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ABSTRACT 
 

                    Heart Stroke, cardiac arrest are more prominent deceases assassinating the harmony of the people. 
Meticulous detection of the abnormalities and myocardial infarctions leads to abrupt change in the 
functionality of the heart. QRS Complex amplitude and R wave amplitude are significant to detect the 
abnormalities and sudden cardiac arrest. This paper focused to develop an architecture to meet the challenges 
of IOT enabled wearable devices. Absolute value curve length transform (A-CLT) is implemented to detect 
the QRS complex Changes. The proposed methodology nullifies the multipliers and performs well with 
adders, shifters and comparators.  Eventually, the packing density (area) is minimized. This will improve the 
processing time and minimizes the dissipating power. This paper addressed the complexity in early detection 
of the strokes and cardiac arrests by analyzing the QRS complex of the ECG signal. Base line drift, high 
frequency interference (artifacts) are impacting on the signal generation. The proposed methodology curtails 
those artifacts and improves the performance of the signal detection and interpretation. The area is 
miniaturized with the A-CLT approach. 93.36 percent of the area is reduced with A-CLT. 77.61 percent of 
power is minimized with A-CLT methodology. The computation delay is reduced to 79.64 percent. This 
paper also addressed the sensitivity and predictivity of the QRS complex amplitude meticulously. 99.46 
percent predictivity and 99.24 percent sensitivity is achieved with the proposed methodology. The achieved 
results are validated with the physician and specifically, achieved lossless compression for enhancing the 
derivative of ECG Signal and entropy encoding. It is observed that the compressed fraction is 2.05 and is 
validated with MIT-BIH database. The proposed methodology is surpassing the existing methods. The 
achieved results proved that this A-CLT applied architecture is best fit for wearable devices to prevent abrupt 
changes in cardiac functionality and to safeguard human from sudden cardiac arrests. 
Keywords: Absolute Value Curve Length Transform (A-CLT), QRS Complex, Quadratic Spline Wavelet 

Transform, Electrocardiography (ECG) 
 
1. INTRODUCTION 
 

Biomedical devices, including telemedicine, 
wearable medical devices, and physiological 
parameter tracking systems, are using integrated 
circuit (IC) technology to meet the growing needs in 
healthcare devices. The implication of the new 
technologies are significant in research endeavors to 
enhance the functionality of medical devices. 
Ventricular arrhythmia is an irregular rhythm in 

electrocardiogram that leads to cardiac arrests 
specifically for who have cardiac related disorders. 
[1]. There are a number of factors that may lead to 
ventricular arrhythmias, the most common of which 
are coronary heart diseases, hypertension, and 
cardiomyopathy. Failure to properly identify or treat 
these conditions can result in significant patient 
mortality. Diagnostic methods such as long-term 
electrocardiogram monitoring can identify 
ventricular arrhythmia. Through the collection of 
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precise data on the ECG signal intervals, amplitudes, 
and waveform morphologies of the distinct P-QRS-
T waves, it is possible to make this determination. 
Furthermore, can make effective use of the same 
data for the purpose of predicting and identifying 
cardiac arrhythmia [3]. The Internet of things health 
care policy requires local processing of data before 
transmitting it to cloud-linked servers. This may aid 
in assessing holter monitor capabilities. The sources 
[4, 5, 6], and [7] address the different Internet of 
Things ideas, their implementations, and 
accompanying problems that are linked with them. 
The theory that underpins the architecture of the 
Internet of Things (IoT) infrastructure makes it 
possible to collect data from a variety of sensors that 
are embedded in communication devices and then 
transmit data to a central server that can integrate 
efficient devices. The QRS complex, a crucial 
element of the cardiac cycle, signals the 
depolarization of the heart's ventricles. 
Electrocardiogram (ECG) data analysis is done to 
precisely find the location of the QRS complex. This 
is needed for the development of automated ECG 
delineation techniques. To communicate ECG data, 
the Internet of Things platform relies mostly on 
wireless communication Technology. During the 
process of data transfer, this wireless technology 
consumes a significant amount of energy. More 
power dissipation takes place with serial 
communication to transfer the ECG related signals. 
The paper [8] proposes a low-power capacitive 
electrocardiogram monitoring system for wireless 
transmission. 

