
Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9217

INSURECHAIN: A BLOCKCHAIN-BASED SYSTEM FOR
SECURE, EFFICIENT AND INTEROPERABLE INSURTECH

EMAN YASER DARAGHMI1, HAZIM HARB2, YOUSEF AWWAD DARAGHMI3*

1Computer Science Department, Palestine Technical University-Kadoorie, Tulkarm

2Ministry of Finance, Ramallah, Palestine

3Computer Systems Engineering Department, Palestine Technical University-Kadoorie, Tulkarm

E-mail: 1e.daraghmi@ptuk.edu.ps , 2 hhazem@pmof.ps, 3y.awwad@ptuk.edu.ps

ABSTRACT

Insurance Technology (InsurTech) solutions aim to transform traditional insurance models to more
personalized services, streamlined claims processing and faster delivery. However, records in InsurTech are
fragmented and isolated, rather than interoperable and cohesive. The need for multiple access to insurance
records had raised the interoperability challenges between clients and providers, which pose additional
barriers to effective data sharing. Additionally, insurance data face increasing threats since several advanced
techniques have been developed to violate digital privacy and security. Therefore, Blockchain, which is a
distributed trusted immutable database solution and ledger technology, can solve these problems. Although
several studies were proposed to employ the Blockchain for managing insurance records, there is still a need
for more research to better understand, characterize and evaluate its utility in InsurTech systems. This paper
proposes a Blockchain-based InsureTec system called InsureChain that provides interoperable, secure, and
efficient access to the records by providers, clients and third parties while maintaining privacy. The
InsureChain employs smart contracts for effectively managing the claims of clients, governing transactions,
and monitoring computations through the enforcement of acceptable usage policies. For better efficiency, the
InsureChain uses Proof of Authority (PoA) and an incentive mechanism that leverages the degree of
provider’s nodes from the perspective of InsurTech systems by measuring their efforts regarding maintaining
records and creating new blocks. The system was evaluated by reviewing privacy, integrity communication
channels, and security and comparing consensus algorithms. The results show that the system achieves high
privacy, integrity, and secure communication. The PoA outperformers the proof of work and proof of stake.

Keywords: Insurance, InsurTech, Privacy, Confidentiality, Cybercrime, Blockchain, smart contracts

1. INTRODUCTION

The development in the InsurTech promotes
possibilities of new services and opportunities for
data collection [1]. InsurTech includes different
process started from buying insurance policy until
settling claims [2]. An individual may have more
than one insurance from the same or different
providers for various needs, such as health, car, and
house insurances. The client’s records are stored in
the provider’s database who issued the insurance and
will only be the eligible provider for managing and
editing it. Clients with access rights could query their
records from different providers, and providers with
access rights could query records of common clients
from other providers. This makes records
fragmented and isolated, rather than cohesive and
interoperable causing a lack of coordinated data
management and exchange [3]. Additionally, several

advanced techniques are developed to violate digital
privacy and security. Unfortunately, personal
records are considered as major targets for
information theft as they contain sensitive
information, such as names, identity numbers,
contacts info and addresses.

The immutability and traceability of the
Blockchain technology can solve these problems
well. Essentially, a Blockchain is a distributed
trusted immutable database solution and ledger,
which stores a continually increasing set of data
verified and confirmed by participants [4][5].
Blockchain technology provides a stable, secure,
auditable, transparent, and effective way to data
information and record transactions. Thus,
preserving the information of insurance records on
the Blockchain can ensure both the originality of the
data and solve the security problem of the central

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9218

authorization mechanism. In this way, a fair and just
insurance business can be achieved between the
insurance company and the client [6][7].

Although the Blockchain technology was first
introduced through Bitcoin, the industry of
InsurTech is one of the fields where the Blockchain
technology is believed to have considerable impact.
Researchers propose scalable permissioned
Blockchain based frameworks for insurance records
where records are stored in the existing databases of
providers and the Blockchain can be integrated as an
access control layer to allow the interaction between
participants [6][7][8]. Researchers also propose
varying techniques for establishing secure access
controls for the Blockchain [9][10]. Although a
number of studies is proposed to employ the
Blockchain for managing insurance records, there is
still a need for more research to better understand,
characterize and evaluate its utility in InsurTech
systems. More importantly, research is needed to
make InsurTech based Blockchain systems
applicable for real-life scenarios with full support of
security, privacy and interoperability.

This paper proposes the InsureChain which is an
InsurTech Blockchain based system that aims at
providing interoperable, secure, and efficient access
to the insurance claim records by providers, clients
and third parties while maintaining privacy. Smart
contracts whose design meet the demands of
InsurTech are employed for governing the
transactions, monitoring the computations and
managing the use of data after transmission. Each
task in the insurance process will be recorded and
stored on Blockchain by sending an interactive
transaction to the smart contract. The InsureChain
adopts advanced cryptographic techniques for
supporting security, and specific portions of the data,
particularly sensitive business-related information,
are encrypted to ensure privacy. In addition, since an
insurance record is a client’s asset and not a
cryptocurrency or a digital currency to be
exchanged, we propose a new incentive mechanism
that leverages the degree of provider’s nodes from
the perspective of InsurTech systems by measuring
their efforts regarding maintaining records and
creating new blocks. Providers’ nodes with less
degree are more likely to be selected for creating the
new block.
The InsureChain was evaluated by reviewing
privacy, integrity, secure communication and
security. The results show that the InsureChain
achieved high privacy, security, integrity and secure
communication. The InsureChain implement the
RSA algorithms for privacy, the AES for

confidentiality, SHA256 for integrity and HTTPS
for secure web communication. The results also
show that the system is efficient as the used PoA and
incentive mechanism enables small number of nodes
to participate in mining and creating new blocks. The
primary contributions of this work are threefold:

• We provide a complete analysis regarding
how the proposed system and the smart contracts can
interact with the various demands of insurance
providers, clients and third parties.

• We demonstrate how the proposed system
would address the longstanding issues of privacy and
security in the InsurTech industry.

• We propose an incentive mechanism that
aims at evaluating the degree of providers regarding
their work in maintaining insurance records, which
in turn will enhance data quality.

2. RELATED WORK

Blockchain uses a distributed, peer-to-peer network
to make a continuous, growing list of ordered
records called blocks to form a digital ledger [11].
Each transaction, represented in a cryptographically
signed block, is then automatically validated by the
network itself. So, Blockchain is a decentralized
ledger that records all transactions on the network in
a safe, verifiable, and transparent manner. The
ledger is shared across the network's dispersed
computers, and data are encrypted with a
cryptographic method before being checked by
miners to determine if the transaction is genuine
[12][13]. A new block is added to the chain if the
majority of the miners agree to the transaction. The
main advantage of blockchain over traditional
technology is that it enables two parties to conduct
encrypted transactions via the Internet without the
need for a third-party intermediary [14]. These
features support security, interoperability, efficiency
and privacy making Blockchain to solve real-world
problems [5][12][14][15][16].

