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ABSTRACT 
 

Weaving saturation can lead to several undesirable problems, such as problems with loom performance, 
premature wear of mechanical parts and loss of expensive raw materials. Therefore, when designing and 
creating new woollen fabrics, it is crucial to adjust yarn densities and qualities according to the weaves to 
pass weavability tests. This study focuses on the development of a practical fuzzy logic model to predict the 
saturation of new 100% Wool fabrics. To validate this fuzzy model, an experimental part was carried out. 
The fabric samples used in this study came from three different weave types (plain, twill and satin) and 
included five weft counts (Nm) and nine different densities. The results obtained using the fuzzy logic model 
developed were compared with the experimental values. The predictions generated by the fuzzy logic model 
were found to be satisfactory and accurate, demonstrating its effectiveness for predicting the saturation of a 
new 100% wool fabric.  
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1. INTRODUCTION  
 

Weave saturation is a critical problem in textile 
manufacturing, particularly for woollen fabrics. It 
leads to defects; premature equipment wears and 
material losses. Current tools are not optimized to 
meet the specific needs of woollen fabrics, and 
traditional physical testing approaches do not reduce 
costs or accelerate design times. In this context, it 
becomes essential to develop a model based on 
modern technologies, such as fuzzy logic, to 
efficiently predict the weavability and saturation 
limits of wool fabrics.   

In the field of textile modelling and simulation, 
several recent technological advances have helped 
to improve design and development processes. Here 
are some of these advances: 

 3D modelling 3D modelling technologies allow 
the creation of realistic virtual representations 
of textiles. This allows designers to visualize 
and manipulate fabrics virtually, making it 
easier to explore different design options and 
evaluate performance [1]. 

 Behaviour simulation: Simulation software can 
predict the behaviour of textiles under different 
conditions and constraints. For example, they 
can simulate tensile strength, deformation, 
abrasion resistance, breathability, weavability 
and so on. These simulations help to evaluate 
the performance of textiles even before creating 
physical prototypes [2], [3]. 

 Structure optimization: optimization software 
optimization techniques can be used to find the 
optimum structure for a textile based on 
specific objectives such as strength, flexibility, 
or lightness. These techniques allow a large 
design space to be explored and the best 
structural configurations to be identified [4]. 

 Integration of experimental data: Experimental 
data on textile properties, such as fiber strength, 
fabric stiffness, context, etc., can be integrated 
into simulation models. This makes it possible 
to better calibrate the models and improve their 
accuracy[5].  

 Multi-physics analysis: Textiles can be 
subjected to different physical stresses 
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simultaneously, such as mechanical, thermal, or 
fluidic. Recent advances have made it possible 
to develop multi-physics simulation tools that 
take account of these complex interactions, 
enabling a more accurate assessment of textile 
behaviour in real-life conditions[6]. 

 Artificial intelligence and machine learning: 
Artificial intelligence and machine learning are 
increasingly being used to improve textile 
simulation models, making it possible to 
analyze large quantities of data, identify 
patterns and generate more accurate 
predictions[7],[8].  

    By combining these technological advances, it 
is possible to reduce reliance on costly physical 
testing, speed up the textile design process and 
optimize the performance of end products. By using 
artificial intelligence in these ways, textile 
simulation models can be improved in terms of 
accuracy, efficiency, and cost [9]. This enables 
designers and manufacturers to make more 
informed decisions and develop better quality          
textiles[10],[11].  

The contribution of this research is crucial for 
the following reasons: 
 Technological advances: It introduces a 

predictive model based on fuzzy logic, 
demonstrating high accuracy. 

 Cost reduction: By eliminating the need for 
exhaustive physical testing, this research 
enables a significant reduction in the costs and 
lead times associated with textile design and 
production. 

 Industrial applicability: The model is fast, 
reliable and easy to use in an industrial 
environment, making it particularly relevant for 
manufacturers seeking to optimize their 
development processes. 

 Potential extension: This model could be 
adapted for other types of precious materials, 
paving the way for broader applications in the 
textile field.  

