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ABSTRACT 
 

The prodromal phase of Alzheimer's disease (AD) is called mild cognitive impairment (MCI). Effective 
treatments depend on identifying MCI patients who have a high chance of transforming AD. This paper 
proposes a temporal magnetic resource imaging (MRI) slice feature analysis using transformers to predict the 
chance of AD.  The proposed Progress Transformer (ProgTransAD) model finds the relative changes in the 
MRI slices with the help of encoding the convolutional backbone feature maps and their corresponding cosine 
similarity. The proposed deep learning approach forecasts whether someone would develop Alzheimer's 
disease (AD) after receiving a diagnosis of MCI with three years of analysis. The performance of this unique 
deep learning network which can accurately diagnose AD progression is analyzed using the Alzheimer's 
Disease Neuroimaging Initiative (ADNI-1) dataset and this ProgTransAD achieves 94% accuracy one year 
ahead. 

Keywords: Alzheimer's disease, Mild Cognitive Impairment, Neuroimaging, Magnetic Resource Imaging, 
ProgTransAD 

 
1. INTRODUCTION  
 

In Alzheimer's disease (AD), which accounts for 
about 60% of dementia cases, symptoms such as 
disorientation, linguistic disorders, and progressive 
memory loss are common. The ailment would lead 
to the patient's death at some point [1]. This is a 
progressive disorder, therefore it will only become 
worse with time. In 1906, the first formal discovery 
of Alzheimer's disease was made by Dr. Alois 
Alzheimer when one of his patients died from a 
strange mental illness [2]. No established 
medications or treatments have been able to slow 
down or halt the progression of AD since there is 
currently no cure for the disease. From what we can 
tell from the studies [3-5], significant memory 
concern (SMC) could be a harbinger of AD and MCI. 
Early detection of Alzheimer's disease is strongly 
associated with the detection of mild cognitive 
impairment (MCI), a precursor stage of the disease. 
It has been shown that moderate cognitive 
impairment (MCI) greatly increases the risk of 

evolving into Alzheimer's disease (AD) or another 
form of dementia, even while the memory problems 
and complaints experienced by MCI patients do not 
substantially impact their daily lives. An accurate 
and timely diagnosis is crucial for patients with AD 
because it alerts them to the severity of their illness 
and allows them to take preventive measures, 
especially in cases where there is a risk of mild 
cognitive impairment progressing to Alzheimer's 
disease. Therefore, there is substantial therapeutic 
value in MCI's capacity to predict AD. 

The development of therapy regimens to slow the 
course of Alzheimer's disease depends on early 
illness detection. Between 10% and 15% of people 
with mild cognitive impairment progress to 
Alzheimer's disease annually, making it the 
transitional period between normal brain function 
and dementia [6-7]. Reports indicate that both mild 
cognitive impairment (MCI) and Alzheimer's disease 
(AD) are linked to brain grey matter loss. As a 
consequence, changes in neuropathology may be 
seen before an official diagnosis of AD [8]. 
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The use of neuroimaging biomarkers for disease 
phase classification or progression prediction from 
mild cognitive impairment to Alzheimer's disease 
has been explored in several previous studies [9-10]. 
Among the most popular imaging techniques, 
structural magnetic resonance imaging (MRI) stands 
out for its low cost, high resolution, and lack of 
invasiveness. The researchers in this study divided 
the MCI patients into two groups according to 
whether they had AD within three years or not. 
Patients with moderate cognitive impairment (MCI) 
who progress to Alzheimer's disease (AD) and those 
who do not have similar, but much milder, pathology 
changes. Consequently, the patient who progresses 
from mild cognitive impairment to Alzheimer's 
disease is much more difficult to identify. This MRI 
prediction is challenging because the pathological 
changes linked with AD development are delicate 
and vary across subjects, making it difficult to 
distinguish between individuals who progress from 
mild cognitive impairment (MCI) to Alzheimer's 
disease (AD) and those who do not. Performance 
was improved by removing the impact of aging, 
which is associated with a decline in prediction 
accuracy due to the normal shrinking of the brain. 

Using machine learning approaches, automatic 
predictions of MCI to AD conversion are effectively 
implemented [11]. Contemporary complicated 
image analysis procedures generate vast amounts of 
data. Image processing techniques provide tools for 
making sense of imaging data. The rapid 
development of deep learning has allowed it to 
surpass more traditional machine learning methods 
in some domains, including computer vision and 
medical image analysis, two areas where it has 
achieved remarkable progress. Hence, this 
technology may be used for research and 
applications by everyone, including those without a 
medical background, especially in medical image 
processing. In several visual activities, including 
those requiring medical analysis, the vision 
transformer mechanism has recently shown superior 
performance compared to other mechanisms. 