Smart contracts have greatly accelerated the use
of blockchain technology in various sectors [17]. A
smart contract is a computer program that is
established on the Ethereum blockchain and
represents a digital agreement between two or more
parties, typically in the context of a business process,
similar to how a regular paper contract works. The
blockchain network nodes execute the smart
contract, and the execution results are recorded on
the blockchain [5][18]. All blockchain network
nodes must agree on the new state of the smart
contract after execution using the adopted consensus
method [19][20]. The use of blockchain in

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9219

conjunction with smart contract technology
eliminates the need for transaction parties to rely on
a central system.

Blockchain and smart contracts have been
introduced to the InsuTec domain [3][21]. In [10],
researchers used fog nodes to encrypt insurance
records for more security. The authors in [9]
proposed a decentralized Blockchain-based
framework for the auto insurance sector that
regulates the activities in terms of insurance claims
for automobiles and automates payments. This
article also discussed how Blockchain technology
can be useful for the decentralized autonomous
vehicle’s ecosystem. In [22], authors tried to change
insurance process and make it easier and more
efficient. The authors proposed a new Blockchain
system called “LifeBlocks” in order to solve
different issues related to insurance sector.

The authors in [23] proposed a system
called CAIPY. This system contains different smart
contracts. The main idea of this system is to reduce
cost and simplified process of claim insurance
mainly in car crashed. The authors highlighted the
usefulness of Blockchain and smart contracts in
financial sector to avoid fraud. In [24], the authors
demonstrated that there are many problems in
insurance policy and manual process in handling
claims between company and clients. So they
suggested a framework based on blockchain and
Ethereum smart contract for providing a secure
procedure to execute the whole process from claim
registration to refund. In [25], researchers presented
a new framework called CioSy to assist insurance
company in competitive tracks, and to automate the
process of insurance and claiming from client. In
[26], the authors suggested a Blockchain based
framework that allows customers to register, obtain
a policy, make a claim, and receive a refund in
cooperation with the corresponding agent.

3. THE PROPOSED SYSTEM: InsurChain

This chapter presents the proposed Blockchain-
based system, namely InsureChain that is developed
to support the insurance sector. The aim of
InsureChain is preventing fraud and manipulation

while providing privacy, interoperability, security,
efficient access by all stakeholders, ensuring the

integrity of the insurance process and speeding the
claim process.

Figure 1: The InsurTech workflow showing the main
components of the system and the communication among

all components

3.1 InsurTech Workflow

The proposed system workflow is proposed
based on the existing insurance claim workflow, and

the InsurTech flow is shown in Figure 1.

As seen in Figure 1: the system has the following
attributes:

 Insurance Company which serves as
Header.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9220

 Insurance Serviceman who serves as
employee.

 Customer who is the Client.
 Police Station represented by Police

Officer.
 Garage Man representing the Car Work

Shop.

In the real-life system, the customer should have a
valid insurance policy before submitting the claim.
In the case of accident, the claim passes through
specific procedures which are:

1. The customer reports an accident with all
needed document, such as license, ID, car
registration, policy number to prepare the
First Information Report (FIR).

2. The FIR will be examined by a police
officer who checks all documents and
signed the FIR.

3. The customer completes the Claim Form
and submits it to the insurance company
and at the same time, the Police Officer
sends the FIR to insurance company.

4. The customer submits claim repair money
to the insurance company.

5. The insurance company sends the insurance
serviceman to review the car and the
accident.

6. The insurance serviceman prepares the
inspection report and sends it back to the
insurance company

7. The repair workshop sends payment
request to the insurance company with full
detail report about the accident.

8. The insurance company prepares payment
based on the previous reports.

If any medical services is needed, the system can
include a third party called Medical Services. Thus,
medical reports and payment requests could be
managed through the system too.

3.2 Privacy

 One of the key issues for blockchain
applications is privacy. Two forms of privacy must
be examined in terms of blockchain to secure
sensitive information and satisfy the standards
outlined above [5], [12]. The first is the privacy of
identification: the genuine identity of people
interacting with the blockchain must be protected.
The second is transaction privacy, which means that
only authorized users have access to the contents of
a transaction. When discussing blockchain

technology, transaction privacy is the most
challenging task to solve.

 To improve and protect identity privacy, a
mechanism based on the public and private keys
were utilized. The RSA encryption algorithm is used
to generate public and private keys for the public
user at the registration phase, in addition to a secret
phrase with 6 words, each word is combined from 4
numbers. The user used the private key or the secret
phrase with a password to log in to the system. Also,
if a user forgets his password, the private key with
the secret phrase will be used in combination to reset
the password. By this mechanism, there is no
personal information for the user entered or stored in
the system. By utilizing this mechanism, the
customer identity privacy and anonymity will be
achieved.

 On the other hand, dealing with transaction
privacy is more difficult and has to be properly
handled. To address transaction privacy, the hash
value of the claim or the feedback is stored on-chain,
while the information itself is stored off-chain in a
database in encrypted form. In addition, a smart
contract can be written to allow authorized users
only to access the transactions.

 The proposed system deals with sensitive
data, and the proposed system used several means to
achieve confidentiality for protecting these data
from revealing by unauthorized users. To improve
the confidentiality of the claim data, no personal
information is required during the registration or
filing of a claim. On the other hand, the hash value
only for the user registration in the information is
stored. In addition, these data are allowed to be
accessed by a smart contract for authorized users
only. Moreover, to improve the confidentiality of the
transaction data, Asymmetric Encryption Algorithm
(AES) is used to encrypt the claim and the related
transactions in the database, while the hash values
only for these data are stored on-chain. In addition,
to protect the data in transit, the secure socket layer
protocol is utilized to protect data while it is moved
between the clients and the nodes.

 The transaction hash value that has been
stored on the blockchain will be used to verify the
integrity of the transaction data by recalculating the
hash for the retrieved data and comparing it with the
hash stored in the blockchain. On the other hand, the
proposed system utilized the temporal table
mechanism in the database engine, so in case of
detecting any modification or deletion of data, the
historical table will be used as a corrective phase to
restore the original data.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9221

3.3 Proof Of Authority (PoA)

 To ensure security and efficiency, we use Proof
of Authority which is a consensus mechanism that is
either controlled or permissioned [5][27]. It is a
family of Byzantine Fault Tolerance (BFT)
algorithms to achieve a consortium by way of
authorized nodes or validators. The validators are
limited to a predetermined small number of
authorized nodes to ensure efficiency. In PoA, the
validating machines are responsible for generating
new transaction blocks, which are then needed to be
added to the network. The setup of any blockchain
network determines the process through which it
accepts new blocks and mines them. This
mechanism includes the mining of new blocks.
Because the reputation of the authorized node is at
risk within the context of this protocol, malicious
behavior might inflict significant harm on the entity.
As a result, the network-validating nodes are
responsible for maintaining network security.

