
Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9112

NEMAEP: A NOVEL ENSEMBLE MACHINE LEARNING
FRAMEWORK FOR ACCURATE EFFORT ESTIMATION

IN SOFTWARE PROJECTS

PRATEEK SRIVASTAVA1, 2, NIDHI SRIVASTAVA1, RASHI AGARWAL3 AND PAWAN SINGH4

1Amity Institute of Information Technology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow,
India

2Department of Information Technology, School of Engineering and Technology (UIET), CSJM
University, Kanpur, India

3Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur, India
4Department of Computer Science and Engineering, Amity University Uttar Pradesh, Lucknow Campus,

Lucknow, India

E-mail: 1,2prateeksri976@gmail.com , 1nsrivastava2@lko.amity.edu , 3dr.rashiagrawal@gmail.com,
4psingh10@lko.amity.edu

ABSTRACT

The increasing complexity of software engineering projects has made accurate effort estimation a
formidable challenge. We introduce the NEMAEP framework to address existing methods shortcomings
and enhance precision. This framework integrates ensemble learning techniques, specifically the CatBoost
gradient boosting algorithm, with Grid Search cross-validation for optimizing hyperparameters. Our robust
predictive methodology substantially improves the accuracy and reliability of software effort estimation.
We evaluated NEMAEP against well-established regression techniques, including support vector regressor,
decision tree, random forest, and multi-layer perceptron. Two datasets were utilized: Cocomo81,
comprising 63 projects, and a more extensive China dataset, containing 499 projects. We assessed
performance using MAE, RMSE, and R². The NEMAEP methodology demonstrated superior predictive
capabilities, achieving accuracy rates of 97% for Cocomo81 and 99% for the China dataset. When applied
to the China dataset, the model produced MAE and RMSE scores of 0.0154 and 0.0213, respectively. In
Cocomo81, the values were 0.013 and 0.0641. This innovative strategy allows for the effective
maximization of resource utilization in software project management. This is achieved by providing project
managers with a data-driven tool to navigate modern software development projects.
Keywords: Software Project Management, Software Effort Estimation, Machine Learning, Ensemble

Learning, Grid Search

1. INTRODUCTION

 During the software development process,
software effort estimation is crucial to the success
of the project. In building a software project,
estimates of schedules, costs, and manpower play a
crucial role. Software effort estimation predicts the
effort needed to maintain and develop a software
system based on unknown, incomplete, unreliable,
and inconsistent input data. A significant amount of
attention has been paid to software effort estimates
since the mid-1970s. The accuracy of the
predictions was essential since inaccurate
predictions can lead to overestimation of resources
and dissipation of funds, while underestimation can
lead to an excess of spending. Software technology
has continually extended its significance and size,
thus adding to its complexity, and making it more
difficult to get an accurate estimate of the effort.

 Several techniques are available for
estimating software efforts, such as algorithmic
approaches, expert opinions, measurement through
analogies, and artificial intelligence [1]. Numerous
mathematical algorithms are involved, including
COCOMO, the slim model, and end-user use cases.
Estimating a project with expert judgment involves
analyzing and utilizing the expert's experience. A
comparison of homogeneous historic projects with
current development models is known as estimation
by analogy. Software effort estimation techniques
using machine learning have been a renowned
technology for more than two decades.

 By utilizing prior knowledge from prior
projects to construct regression models, machine
learning generates estimates of software project
effort using prior projects. Feature and effort
correlation in projects seems difficult to model

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9113

using statistical methods or traditional parametric
models as software project complexity grows. As
software effort estimation has made significant
progress, it is expected that techniques will emerge
to estimate the effort of drastically modifying code,
allowing programming skills and tools to keep pace
with advances. Machine learning might be
preferred for this scenario over traditional methods
since it has the capability of accessing historical
data and learning from it, as well as adapting to a
wide range of variation that occurs in software
development [2]. Due to their accuracy and
efficiency, these techniques are efficient at dealing
with complicated data.

 Sometimes, it is difficult to determine
which effort estimators are most effective using
machine learning techniques. Since the ranking of
estimators may change when they are compared
based on modified conditions. When several
estimators are combined, the result is superior to a
single estimate. As a result of the above claim,
ensemble learning is recognized as a method of
predicting or estimating performance by combining
multiple learning algorithms. The use of an
ensemble approach for estimating the amount of
effort required for software development achieves a
much higher degree of accuracy by combining
various algorithms and predicting the best outcome
[3].

 This paper aims to estimate software effort
utilizing ensemble learning techniques and machine
learning techniques using Grid Search CV. The
following are some of the highlights of the research
work:

1. To develop and evaluate a comprehensive
machine learning framework for the various
datasets, integrating a diverse range of algorithms
including traditional methods (SVR, Decision
Trees), advanced ensemble techniques (Random
Forests, CatBoost), neural networks (MLP), with a
focus on enhancing prediction accuracy through
Grid Search CV hyperparameter optimization.

