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ABSTRACT 
 

A selection of Single Nucleotide Polymorphism (SNP) molecular markers whose unique genotypic 
combinations represent individual rice breeds is a critical consideration in rice breeding programs. Due to 
the complexity of SNP data with unknown target phenotypes, identifying trait-associated markers presents a 
significant challenge. Existing research has applied both supervised and unsupervised techniques to genetic 
and protein datasets; however, little effort has been directed toward SNP analysis. To mitigate the time and 
difficulties involved in exploring and identifying important markers for biologists, we employ a clustering 
technique for selecting significant SNPs from the rice genome. The experimental dataset comprises 
genome-wide SNPs from 88 rice breeds, each containing 50,172 SNPs. We propose an iterative application 
of the K-means clustering method to cluster these rice breeds into an increasing number of clusters. To 
identify potentially important SNP markers, the frequency with which each SNP is closest to the centroid of 
its group is counted. The SNPs are then ranked based on this frequency. The results demonstrate that the 
proposed method can distinguishes certain SNPs that are more frequently closest to the centroids, 
potentially indicating their importance as biomarkers. These SNPs among thousands can be recommended 
for further investigation for biologists in wet experiments. 

Keywords: Rice Genome; K-means Clustering; Molecular Markers; Single Nucleotide Polymorphism; 
Bioinformatics 

 
1. INTRODUCTION  
 

Rice DNA and its derived genetic variation 
profile have the potential to identify rice breeds 
more precisely. By studying the genomic code of 
rice DNA, scientists can identify genome 
differences and diversity among rice breeds and 
understand their evolutionary relationships. 
Genomic research, specifically bioinformatics, 
utilizes these data for the analysis of the genomic 
code of living organisms allowing scientists to 
understand genome differences and diversity as 
well as evolutionary relationships in various aspects 
of living things [1]. 

The application of bioinformatics in the 
improvement of rice varieties has the potential to 
increase produce yield and improve resistance to 
harsh environments and diseases [2]. However, this 
process usually requires time-consuming wet 

experiments to identify the important molecular 
markers of plants that govern such traits. Applying 
machine learning techniques to predict results 
before commencing wet experiments may reduce 
budget and time. However, the molecular markers 
associated with rice varieties are difficult to 
identify, given a molecular marker dataset without 
known phenotypes (i.e., the final effect of gene 
expression). 

To address this issue, we propose a technique 
that selectively distinguish SNP (pronounced as 
“snip” for single nucleotide polymorphism) 
molecular markers for the benefit of understanding 
genetic traits from DNA genotype to phenotypic 
expression. We employ the K-means clustering 
technique to select important SNP markers from 
rice genome from a database of 88 rice cultivars 
with 50,172 SNPs. It will assist biologists in 
reducing the number of SNPs that are to be 
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investigated further reducing the time and effort 
needed for the experiments in wet labs. 

The rest of the paper is organized as follows. 
Section 2 explains the concept and work related to 
molecular markers in rice species. Section 3 and 4 
describe the proposed application of machine 
learning to identify important markers along with 
experiment results and limitation. Section 5 concludes 
this paper with the direction of future work. 

 
2. RELATED WORK 

 
A genetic marker is a unit that controls the 

genetic characteristics of an organism [3]. A genetic 
marker is a short strand of DNA that contains a 
sequence of base pairs. There are several types of 
DNA markers, namely, Restriction Fragment Length 
Polymorphism (RFLP), Amplified Fragment Length 
Polymorphism (AFLP), Random Amplified 
Polymorphic DNA (RAPD), Simple Sequence Repeat 
(SSR) [4] and Single Nucleotide Polymorphism 
(SNP) [5], which is the focus of this paper. 

A SNP is a variation of a single base pair 
(i.e. one of adenine (A), cytosine (C), guanine (G), 
and thymine (T)) in a genome that appears in at 
least 1% of a population (otherwise it is considered 
as a point mutation) [6]. In a dataset, SNPs may be 
represented as codes from the paternal and maternal 
DNA strands as shown in Table 1. For example, 
“R” represents the SNP with one of the strands 
having the base pair “A” and the other strand 
having the base pair “G”. A part of the rice SNP 
dataset used in this research is shown in Figure 1 
(where “NA” represents a missing value). 