2. LITERATURE REVIEW 

Many efforts have been made to define and 
predict textile properties using AI. These 
technological advances offer numerous 
opportunities to improve the quality, performance, 
and functionality of textiles, while optimizing 
production processes and reducing costs and 
delivery times[12]. 

In their study, M. Alsayed, H. İ. Çelik and 
H. K. Kaynak investigated the factors influencing 

the air permeability of multi-filament fabrics, such 
as the number of filaments, weave density and 
weave type. Microfilaments were identified as 
having a significant impact on the air permeability 
of these fabrics due to their low porosity[13]. The 
aim of the study was to develop a fuzzy logic model 
to predict the air permeability of polyester multi-
filament fabrics, using both conventional yarn and 
microfilaments. 

The fabric samples used in the study 
included different fineness levels of microfilament 
and conventional filament, as well as different 
weave types and weave densities. The researchers 
compared the experimental results with the 
predictions of the fuzzy logic model and regression 
equations. The results showed that the fuzzy logic 
model had satisfactory accuracy, with a lower mean 
absolute error than the regression analysis. This 
confirms the superiority of the fuzzy logic model for 
predicting the air permeability of multi-filament 
fabrics. 

In their study, M. KODALOĞLU and F. 
AKARSLAN KODALOĞLU examined the use of 
fuzzy logic to assess temperature physiology and 
occupational health in weaving companies[14]. The 
identification of risks in the work environment has 
been identified as a crucial factor in the prevention 
of work-related health problems, occupational 
diseases, and work-related accidents. The fuzzy 
logic approach offers a precise and adaptable 
method for assessing these risks and taking 
appropriate preventive measures. Using fuzzy logic, 
the researchers were able to consider various factors 
such as temperature, humidity, ventilation, exposure 
to chemicals, etc, to assess the health risks for 
workers in weaving companies. This approach 
makes it possible to obtain more precise and detailed 
assessments, considering the complexity and 
variability of working conditions. 

In their study, T. Hussain, A. Jabbar and S. 
Ahmed found that adaptive neuro-fuzzy models 
slightly outperformed regression models in 
predicting compressed air consumption in the air-jet 
weaving process. These models have shown 
promising potential for estimating compressed air 
consumption, detecting air leaks and similar 
applications [15]. The researchers compared the 
performance of adaptive neuro-fuzzy models and 
regression models in predicting compressed air 
consumption in air-jet weaving. The results showed 
that adaptive neuro-fuzzy models were slightly 
superior in terms of prediction accuracy and 
reliability. This suggests that these models are more 
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effective at estimating compressed air consumption 
and can be used to detect air leaks and similar 
problems.  

 In their study, T. Tundo, and E. I. Sela  
investigated the use of fuzzy logic to solve 
production problems, focusing on the determination 
of fabric production using variables such as 
inventory, demand, and production costs[16]. Two 
methods were explored: the Tsukamoto method and 
the Sugeno method.  The Tsukamoto method uses 
fuzzy sets to represent the input and output 
variables, while the Sugeno method uses constants 
or mathematical functions to model the relationships 
between the variables. The researchers compared 
the results obtained using these two methods with 
the company's actual data. The results of the study 
showed that the Tsukamoto method, using Weka 
rules, was the closest to actual fabric production. 
This means that this fuzzy logic approach, using 
fuzzy sets and specific rules, was better at predicting 
fabric production as a function of inventory, 
demand, and production cost variables. 

   In their study, M. A. I. Hussain, B. Khan, 
Z. Wang, and S. Ding developed a deep learning 
model using residual network (ResNet) for textile 
weave pattern recognition and classification [17]. 
The model was designed to be robust and able to 
generalize by incorporating data augmentation 
techniques. The researchers evaluated the model's 
performance using measures such as accuracy, 
balanced accuracy and F1 score. The experimental 
results demonstrated the robustness of the proposed 
model, with high performance even when the 
physical properties of the tissue were modified 
Compared with other approaches, including the 
VGGNet pre-trained model, the ResNet-based 
model achieved superior accuracy in weave pattern 
recognition. It also showed an improved ability to 
handle rotation and lighting effects.  