2. To implement and assess the effectiveness of
a two-step robust data preprocessing methodology,
combining the Robust Scaler for feature scaling and
the Interquartile Range (IQR) method for outlier
detection and removal, in improving the overall
performance and reliability of multiple machine
learning models applied to the various datasets.

3. To conduct an extensive comparative analysis
of various machine learning algorithms, contrasting
their performance both with and without

hyperparameter optimization, using multiple
evaluation metrics (MAE, RMSE and R2 Score) to
identify the most effective approach for predictive
modelling on the various datasets. This analysis
aims to provide insights into the relative strengths
of different algorithms, with particular emphasis on
the performance of advanced techniques like
CatBoost, and to visualize these comparisons for
clear interpretation.

 The paper consists of the following
sections: Section 2 describes the related work on
methods for calculating the effort required to
complete a software project. Section 3 explains the
proposed model along with the framework. Section
4 shows the analysis of the results along with the
graphical representation. Section 5 presents a
comparison of our findings with those from extant
studies. Section 6 provides conclusions.

2. RELATED WORK

 Mukesh Mahadev, et al. [4] have explored
and implemented genetic programming approaches
to estimate software effort. Genetic programming
has been studied and adapted for the task of effort
estimation in detail and has been reported clearly.
Understanding bioinspired evolutionary algorithms
is the first step, followed by exploring metrics that
can be used to assess their performance. To analyse
the prediction model, metrics like Pred25 and
MMRE were implemented using genetic
programming. To test the predictive model,
multiple datasets of various sizes were used. More
reliable accuracy is obtained by K-fold validation.
Results show good accuracy for the model built
using GP.

 An ensemble of heterogeneous stacked
ANN and SVR is proposed by Somya Goyal [5] to
estimate effective effort. The proposed model is
then empirically compared with base learners to
determine its accuracy. For the comparison,
datasets from the PROMISE repository were
selected. The accuracy measures used for the
comparison were MAR and MMRE. According to
the proposed model, MAR and MMRE are reduced
by 50.4% and 54.6%, respectively, over base
models. According to the experiments, the
proposed heterogeneous stacked ensemble is the
most statistically advantageous model among the
candidates for SEE. Multiple comparisons are
validated statistically using the Friedman test.

 Stacking regularization analogy-driven
methodology (SABE) is proposed by Anupama
Kaushik, et al. [6] to improve the accuracy of effort

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9114

prediction based on ABE. This technique is based
on machine learning, which is the core of SABE.
Multi-model stacking provides better estimation
accuracy than a single model since it takes
advantage of multiple models' capabilities. A
comparison is made between the proposed method
and the currently available solution functions. To
assess the results, MMRE, MdMRE, PRED, and
SA are used as the evaluation criteria. SABE
showed promising results in comparison to earlier
studies on almost all evaluation criteria.

 Several machine learning algorithms have
been recommended by Mizanur Rahman, et al. [7]
including k-nearest neighbour regression, support
vector regression, and decision trees. Software
development industries now use these methods for
estimating software to overcome the limitations of
parametric and conventional estimation techniques.
To assess the effectiveness of the established
procedure, the authors examined a dataset created
by Edusoft Consulting LTD. The three commonly
used performance evaluation measures, MAE,
MSE, and R squared, are the foundation for these
experiments. A comparison of decision trees and
other techniques shows that decision trees are more
accurate at predicting effort.

 This research aims to apply the LSTM
algorithm and examine how accurate it is at
estimating software effort. To decide which model
is superior, Farah B. Ahmad, et al. [8] compared the
results with previous work. China and Kitchenham
data sets were analysed using the LSTM algorithm.
An evaluation of the model's accuracy is based on
RMSE, MAE, and R-squared. A China dataset has
an RMSE of 0.016, MAE of 0.019, and R-squared
of 0. 972.Kitchenham dataset has an RMSE of
0.017, MAE of 0.058, and R-squared of 0.896.
LSTM algorithm performed better on both data sets
than other algorithms, proving their superiority.

 This study aims to reduce the gap between
actual and predicted software effort for future
projects by providing a more accurate software
effort estimation model. All datasets cannot be
predicted better by a single machine learning
algorithm. As a result of using voting estimators,

Beesetti Kiran Kumar, et al. [9] proposed the
ensembling of regression models to reduce error
rates over those provided by a single machine
learning algorithm. The ensemble model showed a
lower error rate. In the area of machine learning,
the average between different predictors had a
positive impact on the output, demonstrating the
crucial role played by these predictors in optimizing
software effort estimation. Results showed that
there was an improvement in the performance
between ensemble and individual models on
different datasets.

