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ABSTRACT 

The increasing complexity of software engineering projects has made accurate effort estimation a 
formidable challenge. We introduce the NEMAEP framework to address existing methods shortcomings 
and enhance precision. This framework integrates ensemble learning techniques, specifically the CatBoost 
gradient boosting algorithm, with Grid Search cross-validation for optimizing hyperparameters. Our robust 
predictive methodology substantially improves the accuracy and reliability of software effort estimation. 
We evaluated NEMAEP against well-established regression techniques, including support vector regressor, 
decision tree, random forest, and multi-layer perceptron. Two datasets were utilized: Cocomo81, 
comprising 63 projects, and a more extensive China dataset, containing 499 projects. We assessed 
performance using MAE, RMSE, and R². The NEMAEP methodology demonstrated superior predictive 
capabilities, achieving accuracy rates of 97% for Cocomo81 and 99% for the China dataset. When applied 
to the China dataset, the model produced MAE and RMSE scores of 0.0154 and 0.0213, respectively. In 
Cocomo81, the values were 0.013 and 0.0641. This innovative strategy allows for the effective 
maximization of resource utilization in software project management. This is achieved by providing project 
managers with a data-driven tool to navigate modern software development projects. 
Keywords: Software Project Management, Software Effort Estimation, Machine Learning, Ensemble 

Learning, Grid Search 
 
 

1. INTRODUCTION  

 During the software development process, 
software effort estimation is crucial to the success 
of the project. In building a software project, 
estimates of schedules, costs, and manpower play a 
crucial role. Software effort estimation predicts the 
effort needed to maintain and develop a software 
system based on unknown, incomplete, unreliable, 
and inconsistent input data. A significant amount of 
attention has been paid to software effort estimates 
since the mid-1970s. The accuracy of the 
predictions was essential since inaccurate 
predictions can lead to overestimation of resources 
and dissipation of funds, while underestimation can 
lead to an excess of spending. Software technology 
has continually extended its significance and size, 
thus adding to its complexity, and making it more 
difficult to get an accurate estimate of the effort. 

 Several techniques are available for 
estimating software efforts, such as algorithmic 
approaches, expert opinions, measurement through 
analogies, and artificial intelligence [1]. Numerous 
mathematical algorithms are involved, including 
COCOMO, the slim model, and end-user use cases. 
Estimating a project with expert judgment involves 
analyzing and utilizing the expert's experience. A 
comparison of homogeneous historic projects with 
current development models is known as estimation 
by analogy. Software effort estimation techniques 
using machine learning have been a renowned 
technology for more than two decades. 

 By utilizing prior knowledge from prior 
projects to construct regression models, machine 
learning generates estimates of software project 
effort using prior projects. Feature and effort 
correlation in projects seems difficult to model 
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using statistical methods or traditional parametric 
models as software project complexity grows. As 
software effort estimation has made significant 
progress, it is expected that techniques will emerge 
to estimate the effort of drastically modifying code, 
allowing programming skills and tools to keep pace 
with advances. Machine learning might be 
preferred for this scenario over traditional methods 
since it has the capability of accessing historical 
data and learning from it, as well as adapting to a 
wide range of variation that occurs in software 
development [2]. Due to their accuracy and 
efficiency, these techniques are efficient at dealing 
with complicated data. 

 Sometimes, it is difficult to determine 
which effort estimators are most effective using 
machine learning techniques. Since the ranking of 
estimators may change when they are compared 
based on modified conditions. When several 
estimators are combined, the result is superior to a 
single estimate. As a result of the above claim, 
ensemble learning is recognized as a method of 
predicting or estimating performance by combining 
multiple learning algorithms. The use of an 
ensemble approach for estimating the amount of 
effort required for software development achieves a 
much higher degree of accuracy by combining 
various algorithms and predicting the best outcome 
[3]. 

