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ABSTRACT 
 

Intrusion detection systems have been a critical research area for over three decades. With the growth of 
internet traffic, the number of attacks that violate the confidentiality, integrity, and authenticity of important 
data has increased significantly. The advent of Artificial Intelligence (AI) especially Deep Learning (DL) 
creates models automatically to detect malicious traffic without human intervention. In this context, we have 
proposed an Intelligent Security Management System (ISMS) based on detection, analysis, and action 
engines. To guarantee efficiency and accuracy, we have used Artificial Neural Network (ANN) as a 
classification model, and to achieve better accuracy, different optimization algorithms are applied to select 
the best hyperparameters (weights and biases) for our model. In this present paper, we have based our study 
on KDD CuP 99, NSL KDD, and UNSW-NB 15 dataset to evaluate the best combination of ANN and 
optimization algorithms, using metrics: accuracy, loss, training time, precision, recall, and F1-score. 

 

Keywords: Artificial Neural Network, Harris Hawks Optimization, Particle Swarm Optimization, Spider 
Monkey Optimization; Cat Swarm Optimization. 

1. INTRODUCTION  
 
In today's digital era, cybersecurity plays a critical 
role in safeguarding computer systems, networks, 
programs, and data from unauthorized access and 
malicious activities. It encompasses the use of 
various technologies and practices to ensure the 
confidentiality, integrity, and availability of data 
throughout its storage, processing, and transmission. 
However, as cybersecurity expert Gene Spafford 
pointed out, "The only truly secure system is 
switched off and unplugged, locked in a titanium-
lined safe, buried in a concrete bunker, and 
surrounded by nerve gas and highly paid armed 
guards. Even then, I wouldn’t stake my life on it." 
This highlights the growing challenge of securing 
systems against increasingly sophisticated cyber 
threats. 

According to Cisco’s annual internet report, the 
number of Distributed Denial of Service (DDoS) 
attacks has surged to 15.4 million in recent years, 
nearly doubling the 7.9 million attacks recorded in 
2018. This surge underscores the urgent need for 

robust security measures to address vulnerabilities 
and protect networks from both known and unknown 
cyberattacks. While various security mechanisms 
such as encryption, user authentication, antivirus 
software, and firewalls have been developed, these 
solutions fall short in analyzing network packets to 
detect sophisticated attacks and prevent data 
breaches [1]. As a result, Intrusion Detection 
Systems (IDS) have become an essential component 
of cybersecurity architectures, deployed after 
firewalls to monitor and secure network traffic and 
protect against adversarial activities [2]. 

IDS systems typically rely on two main detection 
techniques: Misuse Detection (MD), which 
identifies known attack patterns, and Anomaly 
Detection (AD), which detects deviations from 
normal behavior. A more advanced approach, 
Hybrid Detection (HD), combines both methods to 
improve accuracy. However, traditional IDS systems 
face challenges in processing large volumes of data 
and detecting increasingly complex cyberattacks. 
The limitations of manual processing in the face of 
growing data complexity have made the integration 
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of Artificial Intelligence (AI) crucial in enhancing 
IDS capabilities. 

AI has demonstrated its potential across various 
industries, including healthcare, education, 
manufacturing, and transportation, making it a 
promising solution for improving IDS performance 
[3]. By leveraging AI techniques, particularly 
Machine Learning (ML) and Deep Learning (DL), 
IDS systems can achieve automated, accurate, and 
scalable attack detection with minimal human 
intervention [4]. 

The selection of the research problem stems from the 
growing need to improve Intrusion Detection 
Systems (IDS) in the face of increasingly complex 
cyber threats that current security measures struggle 
to detect. In response to this need, we propose an 
Intelligent Security Management System (ISMS) [5] 
that manages IDS using three key engines: detection, 
analysis, and action as shown in Figure 1. The focus 
of this paper is on developing a high-performing 
model based on Artificial Neural Networks (ANNs) 
for classifying network traffic as benign or 
malicious. However, traditional ANNs, when trained 
using gradient descent methods, often encounter 
challenges such as getting trapped in local minima, 
which limits their accuracy. 

To address these challenges, this paper introduces a 
hybrid approach that combines ANN with 
optimization algorithms such as Spider Monkey 
Optimization (SMO), Harris Hawks Optimization 
(HHO), Cat Swarm Optimization (CSO), and 

Particle Swarm Optimization (PSO). These 
algorithms are used to optimize ANN parameters 
(weights and biases) to enhance classification 
accuracy and ensure rapid, intelligent attack 
detection. The findings of this study extend beyond 
previous work by demonstrating how combining 
ANNs with optimization techniques—such as Spider 
Monkey Optimization, Harris Hawks Optimization, 
Cat Swarm Optimization, and Particle Swarm 
Optimization leads to higher classification accuracy 
and faster detection of cyber threats. By comparing 
these techniques across multiple benchmark datasets 
(KDD Cup 99, NSL KDD, and UNSW-NB 15), this 
study identifies an optimal model that significantly 
improves IDS capabilities over traditional models. 
Our findings thus provide new insights into the 
effectiveness of optimization algorithms for 
enhancing IDS, contributing both theoretically and 
practically to the field of cybersecurity. 

The main contributions of this paper are as follows: 

 Enhance Intrusion Detection System (IDS) 
performance by integrating Deep Learning 
techniques with optimization algorithms, aiming 
to improve detection accuracy and response 
times. 

 Evaluation and comparison of the proposed 
models using three benchmark datasets: KDD 
Cup 99, NSL KDD, and UNSW-NB 15. 

 Identify an optimal model for enhancing IDS 
accuracy. 
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Figure 1. The architecture of Intelligent Security Management System 
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The remaining sections are organized as follows: 
Section I presents an introduction. Section II 
presents an overview and related work. Section III 
discuss the methodology of this paper. Section IV 
describes the results obtained with discussion. 
Conclusion and future work are presented in section 
V. 
 