In this work,  

• A novel model is developed to analyze MRI 
slices of individuals with mild cognitive 
impairment in later years to determine the 
likelihood of Alzheimer's disease.    

• A transformer is used to process features from 
two layers of the Deep CNN model for the 
temporal slices, and their progress is 
measured using the similarity measure 
approach.   

• By using dense characteristics and a 
transformer-based temporal slice analysis, the 
likelihood of AD from MCI may be 
efficiently determined. 

2. RELATED WORKS  
 

Since it was shown to be a slowly progressing 
illness, many researchers have taken an interest in 
AD. It is essential to regularly monitor AD to grasp 
the illness's progression and correctly capture 
predictive variability. For this reason, researchers 
started to think about longitudinal data instead of 
one-time-point data when trying to predict when 
MCI would turn into AD. Machine learning methods 
work well when used to forecast when mild cognitive 
impairment would progress to Alzheimer's disease. 
There are a few studies that attempt to categorize 
people with MCI who are at a higher risk of 
developing AD in this body of research. 

The research was carried out to assess the 
feasibility of using principal magnetic resonance 
imaging (MRI), biomarker candidates, cerebrospinal 
fluid (CSF), and neuropsychological tests to predict 
which patients would move from mild cognitive 
impairment (MCI) to amyotrophic lateral sclerosis 
(AD), as reported by Ewers et al. [12]. The detection 
of MCI-to-AD transmission is studied by Ritter et al. 
[13] using huge multimodal data with different 
degrees of missing values. They expected AD to 
evolve within three years, encompassing all 
available modalities, based on data from MCI 
patients in the ADNI. Different categorization 
algorithms and approaches to missing data filling are 
compared. To evaluate performance, both manually 
selected and expert-prioritized attributes were used. 

Cognitive performance, cognitive reserve on 
neuropsychological tests, APOE genotype, 
hippocampal sizes, and MEG 
(magnetoencephalography) power sources were 
examined by López et al. [14] to detect the onset of 
AD in a cohort of 33 individuals with mild cognitive 
impairment (MCI). Two groups of MCI patients 
were followed for two years based on the results: 
those with stable MCI (sMCI, 21 participants) and 
those with progressing MCI (pMCI, 12 people). A 
model for predicting AD conversion was developed 
using hierarchical logistic regression analysis of 
baseline multifactorial data. 

Using magnetic resonance imaging (MRI) and 
fludeoxyglucose (FDG) PET, Ding et al. [15] 
developed a model to detect the progression of mild 
cognitive impairment (MCI) to amyotrophic lateral 
sclerosis (AD). Laplace eigenmaps were taught to 
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patients with Alzheimer's disease, healthy controls, 
and mild cognitive impairment. To forecast the MCI 
prognosis based on eigenmaps, a support vector 
machine was used. In addition, the prediction looked 
at how easy it was to combine different types of data. 

Minutes et al. [16] developed a machine learning 
method to detect the progression from mild cognitive 
impairment (MCI) to amyotrophic lateral sclerosis 
(AD) over a span of two to three years. Unidentified 
longitudinal biomarker values may be found by first 
transforming the baseline and first follow-up 
measurements of a sample of multimodal biomarkers 
into autoregressive parameters trained on 
longitudinal data. One of the three suggested 
methods is used to compute the linear prediction 
coefficients, which may be used with a single 
predictor or with many predictions. Predictions of 
future clinical changes may be improved by 
combining many variables with an SVM classifier. 

As a means of accurately predicting when mild 
cognitive impairment may progress to Alzheimer's 
disease, Lin et al. [17] developed a CNN-based deep 
learning method. Age correction and other 
modifications are applied to MRI images as a first 
step in processing. The second step is to combine the 
local patches seen in these photos to generate 2.5 
dimensions. Next, the convolutional neural network 
(CNN) is taught to identify the deep learning features 
of MCI patients by using NC and AD patches. Then, 
CNN is trained by mining structural brain image 
properties using FreeSurfer. The last step is to feed 
both types of data into an extreme learning machine 
classifier to predict the AD conversion.  

By combining medical assessments, 
neuroimaging data, and cerebrospinal fluid (CSF) 
biomarkers, Huang et al. [18] offered a personalized 
MCI-to-AD transition prediction using a Multi-
predictor Nomogram. To generate the Radiomics 
signature (Rad-sig), the Least Absolute Shrinkage 
and Selection Operator (LASSO) method was used 
to identify seventeen cerebral cortex features. 
Between the transformed and non-transformed 
subjects, clinical parameters and amyloid-beta 
peptide (A) concentrations were selected using 
Spearman correlation. Building and testing a 
nomogram with image properties, a clinical 
component, and an A concentration was the next 
stage. 

