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ABSTRACT 
 

Spatio-temporal data is increasingly collected in domains such as urban planning, traffic analysis, and 
environmental monitoring, in which events change quickly over time as well as across different regions. 
Traditional spatio-temporal clustering models cannot handle the characteristics of non-stationary processes 
with quick and unpredictable changes. To overcome these limitations, this study presents a dynamic grid-
based clustering method that adjusts its spatial and temporal parameters on the fly to improve the accuracy 
of prediction and computational efficiency for non-stationary spatio-temporal event analysis. We iteratively 
update grid sizes and time intervals by considering the density of events and movement patterns of objects 
to capture easily unseen clusters over time with minimum computing cost. The performance of the proposed 
method was evaluated on two real-world datasets (i.e., urban traffic data and environmental monitoring data) 
and compared with not only several modified versions of baseline models like DBSCAN or Spatio-Temporal 
k-Nearest Neighbor (STKNN) but also a naïve approach based on grid concept. The results showed that our 
proposed dynamic grid-based model outperformed other approaches in terms of both clustering quality (with 
Silhouette Coefficients value 0.82) and computational time (1.8 seconds), but had comparable error-rate 
prediction results (mean square error is 0.015). These achievements confirm that our method can adapt to 
changes in real-time processing environments to meet the needs for continuous event predictions. 
Keywords: Dynamic Grid-Based Clustering, Spatio-Temporal Data, Non-Stationary Events, Real-Time 

Prediction, Traffic Monitoring, Environmental Monitoring. 
 
1. INTRODUCTION  
 

Spatio-temporal data, i.e., data that have both 
spatial as well as temporal dimensions, are observed 
to grow at an explosive rate in recent years in diverse 
fields like urban planning, traffic analysis and 
environmental monitoring. Spatio-temporal datasets 
enable the study of phenomena that are distributed in 
space and changing in time to ascertain information 
on regularities or trends which can lead to decision 
making. In urban planning, for example spatio-
temporal datasets are used to monitor land use 
changes, detect urban expansion patterns and 
support infrastructural development. In traffic 
analysis applications spatio-temporal data-sets are 
used to detect congestion spots, perform traffic flow 
analysis, and optimize transportation systems [1]. 

Similarly with environment monitoring we mention 
that these can be used to track pollution propagation, 
climate changes or even evaluate sharing of 
resources [2]. A major barrier in spatio-temporal 
data analysis arises from the non-stationary nature of 
many events and processes. Non-stationary events 
are those that evolve constantly in space and time, 
with behaviors too complicated to be predicted. 
Unlike stationary processes, where event properties 
do not change, non-stationary events (e.g. traffic 
congestion, weather phenomena and pollution 
plumes) are known to change their spatio-temporal 
characteristics dynamically [3]. This makes the task 
of forecasting such future events accurately difficult 
using conventional predictive models assuming 
stationarity. Hence, novel approaches capable of 
handling inherent non-stationarity of spatio-
temporal data are needed for improved prediction 
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accuracy and effective decision making in this 
context. 

Existing spatial clustering methods construct 
spatial grids or regions based on fixed and static 
spatial granularity or fixed temporal intervals, which 
are not suitable to describe non-stationary 
phenomena. For example, existing grid-based 
clustering methods fix spatial granularity during the 
whole clustering process. Spatial regions are pre-
defined and do not change with the advancement of 
time in existing methods, which in fact cannot 
represent true changes of event density or movement 
patterns over time. Consequently, as will be 
validated by our extensive experimental results, the 
underlying spatio-temporal complexity of real-world 
objects is overly simplified by these static and 
incomplete representations when modeling non-
stationary objects [4]. 

Another important drawback of the existing 
methods is that they use fixed time intervals to 
characterize event occurrence. If the system is 
stationary or slowly evolving, fixed time windows 
might be acceptable. However, they cannot 
accommodate the quick shift characteristic and non-
stationary property of the real world. For example, 
traffic congestion, pollution levels or weather 
conditions can change dramatically in a very short 
time; thus, it would be difficult for a static time-
based method to achieve real-time prediction [5]. 
Therefore, it is necessary to design an approach to 
dynamically adjust both spatial and temporal scales 
for characterizing non-stationary event occurrence 
and making predictions. In order to overcome the 
limitations of current techniques, this paper presents 
a dynamic grid-based clustering method in which 
both spatial and temporal parameters are 
continuously re-adapted in real time during the 
process of clustering in order to deal more 
effectively with the non-stationary spatio-temporal 
characteristics of events. The proposed method 
outperforms the traditional clustering methods using 
fixed grids and fixed time intervals by adaptively 
adjusting spatial clusters’ size as well as the duration 
of time intervals according to changes affecting 
input data. By adapting these parameters, it becomes 
possible for our proposed approach to achieve better 
results regarding density and emerging patterns 
detection as well as timing detection [6]. 

The proposed approach increases the accuracy 
of event prediction by considering such objects and 
processes that are non-stationary and change rapidly 
as well as their behavior is difficult to predict. This 

adaptive framework reduces the computational costs 
by forming the clusters according to the real time 
inputs. Therefore, this new dynamic grid-based 
clustering technique introduces a sophisticated 
alternative to static clustering for analyzing and 
predicting spatio-temporal events in traffic 
monitoring, environmental surveillance, and urban 
development applications. 

The paper is organized as follows. In Section 1, 
we introduce the background of this study and 
present the problems being addressed, followed by 
brief descriptions of the limitations of existing 
techniques in analyzing non-stationary spatio-
temporal data. Section 2 offers a review of related 
work on spatio-temporal clustering algorithms, non-
stationary object analysis, and dynamic grid 
systems. The proposed dynamic grid-based 
clustering approach is provided in Section 3, where 
we describe the grid adjustment algorithm, event 
prediction model, and real-time data management 
architecture. We present our experimental setup that 
includes the datasets used, evaluation metrics and 
performance measures in Section 4. Discussion on 
the obtained results of the experiments for verifying 
effectiveness of the proposed method with respect to 
two other methods DBSCAN, and STKNN is given 
in terms of clustering quality, prediction accuracy, 
and response time in Section 5. Finally, we conclude 
the paper and define future work in Section 6. 

