 

The signal is first divided into brief, 
overlapping frames by the MFCC algorithm; these 
frames typically last 20 to 40 milliseconds. Each 
frame is then transformed to the frequency domain 
using a Fourier transform. The resulting frequency 
spectrum is then filtered using a sequence of 
similarly spaced Mel-scale filter banks. 

Compared to the linear frequency scale, 
this perceptual scale is more closely associated 

with how humans perceive pitch [26]. To obtain 
the MFCCs, the data are changed using the 
Discrete Cosine Transform (DCT) after each filter 
bank's output has been logarithmically scaled. The 
DCT de-correlated the filter bank outputs to help 
provide a set of coefficients more appropriate for 
analysis [27]. 

The quantity of extracted MFCCs 
depends on the specific use case, but for speech 
recognition tasks, 12–13 Usually, coefficients are 
used. When used as features, the resultant MFCCs 
can assist machine learning techniques such as 
Hidden Markov Models (HMMs), which are 
frequently used in voice recognition. 

According to [3, 24], MFCC entails the 
following crucial actions depicted in Figure 2.1.  

 
Figure 2.1: MFCC-based Feature Extraction 

2.4.1 Pre-emphasis 
Pre-emphasis, the initial stage of MFCC 
processing, is filtering the audio signal to increase 
the frequency of higher frequencies and decrease 
the frequency of lower frequencies. As a result, the 
MFCCs produced may have a stronger signal-to-
noise ratio. Pre-emphasis filters have several 
significant uses. It can also improve the Signal-to-
Noise Ratio (SNR). 

1. High frequencies typically have smaller   
magnitudes than lower frequencies to 
balance the frequency spectrum. 

2. Steer clear of numerical issues when 
doing the Fourier transformations.  

3. The SNR might also be improved. 

A first-order pre-emphasis filter is applied to the 
signal x, as represented by the equation: 

 y(t)=x(t)−αx(t−1)  (1) 

 

Figure 3: Signal representation in the time domain 
following pre-emphasis. 
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2.4.2 Framing  
Signal into short time intervals. This is carried out 
due to a signal's fluctuating frequency throughout 
time. Therefore, applying the Fourier transform to 
the full signal is impractical since doing so would 
eventually result in the loss of frequency 
information. We can fairly assume that a signal's 
frequencies stay consistent for a relatively brief 
length of time to prevent this loss. By joining 
adjacent frames, we can achieve an accurate 
estimate of the signal's frequency information by 
applying a Fourier transform over this brief time 
interval. Speech processing typically uses frame 
widths between 20 and 40 milliseconds, with a 
50% overlap between successive frames. For the 
frame size, 25 milliseconds is the recommended 
value. 

2.4.3 Windowing 
The next step is to multiply each frame by a 
window function, usually a Hamming window, to 
lower spectral leakage and boost FFT accuracy. 
The following is the Hamming window. 

w[n]=0.54−0.46cos(2πn/N−1)          (2) 

Where 0 ≤ n ≤ N−1, with N representing the 
window length. When plotted, the equation 
generates the following graph: 

 
Figure 4: Hamming Window 

2.4.4 Fourier-Transform 
The FFT is then used to convert the windowed 
frames from the time domain to the frequency 
domain. As a result, each frame's audio signal is 
represented spectrally. The frequency spectrum, 
also known as the Short-Time Fourier-Transform 
(STFT), is computed on each frame using an N-
point FFT, Typically, N is set to 256 or 512, with 
NFFT = 512. The power spectrum (periodogram) 
is then calculated using the equation below. 

P=(|FFT(xi)|)/             (3)  

2.4.5 Mel Filtering 
A series of triangular Mel filters are then used to 
convert the spectral representation into the Mel-
frequency domain, which is an approximation of 

the non-linear frequency response of the human 
auditory system. The next step involves analyzing 
the power spectrum and extracting frequency 
bands using a Mel scale and triangular filters to 
construct the filter banks, typically about 40 filters 
(n-filt = 40). The Mel-scale is more accurate at 
lower frequencies and less accurate at higher 
frequencies to mimic the non-linear manner in 
which the human ear perceives sound. 
Additionally, it makes conversion between Mel 
(m) and Hertz (f) easier with the following 
formulas: 

m=2595log10(1+f700)  (4) 

Triangular filters with a response of 1 at the central 
frequency make up each filter bank. When the 
response hits the middle frequencies of the two 
adjacent filters, it declines linearly toward zero and 
turns into zero. This is seen in the following Figure 
5. 