2. RELATED WORK 

In general, we can divide this subject into 
two groups. The most significant category revolves 
around the advancements in QRS detection 
methods. When it comes to QRS detection systems, 
the primary objective is to achieve high sensitivity 
and predictability while simultaneously reducing 
the amount of hardware resources required. The 
various strategies covered in this section utilize a 
variety of hardware implementations, including 
high-pass filters, low-pass filters, 3M filtering 
principles, wavelet transformations, and other 
approaches, to achieve varying degrees of 
sensitivity and predictivity. We will discuss the 
various developed compression strategies in the 
second part of this tutorial. Even though there were 
various artifacts present, the compression 
algorithms were able to effectively compress a wide 
range of morphological electrocardiogram (ECG) 

data. Because of this, it is possible to have more in-
depth knowledge of earlier compression techniques. 
The wavelet transforms and the cross-wavelet 
transform are the foundations of the robust single-
lead electrocardiogram system that we build in [9 
and 10]. We use standard annotated datasets with a 
variety of sample rates to validate the method. We 
tested this method and found its sensitivity and 
predictability to be 99.66 and 99.56, respectively. 
The T wave component concludes with the most 
notable improvement. As far as I can tell, the 
implementation of a multi-scale technique, which 
enables the reduction of noise at rough scales and 
then attempts to increase the precision of the 
locations using finger scales, indicates a significant 
improvement.  

 We propose an ECG feature extraction 
scheme in [11, 12] that is well-suited for mobile 
healthcare applications. Reference [13] describes an 
integrated ECG signal-processing scheme that uses 
an SWT algorithm to do a number of real-time tasks, 
such as removing baseline drift, lowering noise, 
finding QRS, guessing heartbeat rates, and 
classifying heartbeats. This architecture integrates 
multiple high-pass and low-pass filters that facilitate 
the de-noising, compression, and reconstruction of 
ECG signals. Application-specific integrated 
circuits using 0.18m CMOS technology employ 
these filters. Experimental results demonstrate that 
this ECG signal processor exhibits low power 
consumption and minimal area requirements. This 
renders it suitable for the design of wearable 
applications with extended durability. Similarly, 
[14] describes the design of a CMOS low-pass filter 
that operates at ultra-low power levels, contributing 
to energy conservation. In references [15, 16], we 
present a novel ECG QRS recognition method for 
easy-to-wear ECG devices. This method uses multi-
scale mathematical morphology filtering to find 
QRS, which effectively blocks out random noise, 
and multi-frame discrepancy modules to get rid of 
baseline drift, which improves the quality of the 
signal. The MIT/BIH database evaluates it, showing 
a detection rate of 99.61, a sensitivity of 99.81, and 
a positive predictive value of 99.80. Also, references 
[17 and 18] show how to make a low-power current 
mode analog QRS detection circuit and a signal 
regulating circuit that can be used for ECG 
applications that are worn on the body. In [19], we 
illustrate the QRS detection process utilizing the 
wavelet transform. The quadratic spline wavelet 
transform enhances QRS detection. Transform. In 
[20], we establish the foundational application of 
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artificial neural networks for the detection and 
classification of ECG signals. 

A 0.83-QRS detection processor has been 
introduced by [21] and is suitable for real-time 
wireless ECG monitoring. Using pre-filtering, 
feature extraction circuits, and dual-state machines 
that do maxima pair recognition with the Quadratic 
Spline Wavelet Transform (SWT) is possible. The 
MIT-BIH arrhythmia database evaluates the 
processor's performance, yielding a sensitivity of 
99.31 and a predictivity of 99.70. Healthcare 
systems can effectively utilize the 120 nm design of 
Vivosoc [22]. A comprehensive analysis in [23] 
contrasts CS-based and DWT-based embedded 
ECG compression algorithms. This study 
demonstrates that compressive sensing (CS) 
compression is less effective than compression 
based on discrete wavelet transform (DWT). CS-
based compression demonstrates energy efficiency 
and enhances execution time due to its reduced 
complexity. Promptly. This paper discusses the 
automatic computation of QT interval duration 
using body surface electrocardiograms (ECGs) as 
presented in [24]. We present the QRS detector 
design in [24]. Researchers have recently developed 
a new method for compressing ECG signals through 
the utilization of sparse features, intending to reduce 
power consumption [26]. 