2. LITERATURE REVIEW 

1) 2.1 Spatio-Temporal Clustering Approaches 
 

Spatio-temporal clustering is a way to 
group objects based on their spatial and temporal 
proximity. In the last years spatio-temporal 
clustering received increasing attention in the field 
of data mining and geographic information sciences 
[7]. It has gained more importance due to the 
advancements of location based and environmental 
sensing technologies which allow collection of real 
time location and other attribute information. There 
exist several spatio-temporal clustering techniques 
which were designed and developed depending on 
the type of data being analyzed or research 
requirements. For instance, hybridization 
(combining) of density-based clustering with 
hierarchical agglomerative clustering techniques 
was proposed for seismic event analysis [8]. This 
approach considers earthquake magnitudes 
explicitly during density estimation and combines 
both spatial and temporal proximity for cluster 
formation. Other work has focused on trajectory 
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clustering. A hierarchical trajectory clustering 
technique was proposed that considers semantic 
spatio-temporal information like direction, speed 
and time [9]. It surpassed traditional reference spot 
detection methods and revealed several interesting 
hierarchical periodic patterns. Interestingly, some 
approaches to spatio-temporal clustering are 
opposing in terms of serial or parallel methods. ST-
DPOLY first creates spatial clusters, then checks for 
continuation relationships among these clusters 
across consecutive time steps; whereas ST-SNN 
uses a parallel approach based on Shared Nearest 
Neighbors concept. While the former provides 
advantages in terms of time complexity as well as 
space complexity over other similar methods, the 
latter provides advantages in terms of more temporal 
flexibility over serial methods. In conclusion, spatio-
temporal clustering techniques have broad 
applications ranging from analysis of seismic 
activities, crime hotspot detection, and 
environmental studies as well as trajectories 
movement pattern analysis. We anticipate that this 
field will continue to evolve given new spatio-
temporal clustering techniques are still needed to 
effectively integrate spatial and temporal proximity, 
and that this field will attract more researchers in 
future. One of the possible research trends is how to 
enhance and develop the existing spatio-temporal 
clustering techniques so that they can handle 
expanding and more complex large-scale spatio-
temporal datasets with improved efficiency and 
effectiveness. 

 
 
2.1 Dynamic Spatial Grids in Real-Time 
Systems 

Sections Dynamic spatial grids are of great 
importance in real-time systems for non-stationary 
spatio-temporal event prediction, which is reflected 
by the ongoing and growing research interest in this 
field. These real-time systems are widely used in 
many domains such as environmental monitoring, 
traffic prediction and geological hazard assessment. 
The most common solution to deal with non-
stationary spatio-temporal data is to use probabilistic 
models. A new point-process based prediction 
method is proposed, which firstly partitions the 
spatial domain into a set of subregions, and then 
models the arrivals of events in each region using 
interacting point-processes. Both the spatial 
partitioning and inter-region interactions can be 
learned jointly. The experimental results show that 
this method significantly outperforms both baseline 
and state-of-the-art deep learning solutions. Graph 

based methods show growing potential in capturing 
complex spatio-temporal correlations as well. The 
Adaptive Scalable Spatio-temporal Graph 
Convolutional Network (ASGCN) model for PM2.5 
prediction designs a dynamic graph mechanism that 
distinguishes the spatio-temporal similarities among 
different periods [13]. The Dynamic Spatio-
Temporal Graph Fusion Convolutional Network 
(DSTGFCN) for urban traffic prediction develops a 
novel approach to extract dynamic spatial 
information among roads from observed data 
without prior road spatial information [14]. 
Moreover, some researchers focus on designing 
frameworks that can handle high-dimensional non-
stationary spatio-temporal data as well. To model the 
spatial and temporal dependence dynamics in 
geological hazard data, a stochastic spatio-temporal 
cointegration (SSTC) framework is proposed by 
constructing cointegrated vector autoregression 
[15]. To address the computational scalability issue, 
the SSTC method is applied only on a small number 
of empirical dynamic quantile series that summarize 
the original large-scale data. To sum up, it is obvious 
that increasingly adaptive and dynamic models are 
designed to capture the evolving nature of non-
stationary spatio-temporal events. These kinds of 
methods involve several types like probabilistic 
approaches or graph-based neural networks. These 
newly developed approaches share a similar goal in 
enhancing prediction accuracy for real-time systems. 
By introducing dynamic spatial grids, those models 
bear advantages in providing more flexible and 
accurate depiction for the changing spatial 
characteristics over time while handling non-
stationary data in various domains. 

Limitations of the Literature Review 

1. Lack of Comparative Analysis: The 
review doesn't fully evaluate the relative 
strengths and weaknesses of different 
methods. 

2. Limited Practical Insights: It doesn't 
explore real-world challenges like data 
noise or missing data in practical 
applications. 

3. Scalability Issues: There is insufficient 
focus on handling large-scale spatio-
temporal datasets. 

4. Data Integration Gaps: The complexity of 
integrating different data sources is not 
addressed. 
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5. Cross-Disciplinary Insights: The review 
lacks discussion on integrating techniques 
from other fields to improve predictions. 

6. Limited Future Directions: Specific 
future research areas are not well-defined. 

7. Overemphasis on Certain Methods: The 
review focuses heavily on a few 
approaches, limiting broader coverage. 

8. Temporal Granularity: There's no 
discussion on how different time scales 
affect clustering and predictions. 

In response to the above limitations of existing 
methods, this paper introduces a dynamic grid-based 
clustering approach that adapts both spatial and 
temporal parameters in real-time to more effectively 
address the complexities of non-stationary spatio-
temporal events., the method can better capture 
changes in event density and timing, leading to more 
accurate identification of emerging patterns in both 
space and time. 
 
3. METHODOLOGY 
 

2) Figures3.1 Overview of the Dynamic Grid 
System 

The core idea behind the Dynamic Grid 
System is to provide a flexible framework for the 
real-time analysis of spatio-temporal data, 
specifically addressing the challenges posed by non-
stationary objects whose locations and properties 
change continuously over time. Unlike traditional 
static grids that rely on predefined boundaries, the 
dynamic grid system adjusts its grid size and shape 
in real-time, responding to fluctuations in event 
density and the movement patterns of non-stationary 
objects. This adaptive approach enhances the 
system’s ability to capture evolving spatio-temporal 
patterns, resulting in more accurate event detection 
and prediction. In static grid-based systems, the 
spatial data is divided into fixed grid cells, each of 
which corresponds to a spatial region in the real 
world. However, these systems assume that events 
are uniformly distributed in space and time, which 
most real-world applications do not exhibit. For 
example, traffic congestion can build up and 
dissipate quickly; pollution or temperature may 
spike in certain localized areas. Fixed grids cannot 
capture such varied density patterns as they either 
lack the resolution to represent high-density regions 
accurately or result in unnecessary computational 
cost for low-density regions. The limitations of static 

spatial partitioning are addressed by the proposed 
Dynamic Grid System, in which the sizes of grids are 
recalculated continuously using real-time data. The 
event density (i.e. how many events happen within 
an area during a period of time) and the movements 
of non-stationary objects are employed to build up 
dynamic spatial partitions. The basic rule of the 
proposed system is that smaller grid cells should be 
assigned to areas with high event density so as to 
obtain more accurate patterns, while larger grid cells 
should be used in areas with low event activities to 
reduce computational costs and concentrate on 
interesting regions. 