2. OVERVIEW AND RELATED WORK 

In [6] Authors used the Neural Network and Particle 
Swarm Optimization algorithm to detect intrusion 
and attacks in cloud computing. The methods were 
tested for NSL KDD, and KDD CUP datasets. The 
results showed improved accuracy in detecting 
attacks and intrusions by unauthorized users.  
In [7], the Authors create a new intrusion detection 
model to classify binary, triple, and multi-class 
attacks. The model is based on a Whale Optimization 
algorithm (WOA) to adjust the weight vector of the 
ANN to achieve the minimum mean square error. 
They used the Mississippi State University and Oak 
Ridge National Laboratory databases of power-
system attacks to demonstrate the proposed model 
and show the experimental results. The comparison 
results show the superiority of the proposed WOA-
ANN model. 
In [8] Authors tries to build an Intrusion Detection 
System (IDS) for detecting security breaches in 
computer and network systems. For this reason, a 
new natural evolutionary algorithm (EA) called 
Multiverse Optimizer (MVO) is investigated and 
combined with ANN to develop advanced detection 
approaches for an IDS. This MVO-ANN model is 
applied to NSL-KDD and the new benchmark 
dataset called UNSWNB15. The results using 
UNSW-NB15 are better than those that were 
obtained using NSL-KDD. 
In [9] Authors presented an advanced IDS based on 
a combination of particle swarm optimization and 
neural network algorithms applied on KDDCUP99, 
NSL-KDD, and CIDD datasets. A preprocessing is 
previously performed on these datasets to choose a 
subset of the features, reduce dimension, and 
normalize data. The proposed model classifies the 
attacks, reduces the number of false alarms, and 
provides a higher accuracy compared to other 
algorithms.   
In [10] Authors try to improve the accuracy and 
efficiency of distinguishing normal traffic from 
abnormal one. The Authors carried out on a new 
approach for intrusion detection based on Artificial 
Bee Colony algorithm (ABC) and Monarch Butterfy 
Optimization (MBO) for preselecting the suitable 
biases ad weights of an ANN in order to increase the 
precision degree of classification for malicious and 

non-malicious traffic. Then, the ANN is retrained 
based on weights and biases obtained from the 
algorithm.   The hybrid model was evaluated on three 
datasets namely KDD Cup 99, ISCX 2012, and 
UNSW-NB15. The results obtained were compared 
to nine other algorithms, demonstrating that the 
proposed model provides significant enhancement 
and efficiency to network intrusion detection.  
In the research reported by [11] Authors introduced 
an intrusion detection system based on data mining 
and ML to detect network intrusion patterns. The 
model is based on ANN as a learning technique. The 
Grasshopper Optimization Algorithm (GOA) is used 
to minimize the intrusion detection error in the 
neural network by selecting suitable weight and bias. 
The models were evaluated by using KDD and 
UNSW datasets. The model outperforms and is more 
accurate than existing state-of-the-art techniques 
such as RF, XGBoost and embedded learning of 
ANN with BOA, HHO, and BWO algorithms in 
network detection.  
In [12] Authors tested a wide range of ANN 
topologies, by changing both the number of hidden 
layers and the number of neurons on those layers. 
However, the choice of hyperparameters like the 
activation function, the optimizer, the batch size, and 
the number of epochs can impact the accuracy of the 
model.  The tests were performed with the use of two 
IDS benchmark datasets, NSL-KDD and 
CICIDS2017. 
In [13] Authors presented an efficient hybrid IDS, 
model which is built using MapReduce based Black 
Widow Optimized Convolutional-Long Short-Term 
Memory (BWO-CONV-LSTM) network. The first 
stage of this IDS model is the feature selection by the 
Artificial Bee Colony (ABC) algorithm. The second 
stage is the hybrid deep learning classifier model of 
BWO-COV-LSTM on a MapReduce framework for 
intrusion detection from the system traffic data. The 
proposed model is the combination of Convolutional 
and LSTM neural networks whose hyper-parameters 
are optimized by BWO to obtain the ideal 
architecture. Evaluation of the BWO-CONV-LSTM 
is performed on the NSL-KDD, ISCX-IDS, UNSW-
NB15, and CSE-CIC-ISD2018 datasets. The results 
indicate that the proposed model BWO-CONV-
LSTM model has high intrusion detection 
performance with 98.67%, 97.003%, 98.667% and 
98.25% of accuracy for NSL-KDD, ISCX-IDS, 
UNSW-NB15, and CSE-CIC-IDS2018 datasets 
respectively, with fewer false values, less 
computation time and better classification 
coefficients.  
In [14] presented a model detecting accurately an 
attack based on Whale with Cuckoo search 
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optimization (WCSO) based quantum neural 
network (QNN) and elliptical curve cryptography 
(ECC. Whale optimization algorithm (WOA) is used 
to choose the features in the network data that aid in 
precisely detecting intrusions. To identify attacks, 
the optimized quantum network which combines the 
WOA approach with the feedforward and 
backpropagation algorithms, is used. Sensitive data 
retrieving requires an encryption procedure that is 
enabled by the ECC algorithm, which could safely 
save the data files in the server, in order to secure the 
documentation with security measures The QNN 
with WOA-based IDS framework is a solid option 
for real-time intrusion detection analysis with high 
accuracy of 98.5%. Thus, the study has 
demonstrated that the suggested model will also 
provide better secure data storage, resolving security 
concerns.  
In the research reported by [15], authors propose a 
novel IoT network intrusion detection approach 
based on Adaptive Particle Swarm Optimization 
Convolutional Neural Network (APSO-CNN). The 
PSO algorithm with change of inertia weight is used 
to adaptively optimize the structure parameters of 
one-dimensional CNN. The loss function value 
obtained from the first training CNN, is taken as the 
fitness value of PSO. Meanwhile, the comprehensive 
performance of proposed APSO-CNN shows that is 
the suitable tools for multi-type IoT network 
intrusion attack detection task.  
 

 
3. METHODOLOGY 

3.1 Model Classifier 
The hybridization between ANN and 

optimization algorithms (HHO, PSO, SMO, and 
CSO) is similar. Each one is used to search over a 
hyperparameter space to find the combination of 
hyperparameters that results in the best performance 
on the validation set. The choice of hyperparameters 
can significantly affect the performance of the ANN. 

During the optimization process HHO, SMO, 
PSO, and CSO creates a population of candidate 
solutions, which are represented as a vector of 
hyperparameters. These candidate solutions are then 
updated iteratively based on the fitness function, 
which is the validation accuracy of the ANN for a 
given set of hyperparameters. The fitness function is 
evaluated for each candidate solution, and the best 
solutions are selected for the next generation.  

Each HHO, SMO, PSO, and CSO tries to 
balance exploration and exploitation during the 
optimization process. For example, HHO uses a 

mechanism called ‘leadership hierarchy’ to 
encourage exploration and exploitation 
simultaneously. This mechanism involves assigning 
a leadership position to a subset of candidate 
solutions based on their fitness values. The leaders 
then guide the search process by influencing the 
movement of the other candidate solutions toward 
promising areas of the hyperparameter space.  

We come first to the building of the Fitness 
Function. In our case, for each optimizer (HHO, 
SMO, PSO, and CSO) we defined a function objf 
that implements (HHO, SMO, PSO, and CSO) 
algorithms for optimizing a given objective function 
that is used in the optimization process to evaluate 
the performance of ANN model. The fitness function 
takes a set of hyperparameters as input and returns a 
tuple of the model’s validation accuracy and loss. 

