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ABSTRACT 
 

Wireless Body Area Networks (WBANs) play a crucial role in healthcare applications by enabling 
continuous and non-invasive monitoring of patients' vital signs and health data through wearable devices. 
These networks transmit real-time data from wearable sensors to a central monitoring system, enabling 
remote patient monitoring and timely medical intervention. Routing in WBANs is a critical aspect as it 
involves the selection of optimal paths for data transmission among various wearable devices and the 
central node. Traditional routing protocols face challenges in WBANs due to the characteristics of the 
human body, such as dynamic channel conditions, varying distances between devices, and energy 
constraints of wearable devices. Conventional routing protocols may not efficiently handle these issues, 
leading to suboptimal performance, increased energy consumption, and limited network lifetime. The 
proposed work, Unprecedented Harmony Search Optimization-Based LEACH Routing Protocol (UHSO-
LRP), aims to address the issues faced in routing within WBANs. It introduces a hybrid approach that 
combines the Harmony Search Optimization (HSO) algorithm with the Low-Energy Adaptive Clustering 
Hierarchy (LEACH) routing protocol. The working mechanism of UHSO-LRP involves the utilization of 
the HSO algorithm to optimize the selection of cluster heads and the routing of data packets. The HSO 
algorithm introduces self-optimizing capabilities, allowing the network to dynamically adjust its 
configuration to changing conditions. UHSO-LRP effectively manages energy consumption and prolongs 
the network lifetime by optimizing the cluster head selection and data routing. Simulations are conducted to 
evaluate the performance of UHSO-LRP compared to conventional routing protocols. The simulations 
analyze key performance metrics, such as network lifetime, energy efficiency, packet delivery ratio, and 
latency. The results demonstrate that UHSO-LRP outperforms traditional routing protocols, showcasing 
significant network stability and energy utilization improvements. 

Keywords: Wireless Body Area Networks (WBANs), Routing Protocol, Harmony Search Optimization 
(HSO), Low Energy Adaptive Clustering Hierarchy (LEACH), Wireless Sensor Networks 
(WSN), Healthcare Monitoring 

 
1. INTRODUCTION 
 

Wireless Body Area Networks (WBANs) are 
recognized as a specialized form of Wireless Sensor 
Networks (WSNs) specifically designed to cater to 
healthcare applications [1]. WBANs utilize 
miniature, battery-powered devices on or inside the 
human body to monitor vital signs and facilitate 
timely medical interventions. Energy conservation 
becomes crucial in WBANs to maximize the 
network’s lifetime and ensure uninterrupted 
monitoring. Energy-efficient routing plays a pivotal 
role in WBANs, aiming to minimize energy 
consumption while maintaining reliable and 

efficient communication among the network’s 
nodes [2]. As a specialized form of WSNs, WBAN 
routing protocols need to be energy-aware, 
considering the devices’ limited power resources. 
By incorporating energy factors into routing 
decisions, these protocols optimize data 
transmission routes, balance energy consumption 
across devices, and utilize sleep modes to conserve 
energy during idle periods [3]. 

The energy constraints in WBANs present unique 
challenges compared to other WSNs or ad hoc 
networks. WBAN nodes are typically attached to or 
implanted within the human body, making frequent 
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battery replacements or recharging impractical. 
Consequently, energy-efficient routing protocols 
must operate under stringent energy limitations, 
maximizing the network’s lifetime while meeting 
healthcare applications’ stringent quality of service 
(QoS) requirements [4]. One of the primary 
objectives of energy-efficient routing algorithms in 
WBANs is to balance energy consumption across 
nodes. Since nodes may have different energy 
levels, routing decisions consider the remaining 
energy of the nodes to distribute the energy load 
evenly. The network’s lifetime can be extended by 
achieving load balancing, ensuring all nodes have 
sufficient energy resources to operate until the 
desired monitoring duration is achieved [5]. 

Optimizing data transmission routes is another 
crucial aspect of energy-efficient routing in 
WBANs. Traditional routing protocols that focus 
solely on shortest paths or congestion avoidance 
may not be suitable for the unique characteristics of 
WBANs. Instead, routing decisions must consider 
the energy costs associated with data transmission 
[6]. Energy-efficient routing algorithms aim to find 
routes that minimize total energy consumption 
while satisfying the communication requirements of 
the application. These algorithms consider signal 
strength, interference, and transmission distance to 
determine energy-efficient routes [7]. Sleep modes 
play a vital role in conserving energy in WBANs. 

Given that WBAN nodes may spend significant 
time idle, energy-efficient routing protocols can 
exploit sleep modes to conserve energy during these 
periods. Nodes can be scheduled to enter sleep 
mode when they are not actively involved in data 
transmission or reception. By synchronizing the 
sleep schedules of nodes, the overall energy 
consumption of the network can be significantly 
reduced, effectively prolonging the network’s 
lifetime [8]. 

Several energy-efficient routing algorithms have 
been proposed for WBANs, each offering 
advantages and trade-offs. These algorithms 
optimize energy consumption using clustering, data 
aggregation, and duty-cycling techniques. Some 
algorithms focus on load balancing and route 
selection, while others adapt routing decisions 
based on nodes’ changing energy levels, 
considering the network’s dynamic nature [9]. 
Energy-efficient routing is critical in WBANs, a 
subtype of WSNs tailored explicitly for healthcare 
applications. By incorporating energy awareness 
into routing protocols, WBANs can effectively 
balance energy consumption, optimize data 
transmission routes, and utilize sleep modes to 

conserve energy during idle periods. Developing 
efficient and robust energy-efficient routing 
algorithms remains a critical research area, enabling 
advancements in WBAN technology and improving 
patient care [10]. 

1.1. Problem Statement: 

WBANs are specialized WSNs designed for 
healthcare applications. The limited energy 
resources of WBAN devices present challenges in 
ensuring network longevity and efficiency. The 
problem lies in developing energy-efficient routing 
protocols that balance energy consumption across 
nodes, optimize data transmission routes, and 
conserve energy during idle periods. Existing 
routing protocols may overlook the energy factor, 
leading to uneven energy consumption and 
premature battery depletion. The unique 
characteristics of WBANs, such as the inability to 
frequently replace or recharge batteries, require 
routing algorithms that operate under stringent 
energy limitations while meeting QoS requirements. 
Hence, developing efficient and robust energy-
aware routing protocols is essential to prolong the 
network’s lifetime, ensure reliable communication 
among WBAN nodes, and enhance healthcare 
monitoring systems’ overall performance. 

1.2. Motivation 

The motivation behind developing energy-
efficient routing algorithms for WBANs stems from 
the need to address healthcare applications’ unique 
energy constraints and requirements. WBAN 
devices are typically battery-powered and may be 
attached or implanted within the human body, 
making frequent battery replacements or recharging 
impractical. Thus, energy conservation becomes 
crucial to extend the network’s lifetime and ensure 
continuous and reliable healthcare monitoring. By 
optimizing energy consumption, balancing the 
energy load across nodes, and leveraging sleep 
modes during idle periods, energy-efficient routing 
protocols can significantly enhance the efficiency 
and longevity of WBANs. Efficient energy-aware 
routing algorithms reduce maintenance costs, 
improve patient safety, and enable uninterrupted 
monitoring of vital signs. Developing energy-
efficient routing protocols in WBANs aims to 
maximize the network’s lifetime, enhance overall 
system performance, and improve the quality of 
healthcare services provided through WBAN 
technology. 
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1.3. Objective 

The primary objective of this research is to 
develop energy-efficient routing algorithms for 
Wireless Body Area Networks (WBANs) in 
healthcare applications. The main focus is to 
optimize energy consumption, prolong the 
network’s lifetime, and improve overall system 
performance. Specific objectives include: 

 Balancing Energy Consumption: Design 
routing protocols that distribute the energy load 
evenly across WBAN nodes, considering 
variations in their energy levels. This objective 
aims to prevent premature battery depletion 
and ensure all nodes have sufficient energy 
resources for uninterrupted operation. 

 Optimizing Data Transmission Routes: 
Develop routing algorithms that consider 
energy costs associated with data transmission, 
considering factors such as signal strength, 
interference, and transmission distance. The 
objective is to find routes that minimize energy 
consumption while satisfying communication 
requirements. 