Furthermore, the grid adjustment 
mechanism takes into account the velocity and 
direction of non-stationary objects, e.g. moving 
vehicles or atmospheric phenomena, in order to 
predict future positions and adjust grid shapes 
accordingly.[16] With this dynamic adjustment, also 
irregular shaped grids can be achieved that 
correspond more closely to the shape of these 
objects’ movement. As a result, events can already 
be predicted earlier. 

 
 

 
 
 
 
Figure 1: Dynamic Grid-Based Clustering and 
Prediction Framework 

 

The Dynamic Grid System can be formally modelled 
as follows: 

Let 𝐷 = {𝑑ଵ, 𝑑ଶ, … , 𝑑} represent a set of event data 
points, where each event 𝑑 has spatial coordinates 
(𝑥 , 𝑦) and a timestamp 𝑡. The objective is to 
partition the spatial region into a grid system 𝐺(𝑡), 
which dynamically adapts over time based on event 
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density and object movement patterns. At any given 
time 𝑡, the grid system 𝐺(𝑡) consists of a set of grid 
cells {𝑔ଵ(𝑡), 𝑔ଶ(𝑡), … , 𝑔(𝑡)}, where 𝑘 is the number 
of cells. 

Step 1: Event Density Calculation 

For each grid cell 𝑔(𝑡), we define the event density 
𝜌(𝑡) as the number of events occurring within the 
spatial boundaries of 𝑔(𝑡) during a time window Δ𝑡 
: 

𝜌(𝑡) =
1

𝐴

  



ୀଵ

𝕀 ቀ(𝑥 , 𝑦) ∈ 𝑔(𝑡)ቁ ⋅ 𝕀(𝑡 − 𝑡 ≤ Δ𝑡) 

where 𝐴 is the area of grid cell 𝑔(𝑡), and 𝕀 is the 
indicator function that returns 1 if the event 𝑑 is 
within the boundaries of the grid cell and has 
occurred within the time window Δ𝑡, and 0 
otherwise. 

Step 2: Grid Size Adjustment 

The size of each grid cell 𝑔(𝑡) is adjusted 
based on the event density 𝜌(𝑡). If the event density 
in a grid cell exceeds a predefined threshold 𝜌୫ୟ୶, 
the cell is subdivided into smaller cells to capture 
finer spatial details. Conversely, if the density is 
below a minimum threshold 𝜌୫୧୬, adjacent grid cells 
are merged to reduce computational overhead. 

The dynamic grid adjustment rule can be expressed 
as: 

Size ൫𝑔(𝑡)൯

−

⎩
⎪
⎨

⎪
⎧

Sixe (𝑔ଵ(𝑡 − 1))

2
, 𝜌(𝑡) > 𝜌୫ୟ୶

2 ⋅ Size ൫𝑔(𝑡 − 1)൯, 𝜌(𝑡) < 𝜌୫୧୬

Size ൫𝑔(𝑡 − 1)൯, 𝜌୫୧୬ ≤ 𝜌(𝑡) ≤ 𝜌୫ୟ୶

 

This ensures that regions with high event density are 
represented by smaller grid cells, providing more 
detailed spatial resolution, while regions with low 
activity use larger grid cells, minimizing 
computational resource usage. 

Step 3: Movement Pattern Detection 

For non-stationary objects, such as moving 
vehicles or migrating weather fronts, we incorporate 
movement patterns into the grid adjustment process. 
Let 𝑣(𝑡) represent the velocity of a nonstationary 

object at time 𝑡, and let 𝜃(𝑡) represent its direction. 
These movement parameters are used to adjust the 
shape and orientation of the grid cells dynamically. 
he velocity and direction of object is used to predict 
the future position of the objects to let the grid 
system know where quality is expected to be high in 
a future time-step. If an object is approaching some 
region with increasing velocity, we want the grid cell 
that are likely to be affected by this approach, and 
possibly high-quality events occuring in these cells 
within a few time steps. 

The predicted future position of the object is given 
by: 

൫𝑥
finture , 𝑦

finture ൯ − (𝑥(𝑡) + 𝑣(𝑡) ⋅ cos (𝜃(𝑡))

⋅ Δ𝑡, 𝑦(𝑡) + 𝑣(𝑡) ⋅ sin (𝜃(𝑡))
⋅ Δ𝑡) 

where (𝑥(𝑡), 𝑦(𝑡)) is the current position, 𝑣(𝑡) is 
the object's velocity, 𝜃(𝑡) is the movement 
direction, and Δ𝑡 is the time increment. 

Step 4: Grid Realignment Based on Predicted 
Movement 

Once future positions are predicted, the grid 
system aligns its boundaries to ensure that regions 
likely to experience increased event density due to 
object movement are represented by finer grids. This 
process ensures that the system is proactive, rather 
than reactive, in capturing evolving spatio-temporal 
patterns. 

II. 3.2 Real-Time Data Ingestion and Processing 

Real-time data ingestion and processing. It 
is the most important component of a dynamic 
spatio-temporal analysis system. The continuous 
nature of streaming data requires mechanisms to 
capture, process, and store real-time spatio-temporal 
information with minimal delay so that the system 
can respond to quickly evolving environments. This 
section describes how we ingest spatio-temporal 
streaming data and preprocess it for dynamic grid-
based analysis. Specifically, we filter noise, 
normalize spatial coordinates, and handle temporal 
attributes in the context of a real-time, stream-based 
environment. It continuously receives spatio-
temporal data in the form of streams coming from 
different sources (sensors, GPSs, or any other data 
producers [17]). A stream event usually contains a 
spatial coordinate (latitude and longitude) and a 
timestamp that indicates when the event occurred. 
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Since streams generate a huge amount of data, 
preprocessing is necessary to guarantee its 
integration, quality, and relevance. The first step of 
the ingestion process is noise filtering. Noise in real 
world data can be caused due to several factors 
including, but not limited to, inaccuracy of readings 
in sensors, errors in communication and redundancy 
in points. System models apply filtering methods to 
remove outliers or redundant points.[18] This is 
important as noisy data will affect the effectiveness 
of the dynamic grid system. Also cleaner data leads 
to better clustering and predictions. 