To detect the transition from mild cognitive 
impairment (MCI) to Alzheimer's disease (AD) 
within three years, Li et al. [19] proposed a 
subtyping-based prediction method using subgroups 
of MCI patients. To determine whether a patient with 

mild cognitive impairment (MCI) would develop 
Alzheimer's disease (AD) within three years, 
researchers developed a method based on multiple 
kernel learning, variational Bayes approximation. 

Minhas et al. [20] proposed a decision-support 
method to identify patients who may show signs of 
progressing from mild cognitive impairment to 
Alzheimer's disease. We monitor the continuous 
trajectories of valid predictors in the MCI population 
that are generated from multivariate MRI biomarkers 
and cognitive assessments. Assuming piecewise 
linear illness development, this study established a 
novel method based on weighted gradient offset that 
allows for the prediction of the future indicator rate 
using data from at least two prior follow-up 
examinations. An SVM classifier is required to 
identify all of the prediction trajectories before they 
can be used as features for MCI-to-AD progressors. 

Rye et al. [21] created a model to identify basic 
neurodegenerative processes early on, allowing for 
treatment to begin before the disease might spread 
across the brain. Using continuous data from the 
ADNI dataset, this research examined the course of 
AD in a group of patients identified with mild 
cognitive impairment at the standard assessment. 
There was a group that remained constant throughout 
time (sMCI, n = 357) and another group that 
transitioned to AD (cAD, n = 321). We used a 
Random Forest (RF) classifier that took into account 
parameters such as Hippocampus volume, cognitive 
function, and genetic APOE status, in addition to a 
model that relied on ensembles formed by combining 
five separate methods. After comparing the results of 
the two models, the RF approach was used to 
determine the significance of the features. 

Early Alzheimer's disease diagnosis may be very 
accurate even with small sample numbers; a two-
stage strategy integrating contrastive and transfer 
learning was proposed by Lu et al. [22]. To be more 
precise, the 3D convolutional neural network (CNN) 
approach was pre-trained using publically available 
medical picture data to grasp basic medical features 
to understand more detailed components of magnetic 
resonance imaging (MRI) images. Then, contrastive 
learning was used. All of the conventional methods 
were outperformed by the two-step method. 

To detect aberrant brain activity linked to different 
stages of Alzheimer's disease (AD), Jiao et al. [23] 
used electroencephalograms (EEGs). To fully 
comprehend EEG's usefulness in the precise 
diagnosis and assessment of AD and its precursor, 
moderate cognitive impairment (MCI), further study 
is required. This work is necessary for the discovery 
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of significant EEG biomarkers to distinguish 
between persons with early-stage AD and to monitor 
the progression of the illness. A three-tiered 
classification of HC, MCI, and AD was developed 
using biomarkers derived from resting-state EEG 
recordings. The classification findings of Random 
Forest Regression were then used to discover the 
optimal EEG biomarkers. 

Neural networks have recently been the focus of a 
plethora of studies aimed at improving the diagnosis 
of mild cognitive impairment and Alzheimer's 
disease. 

Basaia et al. [24] developed and validated a deep 
learning approach for predicting the probability of 
AD and MCI that might progress to AD (c-MCI) 
using a structural MRI scan of the brain. 
Convolutional neural networks (CNNs) were used to 
3D T1-weighted images from ADNI and their 
institute's participants (418 AD, 407 HC, 533 s-MCI, 
and 280 c-MCI). This study tested CNN's capacity to 
distinguish between s-MCI, c-MCI, and AD. 

Lin et al. [25] developed a system that uses 
extreme learning machine grading to aggregate 
multimodal data and predict when MCI will progress 
to AD. First, LASSO was used to select only relevant 
MRI features from the obtained magnetic resonance 
imaging (MRI) pictures. Secondly, all imaging 
modalities employed on MCI patients, including 
positron emission tomography, magnetic resonance 
imaging (MRI), gene data, and biomarkers found in 
cerebrospinal fluid, were evaluated using the ELM 
approach. The classifier was finally Over the course 
of 1–5 years, these grading scores were obtained 
from many modalities to differentiate between 
subjects with stable MCI and those with advancing 
MCI. 

For 150 patients with stable mild cognitive 
impairment (sMCI), 150 healthy controls (NC), and 
157 patients with transformed mild cognitive 
impairment (cMCI), Wu et al. [26] provided the first 
magnetic resonance imaging (MR) scans and three-
year follow-up data. Deep convolutional neural 
networks were used to predict the time it would take 
for mild cognitive impairment (MCI) to progress to 
Alzheimer's disease (AD) and to differentiate 
between the stages of MCI in the normal control 
(NC) group. They used five-fold cross-validation 
and transfer learning from fine-tuned ImageNet to 
assess conversion risk and evaluate the performance 
of two convolutional neural network (CNN) 
schemes, GoogleNet and CaffeNet, in different 
classifications. 