A SNP could lead to a different phenotype 
in individuals in a population. Therefore, the 
identification of SNPs is valuable in the 
improvement of rice varieties or cultivars and is 
usually relied upon the expertise of biologists. 

Usually, datasets can be analysed to 
predict the important SNPs given known 
phenotypes, which are the final effect of gene 
expression such as produce yield and resistances to 
diseases. To facilitate the analysis, machine 
learning techniques have been applied, especially 
classification approaches. However, for a dataset 
without known phenotypes, classification and 
feature selection approaches cannot be effectively 
utilized. In addition, while the influences of some 
SNPs may have already been known to biologists, 
many others are still unknown and may be of value. 
Therefore, it is beneficial to explore SNP datasets 
to identify potentially important SNPs whose 
phenotypes have not been identified. 

In a genome that may contains thousands 
of SNPs, identifying important SNPs is comparable 
to selecting important features in a dataset. Feature 
selection is a technique of dimensionality reduction, 
which aims to select a small subset of relevant 
features from the original features [7] using three 
approaches. The supervised approach reduces the 
redundant and irrelevant features based on feature 
relevance [8]. The unsupervised approach exploits a 
target prototype and performs the selection by 
dividing a dataset into training and testing sets [9]. 
The semi-supervised approach performs a supervised 
selection on the labelled data in a dataset to infer the 
characteristics of the dataset and then applies to 
unlabelled data evaluation [10]. 

Exploring unknown SNPs is akin to an 
unsupervised feature selection. However, without 
clear target phenotypes, it is hard to define training 
and testing data. To assist biologists in exploring 
SNPs, clustering techniques can be valuable. 
Clustering techniques divide a large set of data into 
smaller clusters based on their similarity and are 
useful in analysing data whose details are unknown. 
Some existing research works have proposed using 
clustering techniques on biological data such as 
clustering gene expression [11]. 

Xu et al. [12].  proposed an unsupervised 
gene selection using a filter-based evaluation 
framework to solve the problem of multi-
dimensional system in the original dataset, 
effectively representing the geometric description 
of the data.  Then, the optimal feature subset is 
obtained from clustering with neural networks and 
fuzzy ART. 

Kim and Gao [13], in their research, 
extracts a subset of physically meaningful genes 
based on their ability to create a projection of the 
sample onto the principal components (PCs) using 
the Least-Square-Estimation (LSE). Furthermore, 
they used the boost-expectation-maximization 
(BEM) clustering to improve the partitioning 
quality. 

An application of K-means clustering is 
utilized to predict protein-protein interaction [14]. 
Their approach uses an increasing value of K in 
iterative clustering until there are no changes in 
cluster centroids. 

Most of the existing research has focused 
on genetic data with known phenotypes as target 
classes. Without target phenotypes, unsupervised 
techniques can be applied. Although unsupervised 
techniques have been proposed before, the focus 
has been on clustering gene selection. The 
application of unsupervised techniques on SNP 
selection has received little attention. Unlike 
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existing work, we need to explore a SNP marker 
dataset of rice genome without any known 
phenotypes. To achieve this, we adapt an iterative 
approach of the K-means clustering [14] to identify 
potentially important SNP markers. 
 
3. RESEARCH METHOD 
 

The genome database of Thailand's 
indigenous rice cultivars under the supervision of 
National Biobank of Thailand (NBT), National 
Science and Technology Development Agency, 
was used in this research. The database contains 
50,172 SNPs of 88 rice cultivars. Each SNP is a 
character code as explained earlier. The database 
contains a lot of missing and invalid values denoted 
by “N” and data cleansing is required under two 
removal conditions. The markers (columns) that 
contain the value of “N” in more than 20% of the 
rice cultivars are to be removed. The rice cultivars 
(rows) that contain the value of “N” in more than 
20% of the markers are also to be removed. With 
these removal conditions, no cultivar was removed, 
and there were 30,901 SNPs remaining after 
cleansing. These SNPs were then encoded into 
integers for K-means clustering [15]. 