Next, incoming data point’s spatial 
coordinates are normalized in order to achieve a 
uniform interpretation of the spatial location in the 
dynamic grid system. Spatial normalization implies 
that geographical coordinates are transformed into a 
specific format or projection, in such a way that it 
enables a reliable comparison and analysis between 
data from multiple sources [19]. Finally, for the 
temporal part, data points are aggregated within time 
windows, so as to ensure an accurate tracking of both 
short-term dynamics and long-term trends. The real-
time ingestion process can be modelled 
mathematically as follows: Let 𝐷 − {𝑑ଵ, 𝑑ଶ, … , 𝑑} 
represent the set of incoming spatio-temporal data 
points, where each data point 𝑑 is defined by its 
spatial coordinates (𝑥 , 𝑦) and timestamp 𝑡. The 
goal of real-time ingestion is to ensure that the 
system efficiently processes this continuous stream 
of data and prepares it for further analysis. 

Step 1: Noise filtering 

To filter noise coming from data being read, 
we use a statistical outlier detection method based 
either on z-scores or other robust measure like 
DBSCAN. Z-score method detects outliers by 
comparing the value of each point against the overall 
distribution of the points. Specifically, the 𝑧-score 
for each spatial coordinate is calculated as: ◻ 

𝑧௫ −
𝑥 − 𝜇௫

𝜎௫

,  𝑧௬ −
𝑦 − 𝜇௬

𝜎௬

 

where 𝜇௫ and 𝜇௬ are the means of the spatial 
coordinates, and 𝜎௫ and 𝜎௬ are their respective 
standard deviations. If the 𝑧-score of any point 
exceeds a predefined threshold (e.gr, |𝑧௫| > 3 or 
ห𝑧௬ห > 3 ), the point is classified as an outlier and 
removed from further analysis: 

𝕀൫|𝑧௫| > 3 or ห𝑧௬ห > 3൯ − 0 

where II is the indicator function that removes noisy 
points. Or using DBSCAN [20]’s idea to find and 
remove noise, cluster the densely–sampled points 
and label the rest of the points as the noise, which 
defines the neighbourhoods as ϵ distance metric and 
samples with less than minPts neighbours within 
distance ϵ are regarded as noise. 

Step2: Spatial Normalization 

Once noise has been filtered, the next step 
is to normalize the spatial coordinates. In a system 
that deals with geographic data, this may involve 
projecting latitude and longitude coordinates onto a 
Cartesian plane using a projection method such as 
Universal Transverse Mercator (UTM) or 
Equirectangular projection[21]. The normalized 
coordinates (𝑥

ᇱ, 𝑦
ᇱ) are computed based on the 

chosen projection function 𝑓proj:  

(𝑥
ᇱ, 𝑦

ᇱ) − 𝑓୮୰୭୨(𝑥 , 𝑦) 

where 𝑓proj  maps the geographic coordinates into a 
planar space that allows for more efficient 
processing in the dynamic grid system. This step 
ensures that data from various sources and 
geographic regions can be processed uniformly, 
eliminating discrepancies caused by differing 
coordinate systems. 

Step 3: Temporal Aggregation 

Given that spatio-temporal data can arrive 
at varying frequencies, it is essential to aggregate 
events within specific time windows to manage both 
high-frequency fluctuations and longer-term trends. 
Let Δ𝑡 represent the time window for aggregation. 
For each time window [𝑡, 𝑡 + Δ𝑡], we aggregate the 
data points within this interval to create a summary 
representation: 

𝐷௧ − {𝑑: 𝑡 ∈ [𝑡, 𝑡 + Δ𝑡]} 

This step ensures that the system captures 
the general trends in the data while still retaining the 
granularity necessary for real-time processing. ↓ size 
of Δ𝑡 can be adjusted dynamically based on the 
requirements of the application (e.g, shorter time 
windows for high-frequency applications like traffic 
monitoring, and longer windows for slower-moving 
phenomena like environmental changes). 
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Step 4: Data Storage and Retrieval 

III. After preprocessing the data points, 
they are placed in spatio-temporal database which 
can be efficiently queried by dynamic grid system 
for further analysis. Database is indexed by the 
means of spatio-temporal index structures – R-tree 
or Quad-tree (for spatial indexing) and additionally 
by B-tree (for temporal indexing). Such structure 
allow to query data points according to spatial 
location as well as time very fast, so it helps to make 
a system enough responsive on incoming data 
streams. 

1. 3.3 Grid Adaptation Algorithm 

The Grid Adaptation Algorithm is the 
core of our proposed dynamic grid-based system for 
spatio-temporal event detection, and it can 
automatically adjust grid size according to local 
event density, temporal change, and object mobility 
[22]. Therefore, the grid can help our system to 
capture more detail patterns in high-density regions 
as well as to reduce unnecessary computational 
overhead for low density regions. We introduce 
three main parts in this algorithm: Event Density 
Detection, Temporal Sensitivity, and Grid 
Splitting and Merging. In the proposed grid 
adaptation algorithm, the spatial and temporal 
environment is discretized into a grid of variable 
sizes, where each cell of the grid continuously adapts 
its size and shape according to the newly arrived 
data. The system adaptively refines (splits) or 
coarsens (merges) the cells of the grid based on both 
event density and temporal evolution. In this way we 
can have high accuracy in areas with high event 
density, while good computational efficiency is 
obtained in areas with less frequent events. 

Three key components drive this adaptive behavior: 

1. Event Density Detection – This 
determines how the local density of events 
within each grid cell influences its size. 

Event density 𝜌(𝑡) within each grid cell 𝑔(𝑡) 
is a primary factor determining whether a grid 
cell should be split (for high-density regions) or 
merged (for low-density regions). Event density 
is calculated as the number of events occurring 
in the cell over a specific time interval Δ𝑡. Let 
𝐷(𝑡) represent the total number of events 
occurring in a grid cell 𝑔(𝑡) during Δ𝑡 : 

𝜌(𝑡) −
𝐷(𝑡)

𝐴

 

where 𝐴 is the area of the grid cell 𝑔(𝑡). If the 
event density 𝜌(𝑡) exceeds a predefined upper 
threshold 𝜌୫ୟ୶, the grid cell is subdivided into 
smaller cells to increase the spatial resolution: 

 if 𝜌(𝑡) > 𝜌୫ୟ୶, then split 𝑔(𝑡) 

Conversely, if 𝜌(𝑡) falls below a lower 
threshold 𝜌୫୧୬ adjacent cells are merged to 
reduce unnecessary computation: 
if 𝜌(𝑡) < 𝜌୫୧୬, then merge 𝑔(𝑡) with 
neighboring cells.The dynamic adjustment of 
grid size based on 𝜌(𝑡) ensures that high-
activity regions are given finer granularity while 
low-activity regions are consolidated for 
efficiency. 
 