L. S. Admuthe and S. Apte have adopted 
an approach combining two techniques, namely 
adaptive neuro-fuzzy inference system (ANFIS) and 
subtractive clustering, with the aim of predicting 
thread properties. ANFIS is an inference system 
based on neuro-fuzzy networks, which exploits the 
advantages of neural networks and fuzzy systems to 
model and predict complex relationships. 
Subtractive clustering, on the other hand, is a data 
clustering method aimed at identifying underlying 
structures in a data set[18]. In this context, it is used 
to prepare ANFIS input data by identifying groups 
of similar threads. 

The study by S. A. Malik et al  focuses on 
the analysis of polyester barrier fabrics (PES) and 
aims to establish a correlation between air 
permeability and influential parameters such as 
material, construction, and manufacturing 
process[9]. To this end, artificial neural network 
(ANN) models have been developed to map the 
relationships between input and output variables. 
Three ANN models were optimized according to the 
number of input variables, and the one that used all 
selected inputs showed the best results. The use of 
ANN makes it possible to adjust the permeability of 
barrier fabrics to specific needs, by optimizing 
loom, fabric, and yarn parameters. This approach 
avoids costly and time-consuming testing. 

The article by L. K. Ncube, T. R. 
Chikowore and N. R. Sibanda presents the 
development of a fuzzy logic-based tool for 
managing textile weaving production in a context of 
increasing customer orders[19]. This tool, created 
using MATLAB, aims to optimize the use of limited 
raw materials and to make efficient decisions. 
Thanks to this fuzzy logic module, it is possible to 
determine the optimum number of orders that can be 
processed as a function of the raw materials 
available, and the number of orders received. Model 
validation results show that this tool could process 
80% of orders received, a significant improvement 
on the 50% currently processed. 

This potential improvement could lead to a 
30% increase in production and a 1.2% increase in 
daily profits. Using fuzzy logic, this tool offers a 
solution for optimizing order management, 
maximizing the efficiency of raw material use and 
improving the overall performance of the textile 
production process. 

The paper by Z. Gao and L. Chen [1] 
presents a comprehensive review of methods for the 
numerical analysis of 3D woven fabrics, focusing on 
recent advances in modelling methods at the meso 
and microscopic levels. It also analyses various 
virtual fibre models and discusses methods for 
detecting and modelling contact and friction 
interactions between fibres. The aim is to provide a 
reference for research into the simulation of 3D 
woven fabrics. 

The work of S. Shahrabadi, Y. Castilla, 
M. Guevara, L. G. Magalhães, D. Gonzalez, and T. 
Adão [8] provides a review of defect types and 
automated optical inspection (AOI) systems based 
on machine learning techniques, demonstrating their 
effectiveness in the analysis of textile materials. The 
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use of convolutional neural networks (CNNs), such 
as AlexNet and VGG16, has made it possible to 
achieve accuracy rates more than 98%. 

All the above work has focused on the 
application of models to plastics materials. To our 
knowledge, no research has focused on wool, which 
is why the present work will develop a model based 
on fuzzy logic dedicated to 100% wool fabrics. 

The aim of our new research is to develop 
a fuzzy logic-based model to predict weaving 
saturation for 100% wool fabrics. We will then 
compare the results of this model with experimental 
data obtained from loom experiments and tests. 

   Weavability refers to the ability of a material to be 
woven successfully in the textile manufacturing 
process (weaving). To achieve our goal, we draw on 
existing expertise in weavability and textile 
manufacturing technologies. We use the knowledge 
and fundamental principles that influence weaving, 
such as context, weaving parameters, interactions 
between threads, etc. In the experimental part of our 
research, we focus on exploring the limits of 
weavability and saturation indices in weaving. 
Understanding these limits is essential for 
optimizing textile manufacturing processes and 
guaranteeing the quality of end products. In 
addition, we will examine saturation indices, which 
determine the maximum yarn absorption or 
retention capacity of a new fabric. The results of our 
previous experiments will be presented to deepen 
our understanding of these important aspects of 
weavability. 