Here is how the hybridization happens between the 
optimization algorithm and the ANN model: 

 The optimization algorithm (HHO, SMO, PSO, 
or CSO) generates a set of hyperprameters to be 
evaluated by the fitness function. 

 The fitness function takes the generated 
hyperparameters and uses them to train an ANN 
model on the training data (Xtrain and Ytrain) for 
a fixed number of epochs (3 in our case) with a 
batch size of 16. It then evaluates the trained 
model on the validation data (Xvalid and Yvalid) 
and saves the model with the best validation 
accuracy using the ModelCheckpoint callback. 

 The fitness function returns a tuple of the 
model’s validation accuracy and loss to the 
optimization algorithm, which uses this 
information to update its search for better 
hyperparameters. 

 
The four hybrid models follow the 

following steps as illustrated in Figure 2: The 
weight and biases of ANN are optimized through 
SMO, HHO, PSO and CSO. By SMO-ANN, 
HHO-ANN, PSO-ANN, and CSO-ANN weights 
and biases are modified at each step of the 
algorithm to reach to their optimal values as 
shown in Figure 3.  Then, the weight and biases 
are fed into ANN again to help the ANN to 
minimize the attack detection error. This 
procedure is repeated until the required accuracy 
is achieved. Each optimization algorithm (SMO, 
HHO, PSO, and CSO) investigate the problem 
state to find the optimal solution. Each hybrid 
method (SMO-ANN, HHO-ANN, PSO-ANN, 
and CSO-ANN) is examined under three dataset 
KDD Cup 99, NSL KDD, and UNSW-NB 15 
dataset. A train set and a test set are randomly 
selected from each dataset. 
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Figure 2: Hybrid classifier for ISMS-detection engine 

 

3.2 Data and Metrics 
 

 In this section, all experiments have been 
conducted on a laptop kubuntu 20.04 operating 
system and Intel Core TM i3-8130U CPU@ 2.20 
GHZ and 8 GB RAM. However, python version 
2.7.18 has been used to implement the models using 
Jupyter Notebook which is a web application that 
allows to create an interactive environment that 
contains code, visualization and text.dimensionally. 

Start
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or

 

Figure 3: The usage of the optimization algorithm 
to select optimal weights and biases 

3.2.1 Datasets 
 
Datasets are critical to the development and 

testing of an IDS. However, DL models require a 
large amount of data to perform a better 
classification. Due to the unavailability of a recent 
dataset, we were forced to rely on existing datasets 
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that are commonly used by researchers for 
evaluating intrusion detection systems: 
 KDD CuP 99 dataset: is Knowledge Discovery 

and Data Mining created in 1999. The dataset 
represents a simulated computer network 
environment. The KDD Cup 99. Data contains a 
large number of networks connection records, 
which are commonly referred to as network 
flows. Each network flow is characterized by a 
set of features that provide information about the 
connection, for example source and destination 
IP addresses, duration of the connection, protocol 
type, port numbers, and various statistical 
attributes. The dataset is divided into two parts: a 
training set and test set. The training set contains 
approximately 4.9 million records, while the test 
set contains around 311,029 records. The training 
set is further categorized into several classes, 
representing various attack types and legitimate 
links. The types of attacks included in the dataset 
are Denial of Service (DoS), User to Root (U2R), 
Remote to Local (R2L), Probing and the Normal 
case. 

 NSL KDD: was created to solve the problems 
associated with the KDD Cup 99 dataset. These 
problems include redundant records and 
duplicate records. 41 attributes in the NSL KDD 
dataset are classified as either normal or attacked 
traffic. The NSL KDD dataset is divided into two 

sections: a test dataset and a training dataset. It 
contains four classes of attacks: DoS, U2R, R2L, 
and probing. 

 UNSW-NB 15: was created by the Australian 
Center for Cyber Security (ACCS) which 
contains two million of records. 

 
In the data analysis part that we followed, the 

main goal was to adjust the shape of the data so that 
it could be used with artificial intelligence 
algorithms. After the initial adjustment of the shape 
of the data and extracting the column that contain the 
categories of attacks that we need for the model to 
recognize them. Table 1 presents the number of 
samples in each of categories of attacks for KDD 
CuP 99, NSL KDD, and UNSW-NB 15 respectively.  
The data does not contain any missing data, then we 
come to the calculation of the correlation between 
the data columns and we notice that there is a strange 
formation between the columns stacked together and 
we also noted that there are some columns between 
them a very strong interdependence which is the 
problem must be solved. Therefore, before solving 
this problem, we applied the method of Interquartile 
Range (IQR) to identify outliers. The IQR is a 
measure of statistical dispersion and represents the 
range of the data from the first quartile (Q1) to the 
third quartile (Q3)

 

Table 1: Frequency of attack type values. 

 Dos Normal Probe R2L U2R 
KDD CuP 99 391458 97278 4107 1126 52 

NSL KDD 67342 45927 11656 995 52 
UNSW-NB 15 36171 145129 13160 39096 2520 

   The first step is to calculate the values for Q1 and 
Q3 using the quantile function. The quantile function 
divides the data into equal portions, and in this case, 
it calculates the values corresponding to the 25th 
percentile (Q1) and the 75th percentile (Q3) 
respectively. These percentiles help determine the 
range within which the majority of the once Q1 and 
Q3 are calculated, the next step is to calculate the 
IQR by subtracting Q1 from Q3. The IQR represents  

the spread of the middle 50% of the data. 

To identify outliers, we set lower and upper bounds. 
The lower bound is calculated by subtracting 1.5 
times the IQR from Q1, while the upper bound is 
obtained by adding 1.5 times the IQR to Q3. These 
bounds create a range beyond which data points are 
considered outliers. 

Finally, we filter the dataFrame by selecting only 
those rows where the “duration” values fall within 
the calculated lower and upper bounds. This 
effectively removes any outliers from the “duration” 
column, ensuring that the subsequent analysis is not 
skewed by extreme values. Now, to solve the 
problem of the high correlation between some 
columns in the data. We extracted the columns with 
correlation greater than 0.8 (because data that have a 
very strong correlation in most cases contain 
negation of information and therefore this will cause 
a bias of the model to these columns and therefore 
the results will not be accurate although it may give 
correct results) and we got rid of them directly so that 
the correlation between those columns turns like 
this.  
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3.2.2 Evaluation Metrics 
For proper evaluation of the effectiveness of an 

IDS, we are based on some important metrics: 
 Confusion Matrix: represents the summary of the 

prediction in the form of a matrix, as shown in 
Table 2. It shows the number of correct and 
incorrect predictions per class. 