 
Figure 5: Filter on Mel Scale 

2.4.6 Logarithmic Compression 
The non-linear behavior of the human auditory 
system is then further approximated by 
compressing the Mel-frequency coefficients 
logarithmically. 

 
Figure 6: Spectrogram of the Signal after 

Compression 

2.4.7 Discrete Cosine Transform 
Finally, the logarithmically compressed 
coefficients undergo a discrete cosine transform 
(DCT) to generate the MFCCs. The generated 
MFCCs are utilized as features for speech an d 
audio processing tasks and describe the spectral 
envelope of the audio stream. 

 
Figure 7: Discrete Cosine Function using MFCC 
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3. PREDICTION LAYER: DELM-BASED 
PROPOSED MODEL 

This guide  Using DELMs for 
classification is a prominent feed-forward (FF) 
approach especially for high-dimensional data like 
audio [30]. Traditional BP algorithms have slow 
learning rates and require more samples, they may 
overfit the model. DELM is commonly applied to 
classification problems across various domains 
due to its fast learning rate and computational 
efficiency. The DELM model consists of three 
main layers: an input layer, several hidden layers, 
and an output layer. The structure of the DELM 
model is shown in Figure 8. 

 
Figure 8: Architecture of Deep Extreme Learning 

Machines DELM [28] 

XVT = Wm0 (VVT  + R J )              (5) 

Here R is regularization for parameter optimization 
by another parameter. First consider {Y, Z} = {Xi, 
Zi} where j ranges from 1 to N, and the input 
feature Y = [yj1, yj2, yj3… yin] and desired matrix 
Z = [zj1, zj2, zj3, …..zjn] consists of training 
examples, the matrix  

Y and Z can be denoted as: 

 

Y = ൦

𝑦ଵଵ 𝑦ଵଶ . . .  . . .  . .  𝑦ଵே

𝑦ଶଵ 𝑦ଶଶ . . .  . . .  . . 𝑦ଶே  
𝑦ଵ 𝑦ଶ. . .  . . .  . . 𝑎ே

 

൪ 

Z  =  ൦

𝑧ଵଵ 𝑧ଵଶ . . .  . . .  . .  𝑧ଵே

𝑧ଶଵ 𝑧ଶଶ . . . . . .  . . 𝑧ଶே  
𝑧ଵ 𝑧ଶ . . . . . . . . 𝑧ே

 

൪                      (6) 

N denotes the dimensions of the input and output 
matrices, respectively. In ELMs, weights are 
randomly assigned between the input and hidden 
layers. 

W = ൦

wଵଵ wଵଶ . . . . . . . .    wଵ

wଶଵ wଶଶ . . . . . . . . . wଶ  
w୬ଵ w୬ଶ . . . . . . . . w୬

 

൪                  (7) 

The weights W are shared by the jth input and the 
output are hidden layer neurons. ELM takes into 
account the following Connections between the 
hidden layer and the output layer of neurons are 
represented by weights: 
 

α  =   ൦

α ଵଵ αଵଶ . . . . . . . .    αଵ

αଶଵ αଶଶ . . . . . . . . . . αଶ  
 α ୪ α୪ . . . . . . . .   . . α୬

 

൪                 (8) 

This represents the weights between the neurons in 
the jth hidden layer and those in the jth output layer. 
The bias for the hidden layer is then randomly 
assigned by the ELM as follows: 

β  = [β1, β2, β3 …  ….  ….  βn]T
                         (9) 

 
Next, the ELM chooses an activation function (x). 
The output matrix O can be represented as follows: 

T = [T1, T1, T3,  …  …., Tn]N*k               (10) 

The vector for each column of matrix O is 
expressed as follows: 

Oj = 

Oଵ

Oଶ...

O୩

 = 

⎣
⎢
⎢
⎢
⎡

∑ α୧ଵg (wଵxଵ  + βଵ)
ଵ

∑ α୧ଶg (wଶxଶ  + βଶ)
ଶ

. . .

. . .
∑ α୧୫g (wx୩ + β)

ே ⎦
⎥
⎥
⎥
⎤

        (11) 

Considering equation (10) and equation (11):  
T´ = α H          (12) 

 
T represents the transposed matrix T, and H refers 
to the result produced by the hidden layer. The 
Least Squares Method (LSM) is applied to 
calculate the values, which correspond to the 
weighted sum. 

α  = H + T                                            (13) 
 

The regularization term is introduced to increase 
generalization capacity and result in stability. 