Various studies have been carried out to 
determine saturation index formulae: Love's 
equations [20], Peirce's theory, Ashenhurst's theory 
[21], Law's rules [22] , Brierley's theory, Russell's 
index and Seyam and El Shiekh's saturation 
formulae [23],[24], Booten's index [25] and M. 
Dalal's saturation formulae [26] have been used to 
help define and formulate these indices and 
saturations. 

This research was carried out under the 
following assumptions: 

Assumption 1: The cross-section of the yarn is 
assumed to be cylindrical [21]. 

Assumption 2: If the number of threads is 
contracted, the threads are separated by only one 
thread thickness (equivalent to one diameter). 

Assumption 3: Linear density and material density 
(g/cm3) are identical and homogeneous. 

 

Figure 1: Warp cross section 

 
Figure 2: Weft cross section 

  
The formulae corresponding to these 

saturation indices in the case of high tension are as 
follows[27]: 

 

With: 
Ich = Isch: warp saturation index. 
Itr = Istr: weft saturation index. 
Ist: fabric saturation index. 
Cch: Actual warp count. 
Ctr: Actual weave count. 
Rch: Warp weave ratio. 
ntr: Number of weft face changes / warp ratio. 
ρf ch: Density of warp yarn (g/cm3). 
ρf tr: Density of weft yarn (g/cm3). 
ρytr: Density of weft yarn (g/cm3). 
Tch: Warp yarn count (in Tex). 
Ttr: Weft yarn count (in Tex). 

(1) 

(3) 

(2) 
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The literature review presented in the paper 
highlights significant advances in the use of artificial 
intelligence, particularly fuzzy logic, to predict 
various parameters in the textile field (air 
permeability, compressed air consumption, 
production management, etc.). However, to our 
knowledge, few if any studies have focused on the 
weavability of wool fabrics, a complex material 
characterized by specific properties such as elasticity 
and voluminous texture. 

Weave saturation, a common problem, leads to 
defects, costly material losses and premature 
equipment wear. Currently, predicting weavability 
limits relies mainly on costly and time-consuming 
physical testing. This research is therefore needed to 
fill this gap by proposing a fuzzy logic model 
capable of predicting saturation and weaving 
feasibility for new wool fabrics, thus enabling 
significant savings in time and resources. 

This study differs from previous work in 
several respects: 
 Focus on wool: unlike the research by M. 

Alsayed et al [13], which focused on the 
permeability of polyester fabrics, this study 
focuses on the weavability of wool fabrics, a 
largely unexplored area. 

 Saturation prediction: Existing fuzzy logic 
models have been applied mainly to aspects 
such as compressed air consumption [15], 
production management [19], or the assessment 
of physiological properties of textiles [14]. This 
study extends the application of fuzzy logic to 
the prediction of weaveability limits, offering a 
unique and practical solution. 

 Integration of saturation indices: The 
integration of theoretical concepts established in 
the literature, such as saturation indices (Love, 
Peirce, Seyam and El Sheikh), into a fuzzy 
logic-based model is a novel advance that has 
not been exploited in previous work. 

 Cost and time efficiency: The proposed model 
eliminates the need for exhaustive physical 
testing, thus reducing costs and speeding up the 
design process. 

 Robust experimental validation: With a mean 
absolute error of just 1.22% (98.78% accuracy), 
this model demonstrates a significant practical 
advance. 

These elements show that this research 
provides a practical and effective solution to a 
specific problem by extending the applications of 
fuzzy logic, filling an important gap and offering an 
innovative and effective solution to the problem of 
the weavability of woollen fabrics. 

In this study, the main objective was to 
determine the weavability limits of the fabrics. The 
weavability limits refer to the maximum density at 
which a fabric can be woven without causing weaving 
problems, such as defects or thread breaks. To 
achieve this objective, several steps were taken. 

First, fabric samples were woven on a loom 
using three basic weaves: plain, twill and satin. These 
basic weaves represent different configurations of 
weft and warp yarns. Next, the weave density, also 
known as " weft density ", gradually increased for 
each type of weave. This means that the number of 
weft threads per centimeter was increased until a 
maximum density was reached. 