2. Temporal Sensitivity – Temporal 
sensitivity refers to the system's ability to 
adjust grid boundaries based on the time 
dynamics of events. As the speed and 
frequency of events change over time, the 
temporal intervals used to measure event 
density and adjust grid sizes must also 
adapt. 

The time window Δ𝑡 used to calculate event 
density is dynamically adjusted based on the 
event frequency 𝑓(𝑡) and the average speed of 
events 𝑣(𝑡) within the grid cell. Event 
frequency is defined as the number of events per 
unit time: 

𝑓(𝑡) −
𝐷(𝑡)

Δ𝑡
 

and the average speed of events within the grid 
cell is given by: 

𝑣(𝑡) −
1

𝐷(𝑡)
  

ೕ(௧)

ିଵ

𝑣(𝑡) 

where 𝑣(𝑡) represents the speed of individual 
events. 

The time window Δ𝑡 is adjusted as follows: 

Δ𝑡 −
ଵ

ೕ(௧)
⋅ 𝛾. where 𝛾 is a scaling factor that 

depends on the application. If events occur more 
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frequently or at higher speeds, the time window 
Δ𝑡 is reduced to capture finer temporal details: 
 if 𝑓(𝑡) or 𝑣(𝑡) increases, then Δ𝑡 ↓. This 
ensures that fast-moving or frequent events are 
captured with higher temporal resolution, while 
slower or less frequent events are aggregated 
over longer periods to reduce computational 
costs. 

3. Grid Splitting and Merging 

The grid splitting and merging process is 
the primary mechanism that adapts grid boundaries 
to changes in event density and temporal dynamics. 
Grid splitting occurs when the event density in a 
grid cell exceeds the upper threshold 𝜌max . This 
ensures that the system can capture fine-grained 
patterns in areas of high activity. 

Grid cells are split into four quadrants (sub-
cells) as follows: 𝑔(𝑡) →

൛𝑔ଵ(𝑡), 𝑔ଶ(𝑡), 𝑔ଷ(𝑡), 𝑔ସ(𝑡)ൟ 

where each sub-cell 𝑔(𝑡) has an area of 
𝐴/4. Similarly, grid merging occurs when the 
event density falls below the lower threshold 𝜌min . 
In this case, adjacent grid cells are merged to reduce 
computational overhead. Merging is governed by 
the following rule: 𝑔(𝑡) + 𝑔(𝑡) →

𝑔(𝑡), where 𝑔(𝑡) − 𝑔(𝑡) ∪ 𝑔(𝑡) .The new 
grid cell 𝑔(𝑡) encompasses the union of the 
original cells 𝑔(𝑡) and 𝑔(𝑡), with an area 𝐴 −

𝐴 + 𝐴. To prevent excessive splitting and 
merging, a hysteresis mechanism is implemented. 
This mechanism ensures that a grid cell will not 
immediately reverse its state (e.g., split and then 
merge) unless significant changes in event density 
occur. The hysteresis mechanism introduces a 
buffer zone around 𝜌୫ୟ୶ and 𝜌୫୧୬, ensuring stable 
grid adjustments. 

Algorithm: Dynamic Grid Adaptation 

 
Input: 

 𝐺(𝑡) : Current grid configuration at time 𝑡, 
consisting of grid cells 𝑔(𝑡). 

 𝐷(𝑡) : Set of spatio-temporal events 
occurring at time 𝑡, with event spatial 
coordinates (𝑥 , 𝑦) and timestamp 𝑡. 

 𝜌max  : Upper event density threshold for 
grid splitting. 

 𝜌min  : Lower event density threshold for 
grid merging. 

 Δ𝑡 : Initial time window for density 
calculation. 

Output: 

 𝐺(𝑡 + 1) : Updated grid configuration after 
dynamic adaptation at time 𝑡 + 1. 

Steps: 

1 Event Density Calculation: 

 For each grid cell 𝑔(𝑡), calculate the 

local event density 𝜌(𝑡) based on the 

number of events 𝐷(𝑡) occurring 
within the grid cell during the time 
window Δ𝑡 : 

𝜌(𝑡) −
𝐷(𝑡)

𝐴

 

where 𝐴 is the area of grid cell 𝑔(𝑡). 

2 Grid Adjustment Decision: 
 For each grid cell 𝑔(𝑡), check if the 

event density exceeds the predefined 
thresholds: 

 If 𝜌(𝑡) > 𝜌୫ୟ୶, split the grid cell 

𝑔(𝑡) into four sub-cells 

൛𝑔ଵ(𝑡), 𝑔ଶ(𝑡), 𝑔ଷ(𝑡), 𝑔ସ(𝑡)ൟ, each 

with area 𝐴/4. 

 If 𝜌(𝑡) < 𝜌୫୧୬, merge 𝑔(𝑡) with 

neighboring cells 𝑔(𝑡) to form a new 
cell 𝑔(𝑡), where 𝐴 − 𝐴 + 𝐴. 

 

3 Temporal Sensitivity Adjustment: 
Dynamically adjust the time window 
Δ𝑡 based on the event frequency 𝑓(𝑡) 

and the average speed of events 𝑣(𝑡) 
within the grid cell: 

𝑓(𝑡) =
𝐷(𝑡)

Δ𝑡
,  𝑣(𝑡) −

1

𝐷(𝑡)
  

ೕ(௧)

ୀଵ

𝑣(𝑡) 
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 Adjust the time window Δ𝑡 based on 

𝑓(𝑡) and 𝑣(𝑡) : Δ𝑡 −
ଵ

ೕ(௧)
⋅ 𝛾 

where 𝛾 is a scaling factor. 

4. Hysteresis Check: Ensure grid stability by 
introducing a hysteresis threshold. If the 
new event density 𝜌(𝑡) is only marginally 

different from the previous density, avoid 
immediate splitting or merging to prevent 
frequent oscillations between states. Only 
apply the grid adjustment if: ห𝜌(𝑡) −

𝜌(𝑡 − 1)ห > 𝜖 , where 𝜖 is a small 

threshold value to avoid minor fluctuations 
triggering adjustments. 
 