 This paper aims to estimate software effort 
utilizing ensemble learning techniques and machine 
learning techniques using Grid Search CV. The 
following are some of the highlights of the research 
work: 

1. To develop and evaluate a comprehensive 
machine learning framework for the various 
datasets, integrating a diverse range of algorithms 
including traditional methods (SVR, Decision 
Trees), advanced ensemble techniques (Random 
Forests, CatBoost), neural networks (MLP), with a 
focus on enhancing prediction accuracy through 
Grid Search CV hyperparameter optimization. 

2. To implement and assess the effectiveness of 
a two-step robust data preprocessing methodology, 
combining the Robust Scaler for feature scaling and 
the Interquartile Range (IQR) method for outlier 
detection and removal, in improving the overall 
performance and reliability of multiple machine 
learning models applied to the various datasets. 

3. To conduct an extensive comparative analysis 
of various machine learning algorithms, contrasting 
their performance both with and without 

hyperparameter optimization, using multiple 
evaluation metrics (MAE, RMSE and R2 Score) to 
identify the most effective approach for predictive 
modelling on the various datasets. This analysis 
aims to provide insights into the relative strengths 
of different algorithms, with particular emphasis on 
the performance of advanced techniques like 
CatBoost, and to visualize these comparisons for 
clear interpretation.  

 The paper consists of the following 
sections: Section 2 describes the related work on 
methods for calculating the effort required to 
complete a software project. Section 3 explains the 
proposed model along with the framework. Section 
4 shows the analysis of the results along with the 
graphical representation. Section 5 presents a 
comparison of our findings with those from extant 
studies. Section 6 provides conclusions. 

2. RELATED WORK 

 Mukesh Mahadev, et al. [4] have explored 
and implemented genetic programming approaches 
to estimate software effort. Genetic programming 
has been studied and adapted for the task of effort 
estimation in detail and has been reported clearly. 
Understanding bioinspired evolutionary algorithms 
is the first step, followed by exploring metrics that 
can be used to assess their performance. To analyse 
the prediction model, metrics like Pred25 and 
MMRE were implemented using genetic 
programming. To test the predictive model, 
multiple datasets of various sizes were used. More 
reliable accuracy is obtained by K-fold validation. 
Results show good accuracy for the model built 
using GP. 

 An ensemble of heterogeneous stacked 
ANN and SVR is proposed by Somya Goyal [5] to 
estimate effective effort. The proposed model is 
then empirically compared with base learners to 
determine its accuracy. For the comparison, 
datasets from the PROMISE repository were 
selected. The accuracy measures used for the 
comparison were MAR and MMRE. According to 
the proposed model, MAR and MMRE are reduced 
by 50.4% and 54.6%, respectively, over base 
models. According to the experiments, the 
proposed heterogeneous stacked ensemble is the 
most statistically advantageous model among the 
candidates for SEE. Multiple comparisons are 
validated statistically using the Friedman test. 

 Stacking regularization analogy-driven 
methodology (SABE) is proposed by Anupama 
Kaushik, et al. [6] to improve the accuracy of effort 
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prediction based on ABE. This technique is based 
on machine learning, which is the core of SABE. 
Multi-model stacking provides better estimation 
accuracy than a single model since it takes 
advantage of multiple models' capabilities. A 
comparison is made between the proposed method 
and the currently available solution functions. To 
assess the results, MMRE, MdMRE, PRED, and 
SA are used as the evaluation criteria. SABE 
showed promising results in comparison to earlier 
studies on almost all evaluation criteria. 

 Several machine learning algorithms have 
been recommended by Mizanur Rahman, et al. [7] 
including k-nearest neighbour regression, support 
vector regression, and decision trees. Software 
development industries now use these methods for 
estimating software to overcome the limitations of 
parametric and conventional estimation techniques. 
To assess the effectiveness of the established 
procedure, the authors examined a dataset created 
by Edusoft Consulting LTD. The three commonly 
used performance evaluation measures, MAE, 
MSE, and R squared, are the foundation for these 
experiments. A comparison of decision trees and 
other techniques shows that decision trees are more 
accurate at predicting effort. 