 Energy Conservation during Idle Periods: 
Implement sleep modes in the routing protocols 
to conserve energy during periods of inactivity. 
Synchronize sleep schedules among nodes to 
minimize energy consumption while ensuring 
timely data transmission when required. 

Adhering to QoS Requirements: Ensure that the 
developed routing algorithms meet the stringent 
QoS requirements of healthcare applications, such 
as the timely and reliable transmission of vital signs 
data. 

 

2. LITERATURE REVIEW 

“Cooperative WBAN Performance Evaluation” 
[11] involves assessing the system’s performance 
metrics and optimizing energy utilization. Through 
simulations, it analyzes factors such as 
communication reliability, latency, and network 
capacity to evaluate the system’s effectiveness 
under different scenarios. It aims to maximize 
energy efficiency by reducing power consumption 
at various levels, such as sensor nodes, 
communication protocols, and resource 
management strategies. “TransGA” [12] is designed 
for intra-WBAN communication. TransGA utilizes 
Genetic Algorithms (GA) to optimize the 
transmission parameters and strategies within the 
network, including power allocation, channel 

selection, modulation schemes, and coding 
schemes. “NeoHeartNet” [13] revolutionizes early 
congenital heart defect diagnosis in neonates. By 
leveraging wearable devices and sensors in the first 
tier, NeoHeartNet collects vital signs and 
physiological data from newborns. The second tier 
comprises a cloud-based processing and analysis 
platform that receives and analyzes the data to 
detect potential heart defects. The third tier involves 
a network of specialized healthcare professionals 
who receive the analyzed data for expert diagnosis 
and recommendations. “EnerWBAN” [14] 
maximizes energy utilization and efficiency by 
employing adaptive power management, duty 
cycling, optimal resource allocation, and energy-
aware routing protocols. These methods enable 
efficient utilization of ambient energy sources, 
prolong sensor node battery life, and ensure 
sustainable and long-term monitoring.  

 

“RelayStar” [15] enhances the performance of 
IEEE 802.15.6-based two-hop star topology 
WBANs. RelayStar intelligently selects the most 
suitable relay nodes to improve communication 
reliability and network efficiency by considering 
signal quality, channel conditions, and energy 
levels. “HarvestComm” [16] revolutionizes 
communication optimization in such networks. By 
utilizing reinforcement learning algorithms, 
HarvestComm learns and adapts communication 
strategies based on the available harvested energy, 
network conditions, and communication 
requirements. It explores the solution space to 
identify the most effective actions, including 
transmission power and channel selection. 
“PowerECG Node” [17] is designed to perform 
real-time feature extraction in WBANs. PowerECG 
Node optimizes power consumption while 
efficiently processing ECG (Electrocardiogram) 
signals. It incorporates power management 
techniques like power gating, voltage scaling, and 
dynamic and frequency scaling. “DeepBANTrans” 
[18] is designed specifically for WBANs based on 
the IEEE 802.15.6 standard. DeepBANTrans 
leverages the power of deep learning techniques to 
enhance the performance of the baseband 
transceiver, enabling reliable and efficient 
communication through the human body. 
Optimization plays significant role in all kinds of 
networking [19]–[38], [39]. 

 

“StableLink” [40] was designed to enhance the 
stability period in WBANs. By leveraging energy-
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aware metrics and reliability factors, StableLink 
optimizes routing paths to prolong stability, 
ensuring continuous and uninterrupted network 
connections. It employs dynamic route 
maintenance, fault tolerance mechanisms, and 
adaptive routing protocols to adapt to changing 
network conditions and node failures. “FaultAI-
WBAN” [41] is a fault prediction framework 
designed for WBANs. By harnessing the power of 
advanced machine learning techniques, FaultAI-
WBAN analyzes historical data to identify patterns 
and predict potential faults or failures within the 
WBAN system. Through supervised learning, deep 
learning, or ensemble methods, the framework 
learns from past fault instances and develops 
predictive models that can anticipate future failures. 
“CoopUWB-Opti” [42] focuses on maximizing the 
efficiency and reliability of communication within 
CM3A cooperative WBANs by leveraging UWB 
technology. This approach employs optimization 
techniques, including resource allocation, power 
control, and interference management, to 
effectively utilize the UWB spectrum. “SDN-
EnergyRoute” [43] aims to optimize the routing 
process in WBANs to maximize energy efficiency 
and network performance. By leveraging the 
principles of SDN, the algorithm centralizes 
network control and enables dynamic and 
intelligent routing decisions. SDN-EnergyRoute 
considers energy consumption, link quality, and 
network congestion to determine the most energy-
efficient and reliable routing paths. 

 

“AnonyAuth-WBAN” [44] focuses on 
lightweight implementation while ensuring mutual 
authentication between the wearable devices and 
the WBAN infrastructure. AnonyAuth-WBAN 
employs cryptographic techniques to establish 
secure communication channels and protect user 
identities from unauthorized access. The scheme 
enables wearable devices to authenticate without 
revealing sensitive information by incorporating 
anonymous authentication mechanisms. 
“MaxMinPower-WBAN” [45] focuses on 
optimizing power control strategies to ensure 
efficient and reliable communication within the 
network. MaxMinPower-WBAN aims to maximize 
the minimum received signal power among all 
nodes in the network by dynamically adjusting 
transmission power levels. It considers the 
distributed nature of WBANs, where wearable 
devices operate nearby. “IM-QRP” [46] aims to 
enhance QoS by optimizing the routing process 
within the network. By considering various factors 

such as energy consumption, network congestion, 
and link quality, IM-QRP intelligently selects the 
most efficient routes for data transmission. The 
protocol prioritizes QoS metrics such as packet 
delivery ratio and latency.  

 

“Congestion Control Aware Routing Algorithm 
(CCARA)” [47] is a cutting-edge routing algorithm 
designed for Software Defined WBANs with a 
focus on energy efficiency and congestion control. 
CCARA aims to optimize data routing in WBANs 
while considering temperature variations by 
considering energy consumption and network 
congestion. The algorithm dynamically adjusts 
routing paths based on real-time temperature 
measurements to minimize energy consumption and 
avoid congested areas. “Energy-efficient Harvest-
Aware Routing Protocol (E-HARP)” [48] addresses 
energy efficiency in WBANs by incorporating 
harvested energy awareness into the clustering and 
routing process. The protocol actively promotes the 
formation of energy-efficient clusters by 
considering the availability of harvested energy 
from wearable devices. E-HARP ensures optimal 
utilization of energy resources by actively selecting 
energy-efficient cluster heads and employing 
cooperative routing strategies. 

 
3. PROPOSED WORK 
 
3.1. LEACH 

 Popular hierarchical routing protocol 
LEACH (Low Energy Adaptive Clustering 
Hierarchy) was designed for WSNs. Its primary 
goal is to reduce energy use in WSNs by dividing 
the network into smaller groups and rotating nodes 
through the position of cluster leader. This 
methodology guarantees a well-balanced 
distribution of energy consumption across the entire 
network. 
 
3.1.1. Cluster Formation 

During the cluster formation phase, the 
network is partitioned into clusters, each overseen 
by a designated cluster head. The selection of 
cluster heads is determined by a probabilistic 
model, wherein nodes decide to become either a 
cluster head or a regular member based on a 
predefined threshold value. 
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3.1.2. Calculation of the Probability of Becoming 
a Cluster Head 

To achieve a balanced distribution of 
energy consumption, every node calculates its 
probability of becoming a cluster head, represented 
as , using Eq.(1a). 

 

(1a
) 

where  indicates Optimal network 

composition based on the number of cluster leaders, 
 indicates the present round,  denotes the  

Binary indicator function representing node  (  if 

it is not a cluster head,  otherwise). The 

probability   is determined by taking into 

account the desired percentage of cluster heads in 
the network and the current round. Each node 
calculates its probability based on its state (whether 
it is currently a cluster head or a regular node). 

 

3.1.3. Cluster Head Selection 

After calculating the probabilities, each node i 
generates a random number, rand(i), uniformly 
distributed between 0 and 1. If rand(i) is less than or 
equal to p(i), the node becomes a cluster head; 
otherwise, it remains a common node. Once the 
cluster heads are selected, they broadcast their 
information to the entire network. Ordinary nodes 
determine which cluster to join based on the signal 
strength they receive from the cluster heads. This 
helps in creating efficient and localized 
communication within each cluster. 