3. PROPOSED METHODOLOGY

 In this section, the NEMAEP model is
discussed in a detailed manner. The designed
framework comprises of the following stages as
shown in fig 1.

3.1. Installing Libraries: In this step, libraries

and modules are imported that are needed for data
manipulation, visualization, and implementing
various machine learning algorithms. Matplotlib
and seaborn are used to visualize data, and scikit-
learn implements machine learning models, with
pandas and numpy for manipulating data.
Additionally, libraries like Cat Boost are imported
for their respective gradient-boosting algorithms.

3.2. Data Loading: In this step, the dataset under
investigation is loaded from a specified file path
into a Pandas Data Frame, a two-dimensional
tabular data structure that facilitates efficient data
manipulation and analysis. The paper works with
two different datasets, draws inspiration from the
prior studies. Table 1 lists the data sets including
the source repository, number of projects, number
of attributes and target variable.

Table 1. Dimensions Of The Datasets

Datasets
Source

Repository
No. of

Attributes
No. of

Projects
Target

Variable

China Promise 19 499 Effort

Cocomo81 Promise 17 63 Effort

Fig 1. Proposed Architecture Of NEMAEP

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9115

3.3. Analyzing Exploratory Data: An important
part of data analysis is exploratory data analysis,
where the dataset is thoroughly explored to gain
insights into its structure, statistical properties, and
potential issues. Various EDA techniques are
employed, such as checking data types, computing
summary statistics (mean, median, standard
deviation, etc.), identifying unique values, and
detecting missing data points. Preprocessing of the
data is guided by this step, which assists in
understanding the data.

3.4. Data Preprocessing
3.4.1 Handling Missing Values: If the EDA
reveals the presence of values that are missing from
the dataset, relevant techniques are employed to
deal with these values. Several approaches can be
used to replace missing values with estimated
values, or to remove missing values (drop rows or
columns with missing values).
3.4.2 Handling Outliers: Outliers are samples that
vary substantially from the entire dataset and
negatively impact machine learning models'
performance. A robust scaling technique (Standard
Scaler) and the Interquartile Range (IQR) method
are employed to identify and handle outliers.
Standard Scalers remove the mean and scale the
variance to a unit, which reduces the effect of
outliers on standardizing features. The IQR method
identifies outliers as values lying more than 1.5
times the IQR away from the first or third quartiles,
and the corresponding rows are removed from the
dataset.

3.5 Splitting Training and Testing Subsets: The
pre-processed input is segmented according to
training and testing categories to examine how well
machine learning models generalize. We have used
the 80-20 split ratio for the training and testing set.
The paper proposed a variety of experiment
considering five machine learning based regression
algorithms namely, SVR, DT, RF, MLP and
CatBoost on both the datasets. We have used the
advance ensemble machine learning algorithm
known as CatBoost for accurate effort estimation
and it provided outstanding results in comparison to
other algorithms. The model is taught with a
training set, and its efficiency is assessed using a
testing set.
3.5.1 CatBoost Algorithm: It is a gradient
boosting algorithm that is capable of handling
categorical features and handles them during the
training phase rather than during the preprocessing
period [10]. By permuting categorical variables, a
new technique called Ordered Boosting is
implemented, which produces a numerical

interpretation. In this method, the category
information is preserved while the gradient-
boosting technique is used to boost the model's
performance. The regularization technique
employed by CatBoost prevents overfitting. To
prevent the model from becoming too complex
during the training process and fitting the training
data too closely, these techniques introduce
penalties or constraints. A regularized model is
more robust to unseen data and helps to generalize
it. The algorithm minimizes the loss function
iteratively using gradient descent to construct an
ensemble of trees. A loss function is calculated at
each iteration, and a tree is fitted to the negative
gradient according to current predictions. The
learning rate determines step sizes during gradient
descent. The process is repeated as long as a
convergent threshold is met, or a predetermined
quantity of trees has been added. The predictions of
each tree within an ensemble are merged by
CatBoost when it makes predictions. A highly
accurate and reliable model is thus derived by
aggregating predictions.

3.6 Training of the Model and Optimization of
Hyperparameters: Training of regression models
and optimization of hyperparameters are performed
at this step. The Grid Search CV technique is used
to tune hyperparameters for each model. A
hyperparameter is a model-based setting that cannot
be learned from data but has a significant impact on
the model's performance. Every pair of
hyperparameter values is cross validated to
determine model accuracy. According to a
particular scoring metric (e.g., negative mean
absolute error), the hyperparameter combination
that yields the best performance is selected. The
machine learning techniques with the chosen
parameter values are shown in table 2.