 This research aims to apply the LSTM 
algorithm and examine how accurate it is at 
estimating software effort. To decide which model 
is superior, Farah B. Ahmad, et al. [8] compared the 
results with previous work. China and Kitchenham 
data sets were analysed using the LSTM algorithm. 
An evaluation of the model's accuracy is based on 
RMSE, MAE, and R-squared. A China dataset has 
an RMSE of 0.016, MAE of 0.019, and R-squared 
of 0. 972.Kitchenham dataset has an RMSE of 
0.017, MAE of 0.058, and R-squared of 0.896. 
LSTM algorithm performed better on both data sets 
than other algorithms, proving their superiority. 

 This study aims to reduce the gap between 
actual and predicted software effort for future 
projects by providing a more accurate software 
effort estimation model. All datasets cannot be 
predicted better by a single machine learning 
algorithm. As a result of using voting estimators, 

Beesetti Kiran Kumar, et al. [9] proposed the 
ensembling of regression models to reduce error 
rates over those provided by a single machine 
learning algorithm. The ensemble model showed a 
lower error rate. In the area of machine learning, 
the average between different predictors had a 
positive impact on the output, demonstrating the 
crucial role played by these predictors in optimizing 
software effort estimation. Results showed that 
there was an improvement in the performance 
between ensemble and individual models on 
different datasets. 

3. PROPOSED METHODOLOGY 

    In this section, the NEMAEP model is 
discussed in a detailed manner. The designed 
framework comprises of the following stages as 
shown in fig 1. 

 
3.1. Installing Libraries: In this step, libraries 

and modules are imported that are needed for data 
manipulation, visualization, and implementing 
various machine learning algorithms. Matplotlib 
and seaborn are used to visualize data, and scikit-
learn implements machine learning models, with 
pandas and numpy for manipulating data. 
Additionally, libraries like Cat Boost are imported 
for their respective gradient-boosting algorithms. 

 

3.2. Data Loading: In this step, the dataset under 
investigation is loaded from a specified file path 
into a Pandas Data Frame, a two-dimensional 
tabular data structure that facilitates efficient data 
manipulation and analysis. The paper works with 
two different datasets, draws inspiration from the 
prior studies. Table 1 lists the data sets including 
the source repository, number of projects, number 
of attributes and target variable.  

Table 1. Dimensions Of The Datasets 

Datasets 
Source 

Repository 
No. of 

Attributes 
No. of 

Projects 
Target 

Variable 

China Promise 19 499 Effort 

Cocomo81 Promise 17 63 Effort 

 

Fig 1. Proposed Architecture Of NEMAEP 
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3.3. Analyzing Exploratory Data: An important 
part of data analysis is exploratory data analysis, 
where the dataset is thoroughly explored to gain 
insights into its structure, statistical properties, and 
potential issues. Various EDA techniques are 
employed, such as checking data types, computing 
summary statistics (mean, median, standard 
deviation, etc.), identifying unique values, and 
detecting missing data points. Preprocessing of the 
data is guided by this step, which assists in 
understanding the data. 

 
3.4. Data Preprocessing 
3.4.1 Handling Missing Values: If the EDA 
reveals the presence of values that are missing from 
the dataset, relevant techniques are employed to 
deal with these values. Several approaches can be 
used to replace missing values with estimated 
values, or to remove missing values (drop rows or 
columns with missing values). 
3.4.2 Handling Outliers: Outliers are samples that 
vary substantially from the entire dataset and 
negatively impact machine learning models' 
performance. A robust scaling technique (Standard 
Scaler) and the Interquartile Range (IQR) method 
are employed to identify and handle outliers. 
Standard Scalers remove the mean and scale the 
variance to a unit, which reduces the effect of 
outliers on standardizing features. The IQR method 
identifies outliers as values lying more than 1.5 
times the IQR away from the first or third quartiles, 
and the corresponding rows are removed from the 
dataset. 
 