3.4 Incentive Mechanism

 As records are clients’ assets and not a
cryptocurrency or digital currency to be exchanged,
this work proposes a new incentive mechanism
integrated with the PoA for mining. It leverages the
degree or significance of insurance company
participating in the InsurChain regarding their
efforts on maintaining records and creating new
blocks. Our mechanism rewards the “block’s
creator” and incentive to be added to its degree and
accordingly decreasing its probability of re-creating
the next block. Thus, achieving the fairness and the
equality among companies and ensuring the
sustainability of the system.

3.5 Cryptography

 Cryptography is utilized in the proposed system
to preserve the privacy, confidentiality, and integrity
of the data and users, and also to preserve the
anonymity of the claim. To preserve the privacy and
anonymity of the users, the asymmetric encryption
algorithm RSA 2048 bit is utilized to generate public
and private keys for the users. These keys are
generated at the registration phase with a secret
phrase. The user can use the private key or the secret
phrase with a complex password to sign in to the
system. When the user forgets his password, he can
reset it using both the private key and secret phrase.
On the other hand, the private key is used to digitally
sign the transaction.

 To ensure the integrity of the data, the hash
algorithm SHA 256 is used in the proposed system

to preserve the integrity of the user data and the
transactions data. Confidentiality is ensured by
utilizing a symmetric encryption algorithm AES to
encrypt the data stored off-chain. Moreover, HTTPS
is utilized to ensure the confidentiality of the data
while it is transmitted between the client and the
nodes.

3.6 InsureChain Architecture

The proposed InsureChain system focuses on
anonymity, privacy, confidentiality, integrity, secure
communication channel, and protection of insurance
data from cybercrime. Based on these conditions and
on the insurance workflow, the proposed system
components shown in Figure 2 consists of user
interface, database manager, Encryption/ Decryption
component, and Ethereum Client.

Figure 2: The proposed InsureChain architecture

where the backend layer is responsible for
communicating data with the interface, database
via DB manager or the Blockchain via Ethereum

client

The architecture is distinguished by other insurance
digital system by employing blockchain for storing
on-chain all relevant information associated with a
claim. Also, the system tracks all transactions by
employing a smart contract, which is software that
executes contracts and cannot be altered after it has
been deployed. Therefore, all procedures are
recorded and documentation of every step in the
process is always accessible. All parties will be able
to keep track of the proof at any time, and they will
be secure from manipulation since the information is
recorded in the blockchain.

3.6.1 InsureChain Interface

The interface is web-based that is users
including customers, insurance company, insurance
agent, police, mechanics and other third party such

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9222

as healthcare providers. The system employs an
admin who can create the users with their access
level according to the workflow contract. The users
can retrieve and create transactions on the database
through the claim transaction contract and according
to the access control contract, where all of the user’s
transaction logs are recorded using the logs contract.
The interface is built using python with a flask
framework.

3.6.2 Database Manager
The proposed system stores the claim data

off-chain in a centralized database. The claim data is
stored in the database in an encrypted form. The data
integrity is verified by storing the hash value of the
claim data in the claim transaction contract in the
blockchain. The database functions and queries are

written in the proposed system using the python
programming language

3.6.3 Encryption/Decryption Component

This component is utilized in the proposed
system to preserve integrity, confidentiality, and
user anonymity. The asymmetric key encryption
algorithm RSA 2048 is utilized in the system to
generate the public and private keys for the system
users. While symmetric key encryption AES is used
to encrypt/decrypt the data stored in the database. In
addition to ensuring the integrity of the data, SHA
256 hash function is utilized in the system.
Moreover, to ensure the confidentiality of the data in
transmission the HTTPS protocol is utilized.

Figure 3: Smart Contracts of the InsureChain System

3.6.4 Ethereum Client

While the proposed system work on a
permissioned blockchain network, the Ethereum
Blockchain network is used. Therefore, to join the
Ethereum network, we use the Ethereum client
which has all the required features necessary to
access the functionalities of Ethereum.

3.7 InsurChain: Smart Contracts:
The InsurChain smart contract consists of several
contracts that are shown in Figure 3.

3.7.1 Nodes Contract (NC)
This contract maps a node identification string to its
associated Ethereum address identity, i.e. public key.
The adoption of the identification strings rather than
the public key directly is to allow already existing IDs
to be used. Procedures and Policies coded into the NC
regulate adding and registering new IDs. This contract
additionally determines the role of each participant
node within the system i.e., insurance company node,
customer node, Police Officers, Mechanics and third
party. This contract recognizes nodes that have
already registered and thus avoiding the case of
double registration. Additionally, the NC maps the

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9223

Ethereum address of the node with its associated
Steward-Relation History Contract (SRHC) address.
3.7.2 Steward-Relation History Contract
(SRHC)
This contract maintains the steward relationship
history of each participants’ nodes in the system
where the customer’s record is stored and managed
by the insurance company node. The SRHC locates
the history of records by holding a summary list of
the steward relationship. For example, if a node role
is customer, its SRHC will have references to all
insurance companies that it has been engaged with.
On the other hand, the SRHC of an insurance
company has references to all customers’ nodes in
which that company serves. Every node within the
Blockchain system will have a SRHC that will be
created during the registration process.

 Generally, the SRHC is identified by the
Ethereum address of the SRHC owner node and
stores the Ethereum addresses of all associated
nodes, their related IDs, a stewardship statue, a last-
update date field that indicates the last update on the
status field, and an address to the applicable RC.
Users notifications can be enabled via the use of the
stewardship status field, such as the stewardship is
“newly” established, “awaiting pending updates”,
and “acknowledged customer approval” or
“acknowledged customer denial”. The stewardship
status in the customer SRHC is set by insurance
company node in the system every time they update
the customer record or as a part of establishing a new
stewardship. Thus, customers can be notified upon
modifying the stewardship status field as a new
stewardship is recommended or an update is
available.

3.7.3 Records Contract (RC)
This contract tracks all records in which insurance
companies store for customers and is generated
when a new steward relation is established between
two nodes. The RC includes several data fields with
different purposes, and is identified by the Ethereum
address of the owner that signifies the customer who
owns the record(s). Each record has a filename f,
conditions, and AccessInfo. The filename indicates
the identity string for the record. The AccessInfo
data field of the record specifies the needed
information to find the ER Database of a company ,
i.e. the company’s host name and the information for
the port in a standard network topology. Moreover,
to maintain data integrity, each record has a hash
value h (AL) for the access link of the file, and a hash
value h(ER) of the stored record. Moreover,

references to the AAC address and the DBC address

are listed in the RC.

3.7.4 Logs Contract (LC)
This contract tracks all transactions performed on the
records to facilitate adding/validating/appending
blocks in the Blockchain network. This contract is
identified by the Ethereum address of the source of
the transaction. It lists the transaction details in an
encrypted log data field with a status field that
indicates whether the new log has been added to the
Blockchain. It also stores the last update of the status
field.