 
3. PROPOSED SYSTEM 

 
Two different modules are shown here. 

Both QRS detection architecture and variable-
length compression are examples of different types 
of compression. Any system based on the Internet of 
Things (IoT) prioritizes data transmission after 
compression. The suggested work excludes data 
transfer due to issues such as transmission noise, 
mistakes, and other challenges. Additionally, the 
examination of transmission error relies on the 
selected transmitter and the specified protocol. The 
presented system provides an optimized QRS 
detection architecture that can handle all artifacts, 
requires minimal technology, and yields the most 
accurate results. The suggested method combines 
the pre-processing and transformation processes 
into a single stage, which ultimately results in a CLT 
that is efficient in terms of information processing. 
The CLT receives the QRS, a signal with a high 
slope and amplitude, from the ECG signal. The CLT 
receives a span of consecutive points from the ECG 
signal. Using this unique characteristic, the CLT 

enhances the QRS complex by suppressing other 
components of the electrocardiogram wave.  

 

 
 

Figure 1: Block diagram of proposed architecture  

Equation 1 displays the early CLT 
equation, also known as the Computational-CLT 
(C-CLT) equation. Equation 1 presents a 
challenging hardware implementation due to its 
requirement for addition, multiplication, and square 
roots. As a result, we rewrite the equation as 
equation 2, which we refer to as Squaring-CLT (S-
CLT). Its huge amplitude ranges, on the other hand, 
make it difficult to implement, and the fact that it 
has a limited capacity to reduce baseline drift leads 
to a poor detection accuracy. Additionally, we 
modify it by replacing the square and square root 
functions in equation 1 with the absolute value 
function. 

 

𝐿(𝑤, 𝑖)=∑ ඥ𝑐ଶ + ∆𝑦
ଶ

ୀ௪                                (1) 
𝐿(𝑤, 𝑖)=∑ 𝑐ଶ + ∆𝑦

ଶ
ୀ௪                                   (2) 

𝐿(𝑤, 𝑖)=∑ ห𝑐ଶ + |4 ∗ ∆𝑦|ห
ୀ௪                          (3) 

 
 

  
Figure 2: Proposed ACLT 

The ACLT architecture that was used in order to 
acquire the QRS complex is shown in Figures 1 
and 2, which were previously described. Within 
the context of this procedure, we carry out two 
tasks: the first one includes transformation, and 
the second one involves the detection of QRS 
peaks via the use of adaptive thresholding. In the 
process of transformations, we carry out 
integrations, derivatives, and absolute value 
calculations. The purpose of transformation is to 
eliminate the need for filters and solve the 
problem of handling all objects. Furthermore, it 
can identify R-peaks through comparison. 
Whether or not the integration is available, the 
system will process it to obtain a fresh 
electrocardiogram sample. The system currently 
operates at a sampling rate of incoming ECG 
signals, which makes duty cycling unfavourable. 
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3.1 QRS Peak Detection by Adaptive 

Thresholding  
For the purpose of identifying QRS peaks, we 

will now apply criteria. We will need to employ 
an effective method to analyze thresholds. We 
update the threshold using a method that 
considers the average of previously found R-
peaks. The implementation of its circuitry is 
challenging, despite the fact that it provides 99% 
accuracy. Consequently, we implement equation 
4, a method that modifies the threshold for each 
new sample and aligns it with the average of QRS 
peaks previously identified. Given the ease of 
dividing by eight through shifting and its 
straightforward implementation, we rely on eight 
previously identified peaks.  