 

3.1.4. Data Transmission 

During the data transmission phase, the cluster 
heads gather data from their member nodes, 
aggregate it, and transmit it to the base station. This 
aggregation reduces the overall communication 
overhead and conserves energy. The energy 
consumed by node  during data transmission, 
denoted as , and the energy consumed by 
node  during data reception, denoted as , 
can be represented by Eq.(1b). 

 
(1b

) 

Efficient data transmission and reception 
strategies are employed to minimize energy 
consumption during these processes. 

 
3.1.5. Cluster Head Rotation 

To achieve a balanced distribution of energy 
consumption across the network, the cluster heads 
periodically rotate their roles. After completing a 
round, all nodes become regular nodes, and the 
cluster head selection process is repeated. This 
rotation ensures that energy is evenly distributed 
across the network, preventing specific nodes from 
depleting their energy resources quickly. 
Employing the LEACH protocol can significantly 
improve energy efficiency in wireless sensor 
networks, extending the network’s lifetime. The 
protocol achieves this by dynamically selecting 
cluster heads based on probabilistic calculations, 
organizing the network into clusters, aggregating 
data, and rotating the cluster head roles. The 
distributed nature of the protocol reduces energy 
consumption and increases the overall network 
lifetime. 

 

It is important to note that the equations and 
variables provided are general representations of the 
LEACH protocol. The specific implementation 
details and parameters may vary depending on the 
protocol’s variant or version. Researchers and 
network designers can customize and fine-tune 
these parameters based on the specific requirements 
and characteristics of the wireless sensor network 
deployment. 

Algorithm 1: LEACH 

Step 1: Initialization 

Set desired CH percentage and assign random 
numbers to nodes. 

Step 2: Cluster Head Selection 

Nodes compare random numbers with the 
threshold to become CHs. 

Step 3: Cluster Formation 

The signal intensity at each node determines 
which CH it will join. 
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Step 4: Data Transmission 

Ordinary nodes transmit data to their respective 
CHs. 

Step 5: Data Aggregation and Transmission 

CHs aggregate and transmit data to the base 
station. 

Step 6: Energy Dissipation and Rotation 

Nodes estimate energy and decide CH’s role for 
the next round. 

Step 7: Repeat steps 2 to 6 for multiple rounds 
to optimize energy consumption and network 
lifetime. 

 
3.2. Unprecedented Harmony Search 
Optimization (UHSO) 

3.2.1. Harmony Search Algorithm 

The Harmony Search Algorithm (HSA) is a 
powerful and innovative technique for efficiently 
solving complex optimization problems. Inspired 
by achieving perfect harmony in music, the HS 
algorithm aims to find optimal solutions by 
mimicking the search for optimal musical harmony. 
This approach has proven highly effective in 
tackling many real-world problems. At the core of 
the HSA lies a population-based mechanism known 
as "harmony memory" (HM). Like other meta-
heuristic search methods, the HM is a repository of 
potential solutions. The capacity of this HM and the 
processing speed with which it operates are crucial 
control parameters that significantly impact the 
algorithm's performance. 

Two additional essential parameters in the HS 
algorithm are the HM consideration rate (HMCRω) 
and the pitch adjusting rate (PARω), both of which 
lie within the range [0, 1]. The HMCRω determines 
the selection probability of a decision variable 
present in HM, which allows the algorithm to 
exploit promising solutions. On the other hand, the 
PARω controls the rate at which the decision 
variables are adjusted during the search, promoting 
exploration of the solution space. The HS algorithm 
can be divided into five primary stages: 

Step 1: Initialization: The process starts by 
initializing the HM with random solutions, often 
within predefined bounds for each decision 
variable. 
Step 2: Improvisation: In this stage, the algorithm 
creates a new harmony by generating candidate 
solutions. Each decision variable value in the new 
harmony is determined by drawing from the HM 
with a probability given by HMCRω or by 
generating a random value within the variable's 
domain. This process balances exploiting existing 
reasonable solutions and exploring new regions of 
the solution space. 
Step 3: HM Update: After generating a new 
harmony, its fitness or objective value is evaluated. 
If the new harmony performs better than any 
existing one in the memory, it replaces the worst 
harmony in the set. This constant refinement 
process enables the algorithm to improve the 
solutions over time. 
Step 4: Iteration: Steps 2 and 3 are iteratively 
performed a predefined number of times or until a 
termination criterion is met. With better solutions, 
the HM is updated during each iteration, and the 
search process becomes more focused on promising 
regions of the solution space. 
Step 5: Termination: The algorithm gets 
terminated with the predefined iteration count is 
reached or when a specific termination condition, 
such as a satisfactory level of convergence or 
solution quality, is achieved. 

By effectively combining the principles of 
musical harmony with an intelligent search 
mechanism, the HSA has proven to be a robust and 
versatile optimization technique capable of finding 
high-quality solutions in various problem domains. 
Its ability to balance exploration and exploitation 
makes it well-suited for solving complex problems 
with numerous local optima, where other traditional 
optimization methods may struggle. As a result, the 
HSA continues to be a valuable tool in diverse 
fields, including engineering, finance, logistics, and 
many others. 

 
3.2.2. Parameter Setting 

The optimization objective is to minimize 
the objective function  concerning the decision 
vector . The function  
represents the problem-specific objective function, 
which maps the decision variables to a real-valued 
scalar to be minimized. In mathematical notation: 

 (2a) 
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where ' ' is the decision vector and ' ' returns 
the objective function value for the given vector ' '. 
 

To address the optimization problem, this 
research considers the search space , defined as 
the product space of  decision axes: 

 

(2b) 

where  and  represent the lowest and highest 
values for the -th decision axis, respectively. 
 

The Harmony Search Algorithm (HSA) 
operates based on a population of harmony vectors, 
which are candidate solutions represented as 

. The algorithm aims to 
iteratively refine these harmony vectors to improve 
the quality of solutions and converge towards the 
optimal solution that yields objective function  
with the lowest value. 
 
The Initialization of the Harmony Search algorithm 
involves setting various parameters: 
 Search Radius Control Parameter (bandwidth 

): The search radius control parameter mn 
influences the search space exploration. It 
determines the width of the neighbourhood 
around a harmony vector within which new 
solutions can be generated. An enormous  
value encourages more extensive exploration, 
while a smaller value narrows the search area, 
focusing on local regions. 

 Improvisation Control Parameter (ICP): The 
improvisation control parameter  governs the 
probability of introducing random values during 
the search. A new harmony vector is generated 
randomly at each iteration, with a probability of 

. Higher values of  promote greater 
random exploration, while lower values enhance 
the exploitation of the existing harmony vectors. 

 Size of HM ( ): It determines the population 
or set of potential solutions the algorithm 
explores and refines to find the optimal solution 
to the optimization problem. These harmony 
vectors store the best solutions so far and serve as 
the basis for generating new solutions. 

 HM Consideration Rate ( ): The HM 
consideration rate HMCR determines the 
probability of selecting values from the HM 
when generating a new harmony vector. A higher 
value of  increases the likelihood of 
choosing values from memory, leading to greater 
exploitation of promising solutions. 

 Pitch Adjustment Rate ( ): The pitch 
adjustment rate  controls the degree of 

change applied to each decision variable during 
forming a new harmony vector. It directly affects 
the diversity of solutions generated at each 
iteration. A higher value of PAR promotes more 
extensive exploration, while a lower value 
focuses on exploiting the neighbourhood around 
existing solutions. 

 
The default values of 

 and  are set initially to 
balance exploration and exploitation. During 
optimization, these parameter values can be 
adjusted based on the problem's characteristics to 
enhance the algorithm's performance and facilitate 
convergence towards the optimal solution. HSA 
iteratively generates and evaluates new harmony 
vectors until a termination criterion is met. The best 
solution in the HM represents the optimized values 
of the decision variables, minimizing the objective 
function . 

 
3.2.3. HM Initialization 

The HS algorithm begins by initializing 
the HM, a collection of harmony vectors 
representing potential solutions to the optimization 
problem. The parameter HMS is analogous to the 
population size in other meta-heuristic algorithms. 
 