 Accuracy: is the measure of the percentage of 
correct predictions and is expressed in the 
following way: 

TP TN

TP TN FP FN


  

 

 Precision: determines the ratio of correct 
predictions to the total number of correct 
predictions. 

TP

TP FP
 

 Recall: is used to determine the ratio of the 
number of correct prediction results to the total 
number of results for a particular class and can 
be defined as: 

TP

TP FN
 

 F1 score: is a number between 0 and 1, which is 
the weighted average of the precision and recall. 
The F1 score, which is defined as follows, is seen 
to be a more accurate indicator of performance 
than accuracy. 

2 precision PR

precision TPR

 


 

Table 2: Confusion matrix. 

 

3.3 Optimization Algorithms 
3.3.1 Spider Monkey Optimization 
 

       SMO is a metaheuristic algorithm according to 
the spider monkey’s foraging tactics.  SMO is widely 
classified as an intelligent algorithm based on a 
fission-fusion social structure. The original version 
of the algorithm and its variants have been 
successfully used in several optimization issues to 
identify the optimal solution. SMO can effectively 
balance the trade-off between exploration and 
exploitation, which are two major components of 
any swarm intelligence-based algorithm [16]. The 
main steps of SMO’s algorithm are: 

 

 Initialization: The initiation phase generates an 
initial distributed spider monkey population, where 
SMi represents the ith spider monkey (SM) in the 
population. Each SMi is initialized as Equation (1):  
 

    0,  1   ij minj maxj minjSM SM U SM SM    

             (1)      
 

Where, SMminj and SMmaxj are the lower and 
upper bounds of the search space in jth dimesion 
respectively, and U(0,1) is a randomly 
distributed number in the range of (0,1). 

 The local leader phase is the exploration phase of 
the search region. During this stage, every group 
member updates their positions in the dimensions 
with a high perturbation as Equation (2): 
 

 
   

 
  0,1    

)

 

 (1,1    

newij ij kj ij

rj ij

SM SM U x LL SM

U SM SM

   

  
    

      (2)                                          
 

 Where, SMij is the jth dimension of ith SM, LLkj 
represents the kth local leader of that group and 
SMrj is rth SM chosen arbitrarily within kth 
group in jth dimension such that r!=i and U(-1,1) 
is a distributed random number in the range (-
1,1).  

 Global leader phase: update their positions 
according to the probability based on the fitness 
of function as Equation (3): 

   ifit
 0.9    0.1

max_fitiProb                   (3) 

 
   The SM uses the global leader’s knowledge, the 
neighboring SM’s experience, and its persistence 
to update the position as Equation (4): 

   
   

   0,1     

 1,1    

newij ij j ij

rj ij

SM SM U GL SM

U SM SM

    

  
  (4)                                                                              

 

Where, GLj is the position of group leader in jth 
dimension and j ∈ 1, 2, 3. . . D 

  Global leader phase: update their positions 
according to the probability based on the fitness 
of function. The local Leader Learning phase 
(LLL) and Global Leader Learning phase (GLL), 
are employed to ensure the search procedure is 
not stagnating by updating the position of local 
leader and global leader by applying greedy 
selection, if there is no update, then local limit 

  Actual class 

Predicted class 
 Normal Attacks 

Normal TP FP 
Attacks FN TN 
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count (LLL) and global limit count (GLL) are 
incremented by 1, the SM with best fitness is 
selected as local leader in (LLL phase) and as 
global leader in (GLL phase). 

 The Local Leader Decision Phase is used to 
prevent local solutions from stagnating or 
converging prematurely. If a local leader 
doesn’t reorganize within a certain limit, called 
LocalLeaderLimit, everybody in this group 
updates their positions using the global leader’s 
experience, perturbation rate, or by random 
initialization as Equation (5): 

   
   

  0,1    

 0,1   –                                                

newij ij j ij

rj kj

SM SM U GL SM

U SM LL

    


(5) 

  
 Additionally, the final phase, the Global Leader 

Decision Phase, is designed to prevent the 
global best solutions from becoming stagnant. 
During this phase, the global leader’s position 
is monitored and the global leader divides the 
population into smaller groups if it is not 
updated. 

 
3.3.2 Harris Hawks Optimization 

 
  Harris Hawks Optimization (HHO) is a new 

nature-inspired population-based metaheuristic 
algorithm. The main inspiration of HHO algorithm 
that uses the Harris Hawk’s hunting and pursuit 
patterns to capture prey in the wild. This algorithm 
mimics the strategies of exploration, exploitation, 
and attack of the Harris Hawk. The Harris Hawk, 
also called the Dusky Hawk, HH hunts in 
cooperative groups. HHO is used for the application 
of various optimization tasks such as satellite image 
segmentation, air pollution prediction, slope stability 
prediction, color image multilevel thresholding 
segmentation, and many more. HHO can be one of 
the smartest birds in the natural world. The main 
step’s of HHO algorithm are: 

 
 Exploration phase (Searching / Investigation 

for target) 
 

     HH searches for prey using random perches and 
waits for prey using two strategies, assuming equal 
chance q for each perch strategy. The first one, 
which is generated based on random location and 
other hawks, is modeled as Equation (6) for the 
condition of (q < 0.5). The second one is a random 
position of the group members and the random 
scaling of the components which is modeled as 
Equation (6) for the condition of (q ≥ 0.5). Where 
X(t+1) is the position vector, Xrand is a randomly 
selected Hawk from the current population, X(t) is 

the Hawk's current position, Xtarget is the target 
position, Xm(t) is the current Hawks’ average 
position, r1, r2, r3, r4 are the random number 
between [0,1], and t is the current iteration. 
                                            

( ) 1 ( )

arg ( ) 3

4

| 2 2 ( ) |

( 1) ( ) (

( ))

rand t rand t

t et t

X r X r X t

X t X Xm t r LowerBound

r UpperBound LowerBound

 


    
 

    

    (6)                                                 
 

 
The current population’s average position might be 
calculated as Equation (7). 
 

             
N

i
i 1

1
Xm t X t

N 

                            (7) 

 
Where Xm(t) is the average position of current 
hawks population, t is the current iteration, N is the 
total population size and Xi (t) is the hawk current 
position. After that, the Harris Hawk can take 
advantage of the Rabbit following this: 
 When prey energy is low. 
 Prey energy decrease while escaping from the 

hawk. 
Depending on the prey’s escape energy, the HHO 
algorithm can switch between various exploitation 
behaviors and exploration. The energy of the rabbit 
decreases during its escape activity. We model the 
prey energy as Equation (8): 
 

          2 0(1 )
t

E E
MaxT

                       (8) 

Where, E is the energy of the prey’s escape, E0 is the 
initial state of its energy inside the interval [-1,1]. 
However, MaxT is the maximum number of 
iterations and t is the current iteration. 