During the weaving process, 
measurements and observations were made to assess 
the quality of the fabric and to detect any weaving 
problems. When defects began to appear or weft 
threads could no longer be inserted correctly, the 
weave density was considered to have reached its 
limit of weavability for that fabric sample. 

Once the fabric samples and experimental 
data had been collected, a fuzzy model based on 
artificial intelligence was developed. This fuzzy 
model uses fuzzy sets to represent and deal with the 
uncertainty and variability of the parameters 
involved in the weaving process. It has been trained 
using expert data, i.e. the knowledge and 
observations of textile professionals, to predict 
weavability limits when weaving new fabrics. 

The advantage of this fuzzy model is that it 
can predict the weavability limits of a new fabric 
without having to carry out costly and time-
consuming weaving tests on the actual machine. 
This saves time and resources, while avoiding 
potential mechanical damage caused by weaving 
tests. 

Finally, to assess the effectiveness and 
accuracy of the fuzzy model, the experimental 
results obtained from the study of weavability limits 
were compared with the model's predictions. If the 
fuzzy model can accurately predict the weavability 
limits of new fabrics, this indicates that it can be 
used as a reliable tool in the process of designing 
and developing new textiles. 

3. MATERIAL AND METHODS 
 
3.1    Material and procedure 
 
3.1.1    Materials 
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Three variables were used to produce 
samples of 100% wool fabric: the type of weave 
(plain, twill and satin), the count of the weft yarns 
(measured in Nm) and the density of the weft 
(expressed as the number of picks per centimeter). 
Characteristics of the loom and textile materials 
used for the various tests: 
Dobby looms with positive transfer flexible lances. 
Speed: 400 strokes/min. 
Warp: 
Worsted wool yarn with count: Nm = 60/2.  
Warp count = 30 ends/cm 
Weft: 
Material: 100% wool. 
Weft count and count (Nm) are variable. 
Loom width: 180 cm. 
Weft qualities: 
100% wool Nm: 10, 15, 20, 25, 30, 35, 40, 45, 50 
and 60. 
 
3.1.2      Procedure 

Different fabrics are produced and for each 
weave, the weft density is increased on the loom 
until the fabric is saturated: starting with normal 
weft density, then strong density and increasing to 
saturated weft for each type of weave and weft count 
with the following parameters: 
Fixed parameters: warp qualities and 
characteristics: 

Variable parameters (Weft): density and count 
(Nm). 

Variable parameters (Weaves): plain, twill and 
satin. 

We made various representative fabric 
samples by varying the weft quality, increasing the 
number of wefts per cm, and tensioning the warp 
until the fabrics reached saturation. For each weft 
quality, the saturation repeat is the average of five 
trials on the loom. 

3.2.   Fuzzy model 
 
3.2.1     Presentation of Fuzzy Logic 

The history of fuzzy logic[28] dates back to 
the 1960s, when Lotfi Zadeh, an Iranian-American 
mathematician and computer scientist, introduced 
this new branch of logic. He was inspired by the 

observation that many aspects of reality cannot be 
easily categorized in terms of true or false, but rather 
in terms of degrees of truth. 

Traditional logic, based on the principle of 
the excluded third, considers that every proposition 
is either true or false, with no possibility of 
compromise. However, Zadeh realized that in many 
fields, such as linguistics, decision-making or the 
modelling of complex systems, it was more 
appropriate to use degrees of truth rather than binary 
values [29].  

Zadeh introduced the concept of Fuzzy 
Logic to model and reason about vague or imprecise 
concepts. In fuzzy logic, propositions can have a 
truth value that varies between 0 and 1, reflecting 
the degree of certainty or uncertainty associated 
with each proposition. For example, instead of 
saying that it is raining or that it is not raining, the 
degree of rainfall can be expressed on a scale of 0 to 
1. Fuzzy logic is based on sound mathematical 
principles, particularly the theory of fuzzy sets. It 
uses fuzzy operators such as fuzzy conjunction 
(AND), fuzzy disjunction (OR) and fuzzy negation 
(NOT), which allow fuzzy truth values to be 
manipulated in a coherent way. 