Because the names of the SNPs in the 
database are just codes, it is not possible to 
effectively select markers based on their linguistic 
meaning. In order to identify potential markers 
from a database containing thousands of unknown 
markers, K-means clustering, an unsupervised 
machine learning technique, is employed [16 - 18]. 

K-means clustering is a very popular 
partition clustering by dividing data into K groups 
[19, 20], where the value of K is set by the user. 
The K-means algorithm first  selects K random 
groups, starting with the centre of each group. Then 
each data point is added to the group with the least 
distance to itself, i.e., the most similar group to 
itself. The new centre, called centroid, of the group 
is then recalculated using the average of the data in 
that group. The process is repeated until all data 
points are grouped [21]. 

The K-means is iteratively applied to 
cluster the rice cultivars based on the 30,901 SNPs 
remaining from the data cleansing to identify the 
SNPs that are most important in each clustering. 
SNPs that are closest to the centroids of their 
respective clusters repeatedly should potentially be 
of value for further study as they may represent 
certain traits in the phenotypes in rice cultivars. 

The iteration of K-means clustering is 
applied to rice cultivars with increasing numbers of 

K target clusters. Our initial experiment sets the K 
target clusters from 2 to 20 clusters, totalling 19 
rounds. In the first round, the value of K is set to 2 
(i.e. two clusters). Once the first clustering round 
finishes, the SNPs that are closest to the centroids 
of their respective clusters are identified; there 
could be more than one SNP being closest to the 
centroid of a cluster. The K value is then increased 
to 3 and the process is repeated until the K value 
reaches 20. 

After 19 rounds, the frequency of each 
SNP being closest to the centroid of its group is 
determined. The SNPs are then sorted based on 
their frequencies. The whole process is depicted in 
Figure 2. 
 
4. RESULTS AND DISCUSSION 

 
After performing the iterative clustering, 

the frequencies of 30,901 SNPs being closest to 
their centroids are determined and sorted. We report 
the number of SNPs being closest to their centroid 
in Table 2. The majority of the SNPs are closest to 
their centroids approximately 7 – 13 times from the 
total 19 clustering rounds. Less SNPs are closest to 
their centroids at higher frequencies (e.g. from 14 
to 17 times) and at lower frequencies (e.g. from 2 to 
6 times). There is no SNP being closest to its 
centroid in every clustering round (19 out of 19 
rounds). Also, there is no SNP being closest to its 
centroid 18 of out 19 rounds. 

It can be seen that it is possible to use this 
method to distinguish certain SNPs that are closest 
to their centroid most often, potentially representing 
certain traits in rice cultivars. Five SNPs are closest 
to their centroids 17 times out of 19 rounds, 
namely, rs17921738, rs19665236, rs54178375, 
TBGI258369, and rs20124503. These five SNPs 
could potentially be important in rice cultivars for 
further investigation in web experiments as they are 
closest to the centroid with the highest frequency. 
The additional 106 SNPs that are closest to their 
centroids 16 times may also be suggested to 
scientists as necessary. The frequencies may also be 
used to prioritize the SNPs needing the attention of 
scientists. 
 In the experiment, the number of clusters 
was set to 2 to 20 clusters. However, a limit to the 
increment of the number of clusters needs to be 
defined. In an attempt to identify this iteration limit, 
the numbers of cultivar members in the clusters in 
every iteration are reported in Table 3 sorted in a 
non-increasing order. 
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The minimum size of a cluster in K-means 
clustering is 1, meaning that the initial random 
member is alone in the cluster. Therefore, the 
iterative application of K-means clustering should 
stop when there is at least one cluster with the 
minimum size of 1. According to Table 3, the first 
time a cluster having the size of 1 occurs when K is 
set to 12. We use this as the iteration limit and 
revise the process as shown in Figure 3. The result 
of the iterative clustering up to 11 rounds is 
reported in Table 4. 

From Table 4, the iterative clustering 
result also reveals a similar frequency distribution 
of SNPs being closest to their centroids. 
Particularly, only three SNPs are most frequently 
closest to their centroids: vcZ25GIOP, vcZ2IRUB9, 
and S12_14772751. However, these SNPs are not 
among the best rank when reporting the result up to 
the K value of 20. This suggests that excessive 
iterations may lead to inconsistent results. 
Additionally, there are 111 SNPs closest to their 
centroids in the second rank, as opposed to 106 in 
Table 3. This indicates that not only should the 
SNPs in the best rank be recommended, but also 
those in the second rank as well.  