(a). Harmony Vector Representation 

A harmony vector  represents a 
potential solution, where , 
denotes the harmony vector index present in the 
memory, and , indicates a specific 
decision variable component of the vector. 
(b). Harmony Vector Initialization 

The HM is created by randomly generating 
 harmony vectors. For each component w of 

each harmony vector s, the value p_sw is initialized 
using Eq.(3). 

 (3) 

where represents the value of the -th decision 
variable in the -th harmony vector,   and 

denotes the lowest and highest value of the -th 
decision variable,  indicates a random 
number generator function that produces a 
randomly generated value that lies between 0 and 1. 
 
(c). Search Space Definition 

The search space  is defined in Eq.(1) are 
the product space of  decision axes, where each 
decision axis w has a range defined by its   and 

 values. 
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(d). Objective Function Evaluation 
After initializing the HM, the next step is 

to evaluate the objective function g(p) for each 
harmony vector in the memory. The objective 
function maps a decision vector  
to a real-valued scalar, representing the fitness of 
the solution . 
 
(e). HM Update 

The HS algorithm proceeds with iterative 
updates to the HM. New harmony vectors will be 
generated and evaluated at each iteration, replacing 
or improving the existing memory solutions. The 
algorithm aims to converge towards better solutions 
by iteratively refining the . 

 
3.2.4. Fresh Harmony Generation 

Once the HM is initialized, the  
proceeds to create a new harmony vector, 

, by applying three strategies, 
which are: (a) consideration of memory level, (b) 
adjustment of pitch, and (c) selecting random 
values 
(a). Consideration of Memory Level 

The memory consideration rule is guided 
by the  parameter. With a probability of 

, a component of the new harmony vector  
is selected from the HM. This means that some 
elements of  are directly borrowed from the 
existing harmony vectors in the memory, promoting 
the exploitation of promising solutions. 
(b). Adjustment of Pitch 

The pitch adjustment rule is influenced by 
the  parameter. For each component  of the 
new harmony vector, with a probability of 

, a pitch adjustment is 
applied. The adjustment involves perturbing the 
value of  based on the difference between the 
current component value and another randomly 
chosen component value from the memory. This 
operation encourages the exploration of the search 
space. 
 
(c). Selecting Random Values 

With a probability of 
, the random 

selection rule comes into play. In this case, the 
component  is randomly generated within the 
valid range  of the -th decision axis. This 
random selection introduces diversity and ensures 
that the algorithm explores the search space beyond 
the scope of the HM. 

 
 

Algorithm 1: Fresh Harmony Generation 

Input: 
 HM: The current HM contains HMS harmony 

vectors. 
 HMCR: To determine the probability of 

selecting values from the memory. 
 PAR: To control the amount of change applied 

to each decision variable. 
 Decision space : The product space of  

decision axes, each with its   and  values 
 
Output: 
 New Harmony Vector  

 
Procedure: 

Step 1: Initialize an empty harmony vector 
 

Step 2: For each component  of , 
perform the following: 

a. Between 0 and 1, generate a number randomly 
b. If the generated random number is less than or 

equal to , then: 
 Select a value from the corresponding 

component w of a randomly chosen 
harmony vector from the HM. 

 Update the component in  with the 
selected value. 

c. Else if the generated random number is more 
significant than  and less than or equal 
to , then: 
 Choose a random harmony vector  from 

the memory. 
 Apply pitch adjustment to the component 

in  based on the difference between 
and the corresponding component in . 

d. Else (the generated random number is greater 
than , 
then: 
 Randomly generate a new value for the 

component within the valid range  
. 

 Update the component in with the 
generated value. 

Step 3: Return the newly created harmony 
vector. 

 
3.2.5. Termination Criterion Verification 

HSA uses a termination criterion to stop 
generating new harmony vectors. It checks if the 
maximum number of iterations is reached, and if 
so, the algorithm ends; otherwise, it continues until 
the condition is met. 
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Algorithm 2: Termination Criterion Verification 

Input: 
 Current Iteration Count: The number of 

iterations performed in the HS algorithm. 
 Highest Iterations: The predefined highest 

number of iterations to terminate the 
algorithm. 

 
Output: 

 Termination Decision: A boolean variable 
indicating whether the termination 
criterion is met. 

 
Procedure: 

Step 1: Check if the Current Iteration Count is 
less than the Highest Iterations. 

 If true, the criteria for termination are not 
reached, and the algorithm continues. 

 If false, the criterion for termination is 
reached, and the algorithm stops. 

Step 2: Return the Termination Decision. 
 
3.2.6. Global-best HSA 

HSA demonstrates remarkable proficiency 
in addressing numerical optimization problems by 
efficiently identifying high-performance regions 
within the solution space. However, it exhibits 
limitations when it comes to conducting effective 
local searches. This discrepancy between its 
potential and practical usage has led researchers to 
propose an enhanced version of HSA known as 
UHSO to rectify this weakness. Given that HSA 
already outperforms competing methods, the 
research focuses on optimizing its convergence 
performance through targeted adjustments. UHSO 
integrates a modified version of HSA while 
incorporating supplementary techniques to strike a 
balance between exploration and exploitation. Here 
is a comprehensive overview of these 
enhancements: 

 Modified HSA: The core HSA algorithm 
is fine-tuned to improve its local search 
capabilities and overall convergence 
efficiency. 

 Additional Techniques: UHSO 
introduces supplementary methods to 
augment the algorithm's ability to 
effectively explore and exploit the solution 
space. 

 
The integration of these improvements 

empowers UHSO to capitalize on HSA's existing 
strengths while addressing its limitations, resulting 

in a more robust and efficient optimization 
approach. 
 
(a). Initialization based on Opposition 

In UHSO, an antithesis-based learning 
approach is employed to enhance the solution 
quality of the original HM. This unique approach 
introduces a technique that has succeeded in 
various meta-heuristic algorithms. The primary 
goal is to balance exploration and exploitation, 
resulting in improved convergence performance. 
By integrating the antithesis-based learning into the 
harmony search algorithm, the proposed method, 
referred to as UHSO, effectively addresses the 
limitations of the original HSA and achieves 
enhanced optimization efficiency. The adjustments 
made to the core HSA algorithm and the 
incorporation of supplementary techniques 
contribute to the overall efficacy of the UHSO 
approach. 
 

Algorithm 3: Initialization using Opposition 

Input: 
 : The size of HM, representing the 

number of harmony vectors. 
 : The number of decision variables in the 

problem. 
 : The lowest value for the -th decision 

variable. 
 : The highest value for the -th 

decision variable. 
 
Output: 

 : A collection of harmony vectors 
representing potential solutions. 

 
Procedure: 

Step 1: For each harmony vector s from 1 to 
, do the following: 

a. For each decision variable w from 1 
to , do the following: 
 Between 0 and 1, generate a 

number randomly. 
 Calculate  

Step 2: For each harmony vector s from 1 to 
, do the following: 

a. For each decision variable w from 1 
to , do the following: 
 Calculate the oppositional 

instruction value 
Step 3: Return the  containing the 

initialized harmony vectors with their 
respective decision variable values. 
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(b).  Mutation Technique 

 refers to a specific mutation 
strategy used in the Differential Evolution ( ) 
algorithm.  is a popular optimization algorithm 
used for global optimization problems. It belongs to 
the family of evolutionary algorithms and is 
particularly effective in solving continuous 
optimization problems. In the  algorithm, the 
population consists of candidate solutions called 
"individuals" or "vectors." These individuals are 
represented as vectors in the search space, and they 
undergo mutation, crossover, and selection 
processes to produce new generations. The notation 
" " specifies the specific mutation 
strategy used in : 
 " ": Stands for Differential Evolution, the 

algorithm's name. 
 " ": Refers to the strategy that involves the 

selection of the best individual (solution) from 
the current population as a reference or base 
vector during the mutation process. 

 " ": Signifies that only one mutant vector is 
generated for each population member during 
the mutation process. 

 
Using fuzzy logic in the  strategy 

allows for a more flexible and adaptive approach in 
selecting the best individual and scaling factor 
during the mutation process. The fuzzy logic-based 

(i.e., ) is outlined in 
Algorithm 4. 
 