Wegmayr et al. [27] used deep learning algorithms 
to detect the transition from mild cognitive 
impairment (MCI) to Alzheimer's disease (AD) 
during a 48-month follow-up. A state-of-the-art 
approach that divides the conversion prediction 
process into discriminative and generative phases. 
From a baseline image, they create a synthetically 
aged brain picture using the newly created 
Wasserstein-GAN model. To predict the future 
sickness state, an MCI/AD discriminator is fed the 
aged image. 

Using demographic data and cerebrospinal fluid 
biomarkers in addition to baseline cross-sectional 
neuroimaging data and longitudinal cognitive 
presentation, Lee et al. [28] proposed a multi-modal 
deep learning approach to investigate the prediction 
of MCI to AD conversion. Several GRUs were 
applied to the longitudinal multi-domain data as well 
as data from all subjects with every modality. 

To differentiate between individuals with pre-
symptomatic AD and other moderate cognitive 
impairment (MCI) patients, Shen et al. [29] 
developed a new architecture for deep belief 
networks (DBNs). Photos captured by 109 subjects 
utilizing 18F-fluorodeoxyglucose-PET as part of the 
continuing longitudinal AD investigation. The 
patients were categorized into two groups: those with 
stable cognitive impairment and those with 
progressive mild cognitive impairment. Picture 
preprocessing, normalization, and smoothing; 
region-of-interest identification; feature learning 
using deep neural networks; and classification with 
support vector machines with three kernels are the 
four operations that comprise the suggested 
framework. To foretell when mild cognitive 
impairment (MCI) would progress to Alzheimer's 
disease (AD) three years after diagnosis, Ocasio et 
al. [30] developed a novel deep-learning approach. 
The longitudinal data set includes T1-weighted 3D 
MRI images from both the first scan, which included 
an examination of MCI, and the follow-up scan, 
which was taken one year later. To detect the 
transition of mild cognitive impairment (MCI) 
patients to Alzheimer's disease (AD) three years after 
diagnosis, a deep learning classification system was 
developed using MRIs from the AD and NC cohorts. 
This approach could then be used in transfer 
learning. Two methods of transferring knowledge 
were evaluated. 

A computer-aided approach for differentiating 
Alzheimer's disease (AD) from cognitively normal 
and moderate cognitive impairment (MCI), its early 
phase, was devised by Lim et al. [31] using just 
structural magnetic resonance imaging (sMRI). 
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Axial brain images obtained from 3D MRI were fed 
into CNN for multiclass categorization. A 
convolutional neural network (CNN) built from 
scratch, VGG16, and ResNet-50 were also 
considered. To extract features, two convolutional 
neural network (CNN) models, ResNet-50 and 
VGG-16, were used. The classification was 
accomplished by developing a new densely 
connected classifier. 

Using a cascaded DNN (Deep neural network) 
architecture, Akhtar et al. [32] were able to predict 
which individuals with MCI will progress to AD in 
the next year. To forecast the future value of each 
biomarker using two previous follow-up 
measurements, a DNN regression approach is trained 
and calibrated after sorting and normalizing 
longitudinal data. Next, a second DNN classifier 
approach is used with the three time-domain window 
data to identify MCI progressors (MCIp) and MCI 
stables (MCIs). 

Using machine learning and deep learning 
networks, many automated methods have been 
shown for predicting the progression of mild 
cognitive impairment to Alzheimer's disease.  
Although there are approved approaches in the 
literature, none of them have shown sufficient 
performance. Therefore, a reliable model that can 
improve forecast accuracy is still required. To that 
end, this research suggests a deep learning model 

that incorporates an attention mechanism to enhance 
the precision of predictions. 

3. PROPOSED PROGRESS 
TRANSFORMER MODEL  
 

The architecture of the proposed work is depicted 
in Figure 1. The proposed deep learning network 
with a transformer mechanism used in an automated 
way to forecast the development of mild cognitive 
impairment to Alzheimer's disease visibly increases 
the prediction accuracy. Two periods of MRI 
screening data were delivered into two separate Deep 
CNN layers and each Deep CNN has three different 
convolution sizes in our proposed technique. 
Following the Deep CNN layer, two vision 
transformers were employed for convolution in two 
different levels of feature maps. This model utilized 
a cosine similarity measure to anticipate how similar 
the data from the diagnosis of MCI and its regular 
monitoring data with a minimum of 2 to 3 years. 
After concatenating cosine similarity along with the 
dense features from the transformer block, a Fully 
Connected Layer was employed to classify the 
targeted data. The classification is described as 0 for 
still in the mild stage, which suggests no progress, 
and 1 for Alzheimer's disease progress. The 
following sections explain the modules used in the 
ProgTransAD. 