 
𝑇ℎ =  𝑇ℎ௧ ∗ 𝑚𝑒𝑎𝑛 ∑ 𝑅𝑠

଼
ୀ              (4) 

 
Identifying an appropriate threshold 

factor to manage diverse morphological variation. 
ECG waves from several databases are the most 
challenging aspect. But when we did tests on the 
MIT-BIH database, we found that for a certain 
window size, sensitivity goes up as the threshold 
factor goes down, and too much reduction may 
lead to false detection. Figure 3 illustrates the 
finite state machine (FSM) developed for the 
detection of QRS peaks. In State 1, it verifies if 
the ACLT signal is above the threshold. Initially, 
it establishes the threshold at fifty percent of the 
highest value of the first and second datasets, then 
uses equation 4 to adjust thresholds depending on 
newly identified beats.  

Upon exceeding the threshold, a signal 
shifts to state 2, where it seeks the maximum 
values within a designated frame. This highest 
value indicates the position of the QRS peak. In 
state 3, the system produces a pulse to signify the 
identification of a new beat. The mechanism 
adjusts the pulse to counterbalance the peak value 
from state 2. Subsequently, the system resumes 
peak detection. 
 
 

 

Figure 3: QRS detection FSM 

 
3.2 Proposed ECG Compression Architecture  

The original ECG is challenging to portray 
owing to its inherently enormous size, mostly 
attributed to the QRS complex, with almost all its 
values situated around the baseline. This requires an 
additional quantity of bits for representation. Our 
objective is to minimize bit overhead via the use of 
a derivative-based compression method. Used the 
first derivative to zero out the first and second 
derivatives. used adders to compute the first 
derivative. Executed the entropy encoder using 
combinational components such as comparators or 
priority encoders. A priority encoder needs less 
combinational logic for implementation over a 
comparator. Therefore, this paper used adders and 
priority encoders to accomplish the specified 
objective of compression. Figure 4 below shows 
how ACLT acquires the derivative. Figure 5 
allocates the necessary bits according to the 
amplitude. It relies on amplitudes to reduce the total 
number of bits required to describe the entire ECG 
signal. The proposed design is appropriate for all 
wireless serial transmission modalities. Depending 
on the type of transmission, this paper incorporated  

an identifier to indicate the start and end of the 
identified variable-length data bits. 

 

Figure 4: Proposed Compressor Architecture 
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Figure 5: Entropy Encoder Flow Chart 

 
 

4. RESULTS & DISCUSSIONS 

This paper implemented the QRS-peak 
detection variable-length compression in VHDL. 
This study employs modalsim to derive conclusions 
related to functional verification.  Variations in the 
area, power, and delay parameters, are observed but 
all QRS detection methods yield identical outputs.  

The output of the implemented system is 
analyzed and compared its parameters with existing 
methodologies. Both analog and binary formats 
represent the ECG signal. This study focuses on two 
key components: ECG signal QRS-peak detection 
and variable length compression. Table 1 (and Fig. 
6) below presents various performance parameters 
of both existing and implemented QRS detection 
techniques, evaluated according to their 
performance metrics: power, speed, and area. The 
ALT-based QRS detection scheme exhibits a power 
consumption of 7.19 nW, in contrast to the wavelet-
based detection scheme, which consumes 9.274 nW. 
The data indicate that the ACLT-based QRS 
detection scheme exhibits a 22.38% increase in 
power efficiency relative to the wavelet-based ECG 
scheme. The A-LCT-based QRS detection scheme 
uses 15,095 gates, whereas the wavelet-based ECG 
detection scheme uses 16,167 gates, leading to a 

reduction in area overhead of approximately 6.67%. 
The computed delay for the ALCT-based QRS 
detection scheme is 15.193 ns, whereas the delay for 
the wavelet-based QRS detection scheme is 19.076 
ns. This has led to a speed enhancement of 20.355% 
relative to wavelet-based detection. 