3.5 Splitting Training and Testing Subsets: The 
pre-processed input is segmented according to 
training and testing categories to examine how well 
machine learning models generalize. We have used 
the 80-20 split ratio for the training and testing set. 
The paper proposed a variety of experiment 
considering five machine learning based regression 
algorithms namely, SVR, DT, RF, MLP and 
CatBoost on both the datasets. We have used the 
advance ensemble machine learning algorithm 
known as CatBoost for accurate effort estimation 
and it provided outstanding results in comparison to 
other algorithms. The model is taught with a 
training set, and its efficiency is assessed using a 
testing set. 
3.5.1 CatBoost Algorithm: It is a gradient 
boosting algorithm that is capable of handling 
categorical features and handles them during the 
training phase rather than during the preprocessing 
period [10]. By permuting categorical variables, a 
new technique called Ordered Boosting is 
implemented, which produces a numerical 

interpretation. In this method, the category 
information is preserved while the gradient-
boosting technique is used to boost the model's 
performance. The regularization technique 
employed by CatBoost prevents overfitting. To 
prevent the model from becoming too complex 
during the training process and fitting the training 
data too closely, these techniques introduce 
penalties or constraints. A regularized model is 
more robust to unseen data and helps to generalize 
it. The algorithm minimizes the loss function 
iteratively using gradient descent to construct an 
ensemble of trees. A loss function is calculated at 
each iteration, and a tree is fitted to the negative 
gradient according to current predictions. The 
learning rate determines step sizes during gradient 
descent. The process is repeated as long as a 
convergent threshold is met, or a predetermined 
quantity of trees has been added. The predictions of 
each tree within an ensemble are merged by 
CatBoost when it makes predictions. A highly 
accurate and reliable model is thus derived by 
aggregating predictions. 
 
3.6 Training of the Model and Optimization of 
Hyperparameters: Training of regression models 
and optimization of hyperparameters are performed 
at this step. The Grid Search CV technique is used 
to tune hyperparameters for each model. A 
hyperparameter is a model-based setting that cannot 
be learned from data but has a significant impact on 
the model's performance. Every pair of 
hyperparameter values is cross validated to 
determine model accuracy. According to a 
particular scoring metric (e.g., negative mean 
absolute error), the hyperparameter combination 
that yields the best performance is selected. The 
machine learning techniques with the chosen 
parameter values are shown in table 2. 

Table 2. Parameter Settings For Various Machine 
Learning Approaches 

 
ML Techniques Parameter Values 
SVR Penalty parameter (C): 0.1 to 10 

Kernel coefficient (gamma): 0.01 to 1 

Kernel type: linear and radial basis 
function 

DT Maximum tree depth: unrestricted, 5 
levels, and 10 levels 

Minimum samples for split: 2, 5, and 10 

Minimum samples per leaf: 1, 2, and 4 

RF Number of trees: 100, 200, and 500 

Maximum tree depth: unrestricted, 5 
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levels, and 10 levels 

Minimum samples for split: 2, 5, and 10 

Minimum samples per leaf: 1, 2, and 4 

MLP Hidden layer configurations: (50), (100), 
and (50, 50) neurons 

Activation function: ReLU and hyperbolic 
tangent 

Learning rate schedule: constant and 
adaptive 

Cat Boost Number of iterations: 100, 200, and 500 

Tree depth: 3, 5, and 10 levels 

Learning rate: 0.01, 0.1, and 0.2 

3.6.1 Hyperparameter Tuning using Grid Search 
CV: Machine learning models are constructed by 
specifying hyperparameters or variables. Various 
combinations of parameter values are evaluated 
against a specified evaluation metric, such as grid 
search, to discover the best hyperparameters [11]. A 
hyperparameter is useful because it permits the 
individual to customize it to the system's precise 
requirements. In addition to Grid Search, Grid 
Search CV employs a cross-validation process. The 
most widely used validity assessment technique is 
K-fold cross-validation. In this iterative process, the 
train data is successively partitioned into k 
segments. Training is performed using k-1 
partitions, while one partition is kept for testing 
each iteration. During the next iteration, the next 
partition will be regarded as test data and k-1 as 
train data, etc. The model will be recorded each 
time it is run, and at the end, the average 
performance will be given.  