Algorithm 4:  

Step 1: For each individual in the population, 
utilize fuzzy logic to determine the "degree 
of fitness" or "closeness to the best 
solution" of that individual compared to 
the other individuals in the current 
generation. This degree of fitness can be 
represented by a fuzzy membership 
function, which captures the individual's 
proximity to the best solution in the 
population. 

Step 2: Based on the fuzzy membership values, 
identify the best individual with the highest 
degree of fitness as the reference or base 
vector for mutation. Fuzzy logic allows for 
a gradual transition between individuals, 
considering their relative fitness levels 
rather than strictly selecting the best 
individual. 

Step 3: Employ fuzzy logic to adjust the mutation 
factor (F) adaptively based on the 

individuals' fitness and problem 
characteristics. The fuzzy inference system 
can consider factors like the convergence 
rate, exploration-exploitation trade-off, and 
problem complexity to determine an 
appropriate mutation factor. 

Step 4: Mutate the base vector by adding the 
scaled difference between other 
individuals, guided by the fuzzy 
membership values and the dynamically 
adjusted mutation factor. 

Step 5: Create a new mutant vector using the 
fuzzy-guided mutation process. 

Step 6: Utilize fuzzy logic for crossover and 
selection. The crossover rate and the 
decision of whether to replace the original 
individual with the trial vector can be made 
based on fuzzy rules that consider the 
fitness and characteristics of both 
individuals. 

 
By incorporating fuzzy logic into the 

DE/best/1 strategy, the base vector, mutation factor, 
and other parameters selection becomes more 
adaptive and data-driven. The fuzzy-based 
approach allows the algorithm to respond to 
changes in the problem landscape and dynamically 
adjust its behaviour during optimization. This 
adaptability enhances the exploration and 
exploitation capabilities of the DE algorithm, 
leading to improved convergence and better 
solutions for a wide range of optimization 
problems. 

 
(c). Enhanced Improvisational Strategies 

The HSA’s pitch adjustment phase has 
limited local search capabilities, resembling more 
of a random search. To address this limitation, the 
HSA incorporates a globally best-guiding system. 
Additionally, the  mutation 
technique is employed to enhance HSA, leveraging 
the superior local search capabilities of the 

approach. Essentially, the 
traditional pitch-adjustment method in HSA is 
replaced with a variant of the  
mutation procedure. The modified pitch-adjustment 
equation is given by Eq.(4): 

 
(4) 

Here,  is a scale factor regulating the amplification 
of the differential variation , where 

. The index 'best' refers to the best 
harmony in the HM, and  is a randomly chosen 
integer in the range . The variables  and  
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are random integers, each taken from the set 
, and different from , 

respectively. 
 

For effective local search, a smaller value 
of ζ is preferable. Similarly, the random selection 
phase of  also exhibits characteristics of a 
random search. To enhance global search capability 
and reduce unpredictability, a modified version of 
the Artificial Bee Colony ( ) algorithm is 
introduced to replace the random selection equation 
in . The substitution is based on the 
understanding that  is adept at exploring new 
search spaces. The modified solution searching 
equation, replacing 's random selection, is 
represented by Eq.(5): 

  (5) 

where  represents the decision variable index, 
ranging from  to . The variable  and represents 
a number generated randomly with uniformed 
dispersion in the interval , ' ' denotes a 
uniformly dispersed random number within the 
interval . 
 
3.2.7. Update of HMCR and PAR 

Two crucial contextual factors in HSA and 
its variants are HMCR and PAR. Optimizing these 
parameters can lead to significant improvements in 
both local and global solution quality. Considering 
the cyclic nature of natural processes, a periodic 
approach is adopted, selecting the three rules for 
improvising a new harmony at roughly periodic 
intervals. The sine function is well-suited for 
modelling such cyclic events. A sign function based 
on the sine function is employed to ensure that both 
parameter values remain non-negative. By 
combining these two functions, a novel function is 
formulated to maintain the positive nature of the 
parameters. The proposed time-variant techniques 
for the two variables, HMCR and PAR, are as 
follows: 
(a). HMCR Update 

 

 

 

(
6
) 

where  represents the rate of 
congruence between memory and thought during 
the iterative process,  is the variable being 
iterated on,  and  denote the 

lowest and highest HM consideration rates, sign 
function is represented as , and the sine 
function is represented as . 
 
(b). PAR Update 

 

(7
) 

Where  is the rate at which the pitch is 
adjusted for the iterative variable .  and 

 represent the lowest and highest adjusting 
rates. By continuously updating  and  
using these time-variant techniques, the  can 
adapt its parameters dynamically, leading to 
improved exploration and exploitation capabilities 
and ultimately enhancing the overall optimization 
performance. 

 Algorithm 5: Update of HMCR and 
PAR 

Input: 
  and : The iterative variable 

representing the current iteration number. 
  and  
  and  
 

Output: 
 Updated HMCR and PAR values. 

 
Procedure: 

Step 1: Calculate the rate of congruence 
between memory and thought (HMCR) 
using Eq.(6). 

Step 2: Calculate the pitch adjustment rate 
(PAR) using Eq.(7). 

Step 3: Return the updated HMCR and PAR 
values. 

 
3.2.8. Global Search Enhancement 

After updating HMCR and PAR, UHSO 
incorporates two additional exploring strategies to 
enhance its global search capability. These 
strategies aim to refine the updated UHSO by 
introducing higher levels of exploration, especially 
during the early phases of the meta-heuristic 
algorithm development. The emphasis on 
exploration is crucial to prevent the algorithm from 
being trapped in local minima and to facilitate the 
search for optimal solutions. The two perturbed 
schemes are designed to promote diverse 
exploration across the solution space: 
 Highly Exploratory Strategies: During the 

initial stages of the meta-heuristic algorithm's 
execution, it is essential to prioritize 
exploration to thoroughly explore the solution 
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space and avoid converging prematurely to 
local minima. The first perturbed scheme 
focuses on highly exploratory strategies 
involving more extensive and radical 
explorations. This allows the algorithm to 
cover many potential solutions, increasing the 
chances of finding the global optimum. 

 Avoiding Local Minima: Another critical 
aspect of the two perturbed schemes is to 
prevent the algorithm from getting stuck in 
local minima. Local minima are suboptimal 
solutions that can hinder the algorithm from 
reaching the global optimum. The second 
perturbed scheme aims to mitigate the impact 
of local minima by introducing techniques that 
encourage the exploration of unexplored 
regions of the solution space. This helps the 
algorithm break free from the influence of local 
optima and continue its search for more 
promising solutions. 

 
The updated UHSO can balance 

exploration and exploitation effectively, ensuring a 
more comprehensive and effective global search. 
The algorithm's ability to navigate diverse areas of 
the solution space enables it to discover better 
solutions, even in complex and challenging 
optimization problems. The combination of these 
perturbed strategies contributes to the overall 
robustness and efficiency of the UHSO in finding 
optimal harmonies. 
 
(a). Modification based on ABC for Optimum 
Harmony 

In the UHSO, the perturbed scheme for 
achieving optimal harmony draws inspiration from 
the modern artificial bee concept in the ABC 
algorithm. Eq.(8) precisely captures the Optimal 
Harmony. 

 (8) 

where  denotes the index of the 
decision variable,  represents an irrational real 
number between 0 and 1, introducing adaptability 
to the perturbation process. The variable 
‘ ’corresponds to the highest-rated harmony in 
the current , signifying the best solution found 
so far. ‘ ’ indicates a randomly selected integer 
value from the range  representing a 
solution other than the best. It is to be noted that ' ' 
is different from ' ' to promote the exploration 
of diverse solutions. 
 

The primary objective of employing the 
perturbation technique is to avoid getting trapped in 
local minima. By perturbing the best harmony, the 

 algorithm is guided to explore different 
regions, thus mitigating the risk of converging 
prematurely to suboptimal solutions.  
 

To address this concern, a control 
mechanism is introduced using the percentage 
parameter ' '. This parameter governs the rate at 
which the improved solution search equation is 
integrated into the  algorithm. Fine-tuning 
the value of ' ' allows the algorithm to balance 
exploration and exploitation, ensuring efficient 
convergence while capitalizing on the perturbation 
technique's ability to escape local minima.  
 