HL1 = T αିଵ                                                                        (14) 
 

The inverse of matrix β is represented as 𝛽-1. 

Therefore, Layer 2 can be determined using 
equation (14).   

HL1 = g(WH1 + β1 )                                    (15) 
 
The values W1, HL1, and H1 in equation 14 indicate 
the initial two hidden layers weight matrices, the 
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first neuron's hidden level preference, the output 
from the first hidden layer, and the anticipated 
input for the second hidden layer, respectively. 
 

WHLE = gିଵ (H1) H
+                                          (16) 

 

In solving Equation 8, (g(x)) represents the 
activation function, and HLE+ is the inverse of 
HE. Thus, by selecting the appropriate g(x) 
activation function, the output of the second 
hidden layer is modified as follows: 

𝐻ଶ  = g(𝑊ுா 𝐻ா  )           Where, WHEHE  = NEth2 

 

𝐻ଶ  = g(𝑁ா 𝑡ℎଶ )                                              (17) 
 

HL2+ is equivalent to HL2 after updating the 
weight matrix between the second and third layers 
using Equation 17. The predicted outcomes for 
Layer 3 are shown in Equation 18. 

β୬ୣ୵ = Hଶ N ା                      (18) 
 

Hଷ = βା new                                        (19) 
 
The inverse of matrix βnew is represented as β+

new. 
The DELM assigns the matrix WHLE1 = [β2, W2], and 
Equations 11 and 12 allow the output of the third 
layer to be determined as shown in Equation 21. 

β୬ୣ୵ =  Hଶ + N                     (20) 
 
Hଷ = βା new                                        (21) 

 
DELM then sets the matrix WHE2 = [β3, W3]. The 
fourth layer output is made possible by Equations 11 
and 12. 

Hଶ = gିଵ (Hଶ  Wଶ ) = g (N thଶ )            (22) 
 

Wୌଵ = βିଵ (Hଶ) H୍ 
+                       (23) 

 
In equation (19), the hidden layer HL2 displays the 
intended result, and the hidden layer W2 represents 
the weight distribution between the second and 
third hidden layers. The logistic Sigmoid Function 
(LSF) was applied in Equation 24. The output of 
the third hidden layer is computed in Equation 25 
as follows: 

    g(x) = భ

భ శ షೣ 

 

Hଶ  = g (Wୌଵ Hଵ)      Where WHE1HE  = NE th 
(24) 

Hଶ  = g(N thଶ )                                      (25) 
Equation 26 calculates the weighted matrix for 
both the third hidden layer and the final layer. 

𝛽௪ = 𝐻ସ t  (
ଵ

ఒ
 + 𝐻ସ t  𝐻ସ ) -1  N  (26) 

 
𝐻ସ = N 𝛽ା new                            (27) 

 
The transposed matrix  βnew is represented as N βା 

new. Following this, the DELM constructs the 
matrix. WHE2 = [β,W3]. Equations (14) and (15) are 
then applied to compute the output for the fourth 
hidden layer. 

HL4 = g-1(𝐻ଷW3 + β3 )  = g(NE th4,1)           (28) 
 

WME2  =  𝛽ିଵ ( (𝐻ସ) M+ 
N2                                        (29) 

 
The sigmoidal logistic function is applied in 
equation 29, and the subsequent measurement of 
values for the 3rd and 4th hidden layers is as 
follows: 

H4 = g(Neth4,2)              (30) 

             
Equation (28) calculates the output matrix 
connecting the nth hidden layer to the layers that 
produce the final output and displays the nth layer's 
evaluated result. The needed output of the DELM 
framework is shown in equation (31). 

β୬ୣ୵ = H୬୲ 
t  (

ଵ


 + H୬୲୦ t  H୬୲୦ସ ) -1  N  (31) 

 
M୬୲୦ = N βା new     (32) 

     
f(x) = mnth β୬ୣ୵                (33) 

Following the DELM framework nth hidden layer 
computation process. You may recompute 
equations (32) and (33) to obtain the hidden-layer 
parameters. The outcome of the DELM-based 
network is then computed. When hidden layers are 
multiplied, the output of additional hidden layers is 
computed using Equation 34. 
 
op = భ

భ శ షొ౪ౠ
       where j = 1,2,3, ……, r  (34) 

 
4. OBTAINED RESULTS 

The "Heartbeat Sound" benchmark 
dataset available at Kaggle is used to train and 
assess the model. The instance was collected from 
the general public via the stethoscope (iPhone Pro 
application), having 176 instances, and from a 
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clinical trial in hospitals using the digital 
stethoscope having audio 656 files. In total, there 
are 832 instances in the dataset. The instances in 
the dataset are audio files which are 2 to 30 
seconds of real human heartbeat sound audio files 
in .wav format. 