3.6.2 Working of Grid Search Enabled CatBoost 
Algorithm: The steps of Grid Search Enabled 
CatBoost Algorithm are shown below.  
Step 1: Start with the dataset and perform the 

necessary preprocessing. 
Step 2: Set the initial hyperparameters for the 

CatBoost model. 
Step 3: Build the CatBoost ensemble model using 

the initial hyperparameters. 
Step 4: Fit the CatBoost model and evaluate its 

performance. 
Step 5: Update the sample weights based on the 

model's performance. 
Step 6: Use Grid Search CV to search through the 

defined hyperparameter grid. 
Step 7: Find the next set of hyperparameter 

combinations from the grid. 
Step 8: Check if the stopping criteria (e.g., 

maximum iterations, performance 

threshold) are met. 
Step 9: If not, repeat steps 3-8 with the new 

hyperparameters. 
Step 10: Once the stopping criteria are met, obtain 

the optimal hyperparameters. 
Step 11: Perform the final performance evaluation 

using the optimized model. 
 
3.7 Evaluation of the Model 
3.7.1 Testing: The models are trained and tuned, 
then tested on the remaining set. Test data is used 
by each model to make predictions that are 
examined in comparison to the target values. 
3.7.2 Measuring model performance: Several 
evaluation metrics are used to quantify each 
model's performance, including MAE, RMSE, and 
R-squared. Model predictability and good fit can be 
evaluated from various perspectives based on these 
metrics. 
    For our investigation, to calculate and examine 
the efficiency of the several regression algorithms, 
we applied three performance measurements that 
included mean absolute error (MAE), root mean 
squared error (RMSE), and coefficient of 
determination (R2).  
3.7.2.1 Mean Absolute Error: The MAE measures 
the average deviation between the actual and 
estimated values for all the observations 
considered. Models with lower MAE values are 
more accurate. This is computed as shown below: 

                    (1) 

3.7.2.2 Root Mean Squared Error: To calculate 
the MSE, we take the mean square differences 
based on the true and estimated scores of various 
sample sets. An evaluation of the RMSE is obtained 
by computing the square root of the MSE as well as 
by finding the mean deviation of the residuals. To 
achieve better performance, a model should have a 
lower RMSE value. The following formula is used 
to calculate it: 

                           (2) 

3.7.2.3 Coefficient of Determination: The 
determination coefficient (R2) determines how 
close predictions are to the real values. R2 ranges 
from 0 to 1. When the value obtained is 1, the 
model fits exactly to the dataset, and when it is 
negative, the model does not fit well. A model 
should have a higher R2 value closer to 1 for 
superior performance. The following formula is 
used to calculate it: 
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                                    (3) 
In equations (1)-(3), yi corresponds to 

actual values, ŷi corresponds to predicted values, 
and n represents the overall project. 

The values obtained from the above 
evaluation metrics on both datasets are described in 
the results and discussion section of the paper. 

3.8 Visualization of Simulation Results: Bar plots 
are used to visualize the model's performance to 
facilitate comparisons and interpretations. A clear 
and concise comparison of the relative strengths 
and weaknesses of each model can be made based 
on the visualizations that show the evaluated 
metrics for each model as shown in fig 2(a) and fig 
2(b). 
 
4. RESULTS AND DISCUSSION 

 To address the concerns outlined in section 
1, this segment will perform two types of 
investigations to evaluate the reliability of the 
suggested framework. The first set will be 
conducted without adjusting hyperparameters 
(using default settings), while the second set will 
involve hyperparameter optimization using grid 
search cross-validation. 

4.1 Model with Default Parameter Tuning: This 
phase involved comparing various machine 
learning algorithms (SVR, DT, RF, MLP, and Cat 
Boost) using default parameter settings without 
hyperparameter optimization. The aim was to 
evaluate which algorithm might perform best across 
different problems without fine-tuning. The 
machine learning techniques have been applied 
using default configurations on the training data. 
More accurate results are obtained from the ML 
technique that displays the minimum MAE and 
RMSE values. For R2 values, higher numbers 
indicate better accuracy. Table 3 shows the optimal 
performance metrics generated by every technique 
on each data set using randomly set parameters 
within the specified range without tuning. 