Incorporating -inspired modifications 
enriches the 's capacity to explore diverse 
solution spaces and efficiently identify optimal 
harmonies. The adaptive nature of the perturbation 
process, guided by the irrational real number , 
endows the algorithm with enhanced adaptability 
and robustness in tackling intricate and challenging 
optimization problems. 

 
Algorithm 6: Modification based on ABC for 

Optimum Harmony 
Input: 

 : HM containing candidate solutions. 
 : Number of decision variables. 
 : HM Size, representing the 

population. 
 : Percentage parameter controlling the 

rate of perturbation (Eq. 8). 
 : Index of the best harmony in 

the current HM. 
 : Highest number of iterations. 

 
Output: 

 Updated harmony vector . 
Procedure: 

Step 1: Select a random integer  from the 
range , ensuring  is not equal 
to  

Step 2: Between 0 and 1, Generate an irrational 
real number randomly. 

Step 3: For each decision variable ' ' from  to 
, calculate the new harmony element 

using the ABC-inspired perturbation 
(i.e., Eq.(8)). 

Step 4: Apply the control mechanism to 
regulate the perturbation process: 
 Calculate the perturbation 
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threshold 
 If the current iteration ' ' is less 

than or equal to perturb_threshold, 
update the harmony vector using 
the ABC-inspired perturbation as 
in step 3. Otherwise, use the 
standard harmony improvisation 
rules. 

Step 5: Return the updated harmony vector . 
 
(b). Fine-Tuning of Optimum Harmony using 
Opposition-Based Learning (OBL)  

Incorporating an Opposition-Based 
Learning (OBL) perturbed scheme, the  aims 
to significantly enhance its capability to escape 
local minima and explore uncharted territories. The 
perturbation strategy is designed as Eq.(9). 

 (9) 

where  and  represent the lowest and highest 
values of component , while  corresponds 
to the element of the best harmony found in the 
current HM. 
 

The OBL-based perturbation strategy is 
crucial in provoking dimensional disruptions in the 
best harmony. By systematically exploring each 
dimension, the algorithm gains an advantage in 
navigating towards unexplored regions, promoting 
thorough exploration, and effectively escaping local 
minima. To maintain a balance between exploration 
and exploitation, the frequency of introducing the 
updated solution search equation based on the OBL 
scheme is regulated by the carefully selected 
percentage parameter ' '. By fine-tuning ' ', the 
algorithm's responsiveness to the perturbed strategy 
can be adjusted, allowing it to adapt its search 
behaviour per the problem's complexity. 
 

Combining the OBL-inspired perturbation 
scheme with the ABC-based Modification enhances 
the UHSO algorithm with remarkable adaptability 
and robustness in tackling intricate optimization 
challenges. The algorithm's innate ability to explore 
a diverse solution space and its improved capacity 
to fine-tune optimum harmony culminate in a 
powerful and efficient optimization approach 
suitable for solving a wide range of complex real-
world problems. 
 
3.2.9. Handling Bound Constraints 

To ensure practical and feasible solutions 
for optimization problems, it is crucial to address 
the bound constraints that may restrict the decision 

variables. Eq.(10) effectively manages bound 
constraints within the UHSO: 

 
(10) 

where  represents the value of the decision 
variable  in the harmony at index .  and  
denote the lowest and highest bounds for decision 
variable . generates a random number 
between 0 and 1. 

The bound constraint handling mechanism 
ensures that the decision variable remains 
within the specified bounds, ensuring that the 
solutions generated during the Harmony Search 
process are practical and feasible. If the current 
value of falls below the lower bound , it is 
randomly adjusted within the range [ , ]. 
Similarly, if  exceeds the upper bound , it is 
adjusted within the range [ , ] using random 
perturbation. By incorporating this bound constraint 
management technique, the  can effectively 
explore the solution space while adhering to the 
practical constraints defined by the optimization 
problem. This contributes to the algorithm's ability 
to find viable and desirable solutions for various 
real-world applications. 

 
4. SIMULATION SETTING 

Simulation of WBAN routing in NS3 is 
crucial for studying and optimizing routing 
protocols in healthcare applications. By utilizing 
NS3, researchers can create realistic WBAN 
topologies, considering node placement, 
communication ranges, and potential obstacles. 
They can incorporate channel and interference 
models to accurately emulate the wireless 
environment. Various routing protocols, such as 
LEACH and PEGASIS, can be implemented and 
evaluated, focusing on energy efficiency, end-to-
end delay, packet delivery ratio, and network 
lifetime. Simulations can encompass diverse 
scenarios to assess scalability and adaptability, 
including node densities, mobility patterns, and 
traffic patterns. Through NS3 simulations, 
researchers gain insights into the strengths and 
weaknesses of WBAN routing protocols, enabling 
them to identify the most suitable protocols for 
specific healthcare applications and propose 
enhancements. Optimization of parameters like 
cluster formation, data aggregation, and routing 
decisions can be achieved through simulation, 
ultimately improving the overall performance of 
WBANs. In summary, NS3-based simulations 
provide researchers with a valuable platform to 
assess, analyze, and enhance routing protocols in 
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WBANs, thereby contributing to reliable and 
energy-efficient healthcare solutions. 
 

Table 1. Simulation Settings 
Simulation Setting Value 

Channel Model Rayleigh Fading 

Communication Range 20 meters 

Data Aggregation Enabled or Disabled 

Energy Model Battery model 

Interference Model Path Loss Model 

MAC Protocol IEEE 802.15.4 

Mobility Model Random Waypoint 

Network Area 200m x 200m 

Number of Sensor Nodes 100 

Sensor Node Placement Random or Grid-based 

Simulation Time 2000 seconds 

Traffic Pattern Varying traffic load 

Transmission Power 10 dBm 

 

5. RESULTS AND DISCUSSION 

5.1. Packet Delivery and Drop Ratio Analysis 

Figure 1, in the context of the provided 
tables 2a and 2b, represents the packet delivery and 
drop ratio for different routing protocols at various 
numbers of nodes in a network. The packet delivery 
ratio indicates the percentage of successfully 
delivered packets, while the packet drop ratio 
represents the percentage of packets that were 
dropped or lost during transmission. 

 
The CCARA routing protocol exhibits the 

lowest packet delivery ratio and the highest packet 
drop ratio among the three protocols. This can be 
attributed to its congestion control mechanism. 
While congestion control is essential to prevent 
network congestion and ensure fairness, it might 
lead to increased packet loss when congestion is 
high. The higher packet drop ratio suggests that 
CCARA’s congestion control mechanism might be 
more aggressive in dropping packets under 
congested conditions, resulting in lower overall 
packet delivery. 

 

 
Figure 1. Packet Delivery and Drop Ratio 

 
E-HARP performs better than CCARA in 

terms of packet delivery and drop ratios. It 
incorporates energy-efficient and harvest-aware 
routing mechanisms, which optimize energy 
consumption and take advantage of energy-
harvesting capabilities in wireless sensor networks. 
This optimization can enhance packet delivery by 
conserving energy and utilizing available energy 
resources. Consequently, E-HARP achieves higher 
packet delivery ratios and lower packet drop ratios 
than CCARA. 

The UHSO-LRP routing protocol 
demonstrates the highest packet delivery ratio and 
the lowest packet drop ratio among the three 
protocols. It utilizes the Unprecedented Harmony 
Search Optimization (UHSO) algorithm for routing 
decisions, which aims to find optimal routes based 
on objective functions. The optimization process 
enhances network performance by considering 
energy efficiency, load balancing, and route 
stability. This results in a higher packet delivery 
ratio and a lower packet drop ratio, as UHSO-LRP 
can effectively select routes that minimize 
congestion and improve overall network 
performance. 
 

Based on Table 2a, which shows the 
packet delivery analysis result values, we can 
observe that the CCARA routing protocol has the 
lowest packet delivery ratio across all node counts. 
Its delivery ratio starts at 54.92% for 10 nodes and 
gradually decreases as the number of nodes 
increases, reaching 32.27% for 100 nodes. E-HARP 
performs slightly better, with a higher packet 
delivery ratio than CCARA at all node counts. It 
starts at 59.87% for 10 nodes and decreases to 
43.22% for 100 nodes. The UHSO-LRP protocol 
shows the highest packet delivery ratio among the 
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three protocols, starting at 76.3% for 10 nodes and 
decreasing to 62.18% for 100 nodes. On average, 
UHSO-LRP outperforms both CCARA and E-
HARP in terms of packet delivery, with an average 
delivery ratio of 69.89%. 