However, the limitation of this work lies in 
the inherent lack of known phenotypes. Without 
target phenotypes, the effectiveness and the 
efficiency of the proposed iterative clustering 
technique could not be fully evaluated. In addition, 
the missing and the invalid values that were 
removed from the dataset may influence the 
outcome of the iterative clustering. 

In the future, when the result of the 
phenotypic study becomes available, it will be 

possible to adjust our technique further to reflect 
the proper selection of SNPs. This includes the 
refinement of the condition for the iteration limit of 
K-means clustering and the effect of missing data 
values. It is also possible to employ and evaluate 
other clustering techniques for SNP selection. 
 
5. CONCLUSION 

Due to the difficulty of identifying and 
selecting potential Single Nucleotide Polymorphism 
or SNP markers that may influence the phenotypes 
of rice cultivars, scientists usually need to spend 
valuable time in wet labs studying them. With 
unknown target phenotypes of SNPs, classification 
techniques could not be effectively applied. This 
paper aims to alleviate this problem by applying  
K-means clustering iteratively with increasing 
number of clusters to identify the SNPs that are 
closest to the centroid of their clusters most 
frequently. These SNPs may potentially represent 
certain traits in the phenotypes in rice cultivars. The 
experiment shows that our application of iterative 
K-means clustering can distinguish certain SNPs 
based on the frequencies of being closest to their 
centroids. The frequencies of being closest to the 
centroid can also be used to rank SNPs as 
necessary. 

Using this technique, scientists can 
identify potentially important SNPs among 
thousands to prioritize the selection of SNPs for 
further investigation in the wet lab to minimize 
their valuable effort and budget. 
 

 
Table 1:  SNP data code 

 

Genotype AA CC GG TT AG CT CG AT GT AC 
Code A C G T R Y S W K M 
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Table 2:  Number of SNPs being closest to their centroids sorted by frequency 
 

Number of SNPs closest to their centroids Frequency of SNPs being closest to their 
centroids out of 19 

0 19 / 19 
0 18 / 19 
5 17 / 19 

106 16 / 19 
197 15 / 19 
553 14 / 19 

1926 13 / 19 
4245 12 / 19 
5350 11 / 19 
5200 10 / 19 
4473 9 / 19 
4053 8 / 19 
2922 7 / 19 
1029 6 / 19 
374 5 / 19 
371 4 / 19 
93 3 / 19 
4 2 / 19 
0 1 / 19 

 
Table 3:  The number of cultivar members in each cluster 
 

k Number of cultivar members 
2 61 27 - - - - - - - - - - - - - - - - - - 
3 35 28 25 - - - - - - - - - - - - - - - - - 
4 34 23 23 8 - - - - - - - - - - - - - - - - 
5 24 21 20 15 8 - - - - - - - - - - - - - - - 
6 24 21 20 12 8 3 - - - - - - - - - - - - - - 
7 20 20 16 13 9 8 2 - - - - - - - - - - - - - 
8 20 17 14 13 9 8 5 2 - - - - - - - - - - - - 
9 22 14 14 11 8 8 6 3 2 - - - - - - - - - - - 
10 13 12 11 10 10 10 8 7 4 3 - - - - - - - - - - 
11 14 13 12 9 8 8 8 5 5 4 2 - - - - - - - - - 
12 14 14 12 12 8 7 6 5 4 3 2 1 - - - - - - - - 
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Figure 1: A part of rice SNP dataset 

 

 
 

Figure 2: Flowchart of the initial clustering process 
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Figure 3:  Flowchart of the iterative clustering process 
 

Table 4: Number of SNPs being closest to their centroids up to K=12 
 

Number of SNPs closest to their centroids Frequency of SNPs being closest to their 
centroids out of 11 

0 12 / 12 
3 11 / 12 

111 10 / 12 
1129 9 / 12 
3536 8 / 12 
8259 7 / 12 
8272 6 / 12 
6601 5 / 12 
2081 4 / 12 
713 3 / 12 
179 2 / 12 
17 1 / 12 
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