 
 Exploitation phase  
Once a prey has been detected, HH can launch a 
surprise attack. In this algorithm, four strategies are 
proposed for the representation of a hawk’s attack on 
a rabbit: 

 
 Case 01: Soft round up (E≥ 0.5 and r ≥ 0.5) 

Hawk will perform Soft round up and Hard round 
up, HH (attackers) will surround the prey from 
different directions, softly or hardly (depends on 
the prey’s energy level).  
So, HH encircles the rabbit softly and make it 
more tired them the perform surprise attack. This 
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behavior is modeled as Equation (9) and 
Equation (10): 

 
 

( 1) ( ) | ( ) |rabbitX t X t E JX X t             (9)      

 

               ( )( ) ( )rabbit tX t X X t                  (10) 

 
∆X(t) is the difference between the rabbit’s 
location and the current position t, r5 is a random 
number between (0,1), and J = 2(1 − r5) 
represents the strength of the random jumps of 
the rabbit during the entire escape procedure. The 
J value will change randomly in each iteration to 
imitate the characteristics of the rabbit’s 
movements. 

 
 Case 02: Hard round up (E < 0.5 and r ≥ 0.5): 

In this case, Harris performs sudden attack. This 
behavior is modeled as Equation (11): 
 

( 1) ( ) | ( ) |X t Xraabit t E X t           (11) 
 

  
 Case 03: Soft round up with progressive rapid 

dives (E ≥ 0.5 and r < 0.5): 
HH softly encircle the rabbit, making it tired, 
performing surprise attack. This behavior is 
mathematically modeled as Equation (12): 
 

 
( ) | ( ) ( ) |Y Xrabbit t E JXrabbit t X t   (12) 

 
 

Then, to determine whether it will be a good dive 
or not, they compare the possible results of such a 
move with the previous dive. In case of 
inappropriateness (when he sees that his prey makes 
more deceptive movements), he starts to dive 
irregularly, suddenly, and quickly. We assumed that 
they would dive based on LF-based patterns using 
the following Equation (13):  

 
( )Z Y S LF D                                    (13) 

 
Where S is a random vector of size 1 × D, D is the 
dimension of the problem, and LF is the delivery 
function calculated by the following Equation (14): 
 

 
1 1( )

2

1 sin
( ) 2

( ) 0.01 ,
1

| | 2
2

u
LF x

v







 


 

 
 

           
      

  
(14)                                                                                
 
Where u, v are random values within the range [0,1], 
β is a default constant that is set to 1.5. Therefore, 
the final strategy to update the Hawks’ locations in 
this strategy can be performed as Equation (15): 
  
     

      
( ) ( ( ))

( 1)
( ) ( ( ))

Y F Y F X t
X t if

Z F Z F X t

   
      (15) 

                          
Where Y and Z are obtained using new rules in 
equation (12) and equation (13). Each step selects 
only the better position or Z as next position. All 
search agents receive this energy. 
 
 Case 04: Hard round up with progressive rapid 

dives (E < 0.5 and r < 0.5): 
The hawks will try to reduce the distance 
between their average position and the position 
of the escaping prey. Therefore, in this strategy, 
under the following conditions, the following 
Equation (16) is carried out: 
 

  
( ) ( ( ))

( 1)
( ) ( ( ))

Y F Y F X t
X t if

Z F Z F X t

   
     (16)    

 
 

Where Y and Z are obtained using new rules in 
Equation (17) and Equation (18) 
 

( ) ( )| ( ) |rabbit t rabbit tY X E JX Xm t            (17) 

               ( )Z Y S LF D                           (18) 

 
Where Xm(t) is calculated using Equation (8). Y or 
Z will be the next place where the new iteration 
will be released. 
 
3.3.3 Particle Swarm Optimization 
 
     PSO is another optimization approach based on 
animal/bird behavioral studies. It was developed by 
Eberhat and Kennedy [17]. This algorithm is suitable 
for feature selection problems because of its 
simplicity in coding features, its global search 
capability, its computational efficiency, its fewer 
parameters, and its easier implementation. In PSO, 
particles form a population called a swarm and 
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represent candidate solutions in the search space. 
Swarms of particles are generated by a random 
distribution of 0 and 1. For each particle, if the 
principal component has a value of 1, it will be 
selected, and the principal component with a value 
of 0 will be ignored. This randomly initializes the 
particle swarm and then moves the swarm in the 
search space or principal space to update its position 
and velocity to determine which feature subset is 
optimal. 
The current position of the particle position i and its 
velocity are shown in Equation (19) and Equation 
(20): 
 

    1 2 3, , , ,i i i i iDX X X X X                 (19) 

        1 2 3, , , ,i i i i iDV V V V V                       (20) 

 
 
The velocity and position of the particle I are 
calculated by Equation (21) [18] 
 

( 1)
1 1 2 2( ) ( )t t t t

id id id id i gd idv w v c r p x c r p x              

                           
1 1t t t

id id idx v v               (21) 

 
 
Where t is the tth iteration in the process, d is the dth 
dimension in the search space, w is the inertia 
weight, c1 and c2 are acceleration constants, r1i, and 
r2i are randomly distributed in [0,1], pid and pqd 
represent the elements of pbest and gbest in the dth 
dimension. 
To discover the optimal feature set, the position and 
velocity values of each particle are updated 
continually until a stopping criterion which could be 
either maximum iterations or adequate fitness.On 
each iteration, two new values, pbest and gbest, are 
added to the particles. The greatest solution to date 
is pbest (yij), whereas the second-highest score 
obtained from any particle in the population is gbest 
(ŷj ). 
 
3.3.4 Cat Swarm Optimization 

 
Cat Swarm Optimization (CSO) is a swarm 

intelligence algorithm, initially developed by Chu et 
al in 2006 [19]. This approach inspired by the 
behavior of cats has proven their effectiveness in 
solving a variety of scientific and engineering 
optimization problems. It is inspired by resting and 
foraging behaviors. However, when cats are resting, 
they have a very high level of consciousness and 
they have a keen awareness of their surroundings. 
So, they are constantly monitoring the environment 

intelligently and deliberately, and when they see a 
target, they will start to move towards it very 
quickly. Each cat represents a solution set, which has 
its own location, a fitness value, and a flag. It 
consists of M dimensions in the search space, each 
with its own speed. The CSO algorithm consists of 
two modes: the Tracing Mode and the Seeking 
Mode. Consequently, we should run the cats through 
the algorithm after setting the number of cats to be 
included in the iteration. Every iteration saves the 
best cat, and the last one is the final solution. 
 Seeking mode: 

This mode mimics the resting behavior of cats, 
where four basic parameters play an important role: 
seeking range of selected dimension (SRD), search 
memory pool (SMP), self-position consideration 
(SPC), and number of dimensions to change (CDC). 
The seeking mode steps are as follows: 
 From the current position of Cat, make as many 

copies as SMP. 
 For each copy, randomly choose as many CDC 

dimensions as required to mutate. 