The original dataset with 832 instances has six 
classes or labels i.e., ‘Normal’, ‘Artifact’, 
‘Extrastole’, ‘Extrahls’, ‘Murmur’, and 
‘unlabelled’ are real human heartbeat sound files. 
Only 575 labeled instances are considered for the 
training and testing of the model. Figure 9 represents 
the labeled instances w.r.t class distribution in the 
dataset in the form of a pie chart. 
 

 
 

Figure 9: Distribution of Classes in the Dataset with 
Five Classes MFCC 

The dataset is split into an 80 % training set with 
468 instances and a 20 % test set with 107 
instances using a random split. The training results 
are presented in Table I and Table II. 
 

Table I: Confusion Matrix Obtained From Training 
Results With Five Classes. 

 

Confusion Matrix 

Training Predicated values 
Arti- 
fact 

Mur- 
mur 

Extra-
hls 

Extras-
tole 

Normal 

 
Actual 
Values 

Artifact 30 1 0 0 1 

Extrahls 0 13 0 2 0 

Extrastole 0 0 37 0 0 

Murmur 0 2 0 99 2 

Normal 0 7 0 3 271 

 
Table Ii: Evaluation Matrix Of Training Results With 

Five Classes 
 

Class Accuracy Precision Recall F1-
Score 

Artifact 99.57 % 0.94 1.0 0.97 
Extrahls 97.44 % 0.87 0.57 0.68 

Extrastole 100 % 1.0 1.0 1.0 
Murmur 98.08 % 0.96 0.95 0.96 

Normal 97.22 % 0.96 0.99 0.98 

 

The test results are presented in Table III and 
Table IV. 

Table III: CONFUSION MATRIX BTAINED FROM 
TESTING RESULTS WITH FIVE CLASSES. 

 

Table IV: EVALUATION MATRIX OBTAINED OF 
TEST RESULTS WITH FIVE CLASSES 

 

Class Accuracy Precision Recall 
F1-
Score 

Artifact 96.58% 0.5 1 0.67 

Extrahl
s 

96.58% 1 0.5 0.67 

Extrast
ole 

91.45% 0.22 0.4 0.29 

Murmu
r 

78.63% 0.35 0.53 0.42 

Normal 71.79% 0.86 0.72 0.78 

 

 
Figure 10: Comparison between Average Training 

and Testing Results with Five Classes 

  

Confusion Matrix 

Testing Predicted Values 
Arti- 
fact 

Mur
-mur 

Extr-
ahls 

Extra
-stole 

Norm
al 

 
Actual 
Values 

Artifact 4 1 0 2 1 

Extrahls 0 4 0 0 0 

Extrastole 0 0 2 0 7 

Murmur 0 1 1 9 15 
Normal 0 2 2 6 60 
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The main reason to get high training results and 
low testing results is model overfitting. The 
original dataset is highly biased and imbalanced 
because it contains 60 % of instances belonging to 
the ‘Normal’ class only. To obtain maximum 
accuracy the dataset class aggregation is applied. 
Now the dataset contains three classes depicted in 
Figure 12. The training result with 3 labled classes 
are depicted in Table V and Table VI. The test 
results with 3 labled classes are illustrated in Table 
VII and Table VIII. 

 

Figure 11. Distribution of Classes in the Dataset with 
Three 

 Table V. Confusion Matrix Obtained From Training 
Results With Three Classes 

 
Table Vi. Evaluation Matrix Obtained From Training 

Results With Three Classes 
 

 
Table Vii.   Confusion Matrix Obtained From Test 

Results With Three Classes 

 
 

Table Viii. Evaluation Matrix Obtained From Test 
Results With Three Classes 

 
 

Class Accuracy Precision Recall F1-
Score 

Artifact 99.04 % 0.88 1.0 0.93 
Murmur 86.54 % 0.77 0.71 0.64 
Normal 87.50 % 0.90 0.86 0.88 

 
The training and test results are compared in 
Figure 12. 