Individual models perform differently based on the 
set of data used as shown in fig 2(a). 
4.1.1 Mean Absolute Error (Default Parameter 
Tuning): The first assessment of machine learning 
algorithms using Mean Absolute Error (MAE) and 
default settings showed varying performance levels 
across the two datasets. In the case of the China 
dataset the Cat Boost method performed well with 
an MAE of 0.0157 closely followed by Random 
Forest (RF) and Decision Trees (DT) with MAEs of 
0.0186 and 0.0189 respectively. This indicates that 
the Cat Boost algorithms ensemble technique 
effectively captures the underlying patterns, in the 
China dataset. For the Cocomo81 dataset Random 
Forest outperformed other algorithms with an MAE 
of 0.0462 while Cat Boost came in second with 
0.0486. 
4.1.2 Root Mean Squared Error (Default 
Parameter Tuning): RMSE analysis using default 
hyperparameters provided insights into the 
accuracy and consistency of the algorithms 
predictions. In the China dataset DT showed the 
RMSE of 0.0308 closely trailed by RF at 0.0323 
and Cat Boost at 0.0375. While Cat Boost had the 
MAE its higher RMSE indicates some variability in 
predictions compared to DT and RF. In the 
Cocomo81 dataset RF outperformed other 
algorithms with an RMSE of 0.0626 closely 
followed by Cat Boost with an RMSE of 0.0641. 
4.1.3 Coefficient of Determination (Default 
Parameter Tuning): The R squared value (R2) is a 
metric to gauge how well each model explains the 
data. When using default settings all algorithms 
performed impressively on the China dataset with 
Decision Trees (DT) achieving the R2 score of 
0.9962 closely followed by Random Forest (RF) at 
0.9958 and the suggested Cat Boost method, at 
0.9944. This suggests that all models, including Cat 
Boost can explain a portion of the variability in the 
target variable for this dataset. On the Cocomo 81 
dataset RF achieved the R2 score of 0.8025 and the 
Cat Boost method also performed well at 0.7925. 
The high R2 scores across both datasets indicate 
that Cat Boost algorithm offers high predictive 
power in software effort estimation. 
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Table 3. Performance Metrics For Various Regression Models Using Default Parameter Tuning 

Evaluation 
Metrics 

Dataset Machine Learning Algorithm 

SVR DT RF MLP Proposed 
Method 

MAE China 0.0694 0.0189 0.0186 0.0614 0.0157 

Cocomo81 0.0951 0.0751 0.0462 0.0973 0.0486 

RMSE China 0.0865 0.0308 0.0323 0.0924 0.0375 

Cocomo81 0.0960 0.1086 0.0626 0.1204 0.0641 

R2 China 0.9704 0.9962 0.9958 0.9662 0.9944 

Cocomo81 0.5357 0.4052 0.8025 0.7280 0.7925 

 
4.2 Model with Hyperparameter Tuning: 
Subsequently, the model employs hyperparameter 
optimization utilizing the grid search cross-
validation technique. During the training phase, the 
machine learning algorithm is fine-tuned with 
hyperparameter adjustment on the training dataset. 
A five-fold cross-validation approach is applied, in 
which the complete dataset is split into five 
identical portions. The model undergoes training 
and testing five times, with every iteration utilizing 
a different fold for testing and four folds for 
training. The model's effectiveness is assessed on 
the test set in each round. The final performance 
metric is calculated by averaging these five 
evaluations. Model performance varies depending 
on the dataset used as shown in fig 2(b). Table 4 
presents the optimal performance values for each 
model and dataset following hyperparameter 
optimization. 

4.2.1 Mean Absolute Error (After 
Hyperparameter Tuning): Significant 
improvements in algorithm performance were 
observed across datasets due to hyperparameter 
tuning. In the dataset from China the Decision Tree 
(DT) algorithm showed progress by achieving the 
Mean Absolute Error (MAE) of 0.0119 after tuning 
surpassing the previous leader. The Cat Boost 
method also maintained performance with an 
improvement to an MAE of 0.0154 showcasing its 
resilience to parameter adjustments. In the 
Cocomo81 dataset there was a shift in algorithm 
rankings as the Cat Boost method exhibited 
enhancement and achieved the lowest MAE of 
0.0130. This improvement highlights the potential 
of optimizing and adapting the Cat Boost algorithm 
to data sets effectively. These findings underscore 
how crucial hyperparameter tuning is for 
maximizing algorithm performance and suggest 