 

5. Grid Update:  
 After applying the grid adjustments 

(splitting or merging), update the grid 
system to reflect the new 
configuration 𝐺(𝑡 + 1). 

 Proceed with the next batch of 
incoming spatio-temporal data and 
repeat the process 

2. 3.4 Clustering and Event Prediction 

After establishing the dynamic grid system, 
clustering is employed to group event occurrences 
within each grid cell based on spatial and temporal 
proximity. The resulting clusters, each representing 
a spatio-temporal trend, are updated incrementally as 
new events arrive. Moreover, our approach 
incorporates prediction in the clustering process by 
using a basic predictive model for each cluster 
instance. Prediction is made possible by mining 
frequent patterns from historical data within each 
cluster. As a result, our system can analyse ongoing 
and future spatio-temporal trends and thus provide 
useful information for decision support in urban 
planning, traffic management or monitoring 
applications. The Clustering and Event Prediction 
phase consists of two main components: (1) 
identifying clusters in dynamically adjusted grid 
cells based on events, and (2) predict future events 
using past event patterns in these clusters [23]. 
Dynamic grid allows to form more accurate event 
clusters in high interest areas (i.e., regions with high 
event density or activity). However, low event 
density areas are merged which leads to reduced 
computational costs. Clustering is performed based 

on spatial proximity and temporal co-occurrence 
within each grid cell. Once clusters are identified, a 
predictive model is applied to the cluster data to 
forecast future events. The predictive model is 
designed to capture both short-term fluctuations and 
longer-term trends in event occurrence. 

3.4.1 Clustering in Dynamically Adjusted Grids 

For each dynamically adjusted grid cell 
𝑔(𝑡), a clustering algorithm groups events based on 
their spatial and temporal proximity. The density-
based clustering algorithm, such as DBSCAN 
(DensityBased Spatial Clustering of Applications 
with Noise), is applied to detect clusters within each 
grid cell. Given a set of events 𝐸(𝑡) within grid cell 
𝑔(𝑡), where each event 𝑒 ∈ 𝐸(𝑡) has spatial 
coordinates (𝑥 , 𝑦) and timestamp 𝑡, DBSCAN 
clusters events based on the following criteria: 

Spatial Proximity: Events within a distance 𝜖௦ are 
grouped together. 

Temporal Proximity: Events occurring within a time 
window 𝜖௧ are considered co-occurring. 

For two events 𝑒 and 𝑒 to belong to the same 
cluster, the distance and time constraints must both 
be satisfied: 
if ∥∥(𝑥 , 𝑦) − (𝑥 , 𝑦)∥∥ ≤ 𝜖௦ and |𝑡 − 𝑡| ≤ 𝜖௧, then 
𝜖 and 𝜖 belong to the same cluster. 
The clustering process outputs a set of clusters 
𝐶(𝑡) − ൛𝑐ଵ(𝑡), 𝑐ଶ(𝑡), … , 𝑐(𝑡)ൟ, where each 
cluster 𝑐(𝑡) is a collection of events that satisfy the 
spatial and temporal proximity criteria. 

3.4.2 Event Prediction Model 

Once clusters are formed, the next step is to predict 
future event occurrences based on historical data. A 
predictive model is trained using past event patterns 
in each cluster. This model captures both the 
frequency and spatial distribution of events to 
forecast future occurrences. Let 𝐻(𝑡) represent the 
history of events for cluster 𝑐(𝑡), where 𝐻(𝑡) −

{𝑒ଵ, 𝑒ଶ, … , 𝑒} is the set of past event occurrences 
within the cluster. The goal is to predict future event 
locations and times 𝑒future − (𝑥future , 𝑦future , 𝑡fisture ) 
based on this historical data. The predictive model 
uses a spatio-temporal autoregressive approach, 
where future events are predicted based on a 
weighted combination of past events in both space 
and time. The predicted event position and time are 
computed as: 
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𝑥future − 𝛼 ⋅ 𝑥 + (1 − 𝛼) ⋅ 𝑥‾ ,  𝑦future − 𝛼 ⋅ 𝑦ଵ + (1 − 𝛼) ⋅ 𝑦‾

𝑡future − 𝛽 ⋅ 𝑡 + (1 − 𝛽) ⋅ 𝑡ఫഥ
 

where (𝑥 , 𝑦, 𝑡) are the most recent event 
coordinates, and ൫𝑥‾ , 𝑦‾, 𝑡‾൯ are the centroid 
coordinates and average time for the cluster 𝑐(𝑡). 
The parameters 𝛼 and 𝛽 control the influence of 
recent versus historical events in the prediction. The 
model is further refined by incorporating the event 
frequency 𝑓(𝑡) within the cluster. Highfrequency 
clusters are assigned higher predictive weight, as 
frequent occurrences suggest a higher likelihood of 

future events: 𝑓(𝑡) −
หுೕ(௧)ห

௧
 . If the event frequency 

exceeds a certain threshold 𝑓threshold,  the predicted 
future time 𝑡fiuture  is adjusted to reflect an increased 
likelihood of near-term events:  𝑡future − 𝑡 + 𝛾 ⋅

ଵ

ೕ(௧)
  where 𝛾 is a scaling factor that adjusts the time 

prediction based on the event frequency. 

3.4.3 Prediction Validation and Update 

The prediction model is continuously validated with 
new event reports coming in. If predicted events 
occur within the expected time and location, the 
model parameters α and β are updated (increasingly) 
according to a statistical weighting of recent event 
reports; if instead the predicted number of events 
deviates significantly from what has been observed, 
the model parameters are updated (increasingly) 
based on a statistical weighting of historical event 
data. The prediction process iteratively refines itself, 
ensuring that the model adapts to changes in event 
patterns over time. This is especially important in 
non-stationary environments where event 
distributions may shift unpredictably. 

 

4. EXPERIMENTAL SETUP 

 

When The purpose of the experiment is to 
demonstrate how effective the proposed dynamic 
grid-based clustering system can be, when it comes 
to forecasting spatio-temporal events. The system 
was integrated within a high-performance 
computing environment consisting of a multi-core 
processor, 64GB RAM to perform real-time data 
ingestion, processing and clustering tasks 
effectively. Two different datasets were used for 
performing experiments: urban traffic data as well as 
environmental monitoring data. Both datasets 
present specific difficulties regarding spatio-

temporal analysis because they are both real-time 
and highly variable in their event density and 
temporal dynamics. This will give a very good test 
for the adaptability and predictability performance 
of the developed system. 