Table 2. Parameter Settings For Various Machine
Learning Approaches

ML Techniques Parameter Values
SVR Penalty parameter (C): 0.1 to 10

Kernel coefficient (gamma): 0.01 to 1

Kernel type: linear and radial basis
function

DT Maximum tree depth: unrestricted, 5
levels, and 10 levels

Minimum samples for split: 2, 5, and 10

Minimum samples per leaf: 1, 2, and 4

RF Number of trees: 100, 200, and 500

Maximum tree depth: unrestricted, 5

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9116

levels, and 10 levels

Minimum samples for split: 2, 5, and 10

Minimum samples per leaf: 1, 2, and 4

MLP Hidden layer configurations: (50), (100),
and (50, 50) neurons

Activation function: ReLU and hyperbolic
tangent

Learning rate schedule: constant and
adaptive

Cat Boost Number of iterations: 100, 200, and 500

Tree depth: 3, 5, and 10 levels

Learning rate: 0.01, 0.1, and 0.2

3.6.1 Hyperparameter Tuning using Grid Search
CV: Machine learning models are constructed by
specifying hyperparameters or variables. Various
combinations of parameter values are evaluated
against a specified evaluation metric, such as grid
search, to discover the best hyperparameters [11]. A
hyperparameter is useful because it permits the
individual to customize it to the system's precise
requirements. In addition to Grid Search, Grid
Search CV employs a cross-validation process. The
most widely used validity assessment technique is
K-fold cross-validation. In this iterative process, the
train data is successively partitioned into k
segments. Training is performed using k-1
partitions, while one partition is kept for testing
each iteration. During the next iteration, the next
partition will be regarded as test data and k-1 as
train data, etc. The model will be recorded each
time it is run, and at the end, the average
performance will be given.

3.6.2 Working of Grid Search Enabled CatBoost
Algorithm: The steps of Grid Search Enabled
CatBoost Algorithm are shown below.
Step 1: Start with the dataset and perform the

necessary preprocessing.
Step 2: Set the initial hyperparameters for the

CatBoost model.
Step 3: Build the CatBoost ensemble model using

the initial hyperparameters.
Step 4: Fit the CatBoost model and evaluate its

performance.
Step 5: Update the sample weights based on the

model's performance.
Step 6: Use Grid Search CV to search through the

defined hyperparameter grid.
Step 7: Find the next set of hyperparameter

combinations from the grid.
Step 8: Check if the stopping criteria (e.g.,

maximum iterations, performance

threshold) are met.
Step 9: If not, repeat steps 3-8 with the new

hyperparameters.
Step 10: Once the stopping criteria are met, obtain

the optimal hyperparameters.
Step 11: Perform the final performance evaluation

using the optimized model.

3.7 Evaluation of the Model
3.7.1 Testing: The models are trained and tuned,
then tested on the remaining set. Test data is used
by each model to make predictions that are
examined in comparison to the target values.
3.7.2 Measuring model performance: Several
evaluation metrics are used to quantify each
model's performance, including MAE, RMSE, and
R-squared. Model predictability and good fit can be
evaluated from various perspectives based on these
metrics.
 For our investigation, to calculate and examine
the efficiency of the several regression algorithms,
we applied three performance measurements that
included mean absolute error (MAE), root mean
squared error (RMSE), and coefficient of
determination (R2).
3.7.2.1 Mean Absolute Error: The MAE measures
the average deviation between the actual and
estimated values for all the observations
considered. Models with lower MAE values are
more accurate. This is computed as shown below:

 (1)

3.7.2.2 Root Mean Squared Error: To calculate
the MSE, we take the mean square differences
based on the true and estimated scores of various
sample sets. An evaluation of the RMSE is obtained
by computing the square root of the MSE as well as
by finding the mean deviation of the residuals. To
achieve better performance, a model should have a
lower RMSE value. The following formula is used
to calculate it:

 (2)

3.7.2.3 Coefficient of Determination: The
determination coefficient (R2) determines how
close predictions are to the real values. R2 ranges
from 0 to 1. When the value obtained is 1, the
model fits exactly to the dataset, and when it is
negative, the model does not fit well. A model
should have a higher R2 value closer to 1 for
superior performance. The following formula is
used to calculate it:

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9117

 (3)
In equations (1)-(3), yi corresponds to

actual values, ŷi corresponds to predicted values,
and n represents the overall project.

The values obtained from the above
evaluation metrics on both datasets are described in
the results and discussion section of the paper.

3.8 Visualization of Simulation Results: Bar plots
are used to visualize the model's performance to
facilitate comparisons and interpretations. A clear
and concise comparison of the relative strengths
and weaknesses of each model can be made based
on the visualizations that show the evaluated
metrics for each model as shown in fig 2(a) and fig
2(b).