Additionally, randomly add or subtract SRD values 
from the present ones. These values will replace the 
previous positions as shown in the following 
Equation (22): 
 

                       1   ( ) new oldXjd rand SRD Xjd    (22) 

 
 
Where Xjdold is the current position, Xjdnew is the 
next position, j is the number of a cat and d is the 
dimensions, and rand is a random number in the 
range of [0, 1]. 
 Evaluation of the fitness score (FS) for all 

candidate positions. 

 On the basis of the probability, one of the 
candidate points is selected as the cat’s next 
position, and the candidate point with higher FS 
is more likely to be selected, as shown in 
Equation (23). 
 

However, set the selection probability of each 
candidate point to 1 if all fitness values are equal. 

max min

| |i bFS FS
Pi

FS FS





    Where <i<j                 (23) 

If the target is minimized, then F Sb = F Smax; 
otherwise, F Sb = F Smin. 
 



 Journal of Theoretical and Applied Information Technology 
30th November 2024. Vol.102. No. 22 

©   Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 

 
8023 

 

 Tracing mode: 

The cats’ tracing behavior is mimicked in this mode. 
All dimensions of the cats’ locations will have 
random velocity values supplied to them in the first 
iteration. For the next stage, the velocity values must 
be modified. In this setting, the cats will be as 
follows: 
 Update the velocities (Vk,d) for each dimension 

by using equation (24). 

 If a velocity value exceeds the maximum, then, it 
equals the maximum velocity. 

 Update the Catk’s location using the Equation 
(25) 

 

 

          , , 1 1 , ,k d k d best d k dV V r c X X     (24) 

              , , ,k d k d k dV V V                      (25) 

CSO has demonstrated its ability to solve diverse 
and complex problems in many fields [12]. One key 

feature of this method is that the two modes (tracing 
and seeking) are autonomous and distinct from one 
another. This allows researchers to balance the 
exploration and exploitation phases by easily 
modifying or improving these modes. 
 
4. RESULTS AND DISCUSSION 

The performance of the proposed system in term of 
detection is evaluated under all metrics presented 
above. Furthermore, it was tested without any 
selection feature. 
After evaluating the models, the results are shown in 
Table 3 for KDD CuP 99, NSL KDD, and UNSW 
NB-15 respectively in terms of loss scores and 
accuracy for training, validating, and testing dataset 
to benchmark our changes and see if the models 
improve. 
The confusion matrix for KDD CuP 99, NSL KDD, 
and UNSW NB-15 respectively as shown in Figure 
4, Figure 5, Figure 6, Figure 7, and Figure 8. Based 
on this, we can calculate various metrics as shown in 
“Tab. 4” present the models performance, regarding 
to accuracy, precision, recall, F1-score, sensitivity, 
specificity, TP, and TN using the KDD CuP 99 and 
NSL KDD. 

  
(a) (b) 
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(c) 

Figure 4: Confusion Matrix for ANN model for: (a) KDD CuP 99; (b) NSL KDD; (c) UNSW-NB 15.  

  

(a) (b) 
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(c) 

Figure 5: Confusion Matrix for HHO-ANN model for: (a) KDD CuP 99; (b) NSL KDD; (c) UNSW-NB 
15.  

  

(a) (b) 
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(c) 

Figure 6: Confusion Matrix for PSO-ANN model for: (a) KDD CuP 99; (b) NSL KDD; (c) UNSW-NB 15.  

  

(a) (b) 

 
(c) 

Figure 7: Confusion Matrix for SMO-ANN model for: (a) KDD CuP 99; (b) NSL KDD; (c) UNSW-NB 15.  
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(a) (b) 

 
(c) 

Figure 8: Confusion Matrix for CSO-ANN model for: (a) KDD CuP 99; (b) NSL KDD; (c) UNSW-NB 15.  

Table 3: The accuracy and Loss. 

  Accuracy Loss 

  
Training data Validation 

data 
Testing 

data 
Training data Validation 

data 
Testing 

data 

KDD CuP 99 

ANN 99.81% 99.96% 99.97% 0.0058 0.0069 0.0059 

HHO+ANN 99.98% 99.96% 99.97% 0.0007 0.0415 0.1577 

PSO+ANN 99.98% 99.96% 99.97% 0.00082 0.0416 0.1655 

SMO+ANN 99.98% 99.96% 99.96% 0.00096 0.0465 1.2071 

CSO+ANN 99.98% 99.96% 99.97% 0.00063 0.0824 0.3076 

NSL KDD 
ANN 99.64% 99.48% 99.54% 0.0108 0.0182 0.014 

HHO+ANN 99.97% 99.87% 99.85% 0.00069 0.3539 0.1467 
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PSO+ANN 99.97% 99.88% 99.86% 0.00081 0.316 0.1242 

SMO+ANN 99.98% 99.88% 99.84% 0.00053 0.3669 0.2854 

CSO+ANN 99.98% 99.89% 99.85% 0.00047 0.2789 0.2789 

UNSW-NB 15 

ANN 79.6% 80.12% 79.42% 0.4811 0.484 0.4945 

HHO+ANN 83.86% 83.16% 82.66% 0.342 0.4321 0.4846 

PSO+ANN 84.05% 83.13% 82.75% 0.3407 0.4033 0.3968 

SMO+ANN 83.05% 83.02% 82.68% 0.3403 0.4253 0.4377 

CSO+ANN 83.9% 83.08% 82.74% 0.3411 0.511 0.4395 

Table 4: Detailed performance evaluation. 