Table 2a. Result Values of Packet Delivery Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 54.92 59.87 76.3 

20 52.9 57.68 75.62 

30 50.59 54.89 74.67 

40 49.91 54.26 72.04 

50 48.23 53.37 70.23 

60 43.02 51.51 69.32 

70 38.64 49.53 67.7 

80 37.12 46.88 66.51 

90 35.1 45.02 64.34 

100 32.27 43.22 62.18 

Average 44.27 51.62 69.89 
 

In Table 2b, which represents the result 
values of the packet drop ratio analysis, we can see 
that CCARA has the highest packet drop ratio 
across all node counts. The drop ratio for CCARA 
starts at 45.08% for 10 nodes and increases to 
67.73% for 100 nodes. E-HARP has a lower drop 
ratio than CCARA, starting at 40.13% for 10 nodes 
and increasing to 56.78% for 100 nodes. The 
UHSO-LRP protocol exhibits the lowest drop ratio 
among the three protocols, starting at 23.7% for 10 
nodes and increasing to 37.82% for 100 nodes. On 
average, UHSO-LRP demonstrates the best 
performance in terms of packet drop ratio, with an 
average drop ratio of 30.11%. 
 

Table 2b. Result Values of Packet Drop Ratio 
Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 45.08 40.13 23.7 

20 47.1 42.32 24.38 

30 49.41 45.11 25.33 

40 50.09 45.74 27.96 

50 51.77 46.63 29.77 

60 56.98 48.49 30.68 

70 61.36 50.47 32.3 

80 62.88 53.12 33.49 

90 64.9 54.98 35.66 

100 67.73 56.78 37.82 

Average 55.73 48.38 30.11 

The packet delivery and drop ratio 
differences among the routing protocols can be 
attributed to their specific design choices and 
optimization techniques. The UHSO-LRP protocol, 
which leverages the UHSO algorithm, demonstrates 
superior performance by optimizing routing 
decisions to achieve high packet delivery and low 
packet drop ratios. E-HARP also performs better 
than CCARA due to its energy-efficient and 
harvest-aware routing mechanisms. CCARA, while 
providing congestion control, shows lower packet 
delivery ratios and higher packet drop ratios, 
potentially due to more aggressive congestion 
management strategies. 

 
5.2. Throughput Analysis 

Figure 2 represents the results of the 
throughput analysis for the CCARA, E-HARP, and 
UHSO-LRP routing protocols at different node 
counts. Throughput refers to the data transmitted 
successfully over a network within a given period. 
Table 3 provides the result values of the throughput 
analysis, this research can observe the following 
trends. 

 

 
Figure 2. Throughput 

 
The CCARA routing protocol exhibits the 

lowest throughput values among the three 
protocols. The throughput values for CCARA range 
from 31.003% to 40.462%, with an average 
throughput of 35.478. The lower throughput can be 
attributed to CCARA’s congestion control 
mechanisms, which focus on mitigating network 
congestion but might introduce additional overhead 
and delays in data transmission. This congestion 
control approach could limit the overall throughput 
of the network. 
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E-HARP shows higher throughput values 
compared to CCARA. The throughput values for E-
HARP range from 43.771 to 52.013, with an 
average throughput of 47.989. E-HARP 
incorporates energy-efficient and harvest-aware 
routing mechanisms, which optimize energy 
consumption and utilize energy harvesting 
capabilities. E-HARP can enhance data 
transmission capacity by efficiently managing 
energy resources and adapting routing decisions 
based on energy availability, improving throughput. 

 
The UHSO-LRP routing protocol 

demonstrates the highest throughput values among 
the three protocols. The throughput values for 
UHSO-LRP range from 54.013 to 69.889, with an 
average throughput of 61.968. UHSO-LRP employs 
the Unprecedented Harmony Search Optimization 
(UHSO) algorithm to optimize routing decisions. 
This optimization process aims to find routes that 
maximize network performance, including 
throughput. By selecting routes that minimize 
congestion, balance load, and ensure route stability, 
UHSO-LRP achieves higher throughput than 
CCARA and E-HARP. 
 

UHSO-LRP exhibits the highest 
throughput, followed by E-HARP, while CCARA 
demonstrates the lowest throughput. The variations 
in throughput are primarily due to each protocol’s 
different routing mechanisms and optimization 
strategies. UHSO-LRP’s optimization-based 
approach allows for the efficient selection of routes, 
leading to higher data transmission capacity and 
throughput. E-HARP’s energy-efficient and 
harvest-aware mechanisms enable better resource 
utilization and improved throughput. Meanwhile, 
CCARA’s focus on congestion control might limit 
the data transmission capacity and result in lower 
throughput values. 

 
Table 3. Result Values of Throughput Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 31.003 43.771 54.013 

20 31.443 44.31 56.162 

30 32.181 45.861 58.519 

40 33.303 46.141 58.804 

50 33.971 47.602 63.192 

60 34.676 48.414 63.515 

70 38.645 50.184 63.66 

80 39.242 50.282 64.695 

90 39.852 51.316 67.234 

100 40.462 52.013 69.889 

Average 35.478 47.989 61.968 
 
5.3. Delay Analysis 

Figure 3 represents the delay analysis for 
the CCARA, E-HARP, and UHSO-LRP routing 
protocols at different numbers of nodes in the 
network. Delay refers to the time a packet travels 
from the source node to the destination node. Table 
4 provides the result values of the delay analysis for 
the three routing protocols. The values in the table 
represent the delay in an unspecified unit. 
 

 
Figure 3. Delay 

 
The CCARA routing protocol exhibits the 

highest delay values among the three protocols. The 
delay values for CCARA range from 13,024 to 
14,109 ms, with an average delay of 13,453.4. This 
indicates that CCARA introduces a significant 
amount of delay in packet transmission. The higher 
delay can be attributed to congestion control 
mechanisms, queuing delays, and potentially 
suboptimal routing decisions. CCARA’s congestion 
control mechanisms prioritize congestion 
avoidance, which can result in longer queuing 
delays and increased packet transmission time. 
 

E-HARP shows lower delay values 
compared to CCARA. The delay values for E-
HARP range from 10,472 to 12,961, with an 
average delay of 11,272.2. E-HARP incorporates 
energy-efficient and harvest-aware routing 
mechanisms, which optimize energy consumption 
and leverage energy harvesting capabilities. These 
mechanisms likely contribute to more efficient 
routing decisions, reducing delays in packet 
transmission. By considering factors such as energy 
efficiency and load balancing, E-HARP can select 
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routes that minimize delays and improve overall 
network performance. 
 

The UHSO-LRP routing protocol 
demonstrates the lowest delay values among the 
three protocols. The delay values for UHSO-LRP 
range from 7,831 to 10,420, with an average delay 
of 9,149.9. UHSO-LRP employs the 
Unprecedented Harmony Search Optimization 
(UHSO) algorithm for routing decisions. This 
optimization process aims to find routes that 
optimize network performance, including 
minimizing delay. By selecting routes that 
minimize congestion, balance load, and ensure 
route stability, UHSO-LRP can achieve lower 
delays in packet transmission compared to CCARA 
and E-HARP. 
 

The delay analysis indicates that UHSO-
LRP has the lowest delay values, followed by E-
HARP, while CCARA exhibits the highest delays. 
The variations in delay can be attributed to the 
routing protocols’ underlying mechanisms, such as 
congestion control, energy efficiency, and 
optimization algorithms. UHSO-LRP’s 
optimization-based approach allows for selecting 
routes that minimize delays, leading to more 
efficient packet transmission. E-HARP’s energy-
efficient mechanisms likely contribute to reduced 
delays by optimizing resource utilization. 
CCARA’s focus on congestion control may 
introduce additional delays in packet transmission, 
resulting in higher overall delay values. 
 