Table 1: Comparison of performance metrics 
 

 

 
 

Figure 6: Comparison of performance metrics 

 
Table 2: Comparison of Sensitivity and Predictivity 

 
Technique Sensitivity Predictivity 

[9] 99.72 99.85 
[13] 99.56 99.82 
[21] 99.45 99.22 

Proposed 99.23 99.46 
 

Table 2 (and Figure 7) displays the sensitivity and 
predictability of the implemented approach, along 
with the competing methods. The table provides 
an illustration of the suggested design, which 
achieves sensitivity and predictivity rates of about 
99 percent, which are equivalent to those of its 
rivals. Table 3, in conjunction with Figure 8, 
provides a succinct overview of the computational 
components integrated into the developed 
architecture. Twenty memory cells and fifteen 
adders are the estimated hardware components 
that are necessary to implement the proposed 

Parameters 
Area 
(Gate 
Count) 

Power 
(mW) 

Delay 
(ns) 

Wavelet 
Based ECG 
Detection 
[13] 

16,167 927.54 19.076 

ACLT Based 
QRS 
Detection 

15,095 719.94 15.193 

Data In X (i) 

-4≤x(i)≤3 

-2≤x(i)≤i 

-8≤x(i)≤7 

YES 

2-Bits 

3-Bits 

4-Bits 

YES 

YES 

NO 

NO 
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design. On the other hand, the primary hardware 
components that are required to implement the 
architecture [20] consume thirty memory cells, 
eight multipliers, and three adders. The major 
source for decrease in area overhead and power 
consumption is application of Adaptive CLT 
technique that eliminates multipliers in the 
proposed architecture design. These figures 
demonstrate the implementation of the proposed 
architecture without the need for multipliers, 
which can help reduce power consumption and 
delay. 

 
 

Figure 7: Comparison of sensitivity and  predectivity 
of proposed, [9], [13], and [21] 

 
Table 3: Hardware Requirements of Proposed method 

and existing method [25] 
 

Type of component [25] Proposed 

Memory Cells 30 20 
Multipliers 8 0 

Adders 3 15 
 

 
 

Figure 8: Comparison of hardware Requirements 
of proposed method and [20] 
 

5. CONCLUSIONS AND FUTURE SCOPE 

This research aims to create an energy-
efficient architecture for IoT wearable devices. 
Specifically, to prevent cardiac arrests by detecting 

the QRS complex amplitude (peak). Compression 
architecture using A-CLT algorithm is applied to 
detect the variations of the QRS peak amplitude. The 
performance metrics like power consumption, area 
reduction and processing speed are evaluated in this 
paper. To minimize the area, approximately 1072 
gates are reduced over existing methodologies. This 
paper focus to minimize bit overhead via the use of 
a derivative-based compression method. A priority 
encoder is used to minimize the combinational logic 
complexity. And to further minimize the 
combinational logic complexity   adders and priority 
encoders used to accomplish the specified objective 
of compression. 

The implementation of A-CLT, removes 
the multipliers in the proposed architecture, results 
area minimized to 93.36 percent. Owing to this area 
minimization, the power consumption is also 
significantly reduced to 77.61 percent. The adaptive 
technique, which emphasizes the energy level 
difference between consecutive levels, primarily 
facilitates speed enhancement. The implemented 
structure demonstrates a 20% improvement in 
processing speed compared to its counterpart. The 
exclusion of multipliers in ALCT notably enhances 
processing speed. The predictivity and sensitivity of 
the proposed architecture are 99.23 and 99.46. These 
values are relatively close to other existing methods. 

The proposed architecture reduces 
complexity in hardware components by employing 
only 20 memory cells and 15 adders, and 
significantly removes the quantity of multipliers and 
reduces the memory cells. 

The proposed architecture minimizes 
power consumption and area, and specifically 
enhanced speed of computation. The A-CLT applied 
architecture is compared with the wavelet-based 
detection algorithm. The A-CLT methodology 
reduces the delay of 79.64 percent over other 
methodologies. The compressed fraction observed is 
2.05 and is validated with MIT-BIH database. The 
area overhead is reduced to approximately 6.67%. 
The estimated delay for the ALCT-based QRS 
detection is 15.193 ns. 

The proposed methodology is surpassing 
the existing wavelet-based methods. The achieved 
results proved that this A-CLT applied architecture 
is the best fit methodology for wearable devices to 
prevent abrupt changes in cardiac functionality and 
to safeguard humans from sudden cardiac arrests. 
Further, this paper can be extended with imparting 
power-saving mechanisms such as voltage scaling 
and frequency scaling mechanisms to improve the 
low power consumption medical devices  
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