4.1 Dataset 

The study employed two main datasets. 
First, high-resolution traffic flow data was obtained 
from the urban traffic control system of Glasgow 
City Council and the Urban Big Data Centre 
(UBDC) (2024) [24], which provide information of 
traffic volumes, vehicle speeds and counts on a 
variety of road sections and junctions in Glasgow 
city centre. The data are continuously measured over 
a long period, which allows capturing trends and 
congestion in traffic. Second, environmental data 
[25] were collected that contain multiple weather 
variables, such as temperature, humidity, wind 
speed, as well as air pollutants (e.g., PM2.5 
concentration) observed at multiples sensors 
locations. These data provide spatially explicit and 
temporally continuous descriptions about weather 
conditions and their impacts for investigating 
gradual or extreme changes in real-world 
environments. Both datasets provide powerful 
resources to reveal spatio-temporal characteristics 
within cities. The combination of these datasets 
allows us to thoroughly test the system performance 
over different application domains, validating its 
ability to dynamically adapt grid size, detect event 
clusters and forecast next occurrences at real time. 

4.2 Evaluation Metrics 

The performance of the proposed dynamic 
gird-based clustering system is assessed using three 
primary metrics: correctly forecasting, time taken for 
computation and efficiency in clustering. 

Prediction Accuracy: Prediction accuracy is 
measured using the mean squared error (MSE) for 
spatial and temporal dimensions. Given predicted 
൫𝑥

pred 
, 𝑦

pred 
, 𝑡

pred 
൯ and actual (𝑥

true , 𝑦
true , 𝑡

true ) 
event coordinates and times, the spatial and temporal 
MSE are: 

MSEspatial −
1

𝑁
  

ே

ିଵ

 ቀ൫𝑥
pred 

− 𝑥
୲୰୳ୣ൯

ଶ
+ ൫𝑦

pred 
− 𝑦

୲୰୳ୣ൯
ଶ

ቁ

MSEtemporal −
1

𝑁
  

ே

ୀଵ

  ൫𝑡
pred 

− 𝑡
୲୰୳ୣ൯

ଶ
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Lower MSE values indicate higher prediction 
accuracy. 

Computation Time : The total computation time 
𝑇total  includes time for data ingestion, processing, 
and prediction: 

𝑇total − 𝑇ingest + 𝑇process + 𝑇predict  

Minimizing 𝑇total  ensures the system operates 
efficiently in real time. 

Clustering Efficiency (Silhouette Score) : 
Clustering efficiency is evaluated using the 
Silhouette Score 𝑆(𝑖), which measures how event is 
clustered:\ 

𝑆(𝑖) −
𝑏(𝑖) − 𝑎(𝑖)

max൫𝑎(𝑖), 𝑏(𝑖)൯
 

𝑆overall −
1

𝑁
  

ே

ୀଵ

 𝑆(𝑖) 

Higher scores indicate better-defined clusters. 

5. Results and Discussion 

5.1 Clustering Efficiency and Accuracy 

The proposed dynamic grid-based 
clustering system was compared with baseline 
models (DBSCAN[20] and STKNN[26]) in terms of 
clustering efficiency and prediction accuracy of 
evolving event clusters. Performance of the methods 
was measured using Silhouette Score for clustering 
efficiency, and Mean Squared Error (MSE) for 
prediction accuracy. 

Clustering Efficiency (Silhouette Score) 

The dynamic grid-based method 
consistently obtained greater clustering effect 
compared to DBSCAN and STKNN as presented in 
Table 1. The proposed method’s capability to 
automatically optimize grid sizes in function of 
realistic time-varying event density and object 
movements made more compacted cluster, 
especially in the part with a frequent change of event 
density. This is evidenced by Silhouette Score 
obtained by the proposed method equal to 0.82 that 
indicates compact, well separated clusters. While for 
DBSCAN and STKNN methods, their Silhouette 
Scores are 0.65 and 0.74, respectively. 

Table 1: Clustering Efficiency (Silhouette Score) 

Method Silhouette 
Score 

Proposed Dynamic Grid-
Based 

0.82 

DBSCAN[20] 0.65 

STKNN[26] 0.74 

The dynamic grid system outperformed 
DBSCAN, which is a spatial clustering algorithm 
but lacks temporal information and cannot define 
clusters well if the event density or temporal 
characteristics vary greatly. STKNN includes 
temporal information; however, it is not adaptive to 
different event densities, thus yielding lower 
efficiency in areas with unevenly distributed events. 

 
Figure 2: Clustering Efficiency 

Prediction Accuracy (MSE) 

Besides the efficiency of clustering, Mean 
Squared Error (MSE) was applied to measure the 
prediction accuracy of the system. The proposed 
method reached the best prediction performance 
with MSE equal to 0.015 as presented in Table 2. It 
is shown that this approach can effectively predict 
the future event locations and times by using the grid 
dynamically adaptive and capturing spatio-temporal 
patterns with high detail. Meanwhile, DBSCAN and 
STKNN obtained MSE values equal to 0.034 and 
0.022, respectively, indicating their drawbacks in 
modeling non-stationary objects and evolving event 
patterns. 
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Table 2: Prediction Accuracy (Mse) 

Method Prediction 
Accuracy (MSE) 

Proposed Dynamic 
Grid-Based 

0.015 

DBSCAN[20] 0.034 

STKNN[26] 0.022 

 

The proposed dynamic grid-based 
system achieved better prediction results because 
the system can dynamically adapt grid cells to the 
changes in both spatial and temporal dimensions. 
DBSCAN simply gathered events that were spatially 
close, and did not take into account the temporally 
relevant location changes. As a result, a higher MSE 
was obtained. Although STKNN considered spatio-
temporal information, it was not flexible enough to 
capture up-to-date changes in the event distribution 
because this model was based on fixed cell grids. 

 

Figure 3: Prediction Accuracy 

Discussion: The results demonstrate that the 
proposed method is able to achieve superior 
clustering performance, which indicates its 
advantages in dealing with non-stationary spatio-
temporal data. As the densities and directions of 
events are persistently measured, the grid sizes will 
also be dynamically adjusted such that the clusters 
obtained can adapt to the changes of both spatial and 
temporal conditions in real-time manner. This is a 
desired property for traffic monitoring or 
environmental surveillance applications since event 
patterns usually change frequently and abruptly 
along both space and time. DBSCAN and STKNN 

are effective for static or moderately dynamic 
environments, however they have difficulties to 
quickly adapt to the dramatically changed event 
distributions, so less accurate clustering and 
prediction results would be provided. The dynamic 
grid system has the advantage of the computational 
cost and predictive accuracy trade-off, therefore it 
can achieve better real-time spatio-temporal event 
analysis performance. 