 

Figure 12. Comparison between Average Training 
and Testing Results with 

 
5.  DISCUSSIONS 
 

Metrics such as accuracy, precision, 
recall, and F1- score play crucial roles in providing 
a comprehensive understanding of model 
performance. Accuracy measures the overall 
correctness of the model by calculating the ratio of   
correctly   predicted   instances   to   the   total 
instances. Precision assesses the proportion of true 
positive predictions among all positive predictions, 
indicating how well    the    model    avoids    false     
positives. Conversely, recall evaluates the model's 
ability to identify all relevant instances, focusing 
on the true positives among actual positives and 
highlighting the importance of minimizing false 
negatives. The F1-score serves as a harmonic mean 
of precision and recall, offering a single metric that 
balances both concerns, particularly useful in 
scenarios with imbalanced datasets. Together, 
these metrics provide a nuanced perspective on a 
model's strengths and weaknesses, guiding 
improvements and ensuring effective deployment 
in real-world applications. 

The ‘Heart-Sound’ dataset with 575 
labeled instances with 5 classes was considered for 
the training and testing of the model. The average 
training accuracy reached up to 98.46 % with 
precision 94.6 %, recall 90.2 %, and F1 Score 91.8 
% as illustrated in Table 1 and Table 2. The test 
results achieved by the proposed model trained with 
5 label classes were recorded as average test 
accuracy obtained up to 88.80% with precision of 
29.33 %, Recall 60.31 %, and F1 Score 56.66 % 

Confusion Matrix 

Training 
Predicted Values 

Artifact Murmur Normal 
 

Actual 
Values 

Artifact 31 1 0 
Murmur 0 103 0 
Normal 1 1 280 

Class Accuracy Precision Recall F1-
Score 

Artifact 99.52 % 0.97 0.97 0.97 
Murmur 99.52 % 1.0 0.98 0.99 
Normal 99.52 % 0.99 1.0 1.0 

Confusion Matrix 

Training 
Predicted Values 

Artifact Murmur Normal 

 
Actual 
Values 

Artifact 7 1 0 
Murmur 0 22 4 
Normal 0 7 63 
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shown in Table 3 and Table 4. The obtained results 
highlighted two keen observations. First, the 
training result is very high and the testing result i.e. 
88.8 % is slightly low as compared with training 
results i.e. 98.46 %. It was a clear indication of 
model overfitting. Secondly, the test results with 5 
classes also indicated that high accuracy with low 
precision, recall, and F1 score is a clear indication 
demonstrated by Figure 10 that the dataset is highly 
imbalanced as can be observed in Figure 9. This is 
a very common issue in all PCG-related datasets 
because some of the heart conditions are very rare 
and difficult to record because of very low 
frequency and pitch. 

To obtain a highly accurate and reliable 
PCG model the dataset is aggregated from 5 labeled 
classes to 3 labeled classes. The dataset instance 
distribution w.r.t label can be observed using 
Figure 11. The proposed model obtained 99.52 % 
accuracy with 98.66 % precision, 98.33 % recall, 
and 98.66 % F1-score illustrated in Table 5 and 
Table 6. The test results of the model reached up to 
92.30 % accuracy with 87.66 % precision, 89.01 % 
recall, and 88.0 % F1- score presented in Table 6 
and Table 7. The comparison between training and 
testing with average accuracy, precision, recall, 
and F1 score is demonstrated using Figure 12. The 
obtained training accuracy i.e. 99.52 % and test 
accuracy of 92.30 % depicts that now the proposed 
model for DELM-based PCG framework is not 
overfitted. Also, the other evaluation parameters 
like precision, recall, and F1 have achieved high 
results indicating that the model is not biased. The 
experimental results advocate the efficiency of the 
trained model with high accuracy, least overfitting, 
and high unbiased. The comparison between these 
improved results can be visualized using Figure 13. 

 

Figure 13: Average Test Results Comparison 
Obtained From Test Results With Five Classes And 

Three Classes 

The proposed model for DELM based 
PCG system is highly accurate and reliable as 
shown by the experimental outcomes. DELM is 
based on Extreme Learning Machines (ELM) and 
has many hidden layers, random weights, and 
biases. The efficiency of the proposed system is 
also very important to expect which hugely 
impacts its feasibility, applicability, and usability. 
The DELM-based model was trained using 
different hidden layers. With six hidden layers, the 
proposed DELM- based PCG framework’s model 
produced an optimal training accuracy of 98.6 % 
and a Test accuracy of 92.3 % with 1.31*10-3 and 
1.28*10-3 Root Mean Square Error (RMSE) 
respectively. With the introduction of a seventh 
and eighth hidden layer, only training results are 
improving. The accuracy of the model is primarily 
evaluated based on the test results, which do not 
improve with additional layers. Instead, 
introducing more hidden significantly increases 
the computational complexity of the proposed 
model. The performance of the proposed model 
based on hidden layers is illustrated in Table IX. 
Where HL stands for a number of hidden layers. 
‘Acc’ represents accuracy, MR stands for miss-
rate, and Time (training and testing) is mentioned 
in milli seconds. 