3.7.5 Access Control Contract (ACC)
The ACC includes all permissions related
information which is specific to every record. It lists
the Ethereum addresses for all nodes who have
access permissions on the record. This contract
specifies the level of that access (i.e. owner,
read/edit, and blind-read), and a symmetric key
encrypted with the public key of each node. A
“read/edit” access level indicates that a node can
read and partially edit the ER as it has the symmetric
key that is generated to encrypt the record when it is
first added (i.e. edit access level means a customer
for example can update his address or change his
profile picture). The temp-read level indicates that
the node can temporary read a record as it has the
DBC address that will keep an encrypted copy of the
record for a certain time to function the temporary
access by a trusted third party. The owner level is
assigned to the insurance company node who adds
the record. It indicates that a node has full access and
control of the ACC as it can add other nodes with the
“read/edit” level, remove nodes from the AAC, and
also alter the level for any existing nodes. The AAC
also contains the “pstatus” field along with the
lastupdate in order to notify participants when there
is a change in their access level.

3.7.6 Deposit-Box Contract (DBC)
This contract is employed when there is a verified
request from a third party to access an ER for a
customer. This contract stores an encrypted ER for a
certain time to facilitate the record’s access by a third
party. The stored record will be encrypted via the
public key of the third part before storing and will be
kept only for a certain time specified by the Timer
field.

3.7.7 Claim Contract (ClaimC)
This contract is responsible for managing the claim
process and handling the interactions between the
involved parties (customer nodes, insurance
company nodes, police officer, mechanics and third

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9224

parties). The Claim Contract includes the
policeAccidentReportID field to store the police
accident report ID associated with each claim. When
a customer node submits a claim, they can provide
the police accident report ID along with other claim
details. The validateClaim function allows insurance
company nodes to validate a claim, and additional
validation logic can be added as required (e.g., cross-
referencing with PoliceContract). The
getClaimDetails function allows anyone to retrieve
the details of a claim by its claim ID, and the
isClaimValidated function allows anyone to check if
a claim has been validated by the insurance
company.

3.7.8 PoliceContract
This contract tracks all AccidentReports in which a
police officer is issued for customers in an insurance
company. This contract includes several data fields
including report ID, police Officer, access Info,
accessLinkHash, and reportHash.

The report ID represents the identity string for the
accident report, while police Officer is the Ethereum
address of the police officer who issued the report.
The access Info field contains the information
needed to access the actual police report off-chain,
such as the company's host name and port
information. Instead of storing the full access link
and the actual report on-chain, the contract stores
their respective hash values (accessLinkHash and
reportHash) for data integrity. The
addAccidentReport function allows police officers
to add new accident reports by providing the
necessary details, and the AccidentReportAdded
event is emitted to inform relevant parties of the new
report. The contract also includes functions to
retrieve accident report details, access link hash, and
report hash for a specific police officer. By storing
the report off-chain and using hashes on-chain, the
PoliceContract maintains data integrity while
providing necessary access for the insurance
company to validate and verify accident claims
based on the police accident reports.

4. IMPLEMENTATION OF THE
INSURCHAIN SYSTEM

4.1 Adding a new customer (Applying for car
insurance):
In real-life car insurance scenario, a person
(potential customer) visits an insurance company's
office or website and expresses their interest in
obtaining car insurance. They submit an application
to the insurance company. The insurance company's
staff (providers) validate and authenticate the
received application. They verify the customer's

identity, check if the customer is eligible for
insurance, and ensure that there is no existing policy
for the same customer ID. If the application is
accepted and verified, the insurance company
proceeds with the next steps. They update their
records. After successfully adding the customer to
their system, the insurance company creates a new
contract known as "Steward-Relation History
Contract" (SRHC) for the new customer. This
contract will store relevant information and history
related to the customer's interactions with the
company. The address of the newly created SRHC is
then forwarded to the insurance company for
reference and future interactions. The insurance
company shares the necessary account information
with the new customer. This could include policy
details, coverage information, terms and conditions,
etc.

In blockchain-based scenario, the process of adding
a new customer node in the InsureChain system
involves validation, data storage in contracts, and
information sharing, much like the real-life process
of applying for insurance coverage. The InsureChain
system provides a decentralized and secure way to
manage customer data and interactions between
different nodes in the network. The process begins
when an insurance company node sends a request.
The insurance company node sends the Ethereum
address of the new customer node, its ID and the
requested role to the NC for validation. Providers’
nodes validate and authenticate that received request
by ensuring and confirming that the received request
is related to a legitimate customer and the non-
existence of a registered customer matching that
received ID. If the request is accepted and validated,
the NC updates its local memory with the customer’s
ID, its Ethereum address and a “customer” role. The
NC creates a new SRHC for the new customer node
whose address will be forwarded to the company.
The new customer’s account information will be sent
to the customer node from the insurance company
node who forms the request.

4.2 Adding a new Record Via An Insurance
company
The procedures of adding a new record starts after
establishing a stewardship between the company
and the customer nodes and thus having a shared RC.
First, internal encryption in the insurance company
node begins the process of adding a new record.
When a new record is created by an insurance
company node, that record will be transferred to the
DB Manager. It creates an access link (AL) of a free
location in the company existing Database and

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9225

hashes both the generated access link h (AL) and the
record h(ER).

The DB manager forwards the created access link
and the record to the Cipher/Decipher Manager for
encryption. The Cipher/Decipher Manager generates
a symmetric key (SMK), encrypts the new record
and link with that key and then encrypts that
generated symmetric key with the public keys of the
company, customer and set of proxies. The
Cipher/Decipher Manager sends the encrypted
record to the DB manager to store. In addition, all
other encrypted data will be sent to the DB manager
to create a log indicating the creation of the new
record since the history of all access will be stored in
the Blockchain to provide a full view of all events
that happened to each record. The hash of the created
log will be calculated and stored in the DB manager
for block verification later. Thus, ensuring the
integrity of data since if any part of the data is
changed, all involved nodes will notice the
alteration. Then, the log will be sent to the
Cipher/Decipher manager for encryption with the
public key of the insurance company node.

 The insurance company node sends the
customer’s ID to its SRHC that will return the
associated RC address. The insurance company node
then sends the record information (filename of the
record, hash value of the access, and hash value of
the customer’s record, the encrypted symmetric
keys, and the log) to the RC. The RC stores the
filename of the record, the hash value of the access
link, and the hash value of the customer’s record.
The RC then creates a new ACC for the record and
forwards the encrypted symmetric keys Epk(SMK).
The ACC auto-creates the access and permissions
information for the record, i.e. customer and
company permissions, and then sends its address to
the RC for its reference. On the other hand, the LC
updates its entries with the received encrypted log,
the associated Ethereum address of the insurance
company node, the “new log” status to indicate that
the new log has not been added to the Blockchain
yet, as well as the timestamp of the last status update.
At the end, the encrypted access link is sent to the
customer over HTTPS who will store that link in it’s
cipher/decipher manager and will be used when the
customer would like to read his/her record.
Additionally, when the new record is created, the
insurance company node notifies the NC to updates
the associated degree of the insurance company
node. The NC informs the REM to add the value of
the added record to the node’s degree and to return it
to perform the update.