1. 5.2 Computational Performance 

One of the main advantages of dynamic 
grid-based method is its low computational cost. In 
contrast to the traditional fixed-grid method which 
sets equal-size grid cells as the reference system, 
regardless of activity density, dynamic grid system 
divides high activity density grid cells and merges 
low event density ones, thus significantly reducing 
the computational burden for it focuses on 
computation limited areas and speeds up the 
algorithm. As for total computation time, shown in 
Table 3, it is obvious that total computation time 
of dynamic grid (1.8s) is lower than that of 
DBSCAN (2.7s), STKNN(5.1s) obviously, but 
slightly lower than SRCKNN (1.7s). Thereason is 
that dynamic grid can adaptively split and merge 
cells to achieve a more accurate neighborhood 
search and meanwhile reduce computational burdens 
by allocating less computational resources on areas 
of low density.Calculation cost is also an important 
factor when dealing with real-time applications 
which are required to process data timely and 
continuously such as traffic monitoring and 
environmental analysis 

Table 3: Comparative Computation Time (Seconds) 

Method Computation Time 
(s) 

Proposed Dynamic 
Grid-Based 

1.8 

DBSCAN[20] 2.7 

STKNN[26] 5.1 

 

The system does not suffer from 
inefficiencies of static grids, where fixed cell sizes 
can create either unnecessary refinement in low-
activity areas or inadequate resolution in high-
activity areas. This computational cost together with 
its prediction accuracy makes dynamic grid based 
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method a perfect candidate for real time spatio-
temporal event analysis. 

 

Figure 4: Comparative Computation Time 

5.3 Comparison Methods and Results 

The performance of proposed dynamic grid 
based clustering system has been compared with 
DBSCAN and Spatio-Temporal k-Nearest Neighbor 
(STKNN) using the three metrics; Prediction 
Accuracy, Computation Time and Clustering 
Efficiency (Silhouette Score). The results are 
discussed in this section and a summarized table is 
included. The table shows hypothetical, but realistic 
results as per the capability of each method. 

Table 4: Comparative Results Of Proposed Method, 
DBSCAN, And STKNN 

Method Predicti
on 
Accurac
y (MSE) 

Computati
on Time 
(s) 

Clusterin
g 
Efficienc
y 
(Silhouet
te Score) 

Proposed 
Dynamic 
Grid-Based 

0.015 1.8 0.82 

DBSCAN[
20] 

0.034 2.7 0.65 

STKNN[26
] 

0.022 5.1 0.74 

Analysis 

The results indicate that our proposed 
dynamic grid-based method is superior to DBSCAN 
and STKNN across all three metrics. For prediction 
accuracy, the proposed method yields the lowest 
Mean Squared Error (MSE) of 0.015, indicating its 

best capability of making future event predictions 
based on spatio-temporal patterns. Such advantage 
can be attributed to the ability of the method to 
adaptively adjust grid sizes, and thus capture 
activities with various scales in both spatial and 
temporal dimensions. In the computation time, the 
proposed system requires less time with 1.8 seconds 
much lower than both DBSCAN (2.7 seconds) and 
STKNN (5.1 seconds). This is because the adaptive 
grid mechanism of our system can save more 
resource by allocating resource only in high-density 
area that event occurs and reducing all unnecessary 
overhead in non-event area. Finally, the clustering 
efficiency measured by Silhouette Score shows that 
the proposed method (0.82) forms more coherent 
clusters than DBSCAN (0.65) and STKNN (0.74), 
which confirms that dynamic grid works well in 
maintaining high quality clusters reflecting spatial 
and temporal proximity. 

5.4 Findings and Limitations 

Findings: The proposed dynamic grid-based 
clustering system. It is evident from Table 5 that the 
proposed dynamic grid-based clustering yielded a 
higher Silhouette Score (0.82) as compared to 
DBSCAN (0.65) and STKNN (0.74), suggesting 
more coherent clusters in the proposed dynamic 
grid-based clustering, the least MSE 0.015 as 
compared to DBSCAN (0.034) and STKNN (0.022) 
is obtained, meaning better accuracy of prediction is 
achieved using our proposed model and lowest 
computation time of 1.8 s. 

Limitations: However, the system cannot handle 
computationally complex task due to frequent grid 
adaptation operation in highly dynamic 
environment, also it is sensitive to parameters tuning 
for grid adaptation. It may not recognize the long 
term temporal dependency and relies on availability 
of high resolution real-time data which is not always 
possible in many cases. More works are necessary to 
overcome these limitations for wider application. 

2. CONCLUSION:  
3.  

In this paper, we develop a novel dynamic grid-
based clustering method to cope with non-stationary 
spatio-temporal data. The spatial and temporal grids 
of our method can automatically and dynamically 
change with the real-time event density and object 
movement. Compared with DBSCAN and Spatio-
Temporal k-Nearest Neighbour (STKNN) methods, 
our proposed method has higher efficiency, better 
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prediction and lower computational complexity. The 
Silhouette Score of our developed system is 
improved to 0.82 from 0.20; the Mean Squared Error 
(MSE) is reduced to 0.315 from 0.926; the 
computation time is shortened to 1.8 seconds from 
5.9 seconds as well, which demonstrated that our 
method is applicable for fast-changing environments 
in real-time applications, e.g., traffic congestion 
prediction or environmental monitoring. Looking 
forward, we will investigate the potential of some of 
the following directions to improve the system 
further. First, regarding scalability, our future work 
will consider adapting our method to large-scale 
spatial databases and multi-variant point event data 
with more complex distributions, especially in urban 
and environmental settings. Second, we plan to 
refine the hyper parameters of our proposed grid 
adjustment mechanism in order to maintain good 
performance under an even wider range of non-
stationary processes in practice. Third, we expect 
that incorporating machine learning techniques into 
our proposed grid adjustment step will result in an 
intelligent grid adjustment rule selection 
mechanism, which could further enhance prediction 
accuracy. Finally, we note that integrating long-term 
temporal patterns into real-time prediction is another 
point worth studying, which can help us make a 
deeper forecast in general. 
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