that fine tuning enhances the effectiveness of 
algorithms like Cat Boost, on both datasets. 
4.2.2 Root Mean Squared Error (After 
Hyperparameter Tuning): Hyperparameter 
optimization resulted in improvements in RMSE 
for all algorithms and datasets. In the China dataset 
the Cat Boost technique stood out as the performer 
with an RMSE of 0.0213 after tuning marking an 
enhancement from its initial performance. This 
indicates that tuning greatly boosted the precision 
and consistency of Cat Boosts predictions on this 
dataset. RF and DT also saw progress achieving 
RMSE values of 0.0309 and 0.0345 respectively. In 
the Cocomo81 dataset RF maintained its lead with 
a RMSE of 0.0394 while the RMSE value of Cat 
Boost algorithm remains unchanged, with 0.0641. 
Despite good performance at 0.0641 for the Cat 
Boost method on this dataset it suggests that its 
default settings were already well optimized here. 

4.2.3 Coefficient of Determination (After 
Hyperparameter Tuning): Hyperparameter 
optimization resulted in excellent R2 scores, for 
most machine learning algorithms across datasets. 
In the China dataset the Cat Boost approach 
showed progress achieving a R2 score of 0.9982 
post tuning indicating a significant improvement 
over its initial performance. This exceptional result 
suggests that the Cat Boost algorithm effectively 
explains all variability in the target variable after 
tuning surpassing traditional methods. In the 
Cocomo81 dataset Cat Boost also exhibited a boost 
achieving the R2 score of 0.9758. This notable 
advancement showcases Cat Boosts capability to 
optimize and capture patterns within datasets. The 
varying outcomes across datasets stress the 
importance of evaluation and tailored optimization, 
for accurate software effort estimation tasks. 
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Table 4. Performance Metrics For Various Regression Models After Hyperparameter Tuning 

Evaluation 
Metrics 

Dataset Machine Learning Algorithm 

SVR DT RF MLP Proposed 
Method 

MAE China 0.0694 0.0119 0.0184 0.0487 0.0154 

Cocomo81 0.0951 0.0466 0.0235 0.0497 0.0130 

RMSE China 0.0594 0.0345 0.0309 0.0625 0.0213 

Cocomo81 0.0837 0.0788 0.0394 0.0799 0.0641 

R2 China 0.9860 0.9952 0.9962 0.9845 0.9982 

Cocomo81 0.6468 0.6871 0.9214 0.6779 0.9758 

 
 The presented NEMAEP methodology 
offers significant benefits in software effort 
estimation due to its innovative integration of the 
CatBoost ensemble learning approach and Grid 
Search Cross-Validation. This study's greatest 
achievements lie in its extensive strategy for data 
preprocessing, particularly robust scaling and 
outlier detection, and comprehensive parameters-
based optimization technique. Despite these 
achievements, the study has certain limitations. 
This investigation focuses on only two datasets, so 
it may reduce the relevance of the findings to a 
wider group of software development applications. 
Furthermore, even though the CatBoost algorithm 
delivered outstanding results, the performance 
variability among various datasets indicates that the 
model's efficiency appears to be contextual. Future 
work could extend the dataset diversity, examine 
alternative ensemble procedures, and determine the 
model's feasibility with additional distinct software 
development domains to further verify and improve 
the present analysis. 