4. RESULTS AND DISCUSSION

 To address the concerns outlined in section
1, this segment will perform two types of
investigations to evaluate the reliability of the
suggested framework. The first set will be
conducted without adjusting hyperparameters
(using default settings), while the second set will
involve hyperparameter optimization using grid
search cross-validation.

4.1 Model with Default Parameter Tuning: This
phase involved comparing various machine
learning algorithms (SVR, DT, RF, MLP, and Cat
Boost) using default parameter settings without
hyperparameter optimization. The aim was to
evaluate which algorithm might perform best across
different problems without fine-tuning. The
machine learning techniques have been applied
using default configurations on the training data.
More accurate results are obtained from the ML
technique that displays the minimum MAE and
RMSE values. For R2 values, higher numbers
indicate better accuracy. Table 3 shows the optimal
performance metrics generated by every technique
on each data set using randomly set parameters
within the specified range without tuning.

Individual models perform differently based on the
set of data used as shown in fig 2(a).
4.1.1 Mean Absolute Error (Default Parameter
Tuning): The first assessment of machine learning
algorithms using Mean Absolute Error (MAE) and
default settings showed varying performance levels
across the two datasets. In the case of the China
dataset the Cat Boost method performed well with
an MAE of 0.0157 closely followed by Random
Forest (RF) and Decision Trees (DT) with MAEs of
0.0186 and 0.0189 respectively. This indicates that
the Cat Boost algorithms ensemble technique
effectively captures the underlying patterns, in the
China dataset. For the Cocomo81 dataset Random
Forest outperformed other algorithms with an MAE
of 0.0462 while Cat Boost came in second with
0.0486.
4.1.2 Root Mean Squared Error (Default
Parameter Tuning): RMSE analysis using default
hyperparameters provided insights into the
accuracy and consistency of the algorithms
predictions. In the China dataset DT showed the
RMSE of 0.0308 closely trailed by RF at 0.0323
and Cat Boost at 0.0375. While Cat Boost had the
MAE its higher RMSE indicates some variability in
predictions compared to DT and RF. In the
Cocomo81 dataset RF outperformed other
algorithms with an RMSE of 0.0626 closely
followed by Cat Boost with an RMSE of 0.0641.
4.1.3 Coefficient of Determination (Default
Parameter Tuning): The R squared value (R2) is a
metric to gauge how well each model explains the
data. When using default settings all algorithms
performed impressively on the China dataset with
Decision Trees (DT) achieving the R2 score of
0.9962 closely followed by Random Forest (RF) at
0.9958 and the suggested Cat Boost method, at
0.9944. This suggests that all models, including Cat
Boost can explain a portion of the variability in the
target variable for this dataset. On the Cocomo 81
dataset RF achieved the R2 score of 0.8025 and the
Cat Boost method also performed well at 0.7925.
The high R2 scores across both datasets indicate
that Cat Boost algorithm offers high predictive
power in software effort estimation.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9118

Table 3. Performance Metrics For Various Regression Models Using Default Parameter Tuning

Evaluation
Metrics

Dataset Machine Learning Algorithm

SVR DT RF MLP Proposed
Method

MAE China 0.0694 0.0189 0.0186 0.0614 0.0157

Cocomo81 0.0951 0.0751 0.0462 0.0973 0.0486

RMSE China 0.0865 0.0308 0.0323 0.0924 0.0375

Cocomo81 0.0960 0.1086 0.0626 0.1204 0.0641

R2 China 0.9704 0.9962 0.9958 0.9662 0.9944

Cocomo81 0.5357 0.4052 0.8025 0.7280 0.7925

4.2 Model with Hyperparameter Tuning:
Subsequently, the model employs hyperparameter
optimization utilizing the grid search cross-
validation technique. During the training phase, the
machine learning algorithm is fine-tuned with
hyperparameter adjustment on the training dataset.
A five-fold cross-validation approach is applied, in
which the complete dataset is split into five
identical portions. The model undergoes training
and testing five times, with every iteration utilizing
a different fold for testing and four folds for
training. The model's effectiveness is assessed on
the test set in each round. The final performance
metric is calculated by averaging these five
evaluations. Model performance varies depending
on the dataset used as shown in fig 2(b). Table 4
presents the optimal performance values for each
model and dataset following hyperparameter
optimization.