Table 4. Result Values of Delay Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 13024 10472 7831 

20 13059 10535 7857 

30 13081 10853 7910 

40 13118 10910 9136 

50 13336 11061 9353 

60 13551 11121 9699 

70 13659 11244 9736 

80 13775 11648 9777 

90 13822 11917 9780 

100 14109 12961 10420 

Average 13453.4 11272.2 9149.9 
 
5.4. Energy Consumption Analysis 

Figure 4 represents the energy 
consumption analysis for the CCARA, E-HARP, 
and UHSO-LRP routing protocols at different 

numbers of nodes in the network. Energy 
consumption refers to the amount of energy the 
routing protocols utilize to perform various network 
operations, including data transmission, route 
selection, and maintenance. Table 5 provides the 
three routing protocols’ energy consumption 
analysis result values. The values in the table 
represent the energy consumption in an unspecified 
unit, typically measured in joules or millijoules. 
 

 
Figure 4. Energy Consumption 

 
The CCARA routing protocol 

demonstrates the highest energy consumption 
values among the three protocols. The average 
energy consumption for CCARA is 86.112 (unit not 
specified). As the number of nodes increases, 
CCARA consumes more energy for data 
transmission and routing operations. This higher 
energy consumption can be attributed to the 
congestion control mechanisms implemented in 
CCARA, which often involve additional energy-
intensive operations such as monitoring network 
conditions, adjusting transmission rates, and 
managing congestion-related issues. These 
operations contribute to increased energy 
consumption. 
 

E-HARP exhibits lower energy 
consumption values compared to CCARA. The 
average energy consumption for E-HARP is 
68.877%. As the number of nodes increases, E-
HARP’s energy consumption also rises. However, 
E-HARP incorporates energy-efficient mechanisms 
and harvest-aware strategies, optimizing energy 
utilization and leveraging energy harvesting 
capabilities. These mechanisms enable E-HARP to 
allocate energy resources more efficiently, reducing 
energy wastage and optimizing energy consumption 
during data transmission and routing operations. 
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The UHSO-LRP routing protocol 

demonstrates the lowest energy consumption values 
among the three protocols. The average energy 
consumption for UHSO-LRP is 52.238 (unit not 
specified). Like E-HARP, UHSO-LRP’s energy 
consumption increases with the number of nodes. 
UHSO-LRP leverages the Unprecedented Harmony 
Search Optimization (UHSO) algorithm for routing 
decisions, which aims to optimize network 
performance while considering energy efficiency. 
By selecting energy-efficient routes and minimizing 
congestion, UHSO-LRP significantly reduces 
energy consumption compared to CCARA and E-
HARP. 
 
Table 5. Result Values of Energy Consumption Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 77.639 59.522 46.288 

20 78.748 61.074 46.754 

30 81.033 63.491 47.344 

40 84.345 64.113 48.227 

50 85.405 64.645 50.153 

60 87.601 72.034 54.829 

70 89.765 72.639 56.013 

80 90.936 74.869 56.295 

90 91.886 77.094 57.897 

100 93.759 79.289 58.584 

Average 86.112 68.877 52.238 
 

The energy consumption analysis reveals 
that UHSO-LRP exhibits the lowest energy 
consumption, followed by E-HARP, while CCARA 
consumes the most energy. The variations in energy 
consumption are primarily attributed to the routing 
protocols’ underlying mechanisms, such as 
congestion control, energy-efficient strategies, and 
optimization algorithms. UHSO-LRP’s 
optimization-based approach and focus on energy 
efficiency result in the lowest energy consumption. 
E-HARP’s energy-efficient mechanisms optimize 
resource utilization, leading to reduced energy 
consumption. CCARA’s congestion control 
mechanisms and potential inefficiencies contribute 
to higher energy consumption. 
 
5.5. Network Lifetime Analysis 

Figure 5 presents the network lifetime 
analysis for the CCARA, E-HARP, and UHSO-
LRP routing protocols at different numbers of 
nodes in the network. The network lifetime refers to 
the duration the network has remained operational 

before the nodes have exhausted their energy 
resources. Table 6 provides the network lifetime 
analysis result values for the three routing 
protocols. The values in the table represent the 
network lifetime in an unspecified unit (e.g., hours, 
days). 
 

 
Figure 5. Network Lifetime 

 
The CCARA routing protocol has the 

lowest network lifetime among the three protocols. 
The average network lifetime for CCARA has been 
13.638%. As the number of nodes in the network 
has increased, CCARA has consumed energy at a 
relatively higher rate, resulting in a shorter overall 
network lifetime. The higher energy consumption 
of CCARA, coupled with potential inefficiencies in 
routing decisions and congestion control 
mechanisms, has contributed to a reduced network 
lifetime. 
 

E-HARP has shown higher network 
lifetime values compared to CCARA. The average 
network lifetime for E-HARP has been 33.863%. 
As the number of nodes has increased, the network 
lifetime of E-HARP has decreased, but at a slower 
rate than CCARA. E-HARP has incorporated 
energy-efficient and harvest-aware routing 
mechanisms, optimizing energy consumption and 
leveraging energy harvesting capabilities. These 
mechanisms have contributed to more efficient 
energy utilization and have extended the network 
lifetime compared to CCARA. 
 

The UHSO-LRP routing protocol has the 
highest network lifetime among the three protocols. 
The average network lifetime for UHSO-LRP has 
been 56.278 (unit not specified). As the number of 
nodes has increased, the network lifetime of 
UHSO-LRP has decreased gradually. UHSO-LRP 
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has utilized the Unprecedented Harmony Search 
Optimization (UHSO) algorithm for routing 
decisions, aiming to optimize network performance 
while considering energy efficiency. By selecting 
energy-efficient routes and minimizing congestion, 
UHSO-LRP has maximized the utilization of 
energy resources, resulting in an extended network 
lifetime. 
 
Table 6. Result Values of Energy Consumption Analysis 

Nodes CCARA E-HARP UHS-LRP 

10 21.255 46.976 62.551 

20 20.408 46.133 62.186 

30 17.583 42.685 60.551 

40 15.156 41.004 59.834 

50 14.078 33.941 58.811 

60 13.18 27.591 58.538 

70 9.881 26.17 52.157 

80 9.223 25.584 51.132 

90 8.666 24.308 49.926 

100 6.954 24.235 47.096 

Average 13.638 33.863 56.278 
 
The network lifetime analysis has revealed that 
UHSO-LRP has had the highest network lifetime, 
followed by E-HARP, while CCARA has 
demonstrated the lowest network lifetime. The 
variations in network lifetime can be attributed to 
the underlying mechanisms of the routing 
protocols, such as energy efficiency, congestion 
control, and optimization algorithms. UHSO-LRP’s 
focus on energy efficiency and optimal route 
selection has allowed for a more extended network 
lifetime. E-HARP’s energy-efficient and harvest-
aware mechanisms have contributed to an extended 
network lifetime. CCARA’s congestion control 
mechanisms and potential inefficiencies in routing 
decisions have led to a shorter overall network 
lifetime. 
 
6. CONCLUSION 

The Unprecedented Harmony Search 
Optimization-Based LEACH Routing Protocol 
(UHSO-LRP) presents a promising and innovative 
approach to enhance the performance and longevity 
of Wireless Body Area Networks (WBANs) in 
healthcare applications. By combining the 
Harmony Search Optimization (HSO) algorithm 
with the Low-Energy Adaptive Clustering 
Hierarchy (LEACH) routing protocol, UHSO-LRP 
offers a powerful solution to tackle the challenges 
encountered in routing within WBANs. UHSO-

LRP's unique mechanism optimizes the selection of 
cluster heads and data packet routing, effectively 
managing energy consumption and extending the 
network's lifespan. The incorporation of the HSO 
algorithm introduces adaptability and self-
optimization, enabling the network to dynamically 
adjust to changing environmental conditions and 
traffic patterns. Through comprehensive 
simulations and evaluations, UHSO-LRP 
demonstrates its superiority over conventional 
routing protocols, showcasing significant 
improvements in network stability, energy 
efficiency, and overall performance. These findings 
highlight the potential of UHSO-LRP to 
revolutionize WBAN design and deployment, 
fostering seamless integration of wearable devices 
into modern healthcare systems. As the demand for 
wearable healthcare devices continues to grow, 
UHSO-LRP's optimization capabilities make it a 
valuable contribution to the evolving landscape of 
wireless healthcare networks. 
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