Table Ix. Performance Of Proposed Delm-Based Pcg System 
 Training Results Testing Results 

HL Acc % MR % Time RMSE Acc % MR % Time RMSE 
4 97.7 0.9 7.6 1.36*10-3 91.6 8.4 5.5 1.39*10-3 
5 98.2 0.8 8.9 1.33*10-3 92.1 7.9 5.9 1.36*10-3 
6 98.6 0.5 9.2 1.31*10-3 92.3 7.7 6.4 1.28*10-3 
7 98.7 0.3 11.6 1.29*10-3 92.3 7.6 8.1 1.27*10-3 
8 98.8 0.3 13.7 1.28*10-3 92.3 7.5 8.7 1.26*10-3 

The DELMs-based suggested framework achieved 
remarkable training results and testing results. The 
results of the effectiveness of the proposed MFCC 
& DELM-based PCG framework. The proposed 
framework is a reliable contribution to the field of 
ML-based PCG systems. 

 
6. FUTURE WORK 

In the future, the following improvements 
can be made to make the framework more effective 
and accurate. The integration of more precise 
audio sound recording, noise reduction, and 
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segmentation, techniques, etc. Multiple 
benchmark datasets can also be involved to train 
and evaluate the model performance. With more 
hardware resources the model could be trained on 
large datasets and different ML- based classifiers 
and learning architectures, such as convolutional 
neural networks, etc., can be used to build the 
model for more accuracy and reliability. Future 
studies could also address other important issues 
like environmental and natural factors. 

Compared to existing PCG frameworks, 
the proposed model exhibits superior performance 
in addressing dataset imbalance and mitigating 
model overfitting. Unlike BP-based neural 
networks, DELM significantly reduces training 
complexity while achieving higher test accuracies. 
A Plus-Minus-Interesting (PMI) as Table X 
analysis revealed that while DELM enhances 
generalization, its reliance on high-quality datasets 
poses limitations, which can be mitigated through 
further integration of advanced noise reduction 
techniques. 

 
Table X. Table X: PMI Analysis of the Novel 

MFCC-DELM Framework 

Aspect 
Strengths 

(Plus) 
Weaknesses 

(Minus) 
Interesting 

Observations 

Dataset 
Handling 

Mitigates 
imbalance 
through 
class 
aggregation 

Limited 
generalizabil
ity to unseen 
conditions 

Aggregation 
significantly 
improves 
recall 

Feature 
Extraction 

MFCC 
captures 
nuanced 
frequency 
features 
effectively 

Computation
ally 
expensive 
for larger 
datasets 

Enhances 
detection 
accuracy for 
anomalies 

Learning 
Algorithm 

DELM 
minimizes 
gradient 
issues and 
overfitting 

Requires 
precise 
tuning of 
parameters 

Achieves high 
accuracy in 
resource-
limited 
settings 

 
7. CONCLUSION 

The findings underscore the novelty of 
combining MFCC and DELM in addressing 
critical challenges such as dataset bias and model 
overfitting. This research provides a foundational 
framework for developing scalable and reliable 
ML-based PCG systems tailored for low-resource 
healthcare environments. In resource-intensive 
environments where a lack of cardio specialists, 
and state-of-the-art equipment is not accessible 
PCG is the only technique used to predict 
cardiovascular- related medical emergencies. 
Besides its usefulness, PCG faces some challenges 
as well. ML-based PCG systems could be a better 

solution for tackling these challenges but ML-based 
PCG systems have their limitations and strains as 
well. This study focuses on three main issues like 
unavailability of appropriate datasets, the 
vanishing and exploding of gradients, and 
inappropriate feature extraction techniques. This 
study presented a novel MFCC & DELM-based 
framework for PCG systems. This study argues 
MFCC as a suitable feature extraction technique, 
DELM as an FF learning algorithm, and dataset 
aggregation. The proposed framework remarkably 
achieved a training accuracy of 98.6 % and a Test 
accuracy of 92.3 % with 1.31*10-3 and 1.28*10-3 
RMSE respectively. This study contributes to the 
development of more accurate, reliable, and usable 
PCG systems for cardiovascular disease and 
emergency diagnosis. 
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