In real life, when an insurance company receives a
new record (e.g., a new insurance policy, a claim, or
customer information), it goes through a series of
steps to ensure data integrity and proper storage, and
these steps are:

1. Record Creation: The process starts when
an insurance company creates a new record,
such as a new insurance policy for a
customer.

2. Access Link and Record Hashing: The
insurance company generates an access link
(AL) that points to a free location in its
existing database. The AL, along with the
record (e.g., insurance policy details), is
hashed to ensure data integrity.

3. Encryption: The insurance company sends
the AL and the record to a Cipher/Decipher
Manager for encryption. The
Cipher/Decipher Manager generates a
symmetric key (SMK) and uses it to
encrypt both the AL and the record.
Additionally, the SMK is encrypted using
the public keys of the company, customer,
and a set of proxies for secure sharing.

4. Data Storage: The encrypted record is sent
back to the insurance company's Database
Manager for storage in the company's
existing database. The Database Manager
also receives other encrypted data to create
a log that records the creation of the new
record. This log is essential for maintaining
a full view of all events that happened to
each record.

5. Log Verification: The hash of the created
log is calculated and stored in the Database
Manager. This step ensures all involved
nodes will detect the integrity of the data
since any change to the data in the
Blockchain-based system.

6. Record Contract (RC) Interaction: The
insurance company node communicates
with its Steward-Relation History Contract
(SRHC) to retrieve the associated RC
address for the customer's record.

7. Information Forwarding: The insurance
company node sends the necessary
information, such as the filename of the
record, hash value of the access link and
customer's record, encrypted symmetric
keys, and the log, to the RC.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9226

8. Record and Access Control Creation: The
RC stores relevant information about the
new record, including the filename, access
link hash, and customer's record hash. It
creates a new Access Control Contract
(ACC) for the record, which automatically
sets access and permissions information for
the record, such as customer and company
permissions.

9. Log and Status Update: The Log Contract
(LC) is updated with the received encrypted
log, associated Ethereum address of the
insurance company node, "new log" status,
and timestamp of the last status update.

10. Secure Access Link Sharing: The encrypted
access link is sent to the customer over
HTTPS, allowing the customer to store the
link in their cipher/decipher manager. This
link will be used when the customer wants
to read their record securely.

11. Degree Update: The insurance company
node notifies the Node Controller (NC)
about the new record creation, which leads
to the update of the associated degree of the
insurance company node. The NC informs
the Record Evaluation Manager (REM) to
add the value of the added record to the
node's degree and to return it to perform the
update.

4.3 Editing A Record by An Insurance Company
The insurance company node sends the customer’s
ID to its SRHC to retrieve the associated RC address.
Upon receiving the RC address, the insurance
company node then sends the filename of the
requested record and its Ethereum address to the RC.
The RC forwards the request to the ACC to check
whether that received Ethereum, address has a
permission (i.e. “owner” access level) on the
requested record or not. If the insurance company
node has a permission, the AAC forwards the
company’s encrypted symmetric key

E
pkstudent

(SMK) to the RC. The RC in turns

forwards the received key to the insurance company
node.

 The cipher/decipher manager in the company’s
node first decrypts the received symmetric key using
its private key and then decrypts the access link with
that symmetric key. The DB manager of the
company’s node follows the related access link and
then retrieves the encrypted ER from the database
for editing. Note, when a record is modified, its hash

value will also be changed [28]. Thus, the DB
manager, after modifying the record, calculates the
new hash of the modified record h(EAR). The DB
manager sends the customer’s ID to its SRHC to
retrieve the associated RC address. The new hash
value will be sent to the RC for updating. Moreover,
the DB manager creates a log indicating the process
of record editing, hash the log and then forwards the
log to the cipher/decipher manager for encryption.
The encrypted log then will be forwarded to the LC.
The LC adds a new entry with the received encrypted
log, a “new log” status to indicate that the new log
has not been added to the Blockchain yet, and a
timestamp indicating the last status update.
Additionally, when the editing the customer’s
record, the insurance company node notifies the NC
to updates the associated degree of the insurance
company node. The NC informs the REM to re-
evaluate the value of the record and thus updating
the node’s degree. The REM performs the
calculations and returns the new degree to the NC for
updating.

4.4 Access a record from the customer
A customer’s node sends the company’s ID to

its SRHC to retrieve the associated RC address.
Upon receiving the RC address, the customer node
then sends the filename of the requested record and
Ethereum address of the customer to the RC. The RC
forwards the request to the ACC to check whether
that received Ethereum address has a permission (i.e.
“read/edit” access level) on the requested record or
not. If the customer node has a permission, the AAC
forwards the customer’s encrypted symmetric key

E
pkstudent

(SMK) to the RC. The RC in turns

forwards the received key with the database access
information to the customer node.

The cipher/decipher manager in the customer ’s
node first decrypts the received symmetric key using
its private key and then decrypts the access link with
that symmetric key. The DB manager of the
customer’s node follows the related access link and
retrieves the encrypted ER from the company’s
database. Since customers can access their nodes via
online wallets, any device with Internet connection
can perform records access. Thus, improving the
interoperability of ER s. Moreover, the DB manager
creates a log indicating the process of reading the
record, hashes the log and then forwards the log to
the cipher/decipher manager for encryption. The
encrypted log then will be forwarded to the LC. The
LC adds a new entry with the encrypted received log,
a “new log” status to indicate that the new log has
not been added to the Blockchain yet, and a
timestamp indicating the last status update.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9227

4.5 An Insurance Company Reads a Record
From Another Insurance Company

The process of reading a record that is stored in
an insurance company node from another insurance
company node utilizes the timed-based deposit-box
mechanism to increase both the accessibility and the
security of ER s systems.

Suppose that there are two insurance
companies nodes A and B, where company B would
like to read a specific customer’s record from
company A. Company B generates a request to read
the record first, signs that generated request by its
private key for authorization, and then encrypts the
signed request with the public key of company A.
Over HTPPS, the encrypted signed request will be
sent to company A. Upon receiving the request,
company A decrypts the request with its private key
and then decrypts it with the public key of company
B to ensure that the company is the one that it claims
to be.