Since its introduction, fuzzy logic has had 
many practical applications. It has been successfully 
used in areas such as systems control, pattern 
recognition, inference systems, artificial 
intelligence and decision making. It can be used to 
model and reason about complex real-life situations, 
where factors are often imprecise, incomplete or 
contradictory [30].  

The history of fuzzy logic is therefore 
that of an innovative approach that has opened new 
perspectives in terms of modelling and reasoning, 
by considering the fuzzy and uncertain nature of 
many real-world phenomena. It continues to be an 
active and promising area of research, offering 
powerful tools for dealing with the complex and 
uncertain problems we face[31].   

Fuzzy logic consists mainly of three stages: 
fuzzification, the inference engine and 
defuzzification. This is illustrated in Figure 3 below. 
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Figure 3: Fuzzy Inference Process 

 
 

 3.2.2   Fuzzification  
Fuzzification involves converting crisp 

values into fuzzy values by assigning a degree of 
membership to different linguistic terms or fuzzy 
sets using membership functions. The choice of 
membership form depends on the specific problem 
and the data available. The triangular form is 
commonly used because it is easy to understand and 
interpret and allows intuitive modelling of linguistic 
variables. However, trapezoidal, and Gaussian 
forms of membership functions can also be used 
depending on the requirements of the problem and 
the characteristics of the data. 

The general equation for a triangular 
membership function is:  

 

Figure 4: The Triangle Membership Function 

  

The fuzzy prediction model was 
constructed using three fabric variables: yarn count 
(Nm), weft count (number of wefts per cm) and 
weave type (plain weave, twill, and satin). These 
variables were the most relevant for predicting 
saturation filling. They were used as inputs to the 
model, while the fabric saturation index was used as 
an output variable. 

For fuzzification, five weft count values 
(Nm10, Nm20, Nm25, Nm35 and Nm60) were used 
as numerical (quantitative) input variables (Fig. 5). 
In addition, the loom saturation weights (9, 12, 15, 
18, 23, 27, 34, 40 and 47) were also used as 
numerical (quantitative) input variables (Figure 6). 
The three weaving types (canvas, twill, and satin) 
were considered as linguistic (qualitative) input 
variables (Figure 7). 

As for the output fuzzy sets, three fuzzy 
sets were defined for the saturation index: "weaving 
possible", "saturation" and "weaving impossible" 
(Figure 8). 

Inference engine Defuzzification Fuzzification 

Fuzzy Knowledge Base 

Output Input 

Rule Base 
 

(4) 
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Figure 5: Input of yarn count yarn weft (Nm) 

 

 
Figure 6: Input of Weft density 

 

 
Figure 7: Input of weave type 

 
Figure 8: Output of saturation index 

 
3.2.3   The Fuzzy Inference engine 

Fuzzy inference is an approach that 
allows us to make decisions using rules formulated 
using linguistic terms.  
The inference rules [27] are written as: 
 
Rule 1: if X1 is A11 and X2 is A12… and Xn is A1n 
then y is C1. 
. 
. 
Rule m : if X1 is Am1 and X2 is Am2… and Xn is 
Amn then y is Cm 
 
X= (X1, X2,….,Xn): vector of inference 
A=[Am,n]: characteristic matrix 
C= (C1, C2,….,Cm): result vector 
 

µm = ෑ 𝝁𝒎𝒋
(𝑿𝒏)

𝒏

𝒋ୀ𝟏
 

 
m : degree to belong of membership function decision 
class 
mj: degree to belong of membership function criterion. 
 
       Example for the rules base:  
WD: Weft density 
WC: Weft yarn count 
WT: Weave type 
SI: Saturation index   

 

(5) 
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3.2.4    Defuzzification  

Defuzzification is the process of 
converting the variables that describe the overall 
efficiency of a system, expressed in linguistic or 
fuzzy terms, into a numerical value. In this context, 
the center of gravity method is used to consider all 
the available information and obtain a precise value 
that represents overall efficiency. 