4.2.1 Mean Absolute Error (After
Hyperparameter Tuning): Significant
improvements in algorithm performance were
observed across datasets due to hyperparameter
tuning. In the dataset from China the Decision Tree
(DT) algorithm showed progress by achieving the
Mean Absolute Error (MAE) of 0.0119 after tuning
surpassing the previous leader. The Cat Boost
method also maintained performance with an
improvement to an MAE of 0.0154 showcasing its
resilience to parameter adjustments. In the
Cocomo81 dataset there was a shift in algorithm
rankings as the Cat Boost method exhibited
enhancement and achieved the lowest MAE of
0.0130. This improvement highlights the potential
of optimizing and adapting the Cat Boost algorithm
to data sets effectively. These findings underscore
how crucial hyperparameter tuning is for
maximizing algorithm performance and suggest

that fine tuning enhances the effectiveness of
algorithms like Cat Boost, on both datasets.
4.2.2 Root Mean Squared Error (After
Hyperparameter Tuning): Hyperparameter
optimization resulted in improvements in RMSE
for all algorithms and datasets. In the China dataset
the Cat Boost technique stood out as the performer
with an RMSE of 0.0213 after tuning marking an
enhancement from its initial performance. This
indicates that tuning greatly boosted the precision
and consistency of Cat Boosts predictions on this
dataset. RF and DT also saw progress achieving
RMSE values of 0.0309 and 0.0345 respectively. In
the Cocomo81 dataset RF maintained its lead with
a RMSE of 0.0394 while the RMSE value of Cat
Boost algorithm remains unchanged, with 0.0641.
Despite good performance at 0.0641 for the Cat
Boost method on this dataset it suggests that its
default settings were already well optimized here.

4.2.3 Coefficient of Determination (After
Hyperparameter Tuning): Hyperparameter
optimization resulted in excellent R2 scores, for
most machine learning algorithms across datasets.
In the China dataset the Cat Boost approach
showed progress achieving a R2 score of 0.9982
post tuning indicating a significant improvement
over its initial performance. This exceptional result
suggests that the Cat Boost algorithm effectively
explains all variability in the target variable after
tuning surpassing traditional methods. In the
Cocomo81 dataset Cat Boost also exhibited a boost
achieving the R2 score of 0.9758. This notable
advancement showcases Cat Boosts capability to
optimize and capture patterns within datasets. The
varying outcomes across datasets stress the
importance of evaluation and tailored optimization,
for accurate software effort estimation tasks.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9119

Table 4. Performance Metrics For Various Regression Models After Hyperparameter Tuning

Evaluation
Metrics

Dataset Machine Learning Algorithm

SVR DT RF MLP Proposed
Method

MAE China 0.0694 0.0119 0.0184 0.0487 0.0154

Cocomo81 0.0951 0.0466 0.0235 0.0497 0.0130

RMSE China 0.0594 0.0345 0.0309 0.0625 0.0213

Cocomo81 0.0837 0.0788 0.0394 0.0799 0.0641

R2 China 0.9860 0.9952 0.9962 0.9845 0.9982

Cocomo81 0.6468 0.6871 0.9214 0.6779 0.9758

 The presented NEMAEP methodology
offers significant benefits in software effort
estimation due to its innovative integration of the
CatBoost ensemble learning approach and Grid
Search Cross-Validation. This study's greatest
achievements lie in its extensive strategy for data
preprocessing, particularly robust scaling and
outlier detection, and comprehensive parameters-
based optimization technique. Despite these
achievements, the study has certain limitations.
This investigation focuses on only two datasets, so
it may reduce the relevance of the findings to a
wider group of software development applications.
Furthermore, even though the CatBoost algorithm
delivered outstanding results, the performance
variability among various datasets indicates that the
model's efficiency appears to be contextual. Future
work could extend the dataset diversity, examine
alternative ensemble procedures, and determine the
model's feasibility with additional distinct software
development domains to further verify and improve
the present analysis.

5. COMPARISON WITH EXTANT STUDIES

 Our suggested CatBoost ensemble
machine learning method delivers enhanced
efficiency for various performance metrics relative
to earlier investigations in software effort
estimation, as shown in Table 5. The presented
methodology generates extremely low MAE of
0.0154 and 0.013 for the China and Cocomo81
datasets. This is much smaller than conventional
techniques such as LSTM, Stacked Ensemble, and
multiple regression techniques. The precision of the
method is further demonstrated by the RMSE
values of 0.0213 for the China dataset and 0.0641
for the Cocomo81 dataset, respectively. Moreover,

our method exhibits exceptional R2 scores of
0.9982 and 0.9758 for the China and Cocomo81
datasets, indicating an extremely high level of
model reliability and explanatory power. When
contrasted with previous works that used
techniques such as Multi-layer Perceptron, Social
Network Search algorithms, Particle Swarm
Optimization, and various ensemble methods, our
approach stands out by providing more accurate
and consistent software development effort
estimations, thereby offering a more robust solution
for project planning and resource allocation in
software development contexts..