  ANN HHO+ANN PSO+ANN SMO+ANN CSO+ANN 

KDD CuP 99 

Accuracy 99.81% 99.97% 99.97% 99.96% 99.97% 

Precision 99.84% 99.96% 99.96% 99.95% 99.96% 

Recall 99.80% 99.96% 99.96% 99.96% 99.97% 

F1-score 99.82% 99.96% 99.96% 99.96% 99.96% 

Sensitivity 99.97% 100% 100% 99.99% 100% 

Specificity 99.99% 99.99% 99.99% 99.99% 99.99% 

NSL KDD 

Accuracy 99.54% 99.85% 99.86% 99.84% 99.85% 

Precision 99.55% 99.84% 99.85% 99.80% 99.80% 

Recall 99.50% 99.80% 99.80% 99.80% 99.80% 

F1-score 99.54% 99.84% 99.85% 99.83% 99.85% 

Sensitivity 99.97% 99.98% 100% 99.98% 99.98% 

Specificity 99.99% 99.99% 99.99% 99.99% 99.99% 

UNSW-NB 15 

Accuracy 79.42% 82.66% 82.75% 82.68% 82.74% 

Precision 77.38% 82.50% 82.73% 82.59% 82.79% 

Recall 79.42% 82.60% 82.74% 82.68% 82.74% 

F1-score 74.98% 81.55% 81.45% 81.37% 81.46% 

Sensitivity 19.12% 63.54% 61.12% 61.15% 61.94% 

Specificity 99.61% 98.74% 98.89% 98.90% 98.92% 
 

Table 5: Comparison between the four models and other hybrid models over the KDD CuP 99 

 
Table 6: Comparison between the four models and other hybrid models over the NSL KDD 

Model Dataset Accuracy Precision Recall  F1-
score 

Sensitivity Specificity 

HHO-ANN 

K
D

D
 C

uP
 9

9 

99.97% 99.96% 99.96%  99.96% 100% 99.99% 

PSO-ANN 99.97% 99.96% 99.96%  99.96% 100% 99.99% 
SMO-ANN 99.96% 99.95% 99.96%  99.96% 99.99% 99.99% 

CSO-ANN 99.97% 99.96% 99.97%  99.96% 100% 99.99% 

ABC-MBO-
ANN [10] 

87.62%       

GOA-ANN 
[11] 

95.15 %     89.25% 93.17% 

HHO-MLP 
[20] 

99.13 %       

Model Dataset Accuracy Precision Recall F1-
score 

Sensitivity Specificity 

HHO-ANN 

N
S

L
 

K
D

D
 99.85% 99.84% 99.80% 99.84% 99.98% 99.99% 

PSO-ANN 99.86% 99.85% 99.80% 99.85% 100% 99.99% 

SMO-ANN 99.84% 99.80% 99.80% 99.83% 99.98% 99.99% 
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Table 7: Comparison between the four models and other hybrid models over the UNSW-NB 15  

 
However, these results are compared with each 
other. The experimental results indicate that:  
For ANN model: 
 Accuracy indicates that the model correctly 

classified approximately 99.81%, 99.54%, and 
79.42% for KDD Cup 99, NSL KDD, and 
UNSW NB-15 respectively of the total case. 

 Precision indicates that around 99.84%, 
99.55%, and 77.38% for KDD Cup 99, NSL 
KDD, and UNSW NB-15 respectively of cases 
predicted as positive by the model  were indeed 
positive. 

 Recall indicating that the model capture 
approximately 99.80%, 99.50%, and 79.42% 
for KDD Cup 99, NSL KDD, and UNSW NB-
15 respectively of the actual positive cases. 

 F1 score (99.82%, 99.54%, and 79.98% for 
KDD Cup 99, NSL KDD, and UNSW NB-15 
respectively) which represents the harmonic 
mean of precision and recall. 

 The sensitivity indicate that the model correctly 
identified around 99.97%, 99.97%, and 19.12% 
for KDD Cup 99, NSL KDD, and UNSW NB-
15 respectively of the positive cases. 

 The specificity suggest that the model achieved 
a high specificity for the different classes, 
ranging from 99.99% to 100%. 

 The classifier achieved perfect precision, 
recall, and F1-score for the ’dos’ and ’normal’ 
class. The ’r2L’ and ’u2r’ class exhibits lower 
precision, recall, and F1-score because the 
were only two instances of ’r2L’ class in the 
NSL KDD and ’u2r’ class in KDD CuP 99. 

however, the ’r2L’ class in KDD CuP 99 
and ’u2r’ class in NSL KDD achieved perfect 
precision, high recall, and F1-score. 

For HHO-ANN model: 

 The results indicate that the HHO+ANN model 
outperforms other models, demonstrating 
enhancements in accuracy, precision, recall, 
F1-score, sensitivity, specificity, as well as 
higher counts of true positives (TP) and true 
negatives (TN). 

 We notice that the HHO-ANN model can 
classify 1 attack as ‘u2r’ class even if we have 
just two samples of this type of class which 
cannot be done by ANN model. 

 The overall accuracy of the model 99.97%, 
99.85%, and 82.66% for KDD Cup 99, NSL 
KDD, and UNSW NB-15 respectively 
indicating that it correctly predicted the 
majority of instances in the dataset. 

For PSO-ANN: 

 The model achieved perfect recall, precision, and 
F1-score for “dos” and “normal” classes, 
indicating that it correctly predicted all instances 
of these classes. The ‘probe’ class has a slightly 
lower recall, indicating that some instances were 
misclassified as other classes. The ‘r2l’ class has 
lower recall and F1-score, indicating that the 
model struggled to correctly identify instances of 
this class. The ‘u2r’ class has a precision, recall, 
and F1-score of 0, indicating that the model did 
not predict any instances for this class. 

For SMO-ANN and CSO-ANN: 

CSO-ANN 99.85% 99.80% 99.80% 99.85% 99.98% 99.99% 

CSA-ANN [21] 99.8%      

SMO-RF [22] 99.67% 99.95% 99.94%    

SMO-DNN [23] 99.4% 99.5% 99.5% 99.6% 99.4% 99.6% 

SMO-ANN [24] 99.52% 99.37%     

Model Dataset Accuracy Precision Recall F1-
score 

Sensitivity Specificity 

HHO-ANN 
U

N
SW

-N
B

 1
5 

82.66% 82.50% 82.60% 81.55% 63.54% 98.74% 

PSO-ANN 82.75% 82.73% 82.74% 81.45% 61.12% 98.89% 

SMO-ANN 82.68% 82.59% 82.68% 81.37% 61.15% 98.90% 

CSO-ANN 82.74% 82.79% 82.74% 81.46% 61.94% 98.92% 

ABC-MBO-ANN 
[10] 

95.72%      

GOA-ANN [11] 98.88%    98.14% 98.09% 

HHO-MLP [20] 99.23%      
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 The SMO-ANN exhibits a significantly elevated 
loss when evaluated on the testing data compared 
to the other models. Furthermore, the training 
duration for SMO-ANN and CSO-ANN exceeds 
that of the other models. 

Based on comparison results for HHO-ANN, 
PSO-ANN, SMO-ANN, and CSO-ANN as shown in 
Table 4 and Figure 9: 

For accuracy: 

 We find that the accuracy of ANN model has 
increased with hybridization for HHO-ANN, 

PSO-ANN, SMO-ANN, and CSO-ANN with 
differences ranging: 0.16%, 0.16%, and 3.33% 
for KDD Cup 99, NSL KDD, and UNSW NB-15 
respectively. 