First, node A will send the ID of the customer
to its SRHC to return the associated RC address.
Insurance company node A then sends the filename
of the record to the RC to retrieve the associated
ACC address. The insurance company node a then
sends the Ethereum address and the access level
request to the ACC. The ACC then forwards the
Ethereum address of company B and its request for
the NC to verify whether company B is an authorized
company registered on the system. Upon receiving
the verification from the NC, the ACC generates a
new entry with the Ethereum address of node B, the
Access Level, and the “request new level” status,
and the timestamp of the last status update. The ACC
requests a change in the access level from the file
owner (i.e. customer), and updates both its status
field to “waiting approval” and last-update. If the
customer accepts the request, the ACC updates the
access level with “temp-read” for the applicable file
with the “approved” status and the last-update. Once
the request has been approved, the ACC sends a
notification to the insurance company node B
indicating that a new access level is assigned to it.
The ACC also notifies the RC to create a new entry
in the DPC with the Ethereum address of company
B.

The RC then sends the Ethereum address of
company B, and the file name to the insurance
company node A. The DB manager retrieves the
record and forwards the record with the received
public key to the cipher/decipher manager for
encryption. The DBC will be updated by storing the
encrypted file for a certain time specified by the
Time field. Over HTTPS, company A sends the DPC
address to company B to access the requested record

by decrypting it using its private key. The DB
manager of node B will update the LC entry with an
encrypted log indicating the process of reading the
record. The LC updates it status with “new log” to
indicate that the new log has not been added to the
Blockchain yet, and the timestamp of the last status
update.

4.6 Claim Submission by a customer

The Claim Contract (ClaimC) handles the claim
submission process. The Claim struct is defined to
store the details of a claim, including the claimant's
address, claim details, claim amount, and claim
status (pending, approved, or rejected). The claims
mapping is used to store all the submitted claims,
with each claim having a unique claim ID. When a
customer node wants to submit a claim, they call the
submit Claim function, passing the claim details and
the claim amount as arguments. The function first
checks if the sender is a registered customer node by
calling the isCustomerNode function from the Nodes
Contract (NC). If the sender is a valid customer
node, a new claim is created and added to the claims
mapping with a pending status. The claim counter is
then incremented for the next claim submission.
After the claim is added, the function notifies the
insurance company nodes about the new claim by
calling the notifyInsuranceCompanyNodes function.

4.7 Claim Approval or Rejection:
The insurance company nodes can approve or reject
the pending claims using the approveClaim and
rejectClaim functions, respectively. To approve or
reject a claim, the sender must be a registered
insurance company node, which is verified by
calling the isInsuranceCompanyNode function from
the Nodes Contract (NC). If the claim is in a pending
status, the function updates the claim status to either
approved or rejected, as per the sender's action.
Additionally, the function notifies the claimant about
the approval or rejection using the notifyClaimant
function.

4.8 Claim Status Retrieval
The getClaim function allows anyone to retrieve the
details of a specific claim using its unique claimId.
The function returns the claimant's address, claim
details, claim amount, and claim status.

Please note that this is a simplified version of the
claim submission process and may require further
refinement and additional functionalities based on
the specific requirements of the insurance system.
Also, the smart contract assumes the existence of
other contracts such as the Nodes Contract (NC) to
handle node registration and authentication, which
are referenced in the code using function calls. The

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9228

actual implementation of those contracts is beyond
the scope of this explanation, as it would involve
more detailed contract code and interactions.

5. EVALUATION AND DISCUSSION
5.1 Experiment Setup

The software that are necessary to be installed on the
machine to run the InsureChain system include
Ubuntu operating system, NodeJs, Truffle, and
Metamask. A number of steps are performed to run
the system including firstly installing the
dependencies of the project. Secondly, Truffle
compile for generating a.json file in the build
directory of the project that corresponds to the smart
contract and describes its specific details. Thirdly,
Truffle develop for contract deployment. Fourthly,
installing and using Ethereum Metamask on Google
Chrome:

The proposed system backend is developed
using python 3.10. flask 2.03 with HTML, bootstrap
4, CSS, JS, jQuery, and AJAX are used to develop
the front end of the system. Bootstrap and CSS are
used in front-end development to provide the auto-
responsive interface with multiple devices and to
improve the accessibility of the system. The
PyCharm 2021.3 educational edition is used because
it is a python integrated development environment
and provides a set of python development tools. In
addition, PyCharm is used as a web-based
applications development environment.

The ganache tool is used as a private and
personal blockchain for development and testing. It
is used in the implementation for deploying and
testing the smart contract. Also, the solidity
programming language is used to develop smart
contracts.

5.2 Privacy and Confidentiality evaluation
The privacy required in the proposed system is

for both the identity of people interacting with the
system and the data in the system. By utilizing the
RSA encryption algorithm to generate the user's
public and private keys to interact with the system
without the need for any personal information, the
user's privacy was preserved. The transaction data
privacy was preserved in the proposed system by
utilizing the authorization method and access levels
to access the claim data. In the proposed system the
customer cannot access any claim other than his/her
claim. On the other hand, only authorized company
users can access the claim data.

The confidentiality of the data at rest and in
transit was achieved in the proposed system where

the AES encryption algorithm was utilized to store
the claim data in an encrypted form in the database,
in addition to storing only the hash values for the
user's private keys, secret phrase, and passwords in
the database. On the other hand, the claim hash value
is only stored in the blockchain. While the HTTPS
protocol is utilized to encrypt and protect the data in
transit.

5.3 Integrity Evaluation
While the claim data hash value is calculated

using SHA 256 algorithm and stored in the
blockchain, when the customer or the company
retrieve the claim data, the hash value for the
retrieved data is recalculated and compared with the
hash value retrieved from the blockchain. By this
mechanism the integrity of the claim data can be
verified, also any manipulation of the data will be
detected.

5.4 Secure Communication Channel evaluation

By utilizing the cryptography in the proposed
system, a secure communication channel was
achieved. With the utilization of the HTTPS
protocol, the data in transit will be encrypted and
protected and will not be revealed. In addition to
using the RSA algorithm to generate the user's public
and private keys to be used as identification for the
user instead of any personal data, the customer
identity will stay anonymous. In addition, the use of
the AES encryption algorithm to encrypt/decrypt the
claim data will protect data at rest. All of these
cryptography mechanisms achieved the objective of
a secure communication channel between the
customer and the insurance company.

5.5 Security Evaluation
Security testing for the proposed system web

application was conducted using the the HCL
AppScan standard tool. Security testing was
conducted to detect any vulnerabilities in the
proposed system and ensure that the proposed
system and the internal users and customers are not
vulnerable to attacks. The HCL AppScan is a
dynamic application security testing (DAST) tool
that analyzes web applications and APIs by
simulating real-world attacks. It is capable of
detecting a wide range of security issues, including:

 Injection attacks: AppScan can detect various
types of injection vulnerabilities such as SQL
injection, command injection, and LDAP
injection.