6. CONCLUSION AND FUTURE SCOPE

 The NEMAEP methodology presented in
this study greatly improves software effort
estimation. This study illustrates how ensemble
learning procedures and advanced hyperparameter
optimization can significantly improve software
project estimation performance. The purpose of this
study is to provide empirical evidence that the
proposed methodology can enhance prediction
capabilities over conventional regression
approaches. One of the major advantages of this
method is that it integrates modern machine
learning techniques into a consistent method for
estimating software effort reliably. Even though
this research recognizes the limitations of dataset
complexity, it lays the groundwork for future
exploration into more universal predictions. A
fundamental advancement in software engineering
is made possible by the NEMAEP framework,
which utilizes machine learning to maximize
accuracy and reliability in resource allocation.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9120

Fig 2(a). Comparison Chart for performance metrics

 Fig 2(b). Comparison Chart for performance metrics

using default parameter tuning in various algorithms after hyperparameter tuning in various algorithms

Table 5. Comparative Analysis Of Proposed Work With Previous Work

 MAE RMSE R2
Refe
rence
s

Model/Datasets China
Cocomo
81

China
Coco
mo81

Chin
a

Cocomo
81

[12]
ANFIS (Adaptive Neurofuzy Inference
System) and SNS algorithm (Social
Network Search)

 0.971
6

0.5086

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9121

[13]
Multi-layer Perceptron Assisted Honey
Bidirectional Gated Recurrent Feed
Forward Network (Multi-Hbig)

0.0753 0.0763

[14]
Long Short Term Memory Neural
Network (LSTM)

 0.951 0.897

[15]
LR+PSO Model (Linear Regression+
Particle Swarm Optimization)

 0.128 0.208 0.544

[16]
Ensemble Method (Bagging, Boosting,
Voting)

 0.9578

[17]
MS-DES (Multi Step Dynamic
Ensemble Selection)

 0.984
5

[18] Gradient Boosting 0.88

[19] Stacked XG Boost 0.3059 0.3262
0.3126

2
0.332

83

-
5.949

1
-3.404

[20]
LSTM+GS (Long Short Term
Memory+ Grid Search)

 0.894

[21] SVM, RF,DT,SGB,NB,MLP,LR,KNN 0.0204 0.0679 0.745
3

0.3644

[22] Stacked Ensemble 0.022780
8

[9]
Ensembling of Regressor Models using
Voting Estimator

 0.1466 0.229
7

[8] LSTM 0.972

[23] Stacked LSTM 0.087 0.2 0.981 0.189

[24]
RF,SVM,DT,Neurelnet,Ridge,LASSO,
Elasticnet,Deepnet

 0.0538 0.094
4

0.973
6

0.8212

[25] RF,CART,KNN,MLP,SVR,AdaBoost 0.0243 0.0557 0.947
3

0.8582

[26] Gradient Boosting Regressor 0.93

[27] ANN (Artificial Neural Network) 0.946

[28] Deepnet, Neuralnet, SVM, RF 0.0443 0.854
8

[29]
ANFIS (Adaptive Neurofuzy Inference
System)

 1.32 1.14

 Proposed Method 0.0154 0.013 0.0213
0.064

1
0.998

2
0.9758

REFERENCES

[1] Srivastava P, Srivastava N, Agarwal R, Singh P.
An Intelligent Framework for Estimating
Software Development Projects using
Machine Learning. IJRITCC. 2023
May;11(5):160-9.

[2] Tan AJJ, Chong CY, Aleti A. REARRANGE:
Effort estimation approach for software
clustering-based remodularisation. Inf Softw
Technol. 2024; 176:1-19.

[3] Kumar KH, Srinivas K. An improved analogy-
rule based software effort estimation using
HTRR-RNN in software project management.
Expert Syst Appl. 2024; 251:124107.

[4] Mahadev KM, Gowrishankar G. Estimation of

Effort in Software Projects using Genetic
Programming. Int J Eng Res Technol.
2020;9(7).

[5] Goyal S. Effective Software Effort Estimation
using Heterogenous Stacked Ensemble. In:
2022 IEEE International Conference on
Signal Processing, Informatics,
Communication and Energy Systems
(SPICES); 2022; Thiruvananthapuram, India.
p. 584-588.

[6] Kaushik A, Kaur P, Choudhary N, Priyanka.
Stacking regularization in analogy-based
software effort estimation. Soft Computing.
2022 Feb 1;26(3):1197–216.

[7] Rahman M, Roy PP, Ali M, Gonc T, Sarwar H.
Software effort estimation using machine

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9122

learning technique. Int J Adv Comput Sci
Appl. 2023;14(4).