 
Figure 1: The architecture of the proposed ProgTransAD 

3.1 Deep CNN 
 

The majority of the calculation is done in the 
convolution layer, which is the base layer of a 
ConvNet. It is a configuration of feature maps that 
includes neurons. The layer's parameters are a 
collection of adaptable kernels or filters. The 

aforementioned filters are convolved with feature 
maps to generate a distinct 2-dimensional activation 
map. To construct the resultant volume, this map is 
subsequently stacked over the depth dimension. The 
complicated nature of the network is decreased by 
minimizing the number of parameters by allowing 
neurons in the same feature map to share parameters. 
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For each of the two Deep CNN layers in our 
proposed work, we used three 3D convolution layers 
with a filter size of 3 x 3 x 6 followed by max-
pooling with the size 2 x 2. The first convolution uses 
64 filters, the second with 128 feature maps, and the 
third uses 256 filters to produce feature maps. The 
transformer block receives the output of convolution 
layers with filter sizes 256, and 128 from both the 
two different period MRI slices. 

3.2 Vision Transformer 
 

When employed for machine translation, 
transformers [33] achieve remarkable performance 
by completely replacing recurrence and convolutions 
with self-attention methods [34-39]. Transformers 
eventually overtake other models as the model of 
choice for a variety of natural language processing 
(NLP) tasks. Recent studies attempted to duplicate 
the performance of CNNs on NLP tasks by 
incorporating the self-attention mechanism into 
computer vision challenges. These successes raise 
community interest in developing models for vision 
tasks that are solely transformer-based, devoid of 
convolutions and inductive bias. Images must first be 
separated into patches before every one of them is 
subjected to the calculation to use Transformers and 
other approaches successfully. Vision Transformer 
(ViT) uses the Transformer Encoder to extract 
features in classification problems. We used the 
Vision transformer (ViT) design to compete with 
CNNs on image classification. In our proposed work, 
the transformer outcome of the convolution layer 
with filter size 256 from both Deep CNN layers is 
sent into the Cosine similarity layer. Similar to this, 
the result of the convolution layer with filter size 128 
also from both Deep CNN layers is sent into another 
Cosine similarity layer. 

The architecture of the Vision Transformer is 
shown in Figure 2. The excellent-quality input image 
is translated into a not high-quality feature map using 
a set of transformer blocks comprising self-attention 
and feed-forward layers for feature encoding, a linear 
layer for classification score estimation, and a linear 
layer for patch embedding. A feed-forward Multi-
Layer Perceptron (MLP) and a multi-head self-
attention (MHSA) layer make up each transformer 
block. The attention transforms the input linearly to 
produce a trainable association memory that outputs 
a query (Qu) and two key-value pairs (L, W). The 
output of attention is determined mathematically by, 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑢, 𝐿, 𝑊) 

=  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑢𝐿்/√𝑑)𝑉 
(1) 

Where √𝑑 Is a scaling factor determined by the 
network's depth. The MLP then creates the input for 
the following block using the normalized output of 
the MHSA. In the self-attention example above, Qu 
and L are multiplied to create the attention map, that 
illustrates the correlation among each layer's tokens. 
To integrate the embeddings in the value V, it is used 
to retrieve them. 

 

Figure 2: The architecture of the original ViT with N 
transformer blocks 

3.3 Cosine Similarity 
 

The cosine similarity metric is used to assess how 
similar two vectors are. More specifically, it 
evaluates the similarity in the vectors' direction or 
orientation and disregards variances in the 
magnitude or scale of the vectors. Each vector must 
be a member of the same inner product space to 
multiply them to produce a scalar. To assess how 
comparable two vectors are, use the cosine of the 
angle between them. Equations of the Cosine 
similarity are expressed as, 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶, 𝐷)  =  𝑐𝑜𝑠(𝜃)  =
.

|||| ||||
  (2) 

Here, θ is the angle among vectors. 𝐶. 𝐷  is the dot 
product between C and D. ||𝐶|| represents the L2 
norm or magnitude of the vector. 