5. COMPARISON WITH EXTANT STUDIES  

 Our suggested CatBoost ensemble 
machine learning method delivers enhanced 
efficiency for various performance metrics relative 
to earlier investigations in software effort 
estimation, as shown in Table 5. The presented 
methodology generates extremely low MAE of 
0.0154 and 0.013 for the China and Cocomo81 
datasets. This is much smaller than conventional 
techniques such as LSTM, Stacked Ensemble, and 
multiple regression techniques. The precision of the 
method is further demonstrated by the RMSE 
values of 0.0213 for the China dataset and 0.0641 
for the Cocomo81 dataset, respectively. Moreover, 

our method exhibits exceptional R2 scores of 
0.9982 and 0.9758 for the China and Cocomo81 
datasets, indicating an extremely high level of 
model reliability and explanatory power. When 
contrasted with previous works that used 
techniques such as Multi-layer Perceptron, Social 
Network Search algorithms, Particle Swarm 
Optimization, and various ensemble methods, our 
approach stands out by providing more accurate 
and consistent software development effort 
estimations, thereby offering a more robust solution 
for project planning and resource allocation in 
software development contexts.. 

6. CONCLUSION AND FUTURE SCOPE  

 The NEMAEP methodology presented in 
this study greatly improves software effort 
estimation. This study illustrates how ensemble 
learning procedures and advanced hyperparameter 
optimization can significantly improve software 
project estimation performance. The purpose of this 
study is to provide empirical evidence that the 
proposed methodology can enhance prediction 
capabilities over conventional regression 
approaches. One of the major advantages of this 
method is that it integrates modern machine 
learning techniques into a consistent method for 
estimating software effort reliably. Even though 
this research recognizes the limitations of dataset 
complexity, it lays the groundwork for future 
exploration into more universal predictions. A 
fundamental advancement in software engineering 
is made possible by the NEMAEP framework, 
which utilizes machine learning to maximize 
accuracy and reliability in resource allocation.  
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Fig 2(a). Comparison Chart for performance metrics   

 Fig 2(b). Comparison Chart for performance metrics 

using default parameter tuning in various algorithms after hyperparameter tuning in various algorithms 

 

Table 5.  Comparative Analysis Of Proposed Work With Previous Work 

   MAE RMSE R2 
Refe
rence
s 

Model/Datasets China 
Cocomo
81 

China 
Coco
mo81  

Chin
a 

Cocomo 
81  

[12] 
ANFIS (Adaptive Neurofuzy Inference 
System) and SNS algorithm (Social 
Network Search) 

    0.971
6 

0.5086 
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[13] 
Multi-layer Perceptron Assisted Honey 
Bidirectional Gated Recurrent Feed 
Forward Network (Multi-Hbig) 

0.0753 0.0763     

[14] 
Long Short Term Memory Neural 
Network (LSTM) 

    0.951 0.897 

[15] 
LR+PSO Model (Linear Regression+ 
Particle Swarm Optimization) 

 0.128  0.208  0.544 

[16] 
Ensemble Method (Bagging, Boosting, 
Voting) 

     0.9578 

[17] 
MS-DES (Multi Step Dynamic 
Ensemble Selection) 

    0.984
5 

 

[18] Gradient Boosting      0.88 

[19] Stacked XG Boost 0.3059 0.3262 
0.3126

2 
0.332

83 

-
5.949

1 
-3.404 

[20] 
LSTM+GS (Long Short Term 
Memory+ Grid Search) 

    0.894  

[21] SVM, RF,DT,SGB,NB,MLP,LR,KNN 0.0204  0.0679  0.745
3 

0.3644 

[22] Stacked Ensemble  0.022780
8 

    

[9] 
Ensembling of Regressor Models using 
Voting Estimator 

 0.1466  0.229
7 

  

[8] LSTM      0.972  

[23] Stacked LSTM   0.087  0.2 0.981 0.189 

[24] 
RF,SVM,DT,Neurelnet,Ridge,LASSO,
Elasticnet,Deepnet 

 0.0538  0.094
4 

0.973
6 

0.8212 

[25] RF,CART,KNN,MLP,SVR,AdaBoost  0.0243 0.0557   0.947
3 

0.8582 

[26] Gradient Boosting Regressor     0.93  

[27] ANN (Artificial Neural Network)      0.946 

[28] Deepnet, Neuralnet, SVM, RF   0.0443  0.854
8 

 

[29] 
ANFIS (Adaptive Neurofuzy Inference 
System)  

 1.32  1.14   

 Proposed Method 0.0154 0.013 0.0213 
0.064

1 
0.998

2 
0.9758 
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