 Cross-Site Scripting (XSS): AppScan can
identify both stored and reflected XSS
vulnerabilities.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9229

 Cross-Site Request Forgery (CSRF): AppScan
can detect CSRF vulnerabilities that allow an
attacker to perform unauthorized actions on
behalf of the user.

 Figure 4: The HCL AppScan testing results
on HTTP protocol

 Authentication and session management issues:
AppScan can detect weak or broken
authentication mechanisms, session fixation
attacks, and session hijacking vulnerabilities.

 Information leakage: AppScan can detect
sensitive data exposure, such as when an
application leaks sensitive information like
passwords, credit card details, or personal data.

 Broken access controls: AppScan can detect
access control vulnerabilities that allow an
attacker to bypass authorization checks and gain
access to unauthorized resources.

 Security misconfigurations: AppScan can
identify misconfigurations such as open ports,
insecure protocols, and weak encryption.

 Other vulnerabilities: AppScan can also detect
other types of vulnerabilities like buffer
overflows, file inclusion vulnerabilities, and
insecure communication protocols.

The security testing was conducted on the
web application in two cases, on HTTP protocol
and HTTPS protocol.

5.5.1 Security testing On HTTP protocol

On the first test, the web application was
running on HTTP protocol, which means without
using secure socket layer protocol (SSL). The
result of the testing was a high-severity of
vulnerability, as shown in Figure 4. The high
severity was on the login page where the password
was sent on a plain text form.

5.5.2 Security testing On HTTPS protocol

On the second test, the web application was
running on HTTPS protocol using an SSL certificate
from the OpenSSL library that has been added to the
project on python. The result of the testing was with
low severity of vulnerability, as shown in Figure 5.
The result improved when the HTTS is used, and the
high-severity vulnerability was removed because of
using the SSL certificate, which encrypts the traffic
between the client and the server.

Table 1: Consensus algorithms comparison

Consensus
Algorithm

Computational
Requirements

Energy
Efficiency

Decentralization Security

Proof of
Authority

Low High Potentially low Moderate

Proof of
Stake

Moderate Moderate Moderate Moderate

Proof of
Work

High Low High High

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9230

Figure 5: HCL AppScan testing results on HTTPS

protocol

5.6 Consensus Algorithms Comparison

The Proof of Authority (PoA) consensus
algorithm is used in the proposed system, which is a
consensus algorithm that relies on a fixed set of
validators who are pre-approved by the network's
governing body. Table 1 shows the comparison
between Proof of authority (PoA), Proof of Stack

(PoS), Proof of Work (PoW) consensus algorithms.
PoA improves the scalability of the system since it
uses fewer resources, has a far higher throughput
than PoW because there are fewer validator nodes in
the network, and needs less computing power to
operate. PoA also makes it simple to design and
maintain decentralized apps, and since it operates in
a centralized form, it reduces the number of forks,
which in turn reduces the number of potential attacks
on the network.

6. CONCLUSION
In this paper, we have proposed InsureChain system
which is a Blockchain based InsurTech system that
makes use of smart contracts. We have demonstrated
that Blockchain with Ethereum smart contracts
presents a novel opportunity to circumvent the
restrictions and hurdles posed by InsurTech systems.
This system enables claiming process from client to
be held in a secure and cost effective manner while
also protecting the privacy of clients and integrity of
data. Because of its high level of transparency,
Blockchain technology makes claim process and
refunding much easier. Moreover, the proposed
system enables the customer to follow up his/her
claims easily and save time. Also, the system enables
different insurance companies to exchange data
between. The systems employs PoA which achieved
higher efficiency because small number of nodes
participate in the mining process. An incentive
mechanism that leverage the degree of block creator

was used, thus, achieving fairness among nodes
because block creator will have lower chance to
create a new block.

However, we have not yet had a complete
understanding of all of the potential threats that are
associated with the security and scalability of
Blockchain based InsurTech systems, so additional
research is necessary. In addition, there are many
other parts in InsurTech such as medical that in some
case need a real-time response to proceed. In
previous sections, we just cover claim process in car
accidents and we are aware that there are many other
parts of insurance should be covered. Future work
can also include the design of the system using Rapid
and user-centered methods to increase the usability
[29][30], and the integration of vehicle technologies,
e.g., speed monitoring [31][32].

REFERENCES

[1] I. S. Gómez, “Insurtech: Disrupting the
Insurance Industry,” in The Emerald
Handbook of Fintech, H. K. Baker, G.
Filbeck, and K. Black, Eds., Emerald
Publishing Limited, 2024, pp. 343–362. doi:
10.1108/978-1-83753-608-520241043.

[2] J. John, M. Joseph, S. Joseph, G. Jacob, N.
Rose, and S. Thomas, “Insurtech research
dynamics: A bibliometric review of
technological innovations in insurance,”
Multidiscip. Rev., vol. 7, no. 12, p. 2024288,
Aug. 2024, doi: 10.31893/multirev.2024288.

[3] D. Yadav and Ram Milan, “IMPACT OF
FUNDING IN INSURTECH ON PREMIUM
PERFORMANCE OF INSURANCE
BUSINESS,” ShodhKosh J. Vis. Perform.
Arts, vol. 5, no. 6, Jun. 2024, doi:
10.29121/shodhkosh.v5.i6.2024.1866.

[4] Electronic and Computer Science Dept.,
University of Southampton, Southampton,
UK, H. F. Atlam, A. Alenezi, M. O. Alassafi,
and G. B. Wills, “Blockchain with Internet of
Things: Benefits, Challenges, and Future
Directions,” Int. J. Intell. Syst. Appl., vol. 10,
no. 6, pp. 40–48, Jun. 2018, doi:
10.5815/ijisa.2018.06.05.

[5] E.-Y. Daraghmi, Y.-A. Daraghmi, and S.-M.
Yuan, “MedChain: A design of blockchain-
based system for medical records access and
permissions management,” IEEE Access, vol.
7, 2019, doi:
10.1109/ACCESS.2019.2952942.

[6] M. ASim, M. Petkovic, and T. Ignatenko,
“Attribute-based encryption with encryption
and decryption outsourcing,” 12th Aust. Inf.

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9231

Secur. Manag. Conf. Held 1-3 Dec., vol. 2014
at Edith Cowan University, p. Western
Australia., 2014, doi:
10.4225/75/57B65CC3343D0.

[7] M. Demir, O. Turetken, and A. Ferworn,
“Blockchain Based Transparent Vehicle
Insurance Management,” in 2019 Sixth
International Conference on Software
Defined Systems (SDS), Rome, Italy: IEEE,
Jun. 2019, pp. 213–220. doi:
10.1109/SDS.2019.8768669.

[8] Z. Wan, Z. Guan, and X. Cheng, “PRIDE: A
Private and Decentralized Usage-Based
Insurance Using Blockchain,” in 2018 IEEE
International Conference on Internet of
Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data
(SmartData), Halifax, NS, Canada: IEEE, Jul.
2018, pp. 1349–1354. doi:
10.1109/Cybermatics_2018.2018.00232.