[8] Ahmad FB, Ibrahim LM. Software
Development Effort Estimation Techniques
Using Long Short Term Memory. In: 2022
International Conference on Computer
Science and Software Engineering (CSASE);
2022 Mar 15; IEEE; 2022. p. 182-187.

[9] Beesetti KK, Bilgaiyan S, Mishra BS. Software
Effort Estimation through Ensembling of
Base Models in Machine Learning using a
Voting Estimator. Int J Adv Comput Sci
Appl. 2023;14(2).

[10] Ibrahim AA, Ridwan RL, Muhammed MM,
Abdulaziz RO, Saheed GA. Comparison of
the CatBoost classifier with other machine
learning methods. Int J Adv Comput Sci
Appl. 2020;11(11).

[11] Zakrani A, Hain M, Idri A. Improving
software development effort estimating using
support vector regression and feature
selection. IAES Int J Artif Intell. 2019 Dec
1;8(4):399.

[12] Manchala P, Bisi M. TSoptEE: two-stage
optimization technique for software
development effort estimation. Cluster
Computing. 2024 Apr 12:1-20.

[13] Anitha CH, Parveen N. Deep artificial neural
network based multilayer gated recurrent
model for effective prediction of software
development effort. Multimed Tools Appl.
2024 Jan 25:1-27.

[14] Iordan AE. An Optimized LSTM Neural
Network for Accurate Estimation of Software
Development Effort. Mathematics. 2024 Jan
8;12(2):200.

[15] Jayadi P, Ahmad KA, Cahyo RZ, Aldida JD.
Particle Swarm Optimization-based Linear
Regression for Software Effort Estimation. J
Inf Syst Technol Eng. 2024 Jun 19;2(2):261-
8.

[16] Oshaibi MF, AlKhanafseh M, Surakhi O.
Software Effort Estimation using Ensemble
Learning [Preprint]. 2024.

[17] Jadhav A, Shandilya SK, Izonin I, Muzyka R.
Multi-Step Dynamic Ensemble Selection to
Estimate Software Effort. Appl Artif Intell.
2024;38(1):2351718.

[18] Meharunnisa, Saqlain M, Abid M, Awais M,
Stević Ž. Analysis of software effort
estimation by machine learning techniques.
Ingénierie Syst Inf. 2023;28(6):1445-1457.

[19] Varshini P, Kumari KA. Software Effort
Estimation using Base Ensembled Regression
Techniques and Principal Components
Regression as Super Learner [Preprint]. 2023

Mar 16 :1-24.
[20] Marco R, Ahmad SS, Ahmad S. An Improving

Long Short Term Memory-Grid Search Based
Deep Learning Neural Network for Software
Effort Estimation. Int J Intell Eng Syst. 2023
Jul 1;16(4):164-180.

[21] Jadhav A, Shandilya SK. Reliable machine
learning models for estimating effective
software development efforts: A comparative
analysis. J Eng Res. 2023;11(4):362-376.

[22] Rao K, Pydi B, Naidu P, Prasann U,
Anjaneyulu P. Ensemble Learning Approach
for Effective Software Development Effort
Estimation with Future Ranking. Adv Distrib
Comput Artif Intell J. 2023; 12:1-16.

[23] Ahmad FB, Ibrahim LM. Software effort
estimation Based on long short term memory
and stacked long short term memory. In: 8th
International Conference on Contemporary
Information Technology and Mathematics
(ICCITM); 2022; Mosul, Iraq. p. 165-170.

[24] Alhamdany F, Ibrahim L. Software
Development Effort Estimation Techniques:
A Survey. J Educ Sci. 2022;31(1):80-92.

[25] Marco R, Syed Ahmad SS, Ahmad S.
Bayesian Hyperparameter Optimization and
Ensemble Learning for Machine Learning
Models on Software Effort Estimation. Int J
Adv Comput Sci Appl. 2022;13(3):419-429.

[26] Kumar PS, Behera HS, Nayak J, et al. A
pragmatic ensemble learning approach for
effective software effort estimation. Innov
Syst Softw Eng. 2022; 18:283-299.

[27] Mohsin ZR. Application of artificial neural
networks in prediction of software
development effort. TURCOMAT. 2021 Oct
5;12(14):4186-202.

[28] Varshini, Priya, Kumari K A, Janani D,
Soundariya S. Comparative analysis of
Machine learning and Deep learning
algorithms for Software Effort Estimation. J
Phys Conf Ser. 2021; 1767:1-11.

[29] Varshini P, Kumari KA, Janani D, Soundariya
S. Comparative analysis for estimating
development effort of software projects using
MODA, ANFIS and COCOMO. J Emerg
Technol Innov Res. 2018;5(6):667-674.