4. RESULTS AND DISCUSSION 
 
4.1 Dataset Description 
 

The Alzheimer's Disease Neuroimaging Initiative 
(ADNI) database provided the information 
employed in this work. The goal of the large-scale, 
multisite ADNI [47] investigation is to examine how 
well cognitive assessments, blood tests, CSF tests, 
and MRI/PET imaging can characterize the course of 
Alzheimer's disease. The work of numerous co-
investigators from a variety of academic institutions 
and corporate businesses has resulted in ADNI. The 
search for subjects involved more than fifty places 
across the United States and Canada. In this 
investigation, ADNI data were retrieved in January 
2019. We focus on the subset of ADNI-1 MCI 
participants who have more than 3 available monitor 
measurements in a row. The people with MCI who 
later develop AD are known as MCI progressors 
(MCIp), whereas the subjects with MCI who 
maintain their MCI diagnosis throughout their lives 
are called MCI stables (MCIs). Subjects with values 
that are absent at the designated monitor points are 
not considered. Similar to the previous example, the 
dataset for the 1-year forward estimation has 3 
consecutive yearly values, yielding 35 MCIp and 50 
MCIs participants. Table 1 lists the subject's baseline 
demographic data. 

Table 1: Subject demographic information. 

  
MCIp 

(n = 35) 
MCIs 

(n = 50) 

1 year Age 73.5 ± 7.2 74.8 ± 7.3 

 Gender (M/F) 002/15 29/21 

 Education 16.0 ± 2.7 15.8 ± 2.7 

 

4.2 Evaluation Metrics 
 

The four ways to the earlier MCI-to-AD 
Conversion forecast such as Accuracy (ACC), 
Sensitivity (SEN), Specificity (SPE), and Area 
Under the curve (AUC) have been discussed. Below 
are the formulas employed for evaluation metrics, 

𝐴𝐶𝐶 =  (𝑇𝑃 +  𝑇𝑁)/ (𝑇𝑃 +  𝑇𝑁 +
 𝐹𝑃 +  𝐹𝑁)  

(3) 

𝑆𝐸𝑁 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)  (4) 

𝑆𝑃𝐸 =  𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃) (5) 

In classification, a False Positive (FP) error 
happens when while result of the test inaccurately 
shows the existence of a situation, such as progress 
to AD, but still, it is under the Mild stage. A False 
Negative (FN) error occurs when a result of the test 
falsely detects the absence of a condition, like AD 
when the condition happens. True Positives (TP) 
occur when the test predicts a positive outcome as a 
chance of AD and the subject receives that outcome. 
True Negatives occur when the test indicates that the 
subject does not have the condition of AD and is the 
same (TN).   The ROC curve examines how well a 
classifier can differentiate among classes. The model 
performs more effectively in differentiating the 
positive and negative groups which archives a higher 
the AUC. 

Table 2 displays a comparison of methods for the 
pMCI vs. sMCI classification job using the ADNI 
dataset. For current studies with classification rates 
that are competitive with cutting-edge techniques, 
we give a performance comparison table. The 
Methods column in Table 2 contains both the feature 
selection method(s) and the classification method. It 
demonstrates that the proposed ProgTransAD work 
achieves 0.95 AUC, 94% accuracy, 100% 
sensitivity, and 90% specificity which is higher than 
all the prior methods for 1 year conversion time.

Table 2: A comparison of methods for the ADNI dataset's classification job utilizing pMCI and sMCI. 
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Misra [40] MRI images 0.77 - - - LOO 
Statistical analysis 
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Davatzikos 
[41] 

MRI images 0.734 - - - 5-fold 
Statistical analysis 
and pattern 
classification 

Spasov et al 
[48] 

structural MRI, 
cognitive 
measures, APOe4, 
demographics 

0.925 86% 87.50% 85% 10-fold 
Convolution 
Neural 
Network 

Hojjati and 
Ebrahimzad
eh et al [49] 

rs-fMRI 0.95 91.40% 83.24% 90.10% 9-fold 
Graph measures and 
SVM 

Moradi and 
Pepe et al 
[10] 

structural MRI, 
cognitive 
measures 

0.9 82% 87% 74% 10-fold LASSO and SVM 

Liu and 
Chen et al 
[50] 

structural MRI, 
FDGPET, 
cognitive 
measures, APOe4, 
demographics 

0.92 84.60% 86.50% 82.40% holdout ICA and Cox model 

Arco [44] MRI, NM 0.7923 - - - LOO 
Linear Discriminant 
Analysis (LDA) 

Guo [45] MRI 0.9231 - - - LOO 

multi-
morphological 
similarity network 
and SVM 

Platero [46] MRI, NM 0.855 - - - 10-fold ELM-based grading 

Korolev and 
Symonds et 
al [51] 

Structural MRI, 
clinical data, 
plasma-proteomic 
data, medications 

0.87 80% 83% 76% 10-fold 
Joint Mutual 
Information and 
Kernel Learning 

Beheshti 
and Demirel 
et al [11] 

structural MRI 0.758 75% 77% 73% 10-fold 
Morphometry and t-
test and SVM 

Hinrichs 
[42] 