[9] N. Nizamuddin and A. Abugabah,
“Blockchain for automotive: An insight
towards the IPFS blockchain-based auto
insurance sector,” Int. J. Electr. Comput. Eng.
IJECE, vol. 11, no. 3, p. 2443, Jun. 2021, doi:
10.11591/ijece.v11i3.pp2443-2456.

[10] J. Sun, X. Yao, S. Wang, and Y. Wu, “Non-
Repudiation Storage and Access Control
Scheme of Insurance Data Based on
Blockchain in IPFS,” IEEE Access, vol. 8, pp.
155145–155155, 2020, doi:
10.1109/ACCESS.2020.3018816.

[11] “Nakamoto, S. (2008). Bitcoin: A peer-to-peer
electronic cash system.
https://bitcoin.org/bitcoin.pdf”, [Online].
Available: https://bitcoin.org/bitcoin.pdf

[12] Daraghmi, Daraghmi, and Yuan, “UniChain:
A Design of Blockchain-Based System for
Electronic Academic Records Access and
Permissions Management,” Appl. Sci., vol. 9,
no. 22, p. 4966, Nov. 2019, doi:
10.3390/app9224966.

[13] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen,
“A survey on the security of blockchain
systems,” Future Gener. Comput. Syst., vol.
107, pp. 841–853, Jun. 2020, doi:
10.1016/j.future.2017.08.020.

[14] E.-Y. Daraghmi, M. Abu Helou, and Y.-A.
Daraghmi, “A Blockchain-Based Editorial
Management System,” Secur. Commun.
Netw., vol. 2021, pp. 1–17, May 2021, doi:
10.1155/2021/9927640.

[15] E. Daraghmi, Y. Daraghmi, R. Daraghma, H.
Fouchal, and M. Ayaida, “A Blockchain
framework for Enhancing NB-IoT Security
and Authentication: Health Monitoring
System as a case,” Athens, 2022.

[16] E.-Y. Daraghmi, S. Jayousi, Y.-A. Daraghmi,
R. S. M. Daraghma, and H. Fouchal, “Smart
Contracts for Managing the Agricultural
Supply Chain: A Practical Case Study,” IEEE
Access, vol. 12, pp. 125462–125479, 2024,
doi: 10.1109/ACCESS.2024.3439412.

[17] P. G. Bringas, I. Pastor-López, and G. Psaila,
“BlockChain Platforms in Financial Services:
Current Perspective,” Bus. Syst. Res. J., vol.
11, no. 3, pp. 110–126, Nov. 2020, doi:
10.2478/bsrj-2020-0030.

[18] “Lightweight End-to-End Blockchain for IoT
Applications,” KSII Trans. Internet Inf. Syst.,
vol. 14, no. 8, Aug. 2020, doi:
10.3837/tiis.2020.08.004.

[19] L. Zavolokina, N. Zani, and G. Schwabe,
“Designing for Trust in Blockchain
Platforms,” IEEE Trans. Eng. Manag., vol.
70, no. 3, pp. 849–863, Mar. 2023, doi:
10.1109/TEM.2020.3015359.

[20] Sanjeewa Silva, “BETHEL Blockchain
Platform,” 2020, doi:
10.13140/RG.2.2.19933.23529.

[21] H. Ye and S. Park, “Reliable Vehicle Data
Storage Using Blockchain and IPFS,”
Electronics, vol. 10, no. 10, p. 1130, May
2021, doi: 10.3390/electronics10101130.

[22] S. Bhatt, S. Hotchandani, K. Gaur, and S.
Sirsikar, “Introduction to LifeBlocks: A
Blockchain based Insurance Platform:,” in
Proceedings of the 17th International Joint
Conference on e-Business and
Telecommunications, Lieusaint - Paris,
France: SCITEPRESS - Science and
Technology Publications, 2020, pp. 77–81.
doi: 10.5220/0009854000770081.

[23] L. Bader, J. C. Burger, R. Matzutt, and K.
Wehrle, “Smart Contract-Based Car Insurance
Policies,” in 2018 IEEE Globecom Workshops
(GC Wkshps), Abu Dhabi, United Arab
Emirates: IEEE, Dec. 2018, pp. 1–7. doi:
10.1109/GLOCOMW.2018.8644136.

[24] C. Eckert, C. Neunsinger, and K. Osterrieder,
“Managing customer satisfaction: digital
applications for insurance companies,”
Geneva Pap. Risk Insur. - Issues Pract., vol.
47, no. 3, pp. 569–602, Jul. 2022, doi:
10.1057/s41288-021-00257-z.

[25] F. Loukil, K. Boukadi, R. Hussain, and M.
Abed, “CioSy: A Collaborative Blockchain-

Journal of Theoretical and Applied Information Technology
31st December 2024. Vol.102. No. 24

© Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9232

Based Insurance System,” Electronics, vol.
10, no. 11, p. 1343, Jun. 2021, doi:
10.3390/electronics10111343.

[26] A. Hombalimath and N. Mangla, “Blockchain
Based Secured Vehicle Insurance Framework
using Hyperledger Composer,” Sep. 16, 2022.
doi: 10.21203/rs.3.rs-2060348/v1.

[27] R. Selvakumar, S. Shibu, R. P. Joy, R. C. R,
C. R. Kumar, and S. Kamatchi, “A Federated
Consensus for Proof of Authority in IoT-
Blockchain Applications,” Int. J. Recent
Innov. Trends Comput. Commun., vol. 11, no.
9, pp. 328–334, Oct. 2023, doi:
10.17762/ijritcc.v11i9.8358.

[28] W. Stallings, Cryptography and network
security: principles and practice, 4. ed. Upper
Saddle River, NJ: Pearson/Prentice Hall,
2006.

[29] Y.-A. Daraghmi, B. Yahya, and E. Y.
Daraghmi, “Has Covid-19 Affected Software
Usability: Mobile Accounting System As A
Case,” J. Theor. Appl. Inf. Technol., vol. 101,
no. 2, pp. 785–794, 2023.

[30] Y.-A. Daraghmi and E.-Y. Daraghmi,
“RAPD: Rapid and Participatory Application
Development of Usable Systems During
COVID19 Crisis,” IEEE Access, vol. 10, pp.
93601–93614, 2022, doi:
10.1109/ACCESS.2022.3203582.

[31] Y.-A. Daraghmi, “Vehicle Speed Monitoring
System Based on Edge Computing,” Gaza:
IEEE, 2021.

[32] Y.-A. Daraghmi, M. A. Helou, E.-Y.
Daraghmi, and W. Abu-ulbeh, “IoT-Based
System for Improving Vehicular Safety by
Continuous Traffic Violation Monitoring,”
Future Internet, vol. 14, no. 11, p. 319, Nov.
2022, doi: 10.3390/fi14110319.