For loss: 
 We can see that SMO-ANN produce higher loss 

for KDD Cup 99, NSL KDD, and UNSW-NB 15 
respectively. 

 

  
(a) (b) 

 
(c) 

Figure 9: Comparison based on accuracy, precision, recall, F1-score, sensitivity, and specificity for: (a) KDD CuP 99; 
(b) NSL KDD; (c) UNSW-NB 15. 

For precision: 

 Indicate that the ANN model gains more 
precision when coupled with an optimized 
algorithm with differences ranging: from 0.12%, 
0.30%, and 0.41% for KDD Cup 99, NSL KDD, 
and UNSW-NB 15 respectively. 

For recall: 

 A high recall score is 99.97% for CSO-ANN 
compared to ANN model of 99.80%. Similarly, 
for NSL KDD, the four hybrid models show the 
same high recall score (99.80%), while the ANN 
model achieved a slightly lower score of 99.50%. 
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However, UNSW NB-15 gained 6.75 % of the 
value of recall when coupled ANN with an 
optimization algorithm. 

For F1-score: 

 Reveals that HHO-ANN, PSO-ANN, SMO-
ANN, and CSO-ANN all achieve the same   F1-
score of 99.96% for KDD Cup 99. However, for 
NSL KDD, PSO-ANN achieves a notably high 
F1-score of 99.85%. For UNSW-NB 15 a value 
of F1-score is passed 74.98% to 81.55% when 
coupled ANN with an optimization algorithm. 

The hybridization of ANN with HHO, SMO, CSO, 
and PSO achieved higher accuracy, precision, recall, 
F1-score, sensitivity, and specificity, sources that 
met the following criteria: studies published in peer-
reviewed journals, works that investigate IDS using 
AI techniques specifically ML and DL, and research 
that explores optimization algorithms in IDS 
contexts. We prioritized recent publications to 
capture advancements in IDS technologies and 
included benchmark studies that utilized datasets 
such as KDD Cup 99, NSL KDD, and UNSW-NB 
15 to allow for meaningful comparison with our 
proposed methods as shown in Table 5 and Table 6. 
These datasets have simpler attack patterns that are 
well-understood and widely studied, allowing your 
optimization algorithms to effectively tune the 
parameters of the ANN for better classification of 
intrusion types. The structured nature of these 
datasets favors optimization algorithms like HHO 
and PSO, which are excellent for fine-tuning neural 
networks in well-structured environments with 
predictable patterns. As a result, your work 
outperforms previous approaches in terms of 
accuracy and precision on these datasets. 

However, when applied to the UNSW-NB15 dataset, 
as show in Table 7 the hybrid model did not 
outperform other works in terms of accuracy and 
precision. The UNSW-NB15 dataset is more 
complex and includes a broader variety of attack 
patterns, which presents a greater challenge for 
conventional optimization methods. The diversity of 
attacks and more complex feature relationships in 
this dataset make it harder for optimization 
techniques like HHO, SMO, and PSO to navigate 
effectively, limiting their ability to optimize the 
ANN for higher accuracy and precision. In contrast, 
other authors may have used more advanced or 
specialized methods such as deep learning or 
ensemble models, which are better suited to handle 
the intricacy of UNSW-NB15, explaining why they 
achieved better accuracy and precision. 

While this study provides meaningful insights into 
enhancing Intrusion Detection Systems (IDS) 
through Artificial Neural Networks (ANNs) 
optimized with advanced algorithms, it has certain 
limitations that should be acknowledged. Firstly, 
although the proposed model performs well on 
benchmark datasets (KDD Cup 99, NSL KDD, and 
UNSW-NB 15), these datasets may not fully capture 
the evolving nature and complexity of real-world 
cyber threats. Therefore, testing the model in more 
dynamic and unpredictable network environments 
would be beneficial to confirm its robustness. 

Finally, the use of multiple optimization algorithms, 
such as Spider Monkey Optimization, Harris Hawks 
Optimization, Cat Swarm Optimization, and Particle 
Swarm Optimization, while beneficial for 
comparative analysis, adds computational 
complexity. The time and resource requirements for 
training and tuning may limit the model's practical 
applicability in resource-constrained settings. Future 
research could explore ways to streamline the 
optimization process, potentially by developing 
hybrid algorithms that retain high accuracy with 
lower computational demands. 

5. CONCLUSION 

    This paper investigated the effectiveness of 
hybrid optimization algorithms combined with 
Artificial Neural Networks (ANNs) to enhance the 
detection accuracy of Intrusion Detection Systems 
(IDS) across three widely used datasets: KDD Cup 
99, NSL KDD, and UNSW-NB 15. Our primary 
objective was to determine whether optimized 
ANNs could reliably differentiate between benign 
and malicious network traffic with high accuracy 
across diverse data environments. 

The results demonstrate that different optimization 
algorithms yield varying degrees of success 
depending on the dataset characteristics. 
Specifically, HHO-ANN was found to perform best 
on KDD Cup 99, largely due to its ability to handle 
this dataset’s inherent structure and frequency of 
attack patterns. This suggests that HHO-ANN’s 
optimization approach aligns well with the simpler, 
more predictable data distributions typical of KDD 
Cup 99. In contrast, PSO-ANN excelled on NSL 
KDD, which has a more balanced data structure with 
fewer redundant records, indicating that PSO-
ANN’s feature extraction and optimization 
techniques may be more suitable for datasets with 
reduced bias. Lastly, CSO-ANN showed superior 
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performance on UNSW-NB 15, demonstrating 
adaptability to datasets with more complex and 
modern attack scenarios. These findings indicate that 
each model has strengths that align with specific 
dataset characteristics, emphasizing that no single 
model is universally optimal across all types of 
network data. 

While these results meet our objectives, they also 
reveal limitations. The computational cost 
associated with training hybrid models remains a 
challenge, suggesting that future research should 
explore optimization methods that balance accuracy 
with efficiency. Moreover, although the models 
achieved high accuracy, their interpretability 
remains limited, which may affect real-world 
applicability in settings requiring human oversight. 
This insight calls for further development of 
interpretable AI methods within IDS frameworks to 
ensure the models are not only accurate but also 
transparent. 

In summary, this study highlights the potential of 
tailored optimization techniques to enhance IDS 
performance. The results underscore the importance 
of selecting optimization approaches that align with 
dataset characteristics to achieve reliable outcomes. 
Future work will focus on expanding the model to 
additional datasets, refining its computational 
efficiency, and integrating it into our ISMS system 
to support real-time network security monitoring. 
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