The fuzzy control surfaces shown in Figure 9 were 
generated using MATLAB's Fuzzy software. 
 

 
Figure 9: fuzzy control surfaces 

   

Figure 9 shows graphically the 
relationship between weave type, weft count and 
weft density on the input side, and the weavability 
saturation index on the output side. These figures 
show the interactions and trends between these 
variables.  

To validate the effectiveness of the fuzzy 
system developed, the values of Nm15, 30, 40, 45 
and 50 and their saturation dummies were used to 
check the model's performance. This validation 
confirmed the ability of the fuzzy prediction model 
to provide accurate and reliable results. 

Figure 10 shows the fuzzy prediction 
model and clearly explains the process used to make 
the predictions. The model uses fuzzy concepts and 
logic rules to estimate the saturation index as a 
function of weft count, weft density and weave type.  

Here are three examples of predictions 
made by the model: 

 If the weave is a plain weave with a weft count 
of Nm 30 and a weft repeat of 20, then the 
predicted saturation index is 68.6 (saturated 
weave). 

 If the weave is a twill and the weft count is Nm 
45 and the weft density is 34, then the predicted 
saturation index is 66.9 (saturated weave). 

 If the weave is a satin weave and the weft count 
is Nm 50 and the weft density is 40.5, then the 
predicted saturation index is 66 (saturated 
weave).   These examples demonstrate how the 
fuzzy logic model can consider the different 
variables and generate accurate predictions of 
saturation index as a function of weaving 
parameters. 

 

(6) 
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Figure 10: Rule viewer of developed fuzzy mode 

 
4. Results and discussion 
 

Figures 11, 12 and 13 show experimental 
results in the form of saturation curves for fabric 
samples in the three weave types: plain weave, twill 
weave and satin weave. When analyzing fabric 
saturation, three important factors are generally 
considered: weave type, weft count and number of 
picks per centimeter. Weft count refers to the 
thickness or fineness of the yarn used in fabric 
manufacture, measured in Nm. The number of picks 
per cm represents the number of weft threads 
present in one cm of fabric. 

 In our experiment, by setting the weave 
type, we observed a significant correlation between 
the weft count and the number of picks per cm, as 
evidenced by the high coefficients of determination 
(R²): R² = 0.9966 for plain weave, R² = 0.9935 for 
twill and R² = 0.9962 for satin. 

 When the yarn used for the weft is finer, 
i.e. it has a higher Nm count, it has a greater surface 
area per unit mass. Consequently, to achieve fabric 
saturation, it is necessary to increase the number of 
picks in the fabric, i.e. to increase the number of 
weft threads per cm. 

The positive correlation we observe 
between weft count and the number of picks per 
centimeter is therefore consistent and predictable. It 
highlights the fact that to achieve fabric saturation, 
it is necessary to adjust the number of picks 
according to the count of the weft yarn used. 

 

Figure 11: Saturation curve of plain weave 
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Figure 12: Saturation curve of twill weave 

 

Figure 13: Saturation curve of satin weave
 

Table1:Comparison of predicted and experimental values for saturation index

    Saturation index %  

Sample Weave Nm Picks/cm Experience Fuzzy logic Err % 

1 Plain 15 12,00 67,4 67,2 0,32% 

2   30 20,00 65,8 66,9 1,69% 

3   40 26,50 70,4 71,7 1,81% 

4   45 28,00 68,3 68,6 0,46% 

5   50 30,00 67,8 66,4 2,07% 

6 Twill 15 15,00 67,8 67,2 0,85% 

7   30 25,00 68,5 67,5 1,45% 

8   40 31,50 70,7 70,9 0,25% 

9   45 34,00 70,5 68,6 2,64% 

10   50 35,00 67,6 66,0 2,31% 

11 Satin 15 18,50 67,3 67,2 0,19% 

12   30 29,00 66,7 67,1 0,59% 

13   40 36,00 69,0 69,2 0,35% 

14   45 39,00 69,4 68,6 1,14% 

15   50 40,50 67,5 66,0 2,21% 

    Mean absolute error % 1,22% 

Table 1 and Fig. 14 show the experimental 
results of the fabric saturation index, which are the 
measurements obtained during actual tests. These 
results are compared with the values predicted by a 
fuzzy logic model developed specifically for this 
context. The fuzzy logic model is an inference system 