MRI images 0.79 - - - LOO 
Multi-Kernel 
Learning and SVM 

Zhang [43] MRI images 0.768 - - - 10-fold 
Regression and 
Multi-kernel SVM 

Choi and 
Jin et al [52] 

fluorodeoxygluco
se and florbetapir 
PET 

0.89 84.20% 81% 87% holdout 
Convolution Neural  
Network 

Tong and 
Gao et al [9] 

structural MRI, 
cognitive 
measures 

0.92 84% 88.70% 76.50% 10-fold 
Elastic Net and 
SVM 

Lu and 
Popuri et al 
[53] 

FDG-PET - 82.50% 81.40% 83% 10-fold NN 

Sidra 
Minhas [54] 

MRI, NM 0.957 81% 85.70% 70% 5-fold 
Aggregate 
biomarker 

ProgTrans 
AD 

MRI, NM 0.95 94% 93.68% 90% 5-fold 
Transformer and 
3DCNN 
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Figure 3: AUC comparison of all the methods with the proposed ProgTransAD method 

 

 

Figure 4: Accuracy comparison of all the methods with the proposed ProgTransAD method 
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Figure 5: Sensitivity comparison of all the methods with the proposed ProgTransAD method 

 

 

Figure 6: Specificity comparison of all the methods with the proposed method 
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7.18% higher sensitivity than Liu et al. [50], 10.68% 
higher sensitivity than Korolev et al. [51], 16.68% 
higher sensitivity than Beheshti et al. [11], 12.68% 
higher sensitivity than Choi et al., [52], 4.98% higher 
sensitivity than Tong et al., [9], 12.28% higher 
sensitivity than Lu et al. [53], and 7.98% higher 
sensitivity than Sidra Minhas [47]. 

From the above figure 6, it is clearly shown that 
our proposed ProgTransAD method achieves 5% 
higher specificity than Spasov et al. [48],-5% lesser 
specificity than Hojjati et al. [49], 16% higher 
specificity than Moradi et al. [10], 7.6% higher 
specificity han Liu et al. [50], 14% higher specificity 
than Korolev et al. [51], 17% higher specificity than 
Beheshti et al. [11], 3% higher specificity than Choi 
et al., [52], 13.5% higher specificity than Tong et al., 
[9], 7% higher specificity than Lu et al. [53], and 
20% higher specificity than Sidra Minhas [47]. 

4.3 Open Research Issues and Limitations 
 

Despite the advancements made with the Progress 
Transformer model for predicting Alzheimer's 
disease (AD) progression, several open research 
issues and limitations persist. One major challenge is 
the quality and availability of longitudinal patient 
data. For the model to perform optimally, large 
datasets covering a wide variety of patients with 
diverse demographics are required, but such data are 
often scarce and difficult to obtain due to privacy 
concerns and data fragmentation across institutions. 
Furthermore, the generalizability of the model 
remains a concern. While the Progress Transformer 
performs well on the datasets used, its ability to 
generalize across diverse populations and clinical 
settings is still unproven. 

Additionally, the model's reliance on complex 
architectures and computational resources could 
limit its scalability in real-world applications. 
Although the model outperforms traditional 
methods, the high computational cost of training and 
inference may be a barrier to its widespread clinical 
adoption, particularly in resource-constrained 
settings. 

4.4 Critique of Literature 
 

Previous works on AD prediction primarily used 
machine learning techniques like SVM and CNNs, 
focusing on static patient data. While these 
approaches have shown promise, they fail to capture 
the temporal nature of cognitive decline, which is 
crucial in predicting disease progression. The 
integration of attention mechanisms in the Progress 
Transformer provides a significant improvement by 

modeling dynamic patient trajectories, addressing a 
key limitation in earlier works. In conclusion, the 
Progress Transformer presents a significant 
advancement in Alzheimer's disease prediction, 
offering a more accurate, dynamic approach 
compared to previous models. However, addressing 
data availability, model generalizability, and 
computational efficiency will be key to its future 
impact in clinical settings and research. 

4.5 Application of Progress Transformer in 
Alzheimer's Disease Prediction 

 
The Progress Transformer model has significant 

potential in the early detection and personalized 
treatment of Alzheimer's disease (AD), particularly 
in identifying individuals at risk of progressing from 
Mild Cognitive Impairment (MCI) to AD. By 
leveraging longitudinal patient data, including 
clinical assessments, neuroimaging, and biomarkers, 
this model can track the cognitive decline trajectory 
over time. Its attention mechanism enables it to focus 
on critical changes in patient data, enhancing the 
model's ability to predict the likelihood of AD onset 
with greater accuracy compared to traditional 
methods. 

One potential application of this work is in clinical 
settings, where it could be used to assist healthcare 
professionals in identifying at-risk patients early and 
facilitating timely interventions and personalized 
care plans. The model can support decision-making 
processes by highlighting high-risk individuals and 
monitoring disease progression, helping to optimize 
treatment strategies, such as drug therapy or 
cognitive rehabilitation. Additionally, it could be 
integrated into health monitoring systems, enabling 
continuous evaluation of MCI patients and offering 
real-time updates on their risk status. 

Furthermore, the model could play a role in 
clinical trials, aiding in patient selection by 
identifying those with the highest probability of 
progressing to AD, and ensuring that interventions 
are targeted to the right patient groups. This could 
significantly enhance the efficiency and 
effectiveness of clinical research on AD therapies. 

4.6 Differences from Prior Work 
 

Previous works on Alzheimer's disease (AD) 
probability prediction have primarily focused on 
conventional machine learning techniques like 
SVMs, decision trees, or traditional deep learning 
models like CNNs, often relying on structured 
clinical data and imaging features. These studies 
have demonstrated moderate success in identifying 
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AD at early stages, particularly in detecting 
transitions from Mild Cognitive Impairment (MCI) 
to AD. However, they tend to face limitations in 
capturing temporal dependencies and complex 
relationships across sequential patient data. 

In contrast, the work presented here introduces the 
Progress Transformer, a novel approach that 
leverages attention mechanisms to model the 
progression of MCI to AD over time. The 
Transformer model efficiently handles longitudinal 
data, which is crucial in understanding the evolving 
nature of cognitive decline. By incorporating time-
series features and personalized patient trajectories, 
our approach offers a more nuanced prediction of 
AD likelihood, improving both accuracy and 
interpretability. 

4.7 Motivation and Novelty 
 

The primary motivation behind this work is to 
address the gap in existing methods by integrating 
attention-based models that can capture both spatial 
and temporal patterns in patient data. Unlike 
previous studies, this work emphasizes predictive 
accuracy through dynamic modeling of disease 
progression. The findings show a significant 
improvement in AD probability prediction, making 
the Progress Transformer a promising tool for early 
diagnosis and personalized treatment strategies, 
offering the potential for broader clinical 
applicability. 

5. CONCLUSION  
 

While some varieties of moderate cognitive 
impairment (MCI) seem to stabilize over time and do 
not develop into Alzheimer's disease (AD), various 
MCI types are likely to be the clinical antecedents of 
AD. To discover and select effective and 
individualized treatments to prevent or slow the 
progression of AD, we must develop objective 
metrics that can distinguish MCI patients who have 
a higher danger of developing AD from those MCI 
patients who have less probability of acquiring AD. 
In our proposed work, we introduced a unique deep 
learning network with an attention mechanism to 
forecast the development of Alzheimer's disease 
(AD) three years after the diagnosis with whole-
brain MRI. We used the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database for this 
research. Our model has a greater level of precision 
and produces excellent classification results (AUC: 
95%) for conversion prediction one year out. The 
outcomes for the 1-year-ahead AD diagnosis include 
ACC: 94%, SEN: 100%, and SPE: 90%, which are 
more consistent results. 

The research on the Progress Transformer for 
Alzheimer's Disease Probability Finder successfully 
addresses several key issues posed in the 
introduction, particularly the need for more accurate 
and dynamic models to predict the progression from 
Mild Cognitive Impairment (MCI) to Alzheimer's 
disease (AD). By leveraging the attention 
mechanism inherent in the Transformer model, this 
work overcomes the limitations of traditional 
methods, which struggle to model the temporal 
evolution of cognitive decline. The ability of the 
Progress Transformer to handle longitudinal patient 
data improves the prediction accuracy significantly, 
ensuring that the model is better suited for clinical 
applications that require continuous monitoring and 
early intervention. 

The main research question regarding the 
potential of attention-based models to enhance 
disease prediction has been answered affirmatively, 
with the Progress Transformer demonstrating 
superior performance compared to traditional 
machine learning methods. Moreover, the model’s 
integration of dynamic, personalized trajectories in 
its decision-making process represents a significant 
advancement in personalized medicine for AD. 

While the research offers promising results, future 
work must focus on improving data availability, 
model generalizability, and computational 
efficiency. These areas are essential for ensuring that 
the Progress Transformer can be widely adopted in 
clinical settings. Ultimately, this research contributes 
to the ongoing quest to develop more reliable, 
scalable, and efficient tools for early AD detection 
and intervention. 
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