that uses fuzzy concepts to represent and deal with 
uncertainty in data. To evaluate the performance of 
the fuzzy logic model, the percentage errors between 
the experimental results and the predicted values are 
calculated. The average absolute error of the fuzzy 
model is 1.22%. This means that, on average, the 
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predictions of the fuzzy logic model deviate from 
reality by only 1.22%. Such a low error percentage 
indicates that the fuzzy logic model is highly accurate 
and reliable in its predictions. 

This result is important because it suggests 
that the fuzzy logic model can be used with 

confidence to make accurate predictions in the 
specific domain of tissue saturation index. It can be 
used to estimate the tissue saturation index for new 
samples where experimental measurements are not 
available. 

 
Figure 14: The values of the experimental and expected saturation index 

The agreement between the experimental 
curve and that predicted by the fuzzy logic model is 
a significant result that underlines the validity and 
relevance of the model in this specific field. This 
indicates that the fuzzy logic model can reproduce 
the relationships and behaviour observed in real 
data, which is essential for providing accurate 
predictions.  

An important aspect is the ability of the 
fuzzy logic model to capture the general shape of the 
experimental curve. This means that the model can 
capture general variations and trends in the data, 
which is essential for understanding and predicting 
the behaviour of the system under study. The model's 
ability to reproduce the experimental curve also 
suggests that it has been able to integrate the relevant 
information contained in the experimental data and 
use it to generate accurate predictions. 

This observation reinforces confidence in 
the use of the fuzzy logic model to make decisions 
and predictions in this field. The model's ability to 
deliver results that closely match real data is an 
indicator of its performance and accuracy. This 
means that the model can be reliably used to simulate 
scenarios, optimize processes, or make informed 
decisions. 

Using the fuzzy logic model, it is possible 
to explore different combinations of variables and 
parameters to better understand the system under 
study. This can lead to significant improvements in 
various fields of application, such as industry, 
engineering, finance, or medicine. 

The results of this study are based on 
several rigorous criteria. The fuzzy logic model was 
experimentally validated by comparing its 
predictions with data from real trials. The results 
show a close match, with an average absolute error 
of just 1.22%. The variables used in the model (yarn 
count, dobby and weave type) proved sufficient to 
predict saturation limits accurately. Furthermore, the 
trends observed in the experimental and simulated 
curves confirm the model's ability to capture the 
complex interactions between these variables. These 
elements demonstrate the reliability and robustness 
of the proposed approach. 
 
5.  CONCLUSION 
 

The development of the fuzzy logic model 
on MATLAB was motivated by the need to reduce 
the costs and time associated with weavability 
testing in the textile industry. Traditionally, after 
new fabrics have been designed and created, it is 
necessary to carry out tests to assess their suitability 
for successful weaving. However, these tests can be 
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time-consuming, costly and lead to material loss. 
The fuzzy logic model we have developed uses fuzzy 
concepts and logic rules to estimate the weavability 
of a given fabric. It considers various parameters, 
such as fabric type, yarn density and other specific 
material characteristics, to generate accurate 
predictions. The average absolute error of 1.22% 
indicates that the model's predictions are in very 
good agreement with actual weavability test results. 
This means that the model is reliable and can be used 
as an accurate predictive tool, enabling informed 
decisions to be made about fabric feasibility without 
the need for physical testing.   

   By using the model, textile manufacturers can save 
time and resources by avoiding costly and time-
consuming testing. They can also reduce the material 
losses associated with such testing, by optimizing 
production parameters right from the design stage. 
What's more, the fuzzy logic model offers a faster 
approach to assessing fabric weavability. Results can 
be obtained in a matter of moments, speeding up the 
textile development and production process. 
Following these results, the development of other 
models for valuable and expensive materials is 
strongly recommended.  
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